QDsim: A user-friendly toolbox for simulating large-scale quantum dot devices

Valentina Gualtieri,! Charles Renshaw-Whitman,! Vinicius Hernandes,! and Eliska Greplova!

L Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
(Dated: August 2, 2024)

We introduce QDsim, a python package tailored for the rapid generation of charge stability
diagrams in large-scale quantum dot devices, extending beyond traditional double or triple dots.
QDsim is founded on the constant interaction model from which we rephrase the task of finding the
lowest energy charge configuration as a convex optimization problem. Therefore, we can leverage
the existing package CVXPY, in combination with an appropriate powerful solver, for the convex
optimization which streamlines the creation of stability diagrams and polytopes. Through multiple
examples, we demonstrate how QDsim enables the generation of large-scale dataset that can serve
a basis for the training of machine-learning models for automated tuning algorithms. While the
package currently does not support quantum effects beyond the constant interaction model, QDsim
is a tool that directly addresses the critical need for cost-effective and expeditious data acquisition for
better tuning algorithms in order to accelerate the development of semiconductor quantum devices.

INTRODUCTION

Quantum dots (QDs) have emerged as a particularly
promising quantum computing platform [1-6]. These
semiconducting systems, that operate by trapping charge
carriers in potential wells called "dots", have been the
subject of extensive research due to their scalability po-
tential and the relative simplicity to fabricate them, that
leverages already existing techniques in the semiconduc-
tor industry.

The scalability of quantum dot-based qubits is consid-
ered a cornerstone for practical quantum computation.
At the same time, the complexity of these systems scales
with the number of quantum dots, and it poses a signifi-
cant challenge in establishing and maintaining the desired
electron occupancy across the array.

Furthermore, with increasing device size, the task of
manually tuning each quantum dot becomes impractical.
The scaling of these systems necessitates an automated
approach to tuning. In this context, artificial intelligence
(AI) emerges as a highly promising solution. AI algo-
rithms have the potential to learn and adapt to the com-
plex variety of quantum dot behaviors, automating the
tuning process with efficiency and precision.

However, the efficacy of Al depends on the availability
of extensive datasets that capture the diverse operational
regimes of quantum dot arrays. These datasets are criti-
cal for training robust machine learning. The scarcity of
such data is a significant bottleneck in the advancement
of AT applications within this field [7-16].

In response to these challenges, we present QDsim,
a novel computational framework designed to simulate
the electrostatic environment of quantum dot arrays ef-
ficiently. Our approach reduces the complexity of the
simulation problem to a convex optimization task, offer-
ing an efficient and user-friendly solution. QDsim is im-
plemented as a open-source Python package, providing a
flexible tool for quantum dot array design and large-scale
data generation for machine learning (ML) applications

[17].

The most important feature of QDsim is its ability to
generate charge stability diagrams, which are essential
for understanding the operational regimes of quantum
dot arrays. These diagrams show the connection between
gate voltages and charge configurations, and are charac-
terized by a tessellation of the voltage space into poly-
topes. The geometry of these polytopes provides insights
into the charge configuration of the quantum dot sys-
tem. While other simulators of quantum dot arrays exist,
QDsim package offers unprecedented flexibility in geome-
try of the device in term of placement of dots, gates and
sensors. Additionally, we demonstrate a significant speed
in the charge stability diagram generation that allows for
rapid simulations of 100+ quantum dots.

By enabling the rapid generation of charge stability di-
agrams for large-scale quantum dot devices, QDsim serves
as a foundational tool for creating the vast datasets re-
quired for machine learning training. Its ability to sim-
ulate complex quantum dot arrays and produce charge
stability diagrams is a step towards the future where Al-
driven automatization becomes the standard for quan-
tum device tuning.

The paper is structured as follows. In Section we
introduce the theory behind the model: constant capac-
itance model and Coulomb polytopes. In Section we
discuss key QDsim classes and provide detailed explana-
tion of the package functionalities. In Section we discuss
relevant examples for the QDsim. We provide detailed dis-
cussion of default device designs and their possible cus-
tomization as well as instructions on how to a design and
simulate completely custom architectures.

FORMULATION OF THE ELECTROSTATIC
MODEL: CHARGE STABILITY DIAGRAMS

In this section, we describe the theoretical founda-
tion of the QDsim package: the constant-interaction (or

constant-capacitance) model applied to quantum dot ar-
rays.

Charge stability diagrams are visual manifestations of
the Coulomb blockade effect, a quantum phenomenon
that occurs in small conducting or semiconducting struc-
tures, such as quantum dots. At the quantum scale, elec-
trons are not free to flow into and out of a quantum dot
without restriction; instead, they are influenced by the
Coulomb force from other electrons within the dot. When
an electron is added to a quantum dot, it increases the
energy of the system due to this repulsive force. If the
energy required to add another electron exceeds the ther-
mal energy of the system, the dot will not take on any
additional electrons until the external conditions (such
as gate voltage) are altered. This leads to a blockade of
charge transfer, which is observable as discrete jumps in
the conductance through the quantum dot.

Experimentally, charge stability diagrams are obtained
by varying the voltages on the electrostatic gates that
control the quantum dots and measuring the resulting
conductance. For multiple dots devices, these diagrams
exhibit a characteristic pattern, each corresponding to
a stable number of electrons within the quantum dots.
The boundaries between these regions represent points
of charge degeneracy, where the number of electrons on
a dot can change.

In our model, we represent these phenomena within the
classical framework of the constant interaction [18]. In
this model, each quantum dot is considered a conductor
with capacitive coupling to other dots and to electrostatic
gates. The charge stability diagrams emerge from this
model as a tessellation of the gate voltage space, where
each region corresponds to a stable charge configuration.
These configurations are the ground states of the system’s
free energy function.

