
Reply to Referee #1

We are grateful to the Referee for their careful and positive evaluation of our manuscript. We are also
grateful for the interesting comments and valuable suggestions which helped us to improve its content. We
answer in the following to all the points they raised. We have also introduced all the changes requested by
the Referee in the revised version of the manuscript.

Strengths
The manuscript report a theoretical investigation of the instability of arrays of quantized
vortices appearing at the interface between two superfluid layers in relative motion. Recent
theoretical [42, 44] and experimental [46] studies have explored these dynamics, uncovering
intriguing connections to the well-known Kelvin-Helmholtz instability of a shear layer in irro-
tational inviscid fluids.

1) The authors address the problem by introducing a generalized point-vortex model to
include massive vortex cores and dissipative processes and they show that these e↵ects can
lead to the partial or complete suppression of the instability.

2) The manuscript is well-written, scientifically sound and, in my opinion, holds significant
interest for the community as it addresses the role played by e↵ects which have yet to be fully
understood in real superfluids.

Weaknesses

(1) Several interesting aspects raised in the manuscript require further discussion.

(2) A couple of technical points should be clarified (See report).

Report
The manuscript report a theoretical investigation of the instability of arrays of quantized
vortices appearing at the interface between two superfluid layers in relative motion. Recent
theoretical [42, 44] and experimental [46] studies have explored these dynamics, uncovering
intriguing connections to the well-known Kelvin-Helmholtz instability of a shear layer in irro-
tational inviscid fluids. From a purely theoretical perspective, the problem of the stability of
arrays of identical point vortices can be traced back to the works of Rosenhead and Havelock in
1931. More recently, Aref [43] expanded on these ideas, viewing the array as a discrete version
of a vortex sheet, thereby establishing a direct conceptual connection with Kelvin-Helmholtz
scenario.

Here, the authors address the problem of the stability of the shear layer at the interface be-
tween counter-propagating superfluids, demonstrating that massive vortex cores and dissipa-
tive processes, together with the proximity with the boundaries of the sample, are responsible
for a partial or complete quenching of the instability. The analysis is based on a generalized
point-vortex model, including the e↵ects of a finite vortex-core mass and dissipation.

The manuscript is well-written, scientifically sound and, in my opinion, holds significant in-
terest for the community as it addresses the role played by e↵ects which have yet to be fully
understood in real superfluids and may influence the stability properties of arrays of quantized
vortices. For these reasons, I think that the work potentially deserves publication. However,
some issues need to be addressed and clarified. These issues are reported below in the order
they arise in the text, not by their importance.

Requested changes
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1) In the introduction the authors state that “The kinematic viscosity µ introduces an ultra-
violet cuto↵ that halts the runaway behaviour for small wavelengths (i.e. large q)”. This is only
partially correct. In classical hydrodynamics, an ultraviolet cuto↵ arises whenever a singular
distribution of vorticity, i.e., a zero-thickness shear layer, is no longer an accurate description
of the system (see, e.g. Ref. [5]). A more realistic approach is to consider a finite-width shear
layer that continuously connects the two uniform flows. While it is true that viscous e↵ects
can make the zero-thickness shear-layer approximation less accurate, in general the presence
of a finite-width shear layer is not related to viscosity. The description in terms of a vortex
sheet always breaks down even in ideal fluids when the system is examined at su�ciently small
scales. Moreover, an e↵ective interface of finite width between counter-propagating superflows
naturally arises also in Gross-Pitaevskii simulations, where the vortex-array instability rates
actually agree with those of the Kelvin-Helmholtz instability of a finite-width shear layer (see
[44]). I would thus generally refer to finite-width shear layer to introduce the ultraviolet cuto↵,
rather than to viscosity.

Reply to comment 1): We would like to thank the Referee for raising this subtle point. We agree
with the Referee that the key role of a finite-width shear layer is missing in our sentence. We changed it
following the Referee’s suggestion, such that it is now clear how the presence of a finite width shear layer
� > 0 introduces an ultraviolet cuto↵ k . ��1. However, we do think viscosity plays an important role
in setting up a finite boundary layer in a (classical) real fluid. A number of important textbooks in the
field, in fact, introduce and analyze the concept of boundary layer in tight connection with viscosity: e.g.
Batchelor, An introduction to Fluid Dynamics, Chapter 5; Charru, Hydrodynamic Instabilities, Chapter 5;
Drazin Introduction to Hydrodynamic Stability, Chapter 8.

In a viscous flow, the no-slip boundary condition implies the existence of a thin boundary layer within
which the velocity v of the fluid must change from zero at the surface of a solid body to large values a short
distance away from the surface. Within this layer the term µr2v in the Navier-Stokes equation cannot be
neglected.

A simple example can be found in Chapter 5 (see Sec. 5.5) of Choudhuri, “The Physics of Fluids and
Plasmas”, which considers a flow past a plane surface. The thickness � of the boundary layer at a distance
` from the edge of the solid is approximately

� '
r

µ`

�v
, (R.1)

which vanishes in the absence of viscosity. The condition � < ` introduces a cut-o↵ value for the wave
number k ⇠ `�1

k . �v

µ
, (R.2)

which agrees with the cut-o↵ value shown in D. Tong’s Lectures on Fluid Mechanics, Chapter 5. The main
e↵ect is that the discontinuity in the velocity profile at the interface has to be replaced by an appropriate
boundary layer, that is indeed what the Referee correctly points out. Viscosity does play an important role
within such a thin layer, where the initial velocity profile is smoothed.

We totally agree with the Referee that viscosity is not the only ingredient making up a finite boundary
layer. Nonetheless, the specific value of the UV cut-o↵ due to viscosity results in the quadratic scaling
�⇤ ⇠ �v2. Remarkably, the same scaling law characterizes the instability of an array of massless vortices, as
we recall in paragraph 4 of the Introduction. Thus, we have rephrased that sentence in the following way:

In a realistic description, the two uniform flows are connected by a thin shear-layer that smooths out the

velocity profile at the interface. It also introduces an ultra-violet cut-o↵ q⇤ which halts the runaway behaviour

for small wavelengths (i.e. large q) of the instability growth rate [5]. In real classical fluids with viscosity

µ > 0, one has q⇤ / �v/µ and the maximum growth rate scales as �⇤
c = �c(q⇤) / �v2.

2) “Zwierlein’s group at MIT showed that a BEC subject to a synthetic magnetic field
undergoes a snaking instability leading to a crystallization of the condensate in droplets sep-
arated by streets of quantized vortices.” I’m not sure to understand the relation between
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snaking and shear flow instabilities. In dynamical system theory, “snaking” typically refers
to a transverse modulational instability that distorts a dark soliton stripe or a deep depletion
region, eventually leading to the breakup into vortex filaments or droplet pairs. While the
formation of a vortex array may occasionally result from a snaking instability, this typically
has nothing to do with any subsequent instability of the array, the presence of shear flow, or
shear layer instabilities such as the Kelvin-Helmholtz instability. I would then ask the authors
to clarify this issue or to remove the sentence.

Reply to comment 2): We understand the Referee’s concerns about the pertinence of that work within
our discussion. We originally mentioned that paper because it reports the formation of a vortex array
between droplets arising from a snaking instability of the BEC. As correctly pointed out by the Referee, that
mechanism is not directly related to vortex-row instabilities, which is not the focus of their study. However,
the vortex array does arise from a sheared velocity profile in the rotating frame and so we think it is worth
mentioning it. Nevertheless, we reduced the emphasis that we gave to that work.

3) The authors showed that introducing a finite core mass a↵ects how the maximum insta-
bility growth rate depends on the number of vortices per unit length Nv/L. Specifically, its
scaling law shifts from a quadratic to a linear behavior for large Nv. This is a very interesting
point that deserves further discussion. For massless vortices, the quadratic scaling of the most
unstable mode arises because according to (1) the instability growth rate follows � / qNv/L
and the wavenumber of the most unstable mode follows q⇤ / Nv/L leading to �⇤ / (Nv/L)2,
which remains valid even in the limit of infinite vortices. Note that a generic unstable mode
q would exhibit a linear scaling with Nv/L. For massive vortices �⇤ scales linearly with Nv.
What about the other (unstable) modes? It would be interesting to show a dispersion relation
(growth rate vs q for fixed Nv). Since the most unstable mode (and indeed all array modes)
remains the same, I would expect a sublinear scaling for some of them.

Reply to comment 3): The change of scaling introduced by a finite core mass is a key result of our work
and we are glad the Referee finds it very interesting.

In order to address the comment, we recall that in the case of a linear chain with a finite number of
vortices Nv = L/a, there are Nv allowed discrete wave numbers, labelled as qj = 2⇡j

Nva
, j = 0, 1, . . . , Nv � 1.

For massless vortices, Eq. (1) gives the dispersion relation

�0(j) = ⇡
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◆
. (R.3)

The most unstable mode qj=Nv/2 = ⇡Nv
L corresponds to the maximum instability growth rate �⇤

0 = ⇡
4

�
Nv
L
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,

which scales quadratically in Nv/L.
Notice that, di↵erently from the most unstable one. a generic unstable mode qj = 2⇡j

L does not scale
with Nv/L at fixed Nv. For a large number of vortices, Eq. (R.3) scales like

�0(j) ⇠
Nv�1

⇡

L2
Nvj, (R.4)

which is linear in Nv for a generic j and becomes quadratic for j = Nv/2.

For massive vortices, the model developed in Sec. 2.1 leads to the dispersion relation

�(j) =
p
2mL2

vuut�1 +

s
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✓
2mL2


�0(j)

◆2

, (R.5)

where m = Mc/(manaL2) is the (dimensionless) core mass. As expected, in the limit m ! 0 the dispersion
relation correctly recovers the massless result �0(j) in Eq. (R.3). The most unstable mode j = Nv/2 yields
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a maximum gowth rate that, as given by Eq. (9) in the manuscript in the large-Nv limit, now scales linearly
in Nv/L:

�⇤ ' 

2

r
⇡

mL2

Nv

L
. (R.6)

It is worth noticing that the scaling of Eq. (R.5), that is

�(j) ⇠
Nv�1



L2

r
⇡

m
Nvj, (R.7)

is sublinear in Nv for any mode j 6= Nv/2, as expected by the Referee.