By simulating charge-stability diagrams, QDsim pro-
vides a powerful tool for efficiently simulating the behav-
ior of quantum dot arrays.

Derivation of the Constant-Capacitance Model
Energy Equation

In the constant interaction model, each quantum dot is
considered a conductor with capacitive coupling to other
dots and to electrostatic gates [19] [20].

The electrostatic characteristics of the system with Np
dots and N gates are captured by two mutual capaci-
tances matrices:

e the dot-to-dot mutual capacitance matrix, in which

each element CﬁD represents the capacitive cou-
pling between dot ¢ and dot j, and the diagonal
elements represent the dot’s self capacitance;

e the dot-to-gate mutual capacitance matrix, in

which each element C’g G represents the capacitive

coupling between dot ¢ and gate j.

The dot-to-dot mutual capacitance matrix CPD re-
quires Np(Np — 1)/2 values due to the symmetrical re-
lation of the mutual capacitances, i.e. the capacitance
between element i and element j is the same between
element j and element i. No symmetry relations are
present in the dot-to-gate mutual capacitance matrix

CDG | therefore it is defined by NpNg values.

Capacitance, C, relates the charge state @, i.e. the
charge contained on the conductor, to the electrostatic
potential, V via Q = CV. For multiple conductors, @
and V are column vectors Q and V, and C' is a matrix
C. However, in order for the relation

Q=CV (1)

to hold true in matrix form, some distinctions must be
made. Here we first introduce the total system’s mutual
capacitance C', which is obtained by stacking the dot-to-
dot and dot-to-gate capacitance matrices in the following
way:

@DD EEDG
cr. 1

Matrix C satisfies the condition

Qi=>_Ciy(Vi=Vy), (3)

which is different from the aforementioned Q = CV.
Here the indexes ¢, j run from 1 to Np + Ng. V; rep-
resents the voltage applied to the i-conductor. Vj rep-
resents the voltage applied to the j-conductor. These
conductors are both dots and gates, accounting for a to-
tal of Np + Ng conductors. Specifically, in our notation,
a general index ¢ running from 1 to Np will account for
the dots, while the same index running from Np + 1 to
Np + Ng will account for the gates.

Upon manipulation, the relation Q = CV holds when
C is the Maxwell matrix [21], defined as:

Cij = 0i5 Z 5ik +(1- 5ij)(*5¢j)7 (4)
k

where §;; is the Kronecker delta.

Given that all self-capacitances CA’; are positive, the
Maxwell matrix is strictly diagonally dominant [22], en-
suring its invertibility via the Levy-Desplanques theorem
[23].

Distinguishing between dot and gate properties, we ex-
press Q , V and C as:

asfa] vl el e o

The capacitance relation in Equation (1) then be-
comes:

Qp| _ |Cpp Cpg| |VD 6)
Qc CL. Cecl| |Val|®
The free energy function F' of the system is given by:
1 A%
F=U-W =3 [Q5.Qf] [Vg] -ViQe. (7

Here Qp = ¢Np, where ¢ is the unit charge of the
carriers. For electrons, ¢ = —e and for holes, ¢ = +e,
with e being the absolute value of the elementary charge
(e = 1.602 x 10~ Coulombs). We can rewrite the free
energy function in terms of Np (the charge configuration
that we want to obtain) and V¢ (the gate voltages that
we want to tune). Omitting gate self-energies, we rewrite
the free energy from Equation (7) as

1, . B

F(Np;Vg) =3 (¢"NLC5pNp
—2¢NTC;LChaVa
+VECheCorpCnaVa) . (8)

For the remainder of the paper, we will adopt units
such that |¢| = e = 1, and define the charging-energy
matrix E¢ = CBE. It is worth noting that we will need
to take into account the sign of the charge, which will be
negative for electrons, and positive for holes simulations.

Ground States and Coulomb Polytopes in V-Space

In this section we show that the ground states of the
free energy function define the polytopes in the voltage
space. We define the ground-state energy Fgs(Ve) and
the corresponding occupation numbers GS(Vg) as

Fos(Va) = NrélZigD F(N;Vg), 9)

GS(Vg) ={N e Z"? | F(N,Vg) = Fgs(Vg)}. (10)

The set of voltages for which a given occupation Ny is a
ground state, GS~!(INy), is determined by the condition
that F(No, Vi) < F(Ng +t,Vg) for all t € ZNP . This
leads to the the following description of a convex polytope

1
(t"EcCpa)Ve = 5tTECtHTECNO, (11)

where < denotes element-wise inequality.

Convex polytopes can be defined as an intersection of
a finite number of half-spaces. This definition is called a
half-space representation or H-description [24]. Inequal-
ity (11) represents the H-description of the coulomb poly-
topes.

A direct consequence of the inequality (11) is that the
regions in Vg-space admitting a particular occupation N
as a ground state form convex polytopes. We can also
prove that two polytopes sharing an interior point V
must coincide, implying that two states N; and Ny are
degenerate if and only if N; — Ny € Null(C%GEC).

To prove this statement, we can consider two polytopes
which share a point Vi interior to each, therefore all
the inequalities in (11) hold strictly. Suppose that two
ground-states, N1 and N, are admitted for the point Vy,
which is in the interior of the respective polytopes. Then
there exists an open ball B of finite radius n € RT™* such
that all the points in B, (V) are also in both polytopes.
Within this ball, by assumption the occupations N7 and
Ny remain ground states, therefore have the same energy.
Then for all 6V € B,(0), the following holds:

F(Nl,VO + 5V) = F(NQ,VO + 5V) (12)

1
Q(NlT EcN,—NIEcNy) — (CpaVo) Ec(N; — Ny)
= (CpadV)TEc(N; — Ny) (13)

The left hand side is equal to 0 when 6V = 0. Hence,
the right-hand side vanishes independently of §V. Thus
NIEcCpg = NI EcCpg. It follows that F(Ny, V) =
F(N3, Vy) for all Vo € R¥¢. Further, any two states are
degenerate if and only if N3 — Ny € Null(CE,E¢) [25].

In this section, we have demonstrated that the task
of identifying Coulomb diamonds can be reformulated
through convex optimization. The established convexity
enables the framing of Equation (8)’s minimization as a
convex problem. This approach leads to the determina-
tion of ground states as the sought-after solution.

QDSIM PACKAGE

QDsim is a Python package that bridges the gap be-
tween theoretical frameworks and practical quantum
dot device simulations. This versatile tool comprises
three essential classes: QDDevice (quantum dot device),
@DSimulator (quantum dot simulator), and
CapacitanceQuantumDotArray (capacitance quantum
dot array). All the code is available in a public repository
on GitLab [26].

The quantum dot device class: QDDevice

The QDDevice class is a key element for device def-
inition. It focuses on translating design of the device
into capacitance matrices, specifically addressing dot-to-
dot and dot-to-gate mutual capacitance matrices. This

class is responsible for defining key parameters related
to the device’s geometry and design. Users can specify
the number of dots, the number of gates, the locations of
the dots, as well as the dot-to-dot Cpp and dot-to-gate
61;/@ mutual capacitance matrices.

Upon initialization, the QDDevice class provides an
empty object, which users can then populate with the
desired device characteristics. A range of standard de-
sign options is available, each tailored to specific device
configurations. These standard options include the fol-
lowing methods:

e one_dimensional_dots_array: This option con-
figures a line of dots with individual gate control,
where users can define the number of dots, their lo-
cations, the dots’ self-capacitance, the average dot-
to-gate capacitance, if the dots are equal (i.e. they
all have the same self-capacitance), if the gates are
equal (i.e. if the dot-to-gate capacitance is the same
for every couple in which the gate directly controls
the dot), and the strength of the crosstalk interac-
tion.

e bi_dimensional_10_dots_array : It sets up a 2D
array of 10 dots with individual gate control, al-
lowing customization of the device properties and
capacitances as listed in the previous case.

e crossbar_array_shared_control: This option
creates a crossbar array of dots with shared con-
trol. Users can specify the number of dots per side
of the square lattice, and other device characteris-
tics as in the previous case.

The QDDevice class features several attributes, includ-
ing device type (for plotting purposes), the number of
dots, the number of gates, dot self-capacitance, dot loca-
tions, dot-to-dot mutual capacitance matrices, and dot-
to-gate mutual capacitance matrices.

Additionally, QDDevice offers methods for setting dot
locations, the number of gates, custom dot-to-dot mu-
tual capacitance matrices, and custom dot-to-gate mu-
tual capacitance matrices. It also provides functionality
for automatically evaluating dot-to-dot and dot-to-gate
mutual capacitance matrices based on dot locations, as-
suming individual gate control. These methods facilitate
the definition and customization of quantum dot devices
and enable users to configure the device to their specific
requirements, making it a versatile tool for simulations.
Here, we provide an overview of the key methods offered:

e set_physical_dot_locations: This method al-
lows users to assign dot locations to the QDDevice
object. By specifying the coordinates (z,y) of each
dot in the device, users can precisely define the spa-
tial arrangement of quantum dots.

e set_dot_dot_mutual_capacitance_matrix:
With this method, users can assign a custom dot-
to-dot mutual capacitance matrix to the QDDevice
object. This level of customization enables precise
modeling of the capacitance interactions between
quantum dots.

e set_dot_gate_mutual_capacitance_matrix:
Similarly, users can define a custom dot-to-gate
mutual capacitance matrix using this method. The
dot-to-gate capacitance matrix plays a crucial role
in simulating the interactions between quantum
dots and gate electrodes.

e evaluate_dot_dot_mutual_capacitance_matrix:
This method calculates the dot-to-dot mutual ca-
pacitance matrix of the QDDevice based on the
dot locations. It employs a distance-based model
to compute the capacitance interactions, taking
into account the arrangement of quantum dots.
For each pair of dots, the mutual capacitance is
determined based on their physical separation
assuming electron-electron or hole-hole Coulomb
interaction. The diagonal elements of the matrix
represent the self-capacitance of each dot, which
is initially set to a user-defined value (c0). Off-
diagonal elements are calculated based on the
inverse square of the distance between dots to
approximate the capacitive coupling.

e evaluate_dot_gate_mutual_capacitance_matrix:
This method is used to compute the dot-to-gate
mutual capacitance matrix based on the dot
locations. It assumes that each gate corresponds
to a dot and only controls that dot, making it
suitable for certain device configurations. Similar
to the dot-to-dot capacitance, for each dot-gate
pair, the mutual capacitance is determined from
the Coulomb interaction based on their physi-
cal separation (where the gate controlling the
corresponding dot is considered as placed in the
same coordinates of the dot it controls), with an
additional factor to account for crosstalk effects
between neighboring gates. Random noise can be
added to simulate variations in gate capacitances
and to introduce crosstalk. It is important to
highlight that unlike [27] [28], our focus is not
to have a precise description of the electrostatic
environment. Our goal is to provide the user
with a ready-to-use function that provides a good
enough high-level description.