Figure (R.1) shows the dispersion relations, i.e., the growth rate as a function of (discrete) wave numbers,
for fixed and large Nv: on the left the massless result (R.3), on the right the massive one (R.5). The choice
of equispaced values of Nv highlights the di↵erent spacings between the maximum growth rates, i.e. the
maxima of di↵erent curves. In the massless case on the left, �⇤ / N2

v and the spacing between the maxima
of the curves increases with the number of vortices. In the massive case on the right instead, �⇤ / Nv and
the spacing remains constant.
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Figure R.1: Dispersion relation with fixed number of vortices for a row of massless (left panel) and massive
(right) vortices.

In our opinion, we are not convinced that showing the dispersion relations in Fig. (R.1) would add useful
insights to the reader. In particular, we believe that the important results are already presented in Fig. 2
and related discussion in the manuscript. In addition, we are not able to extract relevant information from
the above graphs about the linear (massless vortex chain) and sublinear (massive) behaviour of the other
unstable modes j 6= Nv/2. For these reasons, we prefer to leave Sec. 2.1 of our manuscript unaltered.

4) A discussion of dissipative e↵ects in the massless point vortex model, also with derivation
of Eq. 20, have been already reported in [46]. I would suggest the authors to refer to this
work at page 8.

Reply to comment 4): We have added a reference to [46] just above Eq. (20) in the revised version of
the manuscript.

5) In Sec. 5, the authors compare the predictions of their generalized point-vortex model
with the recent results in [46]. This comparison provided an estimate for the mutual-friction
coe�cient ↵0 around 0.75. This is an unusually high value with respect to what is commonly
expected in the literature, although to my knowledge there are no direct measurements of
this coe�cient. While the coe�cient here is basically phenomenological, it could be related to
a number of phenomena, from the contribution of the Andreev-bound states and Iordanskii
force to some unspecified technical e↵ects. Have the authors any feeling about the physical
origin of dominant e↵ects here?
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Reply to comment 5): There has been a large amount of studies on mutual friction in fermionic
superfluids, nonetheless this topic is still very debated and controversial. For this reason, we prefer not to
speculate about physical phenomena that might be responsible of such an unusual value of the coe�cient
↵0. As the Referee correctly pointed out, our estimate is basically a phenomenological result that waits for
confirmation or rejection by future experiments.

6) Pag 13:” ... while the mode q = 0 is always stable [i.e. �(q = 0) = 0].” If � here is the
real part of the corresponding eigenvalue, then the mode is ”marginally stable” and stability
should be determined either numerically or going to second order in perturbations. I would
tentatively suggest that ultimately, we might discover that it is unstable. Otherwise, I would
expect that the system, when carefully prepared in the regular vortex necklace configuration,
it would remain stable indefinitely. Is this the case?

Reply to comment 6): The system under consideration is invariant under rotation around the origin,
and thus its total angular momentum is conserved. As a consequence, the matrix J has always (at least) two
precisely-null eigenvalues, which are the zero-energy modes associated to the spontaneous breaking of the
continuous rotational symmetry. This is already present in the manuscript. We agree with the Referee that
the mode q = 0 cannot be defined as stable, hence we slighlty changed the sentence removing that term.

7) Page 19: ”... it is not possible to rigorously perform the linear-stability analysis for a
(either massless or massive) vortex necklace subject to frictional forces. The reason is that,
in the presence of dissipation, regular vortex necklaces (see Sec. 3.2 and Sec. 4.1) no longer
constitute stationary solutions of the associated dynamical systems..” I’m a bit puzzled about
this point. It makes sense to perform stability analysis only on a solution of the system, either
a fixed point or a limit cycle or a more complex attractor. If the regular vortex necklace isn’t
a solution in the presence of frictional forces, it implies that if we initialize the system in this
configuration at t=0, the subsequent evolution won’t be due to instability of the solution, but
rather because this configuration isn’t a solution of the system. I concur with the authors that
adapting Eqs. (16)-(18) to the vortex necklace by setting a = 2⇡r0/Nv should give reasonable
results, at least in some limits. However, from a conceptual standpoint, if the regular necklace
is no longer a solution in the presence of these frictional forces, it implies that basically does
not make sense to talk about instability of such a configuration. So either the instability no
longer exists for circular geometries in the presence of frictional forces or that such forces
should be modeled in a di↵erent way so to preserve the existence of the necklace solution. I
think that the authors should clarify this point.

Reply to comment 7): The referee has touched on a very important and delicate aspect. We confirm
that while in the absence of dissipation the rotating vortex necklace constitutes a fixed point in a suitable
rotating reference frame, in the presence of dissipation this is not the case. Therefore, we agree with the
referee that it might be inappropriate to investigate the linear stability of a system that it is not in a fixed-
point configuration. Our implicit assumption was that the breakdown of the vortex necklace is ruled by a
Kelvin-Helmholtz like instability (and hence determined by �⇤) rather than by the intrinsic time evolution
of an initial condition that is not a fixed-point configuration.

That being said, we definitely agree with the Referee that this is a very important point to discuss. On
further consideration, one might argue that the instability growth rate of the rotating massive necklace
in the presence of dissipation should be computed not within a linear-stability analysis framework, but by
explicitly simulating the equations of motion with suitable (stochastic) initial conditions and then performing
a suitable post-processing of the resulting trajectories.

To better clarify this point, we have modified the paragraph quoted by the Referee:

Unfortunately, it is not possible to rigorously perform the linear-stability analysis for a (either massless or

massive) vortex necklace subject to frictional forces. The reason is that, in the presence of dissipation, reg-

ular vortex necklaces (see Sec. 3.2 and Sec. 4.1) no longer constitute stationary solutions of the associated

dynamical systems. This circumstance prevents the application of the standard linear-stability-analysis ma-

chinery described in Sec. 3.3 and Sec. 4.2 and would require a systematic analysis of the early-time dynamics
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generated by the full set of equations of motion with suitable stochastic initial conditions. However, assum-

ing that the breakdown of the necklace is only due to the Kelvin-Helmholtz mechanism, one can estimate the

corresponding instability growth rate in the presence of dissipation adapting Eqs. (16)-(18)

and added an additional sentence in the Conclusions:

In conclusion, we have elucidated the role played by confinement, vortex mass and mutual friction on the

dynamical instability of many-vortex systems. Further studies are needed to understand the role of mutual

friction in the breakdown of rotating vortex necklaces. This should require the explicit solution of the full set

of equations of motion with suitable stochastic initial conditions, thus providing a more reliable estimate of �⇤

for the case of a rotating necklace in a dissipative superfluid. Moreover, it could be interesting to analyze other

e↵ects which may a↵ect the Kelvin-Helmholtz instability, such as non-zero temperatures, unequal vortex-core

mass [83], or the coupling of vortices to sound.

This is a very interesting future research line that might potentially contribute to explain the persistent
mismatch between theory and experiment. We sincerely thank the Referee for this valuable suggestion.
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Reply to Referee #2

We are grateful to the Referee for their careful and positive evaluation of our manuscript. We are also
grateful for the interesting comments and valuable suggestions which helped us to improve its content. We
answer in the following to all the points they raised. We have also introduced all the changes requested by
the Referee in the revised version of the manuscript.

Strengths
The manuscript is clearly written and enjoyable reading, the results are sound and the work
contains a solid body of interesting results.

Weaknesses
The manuscript deploys/introduces a Newtonian mass term in the point-vortex Lagrangian
formulation as a starting point. The goal is clearly to relate the predictions of the model to
experiments but the origin or the form of the mass term is not clearly explained or justified.

Report
The manuscript is of high quality and well suited to SciPost Physics. It easily meets criteria
and expectations for this journal. I have provided specific comments in an annotated .pdf for
the benefit of the authors. The comments do not challenge the correctness of the derivations
but point out that the applicability of the obtained results in the context of experiments may
be a↵ected by the inherent relationship between the vortex mass and the size of the vortex core.

Requested changes

1) “by the presence of Andreev bound states localized at the vortex cores”
The same is true in Bose superfluids where kelvon bound states are localised at the vortex

core also at zero temperature. This kelvon mode was early on called an “anomalous mode”:
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.56.587
https://journals.jps.jp/doi/10.1143/JPSJ.68.487
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.86.2704
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.023609

Reply to comment 1): We thank the Referee for bringing to our attention this very relevant set of
references, in particular Phys. Rev. A 97, 023609 (2018). We have improved our introduction by mentioning
the kelvon bound states localized at the vortex core. More specifically, we have replaced the sentence

Yet, many open questions remain about the detailed physical processes governing the breakdown of regular

vortex arrays, especially in fermionic superfluids, where the motion of quantized vortices is further a↵ected by

the interactions with the gas of elementary excitations and by the presence of Andreev bound states localized

at the vortex cores [47–51].

with the sentence

Yet, many open questions remain about the detailed physical processes governing the breakdown of regular

vortex arrays. In Bose superfluids, the presence of kelvon bound states localized at the vortex core (also

at zero temperature) is responsible for a non-zero vortex mass which influences the vortex motion [47-50].

Similarly, in fermionic superfluids the motion of quantized vortices is a↵ected by the interactions with the gas

of elementary excitations and by the presence of Andreev bound states localized at the vortex cores [51-55].

2) “As a result, superfluid vortices, despite their inherently quantum nature, can be e↵ec-
tively modeled as classical point-like particles”

The fact that a classical point vortex model works so well is not the consequence of reduced
dimensionality. The 3D vortex filament model [71] is just as good under the assumptions of
dilute vortex fluid in an incompressible background fluid.

It could be said that the very fact that the vorticity is quantised in superfluids is the reason
why the point vortex/vortex filament models work so well (neither is very good in describing
classical fluids because the vorticity is distributed across large areas/volumes).
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Reply to comment 2): We agree with the Referee that our sentence is misleading and that the fact
that a classical point-vortex works is not due to the quasi-2D nature of the superfluid, but due to the
incompressibility thereof. We have thus replaced the sentence

As a result, superfluid vortices, despite their inherently quantum nature, can be e↵ectively modeled as classical

point-like particles, simplifying the complex dynamics associated with their motion.

with the sentence:

When finite-compressibility e↵ects can be neglected, and given their quantized vorticity, superfluid vortices can

be e↵ectively modeled as classical point-like particles (or as classical filaments in three-dimensional systems),

simplifying the complex dynamics associated with their motion.

3) Eq. (4): This Mc term here replaces / corresponds to the gradient of density term in
the exact vortex equation of motion, the last term of Eq.(9a) in:

https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.023617
I therefore think it would be important to connect this equation (4) explicitly to the equa-

tion (9a) in the aforementioned paper and discuss the relationship of the two formulations.
By setting the density gradient term in the aforementioned equation (9b) to zero, yields

the “usual” point-vortex model (Mc = 0). By adding the Mc term in Eq.(4) then puts the
density gradient term back into the equation but with a specific assumption that it would be
directly proportional to the acceleration of the vortex position. Perhaps there are physical
situations where this would be a valid assumption but it would be useful to see a discussion
on this important point.

In the aforementioned Gross-Pitaevskii-Bogoliubov formulation the vortex has a well de-
fined core structure that implicitly yields the vortex a mass. The larger the vortex core is the
larger its mass is. Importantly, the filling of the vortex core by foreign substances does not
a↵ect the vortex motion explicitly, instead, they change the condensate density in the vicinity
of the vortex phase singularity which responds to the local (background) condensate density
gradient. This is important conceptual point returned to in the later comments.

Reply to comment 3): Eq. (9a) of [Phys. Rev. A 97, 023617 (2018)],

vv(r0) =
~
m

⇣
r�̃� ̂⇥r ln ⇢̃

⌘����
r0

, (R.8)

can indeed be compared with Eq. (4) of our manuscript

Mc

mana
r̈j = �ṙj ⇥ ẑ +



2⇡

X

i2Z\{0}

rj � rj+i

|rj � rj+i|2
, (R.9)

which can be rewritten in the following form:

Mcr̈j = FM (R.10)

where
FM = nama(vs � ṙj)⇥ ẑ (R.11)

and vs is the superfluid velocity induced by all the vortices (except for the j-th vortex).

Multiplying both sides times ẑ⇥, one obtains:

Mc ẑ ⇥ r̈j = nama(vs � ṙj) (R.12)

which can be recast as:

ṙj = vs �
Mc

nama
ẑ ⇥ r̈j . (R.13)
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The comparison of Eq. (R.8) and Eq. (R.13) seems to suggest that

Mc

nama
ẑ ⇥ r̈j

?
=

⇣ 

2⇡
ẑ ⇥r ln ⇢̃

⌘���
rj

(R.14)

and hence that the acceleration of massive vortices comes with a local density deformation and, viceversa, that
density inhomogeneities may be the source of an intrinsic mass term. We find this possible connection very
interesting and worth of further analysis. We sincerely thank the Referee for the very insightful suggestion.

On the other hand, this analogy might not be perfect. In fact, Eq. (R.8) is still a first-order equation of
motion since, at a given time, the velocity vv only depends on the position r0 of the vortex and not on the
instantaneous acceleration. Conversely, Eq. (R.9) is manifestly a second -order equation of motion. In other
words, the term proportional to r ln ⇢̃ in Eq. (R.8) is not associated to a vortex acceleration.

We also appreciated the Referee’s comment concerning the intrinsic mass of a vortex, i.e. originating from
its core structure rather than by foreign substances. To improve our discussion and mention that Mc can be
an intrinsic property of a vortex, we have added the following comment, in the Introduction:

Typical examples include tracer atoms in superfluid 4He [58,59], quasiparticle bound states both in fermionic

[50,52–55] and bosonic [50] superfluids even at zero temperature, thermal atoms in atomic BECs [60], and

atoms of a di↵erent species in two-component BECs [61–72].

Also, at the beginning of Sec. 2.1, we have added the following sentence:

As mentioned in the Introduction, in many real superfluid systems quantum vortices are often filled, either

deliberately or accidentally, by massive particles, which provide them with an e↵ective inertial mass. Inter-

estingly, vortex mass can be an intrinsic property of a large class of quantum vortices, as it originates from

kelvon modes or quasi-particle bound states localized in the vortex core [50].

4) “In the limit of massless cores we recover the result of Eq. (2).”
There appears to be a conceptual ambiguity regarding the classification / nomenclature of

massless and massive vortices, see the next comment in detail.

Reply to comment 4): On this point we kindly disagree with the Referee. We believe that our terminology
is unambiguous. Specifically, “massless” refers to a vanishing core mass (Mc = 0), while “massive” indicates
a finite core mass (Mc > 0). This terminology allows us to distinguish previous theoretical models that
neglected mass (e.g., [H. Aref, Journal of Fluid Mechanics 290, 167 (1995)]) from our analysis, which
explicitly incorporates a non-vanishing vortex mass (Mc > 0), regardless of its microscopic origin.

Nevertheless, to make our statement more clear, we have added the detail “Mc ! 0” in the sentence:

In the limit of massless cores (Mc ! 0) we recover the result of Eq. (2).

5) Eq. (13): This e↵ective frictional force involves an arbitrary parametrisation along two
orthogonal directions. That is, attaching a 2D Cartesian coordinate system on the vortex is
completely arbitrary and therefore the two friction coe�cients can have wildly di↵erent values
depending on the nature of the physical flow state. More on this point in the context of
Eq.(19) below.

Reply to comment 5): We are not sure that we correctly understood the meaning of “arbitrary parametri-
sation along two orthogonal directions”. In fact, we believe that the two orthogonal directions are uniquely
determined by the direction of the vortex velocity ṙj (the velocity of the normal component being assumed
to be zero, i.e. vn = 0). Therefore, the force FN

j can be decomposed in a component parallel to ṙj and a
component perpendicular to it.

6) Eq. (54): As pointed out earlier, Mc and ⇠2 should have a well defined relationship rather
than being independent parameters. Importantly, the limit Mc = 0 implies the unphysical
situation of ⇠ = 0.

Reply to comment 6): We understand the Referee’s observation, but we believe that the relationship
between Mc and ⇠ depends on the technique used to study the problem. For example, using a time-
dependent variational approximation that allows to derive an e↵ective point-vortex model from the Gross-
Pitaevskii Lagrangian (see, e.g. [A.Richaud, V.Penna, A.L. Fetter, Phys. Rev. A 103, 023311 (2021)] and
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references therein) ⇠ merely acts as a cut-o↵ and is uncorrelated with the vortex mass. However, as already
acknowledged in the reply to Comment 3, it is indeed true that the vortex-core shape (i.e. the presence of
a term of the type r ln ⇢̃), an element which is neglected by the aforementioned time-dependent variational
approximation, may correspond to an intrinsic vortex mass. We are going to further investigate this possible
analogy and we again thank the Referee for suggesting it.

10



SciPost Physics Submission

Suppression of the superfluid Kelvin-Helmholtz instability due to

massive vortex cores, friction and confinement

Matteo Caldara1, Andrea Richaud2,?, Massimo Capone1,3, Pietro Massignan2

1 Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136, Trieste,
Italy

2 Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034
Barcelona, Spain

3 CNR-IOM Democritos, Via Bonomea 265, I-34136 Trieste, Italy
? andrea.richaud@upc.edu,

August 2, 2024

Abstract

We characterize the dynamical instability responsible for the breakdown of regular rows

and necklaces of quantized vortices that appear at the interface between two superfluids

in relative motion. Making use of a generalized point-vortex model, we identify several

mechanisms leading to the suppression of this instability. They include a non-zero mass

of the vortex cores, dissipative processes resulting from the interaction between the vor-

tices and the excitations of the superfluid, and the proximity of the vortex array to the

sample boundaries. We show that massive vortex cores not only have a mitigating effect

on the dynamical instability, but also change the associated scaling law and affect the

direction along which it develops. The predictions of our massive and dissipative point-

vortex model are eventually compared against recent experimental measurements of the

maximum instability growth rate relevant to vortex necklaces in a cold-atom platform.
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1 Introduction

The Kelvin-Helmholtz instability consists in the exponential amplification of infinitesimal fluc-
tuations occurring at the interface between two fluid layers having a relative velocity�v [1,2].
This process leads to the breakdown of the laminar flow and to the onset of vortical struc-
tures [3–5]. This hydrodynamic instability, well known in the classical context and often
considered a precursor of turbulence [6–9], is observed in various natural phenomena, in-
cluding cloud formation [10,11], mixing of oceanic currents [12,13], and even astrophysical
systems [14], where it is suspected to be a trigger mechanism for pulsar glitches [15]. The
growth rate of this instability is �c(q) = q�v/2 [5, 16], q being the wavenumber of the per-
turbation. In a realistic description, the two uniform flows are connected by a thin shear-layer
that smooths out the velocity profile at the interface. It also introduces an ultra-violet cut-off
q⇤ which halts the runaway behaviour for small wavelengths (i.e. large q) of the instability
growth rate [5]. In real classical fluids with viscosity µ > 0, one has q⇤ / �v/µ and the
maximum growth rate scales as �⇤c = �c(q⇤)/ �v2. The kinematic viscosity µ introduces
an ultra-violet cutoff q⇤ /�v/µ that halts the runaway behaviour for small wavelengths (i.e.
large q). The maximum growth rate then scales as �⇤c = �c(q⇤)/�v2.