The package’s versatility extends to device visualiza-
tion, with a plotting method
plot_device that allows users to create graphical repre-
sentations of the device, including optional sensors and
dot labels. The generated plots are exportable in various

image formats, such as PDF and PNG, allowing flexibil-
ity in saving visual representations. Device attributes can
also be exported to JSON files with the save_to_json
method, providing a structured format for documenta-
tion. These JSON files can be easily imported and uti-
lized using the load_from_json class method.

Indexing

We begin by explaining the indexing conven-
tions used for one_dimensional_dots_array,
crossbar_array_shared_control, and potential
custom configurations.

In the context of QDsim package, each dot and gate
is associated with a distinct index, designated as ¢ and
j respectively. These indices range from 0 to Np — 1
for dots and Ng — 1 for gates. For instance, the matrix
element Ci[])»D denotes the mutual capacitance between
dot ¢ and dot j. This notation is consistently applied
across the various mutual capacitance matrices within
the package.

In the standard design templates provided, the in-
dexing scheme of the dots and gates is readily repre-
sented through a plot of the device, via the plot_device
method. Within the one_dimensional_dots_array
configuration, the dots and their corresponding gates
are sequentially numbered from left to right, from 0 to
Np — 1. Given the one-to-one correspondence between
dots and gates in this arrangement, gate indices are not
explicitly depicted; however, they adhere to the same
left-to-right numbering convention, extending from 0 to
N¢g — 1, where N¢ equals Np in this case.

The crossbar_array_shared_control design has a
distinct indexing pattern, as can be seen in Figure 1.

Physical device

® Dot
531 0 &2 & P°
g2 oL &+ 8 P12
B 11 @ & P 1
> 0 6 S0 P13 P15

0 1 2 3
X Location (au)

FIG. 1. Example of the indexing of the dots in the crossbar
array design. The ’D’ stands for 'dot’, the adjacent number
represents the index.

Here, dots are numbered starting from the upper left
corner, progressing downwards, and subsequently ascend-
ing diagonally towards the right. This process is re-

peated, descending from the leftmost point for one step
and ascending in the rightward diagonal direction.

This convention ensures that increasing dot indices are
governed by the same gate. The gates themselves are
arranged diagonally and are numbered from the upper
left to the lower right corner.

It is of course possible for users to modify our tem-
plate configurations, but when doing so it is essential to
adhere to the above described indexing convention such
that correct capacitance matrices are generated.

The simulator class: QDSimulator

The QDSimulator class is a fundamental component of
the QDsim package, and serves as the user’s interface for
simulating quantum dot charge stability diagrams.

The QDSimulator «class is built atop the
CapacitanceQuantumDotArray class. The
CapacitanceQuantumDotArray class is utilized to

construct and solve the convex optimization prob-
lem that characterize the quantum dot array. It
will be covered in details in the next section. At
this point, the important distinction to be made
is that the QDSimulator class is a wrapper of the
CapacitanceQuantumDotArray class. Therefore the
user will interact directly only with the QDSimulator
class, leaving the CapacitanceQuantumDotArray class
working in the background.

When creating an instance of QDSimulator, the
user has the discretion to specify the type of simula-
tion—either ’Electrons’ or "Holes’. By default, the sys-
tem assumes an 'Electrons’ simulation.

The key attributes of the QDSimulator class are the
following:

e _qd_device: This attribute represents the quan-
tum dot device to be simulated and must be an
instance of the QDDevice class.

e _physics_to_be_simulated: Determination
whether the device consists of ‘Electrons’ or
‘Holes’.

e _variable_gate_index_1 and
_variable_gate_index_2: These represent
the indices of the gates to be scanned, i.e. which
gates will be shown in the charge stability diagram
axes. For simulations of the charge stability dia-
gram, only a pair of gates can be simultaneously
scanned.

This

e _voltage_ranges: attribute sets the

minimum and maximum voltages for the
x- and y-axes, associated with gates in-
dexed by _variable_gate_index_1 and

_variable_gate_index_2, respectively.

e _sensor_locations: This attribute determines
the spatial coordinates (x, y) of each sensor within
the device layout, which must be set via the class
method
set_sensor_locations. While the simulation it-
self, framed as a minimization problem, is inde-
pendent of sensors, they are incorporated for more
realistic visualization purposes. Specifically sensors
allow visualization of realistic potential and current
values and they would be monitored in an experi-

ment.

The core method of this class
issimulate_charge_stability_diagram. Central
to the QDsim package, this function bridges the
representation of the quantum dot device, defined

by the QDDevice object, to the framework of the
constant interaction model. The method utilizes a
CapacitanceQuantumDotArray object, which serves as
the powerhouse driving the entire simulation.

Users can choose their preferred convex optimization
solver, including options like the open-source SCIP or the
licensed MOSEK, for use within CVXPY. This higher-
level interface seamlessly integrates with either MOSEK
or SCIP as its back-end solvers, offering flexibility in
solver selection.

Following the philosophy of flexibility, this method al-
lows the specification of the gates to be scanned, with
the number of probe points on both x- and y-axes, and
an individual voltage range for each. Furthermore, the
fixed voltage approach ensures a fixed potential for non-
scanned gates, while the gates’ voltages can be individ-
ually defined for more granular control. All the details
will be described in Section by taking advantage of some
use cases.

A beneficial feature is the saving mechanism: The re-
sulting arrays of occupation, potential, and current can
be stored using the associated file path parameters. This
ensures that simulation data can be revisited or shared
without the need to rerun computations.

The final feature of the QDSimulator class is its inbuilt
capability to visualize the simulated results. Through
its integrated plotting methods, users can render charge
stability diagrams.