At low temperatures, some fluids display the remarkable property of superfluidity, i.e. they
can flow with zero viscosity and dissipation. Superfluidity has been observed for example
in liquid Helium-II [17], atomic Bose-Einstein condensates (BECs) [18], degenerate Fermi
gases [19], and quantum fluids of light [20]. The macroscopic quantum behavior of all these
fluids comes with several key distinctions with respect to their ordinary counterparts [21], such
as the fact that vorticity exists only in the form of discrete filaments with quantized circulation.

A natural question is whether and to what extent the Kelvin-Helmholtz instability, explored
and characterized rather exhaustively in classical fluids [5], has an analogue in superfluids,
as it is the case for several well-known instabilities of ordinary fluids. For example, consider-
able attention has been devoted to the formation of von Kármán vortex streets in superfluid
flows past obstacles [22–24], to the presence of boundary layers around the surfaces of mov-
ing objects [25], and to the Rayleigh-Taylor instability at the interface between two immiscible
BECs [26–29]. As regards the Kelvin–Helmholtz instability, its first study in a superfluid system
dates back to twenty years ago [30], where it was observed at the interface between 3He�A
and 3He� B (see also the more recent Ref. [31]). Since then, a few theoretical and experi-
mental works have followed, investigating its occurrence at the interface between a superfluid
and a normal fluid [32,33], or between two different superfluids [34–41].

Subsequently, the superfluid Kelvin-Helmholtz instability has been (numerically) demon-
strated within a single-component superfluid [42], a setup devoid of the complications (e.g.
buoyancy effects) related to multicomponent systems. The ingenious protocol that was pro-
posed is based on a progressive reduction of a potential barrier separating two channels, which
leads to the merging of two counterflowing portions of the same superfluid, and hence to the
seeding of an array of quantized vortices at the interface. Such an array was reported to
quickly break down as vortices precede to form increasingly larger clusters, mimicking the
roll-up patches of vorticity, characteristic structures of the classical Kelvin-Helmholtz instabil-
ity. Moreover, the instability growth rate �⇤ associated to the break down of this vortex array
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displays the same quadratic scaling �⇤ / �v2 [43] as its classical counterpart. The same
configuration of a quantized vortex array at the interface between two counter-propagating
superflows in a two-dimensional (2D) BEC has been recently studied more in detail in Ref. [44].
Combining Gross-Pitaevskii simulations with a Bogoliubov approach, their thorough numeri-
cal analysis showed the occurrence of instabilities of different nature depending on the flow-
velocity regimes. The quantized version of the hydrodynamic Kelvin-Helmholtz instability
pops out at moderate velocities, while it washes out at supersonic flow velocities where other
mechanisms emerge due to the coupling to acoustic excitations.

Cold-atom platforms are ideal to shed light on the nature of instabilities in quantum fluids
due to shear flow. Very recently, there appeared two notable experiments in this context. In
the first one, Zwierlein’s group at MIT showed that a BEC subject to a synthetic magnetic field
undergoes a snaking instability leading to a crystallization of the condensate in droplets sepa-
rated by streets of quantized vortices. Zwierlein’s group at MIT showed the fragmentation of a
rapidly rotating elongated BEC into an array of droplets, as a consequence of sheared velocity
profile in the rotating frame [45]. In the second one More recently, Roati’s group at LENS was
able to characterize with unprecedented detail the Kelvin-Helmholtz instability in superfluid
6Li confined within an annular geometry [46].

Yet, many open questions remain about the detailed physical processes governing the
breakdown of regular vortex arrays. In Bose superfluids, the presence of kelvon bound states
localized at the vortex core (also at zero temperature) is responsible for a non-zero vortex
mass which influences the vortex motion [47–50]. , especially in Similarly, in fermionic su-
perfluids, where the motion of quantized vortices is affected by the interactions with the gas
of elementary excitations and by the presence of Andreev bound states localized at the vortex
cores [51–55]. This is the case, for instance, of the LENS experiment [46], where an instability
growth rate ⇠ 3 times smaller than the one predicted by current theoretical models has been
measured. They consider subsonic velocity differences where the Kelvin-Helmholtz instabil-
ity is the dominant mechanism and its suppression cannot be ascribed to any coupling with
acoustic excitations [44]. Given that, the observed mismatch has not received a theoretical
explanation yet, hence it calls for further studies.

In this work, motivated by many state-of-the-art experimental facilities providing direct
access to superfluid configurations with arbitrary geometries, we delve into the breakdown of
regular rows and necklaces of quantized vortices due to the Kelvin-Helmholtz instability. On
the one hand, we unify well-established results [43,56,57] relevant to point vortices in ideal
fluids. On the other hand, we generalize them to test the robustness of the instability against
the introduction of two classical ingredients that, while being often overlooked, are indeed
present in most real superfluid systems. They are massive vortex cores and mutual friction
arising from dissipative effects within the superfluid. In the framework of a suitably general-
ized point-vortex model, we carry out a detailed stability analysis of the shear layer present
at the interface between counterflowing superfluids, demonstrating that massive vortex cores
and dissipative processes, together with the proximity with the boundaries of the sample, are
responsible for a partial or complete suppression of the superfluid Kelvin-Helmholtz instability.
We also show that the presence of a finite core mass is responsible for a change of the asymp-
totic scaling of the instability growth rate, from quadratic to linear, i.e. �⇤ / �v. Whenever
possible, our analysis is carried out in a fully analytical way, so to highlight the contribution
that each of the aforementioned mechanisms has on the stabilization of quantized vortex ar-
rays.

The structure of the manuscript is the following: in Sec. 2, we focus on the impact of
a non-zero vortex-core inertial mass on the properties of regular vortex rows and show its
rather general stabilizing effect. This analysis is motivated by the fact that, in many real
superfluid systems, vortex cores are often filled, either accidentally or deliberately, by massive
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particles that provide the topological excitations themselves with a non-zero inertial mass.
Typical examples include tracer atoms in superfluid 4He [58, 59], quasiparticle bound states
both in fermionic [50,52–55] and bosonic superfluids [50] even at zero temperature, thermal
atoms in atomic BECs [60], and atoms of a different species in two-component BECs [61–
72]. Moreover, we introduce dissipation into our analysis to make our point-vortex model as
accurate as possible. It turns out that dissipative processes indeed have a stabilizing effect on
vortex arrays.

In Sec. 3, we rigorously incorporate the presence of an annular-like superfluid domain,
a geometry which supports the prototypical realization of superflows with periodic boundary
conditions [42,46]. The narrowness of the annulus further suppresses the necklace instability.

Sec. 4 is devoted to the analysis of massive vortex necklaces. The presence of core mass
not only stabilizes the system, but also determines a change of the asymptotic dependence of
the maximum instability growth rate on the relative velocity at the interface between the two
counterflows.

In Sec. 5, we compare the predictions of our massive and dissipative point-vortex model
with the results of a recent experimental characterization of the superfluid Kelvin-Helmholtz
instability in a cold-atom platform [46]. This comparison offers insights into a potential esti-
mate for the yet-undetermined transverse mutual-friction coefficient ↵0, aiming at reconciling
theoretical predictions with experimental observations. Finally, Sec. 6 is devoted to concluding
remarks and future perspectives.

2 Vortex rows

When set into rotation, superfluids can host elementary excitations in the form of quantized
vortices. The superfluid density is depleted in correspondence of the vortex cores, while the
superfluid flow swirls around them. In quasi-two-dimensional (2D) configurations, the ad-
ditional degrees of freedom associated to vortex-line bending become too high-lying in en-
ergy, and hence freeze out. When finite-compressibility effects can be neglected, and given
their quantized vorticity, superfluid vortices can be effectively modeled as classical point-like
particles (or as classical filaments in three-dimensional systems), simplifying the complex dy-
namics associated with their motion. As a result, superfluid vortices, despite their inherently
quantum nature, can be effectively modeled as classical point-like particles, simplifying the
complex dynamics associated with their motion. This modeling approach proves particularly
valuable when considering the interactions among multiple vortices. According to the prin-
ciple of superposition of potential flows, the instantaneous velocity of each quantum vortex
corresponds to the vector sum of the velocities induced by all other vortices within the system.
In the present work we employ such a method since we deal with quasi-2D superfluids. A
straight array of equally spaced vortices, the so called “vortex row" (schematically represented
in Fig. 1) constitutes a stationary, but unstable, configuration. As is well known [43], in fact,
any perturbation of this regular arrangement is amplified with a characteristic rate

�0 =
q
2a

⇣
1� qa

2⇡

⌘
, (1)

where = h/ma is the quantum of circulation, ma is the atomic mass of the superfluid, a is the
intervortex distance, and q is the perturbation wavenumber. The maximum instability growth
rate,

�⇤0 := �0(q⇤) =
⇡

4a2
, (2)

is the one associated to the most unstable mode q⇤ = ⇡/a, which, in turn, corresponds to the
minimum wavelength (2a) that the lattice can support. An equivalent formulation of Eq. (2),
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�⇤0 = ⇡�v2/(4), is manifestly characterized by a quadratic dependence on the velocity dif-
ference �v = /a across the vortex row.

2.1 Instability of a massive vortex row

As mentioned in the Introduction, in many real superfluid systems quantum vortices are often
filled, either deliberately or accidentally, by massive particles, which provide them with an
effective inertial mass. Interestingly, vortex mass can be an intrinsic property of a large class
of quantum vortices, as it originates from kelvon modes or quasi-particle bound states localized
in the vortex core [50]. The ensuing kinetic-energy term, often overlooked by well-established
theoretical models [43,56,57], can be easily introduced within the Lagrangian description of
superfluid vortex dynamics [64,66]. To capture the impact of a finite core inertial mass on the
superfluid Kelvin-Helmholtz instability, we start in this section by computing the maximum
instability growth rate relevant to a massive vortex row. Later in Sec. 4, then, we will develop
a similar computation for a massive vortex necklace inside a planar annulus.