The plot_charge_stability_diagrams method of
the class is designed to create a visual representation of
the charge stability diagram. Its features include:

e Colormap Customization: By default, the
method employs the 'RdPu’ colormap. However,
users can modify the colormap using the cmapvalue
argument.

e Noise Inclusion: The method allows for the
introduction of Gaussian, white, or pink noise
to the plots, enhancing the realism of simula-
tions. They can be added by using the boolean

gaussian_noise, white_noise, and pink_noise
arguments.

e Potential vs. Current Mapping: While the
default visualization mode displays the current
map, there exists an option to showcase the poten-
tial map instead by setting the boolean argument
plot_potential to True.

have
Gaus-

e Custom Noise Parameters: Users
the liberty to specify parameters for

sian, white, and pink noise using the
gaussian_noise_custom_params,

white_noise_custom_params, and
pink_noise_custom_params arguments. In

the absence of user-defined values, default settings
are applied.

e Saving Plots: If desired, the generated visualiza-
tions can be saved to a predetermined file path, set
via the save_plot_to_filepath argument.

The powerhouse of the package: the
CapacitanceQuantumDotArray class

The CapacitanceQuantumDotArray class acts as the
core computational engine of our framework. It com-
pletes the task of defining the problem parameters, es-
tablishing the correct environment, and running the ac-
tual simulation. This class operates predominantly in the
background; users typically interact with higher-level in-
terfaces such as QDDevice and QDSimulator and do not
directly engage with CapacitanceQuantumDotArray.

The CapacitanceQuantumDotArray class is rooted in
convex optimization techniques, particularly leveraging
the CVXPY package. It aims to minimize the system’s
free energy, defined in Equation 7.

To obtain the system’s ground state defined in Equa-
tion 9, we manipulated the free energy expression (Equa-
tion 8) in terms of Np and V¢, where N delineates
the dot occupations. The free energy undergoes mini-
mization concerning N p, ensuring that Np remains an
integer vector.

For simplicity in calculations and units, the class as-
sumes the unit charge |e| as 1, meaning the free energy
is denoted in eV.

Here we present a brief overwiew of the key methods:

e select_solver: This method allows to choose
a solver for the convex optimization problem.
Available options include 'MOSEK’ and ’SCIP’.
This method takes in input the solver selected by
the user while interacting with the QDSimulator
class. The user never access the methods of the
CapacitanceQuantumDotArray class directly.

e probe_voltage_space: It explores the entire volt-
age space and determines the ground state for each
point, returning both the dot occupations and as-
sociated energy.

e _find_ground_state: For a specific voltage point,
this method identifies the system’s ground state.

e _set_up_convex_optimization_problem: This
method prepares the convex optimization problem,
serving as a foundation for _find_ground_state.

e _evaluate_maxwell _matrices: Here, the sys-
tem’s Maxwell capacitance matrix is determined,
acting as a precursor for the optimization setup.

EXAMPLES

In this section we highlight several common use-cases
of QDsim, some of which corresponding to recently ex-
perimentally achieved devices [6] [5].

The double dot device

Let us begin with a fundamental example of quan-
tum dot device: double quantum dot. We begin with a
QDDevice object in order to specify the physical param-
eters of the device. The one_dimensional_dots_array
method significantly streamlines this initialization. By
setting the n_dots parameter to 2, the system is auto-
matically configured as a double dot device. The physical
parameters of this default configuration can be seen by
calling the print_device_info method, as shown below.

Python Code

from qdsim import QDDevice, (QDSimulator

create a quantum dot device object

qddevice = QDDevice()

double dot

qddevice.one_dimensional_dots_array(
n_dots=2)

print the device information

qgddevice.print_device_info()

The output generated is as follows:

Device type: in-line array

Number of dots: 2

Number of gates: 2

Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:

[0.12 0.08]
0.08 0.12]

Dot-gate mutual capacitance matrix:

[0.12 0.00]
10.00 0.12]

Upon specifying the n_dots, the QDDevice class au-
tonomously initializes all requisite attributes. However,
the package offers flexibility for further customization, ei-
ther through standard alteration functions or by manual
attribute assignment using setter methods.

The following code snippets illustrate both methods
of customization.

Customization via default attributes

In this double-dot scenario, we leverage the built-in
modification functions accessible through the architec-
ture specification method. This is achieved by specifying
equal_dots = False, equal_gates = False, and/or
adjusting the crosstalk_strength parameter within a
range from 0 (indicating no crosstalk) to 1 (represent-
ing the maximum threshold of crosstalk, determined in
proportion to the capacitances within the simulation).
For users seeking further customization, the capacitance
values can be adjusted by examining and modifying the
source code as necessary.

Python Code

from qdsim import QDDevice, (DSimulator

create a quantum dot device object
gddevice = QDDevice()

double dot
qddevice.one_dimensional_dots_array(
n_dots=2, equal_dots=False,

equal_gates=False,
crosstalk_strength=0.3)
print the device information
gddevice.print_device_info()

The output generated is as follows:

Device type: in-line array

Number of dots: 2

Number of gates: 2

Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:

[0.12 0.08]
0.08 0.11]

Dot-gate mutual capacitance matrix:

[0.13 0.02]
0.02 0.15]

In this example, the alteration in the dot-to-dot and
dot-to-gate mutual capacitance matrices is achieved by
the introduction of random values. Using equal_dots =
False will add random values on the diagonal of the dot-
to-dot mutual capacitance matrix, while equal_gates =
False will add random values to the diagonal of the dot-
to-gate mutual capacitance matrix. Setting a value for
crosstalk_strength will add random numbers to the
off-diagonal, to ensure crosstalk effects. The random val-
ues applied can be both positive and negative, and are
properly scaled with respect to the order of magnitude
used in the matrices to ensure the maintenance of realis-
tic and physically plausible parameters, i.e. they would
only account for small variations of the values, roughly
10-20% variations.