We consider a massive vortex row inside a superfluid with atomic mass ma and 2D number
density na. This configuration consists of a rectilinear regular chain of an infinite number of
vortices. Each of them, labelled by the index j 2 Z, has the same quantum of circulation 
and hosts a core mass Mc . The Lagrangian of the system reads

Lplane =
X

j2Z

ñ
Mc

2
ṙ 2

j +
mana

2
(ṙ j ⇥ r j · ẑ) +

+1X

i=1

mana
2

2⇡
ln

✓ |r j � r j+i |
⇠

◆ô
. (3)

A finite core mass introduces a Newtonian kinetic-energy term into the standard Lagrangian of
a many-vortex system, which is made of both a minimal-coupling-like and a potential-energy
term (⇠ is a parameter having the dimensions of a length, typically of the order the core size,
whose detailed value does not affect the equations of motion) [64, 66]. The relevant Euler-
Lagrange equation for the jth vortex reads

Mc

mana
r̈ j = �ṙ j ⇥ ẑ +



2⇡

X

i2Z\{0}

r j � r j+i

|r j � r j+i |2
. (4)

These equations admit as stationary solution the regular vortex configuration

r j(t) = (a j, 0) 8 t. (5)

ŷ

x̂

✏?

✏k

a

Mc

j � 1
Mc

j

Mc

j + 1
Mc Mc Mc

Figure 1: Schematic illustration of an infinitely extended vortex row featuring an
intervortex distance a. Each vortex hosts a core mass Mc . The red arrows represent
displacement vectors ✏ j , whose components are of the type (�1) j

�
✏k, ✏?

�
.

In the most unstable mode, as depicted in Fig. 1, all the vortices are displaced from their
equilibrium position according to

(a( j ± i), 0) !
�
a( j ± i) + (�1)i✏k, (�1)i✏?

�
. (6)
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To develop the stability analysis of the fixed point (5), we linearize Eq. (4) with respect to the
longitudinal (transverse) displacement ✏k (✏?). The resulting system of two coupled second-
order differential equations

Mc

mana
✏̈k =� ✏̇? �

⇡

4a2
✏k

Mc

mana
✏̈? =+ ✏̇k +

⇡

4a2
✏?

(7)

admits solutions of the type ✏k,✏? ⇠ e�t [73]. Among the possible values of �, we focus on
the one having the largest real part,

�⇤ =
mana

Mc
p

2

vuut�1+

vut
1+

Å
Mc⇡

2a2mana

ã2
, (8)

as it constitutes the maximum instability growth rate. The latter quantity is shown in Fig. 2
as a function of the number of vortices Nv contained in a length L, i.e. Nv = L/a. In the limit of
massless cores (Mc ! 0) we recover the result of Eq. (2), i.e.,�⇤ / a�2/ (Nv/L)2 = (�v/)2,
where we recall that �v is the velocity difference across the vortex row. Such a quadratic de-
pendence on �v is also found in the analysis of the classical Kelvin-Helmholtz instability, and
keeps holding for small number Nv of massive vortices. Remarkably, however, for large Nv
(i.e., small a) massive cores feature a maximum instability growth rate which is linear in Nv:

�⇤ ⇠
vt⇡nama

Mc



2L
Nv , (9)

or equivalently �⇤ /�v.

★★

★★
★★
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Figure 2: Dependence of the maximum instability growth rate�⇤, as given by Eq. (8),
on the number of vortices Nv along a row of length L = aNv , for different values of the
core mass, parametrized by mr = Mc/(mana L2). Stars denote the critical values (10)
at which the scaling �⇤(Nv) switches from quadratic to linear.

After Taylor-expanding Eq. (8) to second order in Mc , one obtains the critical value at
which the scaling relation �⇤(Nv) crosses over from quadratic to linear,

Ñv = 2L
vtmana

⇡Mc
, (10)

which is denoted by stars in Fig. 2. Ñv diverges in the limit of small values of Mc , recovering
the asymptotic quadratic scaling �⇤(Nv) for massless vortices.
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Somehow reminiscently, the dispersion!(k) of low-momentum elementary excitations in a
Bose gas switches from quadratic to linear when introducing interactions between the bosons.
Both phenomena are non-perturbative, and may be seen as an occurrence of a singular pertur-
bation. In the case of a Bose gas, interactions between bosons change the governing equation
from linear (Schrödinger) to non-linear (Gross-Pitaevskii). In the present case, instead, the
change of scaling of �⇤ may be traced back to the fact that the the dynamical equation govern-
ing the vortex motion is of first order in the case of massless vortices, but it becomes a second
order equation for massive ones.

2.2 Longitudinal and transverse instability

Introducing the vector ✏ =
�
✏k, ✏̇k,✏?, ✏̇?

�T
, the two second-order equations of motion (7)

can be recast into four first-order ordinary differential equations, written in matrix form as
✏̇ =M✏. The maximum instability growth rate �⇤ defined in Eq. (8) then corresponds to one
of the eigenvalues of the 4⇥ 4 matrixM [73], with associated eigenvector

v�⇤ =
✓
mana

Mc
�⇤,
mana

Mc
�⇤2, �

✓
�⇤2 +

mana⇡
2

4a2Mc

◆
, ��⇤

✓
�⇤2 +

mana⇡
2

4a2Mc

◆◆T

. (11)

We focus in particular on the ratio between the longitudinal and transverse components of the
displacement vector

✏k
✏?
=

v�⇤,1
v�⇤,3

, (12)

whose absolute value is shown in Fig. 3 as a function of the core mass Mc . In the massless
case (Mc = 0), the most unstable mode has an equal longitudinal and transverse character,
|✏k/✏?|= 1. The ratio then monotonically decreases as the core mass is cranked up, meaning
that the instability gets increasingly transverse.

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Ratio between the amplitudes of the longitudinal and transverse displace-
ments for the most unstable eigenmode as a function of the core mass.

2.3 Dissipation-induced suppression of the instability

The massive point vortex model (3) can be complemented to include dissipative processes that
may hinder vortex motion. Surface tension and viscosity in classical fluids are two possible
dissipation effects that reduce the growth rate, hence leading to a stabilization of the system.
The dissipation channels that may open in superfluids have, instead, a different nature, as they
can originate from a finite thermal component, density excitations [74] or Andreev vortex-
bound states in the BCS regime [54,55].
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According to the dissipative point-vortex model proposed by Schwarz, Kopnin, Sonin and
others [75–80], quantized vortices scatter the elementary excitations of the superfluid and,
in the presence of a non-zero relative velocity between the vortex and the gas of elementary
excitations, an effective frictional force

FN
j = mana

⇥
dk(vn � ṙ j) + d?ẑ ⇥ (vn � ṙ j)

⇤
(13)

acts on the vortex, vn being the velocity of the normal fluid. In the following, we discuss the
impact of this frictional force on the maximum instability growth rate �⇤ associated to regular
vortex configurations.

Assuming a vanishing average velocity of the normal component (vn = 0), the equation of
motion (4) for a massive vortex in an unbounded plane in presence of dissipation becomes

Mc

mana
r̈ j = �dk ṙ j + (1� d?) ẑ ⇥ ṙ j +



2⇡

X

i2Z\{0}

r j � r j+i

|r j � r j+i |2
. (14)

While the longitudinal frictional term (with coefficient dk) is generally positive and therefore
acts to slow down vortex motion, the transverse one (with coefficient d?) is typically negative
and therefore strengthens the Lorentz-like force/ ẑ ⇥ ṙ j . These equations are trivially sat-
isfied by the stationary regular vortex row (5), because the latter is a static (or mechanical)
equilibrium configuration, and hence it is not affected by the velocity-dependent dissipative
force (13). For small oscillations around the equilibrium, linearizing Eq. (14) gives, in com-
ponents:

Mc

mana
✏̈k =� dk✏̇k � (1� d?)✏̇? ��⇤0✏k

Mc

mana
✏̈? =� dk✏̇? + (1� d?)✏̇k +�⇤0✏?,

(15)

where �⇤0 is the maximum instability growth rate for the massless and dissipationless case
given in Eq. (2). The maximum instability growth rate �⇤ of the system corresponds to the
largest real part

�⇤ = max
j2[1,4]

�
Re
�
� j
� 

(16)

among the four solutions of the characteristic equation associated to Eqs. (15),

�4 + 2�dk�
3 + �2

î
d2
k + (1� d?)2

ó
�2 �

�
��⇤0

�2 = 0, (17)

where �= mana/Mc .
To understand the effect of dissipation in the massless case, one can set Mc = 0 directly in

Eqs. (15). By doing so, the second time derivatives drop out and one is left with a first-order
problem for the displacements. In this case, the characteristic equation (17) simplifies and
one can analytically determine the maximum instability growth rate

�⇤ =
�⇤0«

d2
k + (1� d?)2

. (18)

The Taylor expansion �⇤ = �⇤0
Ä
1+ d? � d2

k /2+ . . .
ä

shows that, already in the massless case,
non-zero mutual-friction coefficients dk > 0 and d? < 0 cause a suppression of the system
instability, with a first-order correction given by d?, while dk enters only at second order. The
rate given by Eq. (18) is plotted in the left panel of Fig. 4.

A similar contour plot is shown in the right panel of Fig. 4 for the general case of Mc > 0,
where the growth rate (16) comes out as a numerical solution of Eq. (17). The steeper slopes
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d� d�

Figure 4: Contour plots of the maximum instability growth rate �⇤ of a vortex row
as a function of the friction coefficients dk and d?. Left panel: plot of the massless
result (18) normalized with respect to its dissipationless limit (2). Right panel: plot
of the massive result (16) normalized with respect to its dissipationless limit (8).

of the contour lines between the two panels in Fig. 4 indicate that �⇤ becomes more sensitive
to dk in the presence of filled massive cores.

We conclude this section by observing that an alternative formulation of the mutual-friction
force (13) acting on the j-th vortex is given by

FN
j = mana

⇥
↵(vn � vs, j)�↵0ẑ ⇥ (vn � vs, j)

⇤
, (19)

where vs, j is the superfluid velocity in the neighborhood of the vortex [77,79], and the longitu-
dinal and transverse friction coefficients↵ and↵0 are both typically positive. In this framework,
as was shown in Ref. [46], the maximum instability growth rate (18) reads

�⇤ = �⇤0
∆
↵2 + (1�↵0)2. (20)

The Taylor expansion �⇤ = �⇤0
�
1�↵0 +↵2/2+ . . .

�
indicates an increase of the insta-

bility rate with longitudinal friction (controlled by ↵), which naively looks in contrast with
what discussed above. However, as shown in Ref. [79], in the absence of mass, the fric-
tion coefficients

�
↵, ↵0

 
are related to

�
dk, d?

 
by the relations ↵ = dk/

î
d2
k + (1� d?)

2
ó
,

↵0 = 1� (1� d?)/
î
d2
k + (1� d?)

2
ó
, and using them, one may directly verify that Eq. (20) is

completely equivalent to Eq. (18).

3 Massless vortex necklaces in annular superfluids

Vortex necklaces, also termed as vortex polygons, emerge at the interface between two coun-
terflowing annular-like superfluids. The latter are particularly noteworthy for experimental
protocols, as they lend themselves to implementing flows with periodic boundary conditions.

3.1 Point-vortex model

The dynamics of quantized vortices in a two-dimensional incompressible superfluid confined in
an annular domain has been extensively studied in the recent Ref. [68] by means of a suitable
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point-vortex model. While we refer the reader to that reference for an exhaustive derivation
of such a model, in this section we review its main features.

The effective Lagrangian governing the dynamics of a system of Nv point vortices of positive
unit charge in a superfluid of uniform two-dimensional number density na and atomic mass
ma confined in an annulus of inner radius R1 and outer radius R2 reads:

La =
NvX

j=1

®
⇡~hna

Ä
R2

2 � r2
j

ä
✓̇ j �� j �

NvX

k=1

0
Vjk

´
, (21)

where

� j = �(r j)⌘
⇡~h2na

ma

2
4(1� 2n1) ln

Å r j

R2

ã
+ ln

0
@2

i

#1

Ä
�i ln

Ä r j
R2

ä
, q
ä

#01(0, q)

1
A
3
5 (22)

is the one-vortex energy arising from the interaction of the vortex at r j = (r j ,✓ j) with its
infinitely many images, while the two-vortex energy

Vjk = V (r j , rk)⌘
⇡~h2na

ma
Re

8
<
:ln

2
4
#1

⇣
1
2

�
✓ j � ✓k

�
� i

2 ln
⇣

r j rk

R2
2

⌘
, q
⌘

#1

Ä
1
2

�
✓ j � ✓k

�
� i

2 ln
Ä r j

rk

ä
, q
ä

3
5
9
=
; (23)

accounts for the interaction between vortices at position r j and rk, including all their images
(the primed sum means that the terms k = j are omitted). The use of the Jacobi elliptic
theta functions #1(z, q), which are integral functions of the complex variable z and which
depend also on the geometric ratio q ⌘ R1/R2, allows for an exact treatment of the infinitely
many image vortices ensuing from the presence of the two circular boundaries. Moreover,
n1 2 Z denotes the number of quanta of circulation around the inner boundary of the annulus.
Figure 5 illustrates the particular case of a many-vortex system (Nv = 6) characterized by a
regular arrangement of the vortices, lying on a circle of radius r0 at equal distance one from
the other.

The system has two conserved quantities:

• the total energy

Ha =
NvX

j=1

Ç
� j +

NvX

k=1

0
Vjk

å
(24)

which depends on the vortex positions {r j}, but not on their velocities {ṙ j}. This is a
consequence of the first-order dynamics of 2D quantum vortices, whose x and y com-
ponents play the role of canonically conjugate variables;

• the z-component of the angular momentum

Lz
a = ⇡~hna

�
R2

2 � R2
1

�
n1 +⇡~hna

NvX

j=1

Ä
R2

2 � r2
j

ä
(25)

which includes the constant contribution from the possible non-zero circulation n1 around
the inner boundary and the sum

PNv
j=1 @La/@ ✓̇ j of the canonical angular momenta asso-

ciated to the Nv vortices. This integral of motion originates from the rotational invariance
of the system.
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r̂
✓̂

rj

✓j

Figure 5: Schematic representation of the physical system for Nv = 6 vortices forming
a regular necklace with radius r0. The superfluid (light blue region) is confined in a
two-dimensional annular domain having radii R1 < R2 and quantized flow circulation
n1 around the inner boundary. It hosts vortices with unit positive charge at positions
r j = (r j ,✓ j).

3.2 Necklace solutions

A notable class of solutions of the Euler-Lagrange equations associated to Lagrangian (21)
corresponds to regular vortex necklaces. As pictorially represented in Fig. 5, these are vortex
structures of the type r j(t) = r0 and ✓ j(t) = 2⇡ j/Nv +⌦0

Nv
t, with j = 1, 2, . . . , Nv , where

⌦0
Nv
(r0) =

~h
mar2

0

2
4n1 �

1
2
+

i
2

NvX

j=1

#01
Ä
⇡
Nv
(1� j)� i ln

Ä
r0
R2

ä
, q
ä

#1

Ä
⇡
Nv
(1� j)� i ln

Ä
r0
R2

ä
, q
ä

3
5 (26)

is the uniform-precession angular velocity of the whole system and r0 is the radius of the Nv-
vortex regular polygon. In Fig. 6, we plot Eq. (26) as a function of r0 for different values of
Nv .

Equation (26) generalizes and unifies various well-known results:

• When r0 =
p

R1R2, it reduces to

⌦0
Nv

�
r0 =

p
R1R2

�
=
~h

mar2
0

ï
n1 +

Nv � 1
2

ò
, (27)

a formula that generalizes Eq. (B6) of Ref. [81], valid for a single vortex in an annulus, to
the case of a Nv-vortex necklace. In the special case of n1 = �Nv/2, the aforementioned
expression reads

⌦0
Nv

�
r0 =

p
R1R2

�
= �1

2
~h

mar2
0

(28)

and is therefore independent of the number of vortices.

• In the limit of an infinitely small internal boundary, it reduces to

lim
R1!0

⌦0
Nv
=
~h

mar2
0

2
4n1 +

Nv � 1
2

+ Nv

Ä
r0
R2

ä2Nv

1�
Ä

r0
R2

ä2Nv

3
5 (29)
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5

Figure 6: Precession frequency (26) as a function of r0 for different values of Nv
and n1 = �Nv/2, with R2 = 4.5 R1. The vertical red dashed line corresponds to
the geometric mean

p
R1R2, while the horizontal red dashed line corresponds to

Eq. (28). The blue-shaded rectangles correspond to regions which lie outside the
annular domain.

and represents the precession frequency of an Nv-vortex necklace in a disk of radius R2 in
the presence of an extra vortex of charge n1 at the disk’s center. For n1 = 0 this formula
corresponds to the massless limit of Eq. (5) of Ref. [69].

• Taking the additional limit R2! +1, the latter expression reduces to

lim
R2!+1

lim
R1!0

⌦0
Nv
=
~h

mar2
0

ï
n1 +

Nv � 1
2

ò
(30)

which corresponds to Eq. (8) of Ref. [57], valid for a vortex necklace in the infinite plane.

Interestingly, Eq. (30) corresponds to Eq. (27), meaning that, when r0 =
p

R1R2, the pre-
cession frequency of the necklace in the annulus corresponds to that of a necklace in the
unbounded plane. In fact, this special value of r0 is such that the image charges generated by
the two circular boundaries yield a net vanishing effect on the real vortices.

3.3 Instability of a massless vortex necklace

To perform the linear-stability analysis of vortex-necklace configurations, it is convenient to
start by rewriting the Lagrangian (21) in a reference frame rotating at angular frequency ⌦.
The coordinate transformation reads r 0j = r j and ✓ 0j = ✓ j �⌦t, where the primed variables are
the ones in the rotating reference frame. The transformed Lagrangian

L
0
a =

NvX

j=1

®
⇡~hna

Ä
R2

2 � r2
j

äÄ
✓̇ 0j +⌦

ä
�� j �

NvX

k=1

0
Vjk

´
(31)

is such that both � j and Vjk are unaltered by the transformation. Comparing Eqs. (31) and
(21), it is clear that the kinetic term T

0
a = ⇡~hna

PNv
j=1(R

2
2 � r2

j )✓̇
0
j is formally unaltered, while

the potential term is modified as follows:

Ha ! H
0
a =

NvX

j=1

Ç
� j +

NvX

k=1

0
Vjk

å
�⌦

NvX

j=1

⇡~hna(R2
2 � r2

j ). (32)
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Provided that ⌦ equals ⌦Nv
[as given by Eq. (26)], the Nv-vortex necklace constitutes a sta-

tionary configuration in the rotating reference frame.
We develop the linear-stability analysis according to the scheme described in Ref. [82], i.e.

by diagonalizing the 2Nv ⇥ 2Nv matrix

J= t�1
SH (33)

where

t =

 
@ 2

T
0

a

@ r 0j @ ✓̇
0
j

!

eq

(34)

is actually independent of j and

(H)i, j =
✓
@ 2

H
0
a

@ Di @ Dj

◆

eq

(35)

is the Hessian matrix associated to Hamiltonian (32) and evaluated at the regular-necklace

configuration (hence the subscript “eq”). The vector D =
Ä
r 01, ..., r 0Nv

, ✓ 01, . . . , ✓ 0Nv

äT
constitutes

the full array of dynamical variables in the rotating reference frame (recall that r j ⌘ r 0j).
Eventually, the antisymmetric matrix

S=
✓

0Nv
INv

�INv
0Nv

◆
(36)

encodes the Hamiltonian structure of the system, 0Nv
and INv

being, respectively, the zero- and
the identity matrix of order Nv .

The 2Nv eigenvalues of J are complex numbers, which we write as

� j = � j + i! j . (37)

As is well-known from the theory of Hamiltonian matrices, recall that also �� j , �⇤j , and ��⇤j
are eigenvalues of J. Their imaginary parts are the frequencies of stable small oscillations
around the necklace solution, while their real parts describe their instability. In the following,
we will focus on the set of � j ’s, which are often termed instability growth rates.