Customization via setter methods

users seeking to employ cus-
tom capacitance matrices, the package pro-
vides two setter methods for this purpose:
set_dot_dot_mutual_capacitance_matrix and
set_dot_gate_mutual_capacitance_matrix.

Conversely, for

8

Python Code

from qdsim import QDDevice, (DSimulator

create a quantum dot device object
gddevice = QDDevice()

double dot
gddevice.one_dimensional_dots_array(
n_dots=2)

define the custom capacitance matrices
cdd = np.array([[0.10, 0.7],[0.7, 0.15]1])
cdg = np.array([[0.14, 0.3],[0.3, 0.12]1])

modify the class attributes

qddevice.
set_dot_dot_mutual_capacitance_matrix(
cdd)
qddevice.
set_dot_gate_mutual_capacitance_matrix(
cdg)

print the device information
qddevice.print_device_info()

The output generated is as follows:

Device type: in-line array

Number of dots: 2

Number of gates: 2

Physical dot locations: [(0,0), (1,0)]
Dot-dot mutual capacitance matrix:

[0.10 0.07]
0.07 0.15]

Dot-gate mutual capacitance matrix:

[0.14 0.03]
0.03 0.12]

When customising the capacitance matrices, it is key
to pay attention to the indexing convention described in
Section and to guarantee the symmetry of the dot-to-dot
mutual capacitance matrix.

We recommend to use plot_device plotting method
to verify that dots and gates are ordered as intended.

The inclusion of a sensor (along with its label) in the
plot for enhanced visualization, as well as the capability
to export the plot to a file with a preferred format, is
achieved by executing the line of code provided below.

Python Code

plot the device, the sensor

and save the plot to a file

qddevice.plot_device(
sensor_locations=[[2,1]],
sensor_labels=[’S50’],
save_plot_to_filepath=’dqd_device.pdf’)

Physical device

® Dot

<14 V¥ Sensor w0
<

o

S

g

3

> 01 @ &

0 1 2

X Location (au)

FIG. 2. A schematic plot of the double quantum dot archi-
tecture with sensor, which is the output of the plot_device
method.

It is pertinent to note that the plotting method does
not render the gates. This omission is intentional for
two primary reasons: firstly, the geometry of the gates is
not critical for simulation objectives, as the interactions
between gates and dots are encapsulated within the dot-
to-gate mutual capacitance matrices. Secondly, in de-
vices with individual control mechanisms, the indexing
for gates and dots is identical. We provide a schematic
depiction of gates only for the cross-bar device, where the
shared control aspect (single gate controls multiple dots)
requires an indexing guidance.

Simulation

To start the simulation of the device, create an instance
of the QDSimulator class. This class has a method named
simulate_charge_stability_diagram, which accepts
qd_device as one of its parameters. Thus, an instance of
the QDDevice class designated for simulation is inputted
into the QDSimulator’s simulation method, rendering the
simulator class agnostic to the specific device being sim-
ulated. Consequently, the code snippets provided herein
are applicable across all use-cases discussed within this
Examples section.

9

Python Code

create a quantum dot simulator object

simulating electrons

gdsimulator = QDSimulator(simulate=
’Electrons’)

set the sensor locations
gdsimulator.set_sensor_locations([[2, 1]])

simulate the charge stability diagram
qdsimulator.
simulate_charge_stability_diagram(

qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 1],
use_ray=True)

After initializing a QDSimulator object with the inten-
tion of simulating an electron-based quantum dot device,
the simulate attribute is set to 'Electrons’. This at-
tribute can alternatively be configured to "Holes’. If this
attribute remains unspecified, the simulation defaults to
"Electrons’.

The subsequent step is determination of the sen-
sor locations within the simulation environment.
This is achieved by specifying their coordinates
in Cartesian format [[xo,vo], [*1,¥1],...] through the
set_sensor_locations method.

The simulation process is then executed via the
simulate_charge_stability_diagram method, requir-
ing the specification of several parameters. These include
the qd_device parameter, which requires an instance of
the QDDevice class, and the selection of an optimization
solver (MOSEK’ for licensed use or 'SCIP’ for an open-
source option via CVXPY). When unspecified, the solver
defaults to ’SCIP’. Voltage ranges along the x and y axes
are defined by v_range_x and v_range_y, respectively,
with n_points_per_axis determining the plot’s resolu-
tion. The indices of the gates to be scanned are specified
in
scanning_gate_indexes, with a maximum of two gates
allowed simultaneously. The indexing order is significant,
as the first index always denotes the x-axis and the second
the y-axis. Additionally, the attribute use_ray=True can
be employed to leverage the Ray parallelization library
[29] [30] for enhanced computational efficiency. By using
Ray we can speed up the computational time by paral-
lelizing the computation at each pixel of the plot.

Plotting and adding noise

The plot_charge_stability_diagrams method visu-
alizes the simulation outcomes, plotting either the po-
tential or current landscape, with an option to incor-
porate noise. To visualize the sensed potential, the
plot_potential argument should be set to True. Con-
versely, setting plot_potential to False directs the
method to plot the sensed current. It must be noted that
the current is not explicitly calculated based on physical
tunnel couplings or temperature dependencies. Instead,
we take the gradient of the sensed potential matrix to es-
timate the current. This approach is a simplified method
to provide a qualitative visualization of how the sensed
potential changes. This method does not account for tun-
nel couplings between dots, source and drain locations,
or temperature effects.