Figure 7 shows the instability growth rate � on the wavenumber qj = 2⇡ j/(Nvdv), for
different values of Nv (only one half of the full dispersion relation is shown, being it symmetric
with respect to the most unstable wavenumber).

In all cases, the most unstable mode is the one associated to q⇤ = qj=Nv/2 = ⇡/dv , where
dv ⇡ 2⇡r0/Nv is the intervortex distance, while the mode q = 0 is always stable such that
�(q = 0) = 0. The latter property is associated to the conservation of the total angular mo-
mentum, which follows from system rotational invariance. For Nv ! +1, the points collapse
on Eq. (1), which was derived for straight vortex rows in Ref. [43]. The structure of the normal
modes for Nv = 6 is illustrated in Fig. 8.

3.4 Boundary-induced stabilization of the necklace

The presence of the annulus boundaries contributes to stabilize a vortex necklace. Indeed, in
Fig. 9 we show the maximum instability growth rate �⇤ := max j2[1,2Nv]{� j} [where the � j ’s
are given by Eq. (37)] as a function of the annulus width �R= R2 � R1.

One can appreciate that, for any Nv , the necklace becomes stable on narrow enough annuli.
The reason can be ascribed to the competition between two different length scales: the typical
intervortex distance dv ⇡ 2⇡r0/Nv and the distance between the vortices and the boundaries,
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Figure 7: Dependence of the instability growth rates � [corresponding to the real
parts of eigenvalues (37)] on the eigenmode wavenumber q for different values of
Nv . Results obtained for necklaces of radius r0 =

p
R1R2 and n1 = �Nv/2. The black

solid line corresponds to Eq. (1).

1 1 1 1

Figure 8: Structure of the 4 independent eigenmodes associated to a 6-vortex neck-
lace. Panels correspond to the allowed wavenumbers q = 0, 1,2, 3 (from left to right).
Red arrows represent the relevant displacement vectors. The first panel shows the
stable mode, while the last one is the most unstable (i.e., the one with q = q⇤).

which is of the order �R. In the limit of a fat annulus, �R� dv , the dynamics of each vortex
is mainly determined by the remaining Nv � 1 physical vortices, while, in the opposite limit
of a thin annulus �R ⌧ dv such dynamics is mainly determined by the image vortices. The
critical condition corresponding to the cross-over between the two aforementioned regimes is

�Rc = dv =
2⇡r0

Nv
. (38)

Moreover, if the annulus width�R tends to infinity, the maximum instability growth rate tends
to

lim
�R!+1

�⇤ =
~h

8mar2
0

Nv

q
N2

v � 8 (Nv � 1+ 2n1). (39)

Setting n1 = 0, this formula yields the known result for a regular vortex polygon on an un-
bounded plane [Eq. (5.14b) of Ref. [43]]. Notice the scaling �⇤ ⇠ N2

v for large values of
Nv .
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Figure 9: Dependence of the maximum instability growth rate �⇤ on the annu-
lus width �R = R2 � R1 for necklaces with Nv vortices, at fixed r0 =

p
R1R2 and

n1 = �Nv/2. Vortex necklaces are more stable in the presence of narrower annuli.
The thick dots represent the limit of large-width annuli, Eq. (39), while the black
line is the result for a straight chain, Eq. (2). The sketches below the plot show three
geometric configurations for a 6-vortex necklace.

4 Massive vortex necklaces in annular superfluids

In this section we show that also a non-zero core mass tends to stabilize a vortex necklace on
an annular domain, thus unifying and generalizing the analyses developed in Secs. 2 and 3.

4.1 Hamiltonian description

When vortex cores have a mass Mc , the ensuing inertial contribution to the dynamics of each
vortex can be easily introduced in the Lagrangian model [64,66,68], so that Eq. (21) modifies
as follows

L

��
r j ,✓ j

 
,
�

ṙ j , ✓̇ j
 �
=

NvX

j=1

®
Mc

2

Ä
ṙ2

j + r2
j ✓̇

2
j

ä
+⇡~hna

Ä
R2

2 � r2
j

ä
✓̇ j �� j �

NvX

k=1

0
Vjk

´
. (40)

To carry out the linear-stability analysis, it is convenient to resort to an equivalent Hamiltonian
description, where the total energy

H =
NvX

j=1

8
<
:

p2
r j

2Mc
+

î
p✓ j
�⇡~hna

Ä
R2

2 � r2
j

äó2

2Mc r2
j

+� j +
NvX

k=1

0
Vjk

9
=
; (41)

can be obtained upon a standard Legendre transform of Lagrangian (40) and constitutes the
massive version of Hamiltonian (24). Notice that, if compared to the latter, Hamiltonian (41)
depends on twice as many dynamical variables, since the 2Nv independent canonical momenta

prj
=
@L

@ ṙ j
= Mc ṙ j (42)
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p✓ j
=
@L

@ ✓̇ j
= Mc r2

j ✓̇ j +⇡~hna

Ä
R2

2 � r2
j

ä
(43)

are unlocked by the introduction of a non-zero Mc [66].
The notable class of solutions described in Sec. 3.2 and corresponding to regular vortex

necklaces is, in general, modified, as the core inertial mass results in an additional centrifu-
gal force acting on each vortex. After defining the total mass of the superfluid component
Ma = ⇡

�
R2

2 � R2
1

�
nama, and introducing the mass ratio mn = Mc/Ma (the subscript n stands

for “necklace"), one can compute the precession frequency

⌦Nv
(r0) =

~h
ma
�
R2

2 � R2
1

� 1
mn

0
@1�

vut
1� 2mn

ma
�
R2

2 � R2
1

�

~h
⌦0

Nv
(r0)

1
A (44)

of the massive Nv-vortex necklace. This expression involves the precession frequency ⌦0
Nv

of
the massless vortex necklace, Eq. (26), and reduces to it in the limit mn! 0.

4.2 Core-mass-induced suppression of the instability

We show now that the presence of a finite mass filling the cores strongly affects the stability
properties of vortex necklaces against perturbation.

To develop the linear-stability analysis, we preliminary rewrite Hamiltonian (41) in a
(primed) reference frame rotating at frequency ⌦Nv

with respect to the (unprimed) labora-
tory frame according to the standard transformation

H

�
{r j}, {p j}

�
! H

0
Ä
{r 0j}, {p 0j}

ä
=H

Ä
{r 0j}, {p 0j}

ä
�⌦Nv

NvX

j=1

(r 0j ⇥ p 0j) · ẑ (45)

(recall that r j ⌘ r 0j by definition). Then, one computes the matrix J = SH, where H is the
Hessian matrix associated to Hamiltonian (45) and evaluates it at the rotating regular-necklace
configuration, which constitutes a fixed-point (hence the subscript “eq”) when observed from
the rotating reference frame. Notice that, as opposed to the scheme illustrated in Sec. 3.3 and
to Eq. (35), the vector

D =
⇣

r 01, ..., r 0Nv
, ✓ 01, . . . , ✓ 0Nv

, p0r1
, . . . , p0rNv

, p0✓1
, . . . , p0✓Nv

⌘T
, (46)

now includes twice as many dynamical variables, because the introduction of core mass dou-
bles the dimension of the associated phase space. The antisymmetric matrix S is the 4Nv⇥4Nv
version of Eq. (36). The 4Nv eigenvalues of J are of the type

� j = � j + i! j , (47)

and they determine the stability of the regular massive Nv-vortex necklace. As discussed in
Sec. 3.4, we are primarily interested in

�⇤ := max
j2[1,4Nv]

�
� j
 

, (48)

as it is the rate that characterizes the breakdown of the necklace structure upon perturbation.
Quite generally, the core mass tends to stabilize the necklaces, i.e. the maximum instability

growth rate �⇤ is smaller in the presence of core mass. In the left panel of Fig. 10 we illustrate
this effect for necklaces featuring different values of Mc .
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Figure 10: Maximum instability growth rate �⇤ (normalized to its value �⇤0 at zero
mass) for a massive vortex necklace of radius r0 =

p
R1R2 inside an annulus with

radii R2 = 4.5 R1. Left: dependence of �⇤, as defined in Eq. (48), on the vortex core
mass Mc , for different number of vortices Nv . Right: dependence of �⇤, as given by
Eq. (49), on the parameter mN2

v .

One can observe that the suppression of the instability is more effective for larger values
of Nv . Additional insights into the physical mechanism responsible for this suppression can be
obtained adapting Eq. (8), rigorously valid for an infinite vortex row, to the case of a Nv-vortex
necklace of radius r0. This is obtained via the substitution a = 2⇡r0/Nv , yielding the following
maximum instability growth rate for a massive necklace:

�⇤ = �⇤0
r2
0

R2
2 � R2

1

8
p

2
mnN2

v

vuut�1+

vut
1+

✓
mnN2

v

8

R2
2 � R2

1

r2
0

◆2

(49)

This relation, illustrated in Fig. 11 as a function of the number of vortices (solid lines), well
captures the results of the full numerical linear-stability analysis (dots) for a vortex necklace
in an annular domain.

Interestingly, the quantity mnN2
v emerges as a universal parameter in the above Eq. (49).