For introducing noise into the visualization, three dis-
tinct types of noise can be applied: gaussian_noise,
white_noise, and pink_noise. Activating any of these
noise features is achieved by setting the corresponding
attribute to True. The introduced noise is composed of
random values added to each plot point, sourced from re-
spective probability distributions for Gaussian and white
noise, and utilizing functions from the pyplnoise [31] li-
brary for pink noise.

By incorporating noise into the simulated data, we
alm to create more realistic training datasets for ma-
chine learning models. These models are often used for
automating the tuning and control of quantum dot de-
vices, and training them on noise-free data could lead to
suboptimal performance in real experimental conditions.
Furthermore, machine learning models trained on data
with various types and levels of noise tend to be more
robust and generalize better to unseen data [32]

Following are three examples of plots for the default
double quantum dot device, using the default settings:

10

Python Code

plot the charge stability diagram

potential, no noise
gdsimulator.plot_charge_stability_diagrams (
cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

current, no noise
gdsimulator.plot_charge_stability_diagrams (
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

current, noisy
gqdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True,
white_noise=True,
pink_noise=True)

The resulting plots are shown in Figure 3.

(a)
20
2.0
15 -
3
©
15 =
10 _g
C
108
51 ' °
(]
2
- (o]
3 04 0.5 "
8
(0]
(o))
S-s : : : : | oo
S s 0 5
~—
w20 {2 1.0
© -
o — e 05 3
10 N 2
0.0 =
0 - 05 5
. -1.0

0 20 0 20
Gate 0 voltage (a.u.)

FIG. 3. Simulated charge stability diagrams for a double dot
device. (a) Potential sensed without noise. (b) Current calcu-
lated from the gradient of the potential matrix, without noise.
(c) Current calculated from the gradient of the potential ma-
trix, with noise.

The noise can further adjusted through specific
method attributes: gaussian_noise_params for setting
the mean and standard deviation of the distribution,
white_noise_params for defining the noise range, and
pink_noise_params for adjusting the frequency and am-
plitude range. For instance, to configure Gaussian noise
with a mean of 0.5 and a standard deviation of 0.3, one
would set gaussian_noise = True and
gaussian_noise_params = [0.5, 0.3].

Lastly, the color scheme of the plot can be personalized
by assigning the desired color code to the cmapvalue at-
tribute.

The crossbar 4x4 shared control device

The crossbar_array_shared_control architecture,
as presented in Ref. [6], represents another default con-
figuration accessible to users. In contrast to the
one_dimensional_dots_array, this architecture em-
ploys a two-dimensional grid layout for dot placement,
featuring a shared control system where a single gate
can simultaneously influence multiple dots. Such archi-
tectures are of particular interest within the academic
community for their potential to mitigate the scalability
challenge inherent to quantum dot devices. Typically,
the number of gates increases linearly with the addition
of dots, complicating tuning efforts for expanding device
configurations. The shared control approach is consid-
ered as an option to lessen this scalability concern.

To simulate a shared-control quantum dot crossbar ar-
ray, usersfirst create an instance of the QDDevice class
and then choose the crossbar_array_shared_control
function. Similar to the one_dimensional_dots_array
method, specifying the n_dots_side argument as an in-
teger representing the grid’s side length automatically
configures the device with default parameters. These
parameters, may be further customized through either
a selection of built-in adjustments (e.g., equal_dots =
False, equal_gates = False) or via setter methods for
more granular control.

In the following code box, a 4x4 shared-control quan-
tum dot crossbar array is shown. By utilizing the built-
in modification functions, we adjust the default settings,
subsequently outputting the device’s specifications, in-
cluding the dot-to-dot and dot-to-gate mutual capaci-
tance matrices, and visualizing the device alongside the
designated sensor.

11

Python Code

create a quantum dot device object
qddevice = QDDevice()

crossbar array with shared control

with 4 dots per side

gddevice.crossbar_array_shared_control(
n_dots_side=4, equal_dots=False,
equal_gates=False)

print the device information
gddevice.print_device_info()

plot device with sensors and save plot

gqddevice.plot_device(
sensor_locations=[[0,4]],
sensor_labels=[’S0’],
save_plot_to_filepath=’4x4_device.pdf’)

Device type: crossbar
Number of dots: 16
Number of gates: 7

Physical dot locations:

[(0,3),(0,2),(1,3),(0,1), (1,2),

(2’ 3)7 (07 0)’ (17 1)’ (27 2)7 (3’ 3)’ (17 O)’ (2’ 1)7 (3’ 2)7
(2,0),(3,1),(3,0)]

Dot-dot mutual capacitance matrix:
[0.12 0.08 0.08 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00]
0.08 0.12 0.04 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.08 0.04 0.12 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.08 0.00 0.12 0.04 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
0.04 0.08 0.08 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00 0.00
0.00 0.00 0.08 0.00 0.04 0.11 0.00 0.00 0.08 0.08 0.00 0.00 0.04 0.00 0.00 0.00
0.00 0.00 0.00 0.08 0.00 0.00 0.12 0.04 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
0.00 0.04 0.00 0.08 0.08 0.00 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.04 0.00 0.00

0.00 0.00 0.04 0.00 0.08 0.08 0.00 0.04 0.12 0.04 0.00 0.08 0.08 0.00 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.04 0.12 0.00 0.00 0.08 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.00 0.12 0.04 0.00 0.08 0.00 0.00
0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.04 0.11 0.04 0.08 0.08 0.04
0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.04 0.11 0.00 0.08 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.00 0.11 0.04 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.08 0.08 0.04 0.12 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.08 0.08 0.12 |