In fact, the different curves in the left panel of Fig. 10 eventually collapse onto a single curve
�⇤(mnN2

v ) in the right panel.
As already shown in Sec. 2.1, the introduction of a non-zero core mass modifies the asymp-

totic behaviour of �⇤(Nv): the quadratic scaling law

�⇤ =


16⇡r2
0

N2
v (50)

characterizing the well-known massless scenario gives way to the linear dependence

�⇤ ⇠
vtmana

Mc⇡



4r0
Nv . (51)

Comparing Eqs. (50) and (51), one can easily determine the critical value

Ñv = 4

vut⇡manar2
0

Mc
(52)

below (above) which the dependence of �⇤ on Nv is quadratic (linear), and observe that, for
Mc ! 0+, it diverges, a circumstance which confirms the asymptotic quadratic dependence
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characterizing massless vortices (see Fig. 11). This change of scaling law can be equivalently
formulated in terms of the velocity difference

�v =


2⇡r0
Nv (53)

at the interface between the two counter-propagating flows. One can verify, in fact, that the
well-known quadratic scaling �⇤ /�v2 associated to Eq. (50) and typical of the classical [5,
16] as well as of the superfluid Kelvin-Helmholtz instability [43, 46] is replaced by the linear
scaling �⇤ /�v associated to Eq. (51).
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★★
★★

0 5 10 15 20
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Figure 11: Dependence of the maximum instability growth rate �⇤ on the number of
vortices Nv for different values of the core mass Mc . Dots correspond to the results
of the full linear-stability analysis of a vortex necklace in an annular domain [see
Eq. (48)], while solid lines corresponds to the predictions of Eq. (8) adapted to the
case of vortex necklaces. Stars denote the critical values (52) at which the scaling
�⇤(Nv) crosses over from quadratic to linear.

4.3 Azimuthal and radial instability

Both the radial (�r j) and the azimuthal (r0�✓ j) displacements of the jth vortex with respect to
their respective equilibrium values diverge as ⇠ e�

⇤ t in the neighbourhood of the fixed-point
configuration. Moreover, as previously discussed, the vortex-necklace instability can be further
characterized through the ratio ✏k/✏? := r0�✓ j/�r j . Such a quantity is easily computed from
the entries of the eigenvector associated to �⇤, along the same lines as Eqs. (11, 12). The
(absolute value of) ratio ✏k/✏? is shown in Fig. 12 as a function of the number of vortices in
the necklace, for different values of the core mass. In the massless case (uppermost curve), the
quantity saturates to 1 for a large number of vortices, meaning that the perturbation has equal
radial and azimuthal components. The larger the core mass, the smaller the ratio, signaling
that the radial character of the instability prevails. This scenario, showing that the finite core
mass enhances the transverse nature of the instability, is consistent with the one discussed in
relation to the linear vortex row (see Sec. 2.2 and, in particular, Fig. 3).

5 Comparison with experiments

Recently, the superfluid Kelvin-Helmholtz instability has been observed with unprecedented
accuracy in an atomic superfluid of 6Li [46]. Upon imprinting two counter-rotating flows with
tunable relative velocity, the LENS group characterized the development of an ordered vortex
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Figure 12: Ratio between the amplitude of the tangential displacement and that of
the radial displacement for the most unstable eigenmode. Upon increasing the core
mass Mc , the instability, in the limit of large Nv , becomes increasingly radial, i.e.
transverse to the necklace.

necklace and its subsequent breakdown due to the onset of instability. In this section, we
compare their experimental measurements, performed across different regimes, ranging from
weakly-interacting bosonic (BEC side) to strongly-correlated fermionic pair condensate (BCS
side), with the predictions of our dissipative and massive point-vortex model.

Unfortunately, it is not possible to rigorously perform the linear-stability analysis for a (ei-
ther massless or massive) vortex necklace subject to frictional forces. The reason is that, in the
presence of dissipation, regular vortex necklaces (see Sec. 3.2 and Sec. 4.1) no longer consti-
tute stationary solutions of the associated dynamical systems, a. This circumstance which pre-
vents the application of the standard linear-stability-analysis machinery described in Sec. 3.3
and Sec. 4.2 and would require a systematic analysis of the early-time dynamics generated
by the full set of equations of motion with suitable stochastic initial conditions. However, as-
suming that the breakdown of the necklace is only due to the Kelvin-Helmholtz mechanism,
one can estimate the corresponding instability growth rate in the presence of dissipation the
problem of introducing dissipation into model (40) can be bypassed by adapting Eqs. (16)-
(18), obtained for a vortex row, to the case of a vortex necklace. This can be done upon the
substitution a = 2⇡r0/Nv and, on the basis of what was discussed in Sec. 4.2 (and illustrated
in Fig. 11), the resulting equations are expected to well capture the properties of the actual
vortex necklace.

The outcomes of this analysis are shown in Fig. 13 as a function of the (squared) velocity
difference (53) at the interface between the two counter-rotating flows. According to the
results of Ref. [54] (see, in particular, panel 1h), we took ↵ = 0.01 as a realistic estimate of
the longitudinal mutual-friction coefficient. Moreover, one can introduce the parameter

f =
Mc

⇡⇠2mana
, (54)

representing the filling fraction of a vortex core of radius ⇠ ⇠ 0.75 µm, that, for this specific
experimental platform, has two natural bounds: 0 (completely empty core), and 1 (density of
quasi-particle bound states equal to the superfluid density).

As visible in the figure, the transverse mutual-friction coefficient ↵0 can indeed cause a
significant suppression of the instability. While experimental data on this coefficient are cur-
rently lacking, our findings suggest that the measured values of �⇤, significantly smaller than
the expected one [see Eq. (2)] , would be reproduced if ↵0 ⇡ 0.75.

Moreover, for the current system, the presence of core mass up to f = 1 appears to have
a negligible impact on the relation �⇤(�v2). We have verified that the core-mass-induced
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suppression of such scaling indeed occurs, but only at much larger ( f ⇠ 50), and therefore
unrealistic, values of the filling fraction (54). The filling fraction f = 1 corresponds to the
tiny mass ratio Mc/Ma ' 10�4, thus explaining the absence of a visible effect on �⇤ in Fig. 13.
We would mention that the filling of vortex cores can substantially increase in the deep BCS
regime, where a larger number of quasi-particle bound states could provide the vortices with
a non-negligible core mass (up to Mc/Ma ' 10�2). Also, in a very recent study [41] by An et
al., it was found that in the onset of the superfluid Kelvin-Helmholtz instability at the interface
of two distinct superfluids, vortices within each superfluid are populated by particles from the
other superfluid. Consequently, all vortices in that system are endowed with a sizable inertial
mass (and hence to a filling fraction f significantly larger than zero).
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Figure 13: Dependence of the maximum instability growth rate �⇤ on the velocity
difference at the interface between two counter rotating flows. The gray dashed line
corresponds to Eq. (2), written in terms of �v. Filled blue circles, orange squares,
and green diamonds represent the experimental measurements reported by the LENS
group for an atomic superfluid of 6Li atoms (data extracted from Fig. 3f of Ref. [46]).
The green and the red solid lines represent the predictions of our generalized point-
vortex model, for ↵0 = 0.10 and ↵0 = 0.75, respectively. In both cases we assumed
↵= 0.01, a value which is compatible with the results reported in Fig. 1h of Ref. [54].
There is no visible difference between the predictions for f = 0 (solid lines) [see
Eq. (20)] and the predictions for f = 1 (open triangles) [see Eq. (16)].

In summary, we have shown that the introduction of core mass and dissipative effects into
the point-vortex model is, in general, responsible for a stabilization of vortex necklaces. From
a quantitative perspective the main role seems to be played by the transverse mutual-friction
coefficient ↵0.

6 Conclusions

In this work, we analyzed the stability of vortex rows and vortex necklaces which typically
appear at the interface between two superflows having a non-zero relative velocity (hence
the analogy with the well-known classical Kelvin-Helmholtz instability). Previous theoretical
works [43, 56, 57] have quantified the instability growth rate for certain noteworthy classes
of point-vortex structures in ideal fluids. However, none of these works considered the addi-
tional effects, such as finite vortex core mass and dissipation, which are often present in real
superfluid systems and may influence the breakdown of such structures.

In Sec. 2, we studied the effect of a finite vortex core mass on the linear-stability analysis of
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vortex rows. This is motivated by the fact that, in many real experimental platforms, quantum
vortices are often filled by massive particles, either deliberately or accidentally. We showed
that, in general, vortex rows exhibit increased resilience to the onset of dynamical instabilities
when core mass is considered. Interestingly, the introduction of a finite core mass affects the
dependence of the maximum instability growth rate (�⇤) on the number of vortices per unit
length (Nv/L), as its scaling law changes from a quadratic to linear behaviour. Moreover, we
pointed out that, while in the massless case the instability develops along the longitudinal and
the transverse direction in equal measure, in the presence of massive cores, vortices depart
from their regular configuration mainly in a transverse fashion. We have also introduced an
additional and physically-relevant process into our linear-stability analysis, dissipation, and
highlighted its stabilizing effect on vortex rows. Surprisingly, our analysis revealed that the
suppression of the instability is mainly due to d?, while it only moderately depends on dk.

In Sec. 3, building upon the model that we introduced to investigate the dynamics of many-
vortex systems in annular domains [68], we analyzed the (in)stability properties of vortex
necklaces, showing that they can be even stabilized if confined in narrow annular domains.
This detailed analysis is motivated by the fact that narrow annuli and, more in general, narrow
channels along which superfluids flow, constitute the typical setups used to investigate the
development of the superfluid Kelvin-Helmholtz instability [42,44,46].

In Sec. 4, we delved into the influence of a finite vortex core mass on the stability proper-
ties of vortex necklaces. Our investigation revealed a significant role played by the inertia of
vortex cores in suppressing the necklace instability. This phenomenon came with other notable
changes, including a shift in the asymptotic scaling of �⇤(Nv) from quadratic to linear, and a
transformation of the most unstable eigenmode towards increased transverse behavior.

In conclusion, we have elucidated the role played by confinement, vortex mass and mutual
friction on the dynamical instability of many-vortex systems. Further studies are needed to
understand the role of mutual friction in the breakdown of rotating vortex necklaces. This
should require the explicit solution of the full set of equations of motion with suitable stochastic
initial conditions, thus providing a more reliable estimate of �⇤ for the case of a rotating
necklace in a dissipative superfluid. Moreover, it could be interesting to analyze other effects
which may affect the Kelvin-Helmholtz instability, such as non-zero temperatures, unequal
vortex-core mass [83], or the coupling of vortices to sound.
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