Dot-gate mutual capacitance matrix:

[0.15 0.00 0.00 0.00 0.00 0.00 0.00]
0.00 0.18 0.00 0.00 0.00 0.00 0.00
0.00 0.18 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.13 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.00 0.00 0.16 0.00

| 0.00 0.00 0.00 0.00 0.00 0.00 0.13 |

Physical device

® Dot
=4 w0 GO G1 G2 G3 V¥ Sensor
& 3 590 592 5 599 G4 Gate
52 PP+ @8 Pz G5
g1 B3 _B7 P P GO
2ol P _PIO0_PIT_Pis
0 1 2 3

X Location (au)

FIG. 4. A schematic plot of the crossbar 4x4 shared con-
trol architecture with sensor, which is the output of the
plot_device method.

In this architecture, gates are arranged diagonally,
with the indexing of both dots and gates illustrated in
Figure 4.

12

Simulation

Similar to the double dot device scenario, simulating
the device requires an instance of the QDSimulator class.
While it’s not imperative to create a new simulator in-
stance for each device instance, allowing for the reuse of a
single simulator instance, there are situations where ded-
icating a separate simulator instance to each device may
facilitate direct comparisons between simulations. The
choice of approach is left to the user’s discretion based
on their specific requirements.

Following the selection of the physical phenomena to
be simulated (either electrons or holes), the user employs
the set_sensor_locations method to specify the Carte-
sian coordinates of the sensor(s) involved in the simula-
tion. Subsequently,
the simulate_charge_stability_diagram function is
executed. This involves selecting the device, select-
ing a solver, setting the voltage ranges, determining
the simulation’s resolution (noting that higher resolu-
tion increases computational demand), and identifying
the gates to be scanned.

This example differs from the prior shown in Section
due to the presence of additional gates beyond those be-
ing actively scanned. To ensure a successful simulation,
it is necessary to define the voltage settings for these ad-
ditional gates. There are two approaches to manage gate
voltages in scenarios with more than two gates: uniformly
applying voltages using fixed_voltage or customizing
voltages for each gate via gates_voltages. For instance,
in a setup with three gates, where Gates 0 and 2 are be-
ing scanned and Gate 1 is set to 1.5 volts, this would be
represented as gates_voltages = [None, 1.5, None].
Alternatively, the same outcome would be achieved by
setting fixed_voltage = 1.5.

In scenarios with more than three gates, employ-
ing fixed_voltage = 1.5 assigns a uniform voltage
of 1.5 to all gates not under scan. In contrast, the
gates_voltages option permits users to selectively as-
sign specific voltage values to each of the un-scanned
gates as per their preference.

It is required to exclusively use either gates_voltages
or fixed_voltage for specifying gate voltages.

In the following code snippet, we assign a uniform volt-
age of 1 to all gates of secondary interest (specifically
Gates 2, 3, 4, 5, and 6).

Python Code

create a quantum dot simulator object

simulating electrons

gdsimulator = QDSimulator(simulate=
’Electrons’)

set the same sensor locations
gdsimulator.set_sensor_locations([[0, 4]1])

simulate the charge stability diagram
gqdsimulator.
simulate_charge_stability_diagram(

qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 1],
fixed_voltage=1, use_ray=True)

Employing the identical functions used in the double
dot scenario to plot the simulated charge stability dia-
grams, we generate the subsequent plots shown in Figure
5.

Python Code

plot the charge stability diagram

potential, no noise
gdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

current, no noise
qdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False,
white_noise=False,
pink_noise=False)

current, noisy
gdsimulator.plot_charge_stability_diagrams (
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True,
white_noise=True,
pink_noise=True)

13

(a)
20
7
15 A 6 —~
S
©
5=
10 g
43
2
2
5 33
(O]
2
- 2 0
S 04 n
©
- 1
(0]
()]
S g 0
- T T T T 1
S 0
—
g 1.0
© -
o 05 3
s
0.0 =
g
-05 5
@)
-1.0

Gate 0 voltage (a.u.)

FIG. 5. Simulated charge stability diagrams for a 4x4 shared-
control dot device. (a) Potential sensed without noise. (b)
Current calculated from the gradient of the potential matrix,
without noise. (c¢) Current calculated from the gradient of the
potential matrix, with noise.

Getting the charge configuration

In order to simplify the labelling of the polytopes,
users can take advantage of the
get_charge_configuration method of the
QDSimulator class. Users can provide in input a
tuple representing the voltage coordinates in the charge
stability diagram, and the method will automatically
evaluate the closest simulated point and provide the
charge configuration at that point. The need to approx-
imate the voltage point comes from the limitation in the
granularity of the plot.

An example on how to use the function is shown below.

Python Code

Let’s test the empty region
voltage_point = [0, O]

Get the charge configuration of a
point in the charge stability diagram

print (’Charge configuration at chosen
point’, voltage_point, ’:?)

gdsimulator.get_charge_configuration(
voltage_point=voltage_point)

Charge configuration at chosen point [0, 0] :
Voltage point considered: [0.08474576 0.08474576
1.1. 1. 1. 1. |

Charge configuration: [0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0]

It is also possible to save the voltage point-charge con-
figuration couple into a variable, as in the following code:

Python Code

Let’s test another region
voltage_point = [7, 0]

Get the charge configuration of a
point in the charge stability diagram

print (’Charge configuration at chosen
point’, voltage_point, ’:’)
voltage_and_charge_config =
gdsimulator.get_charge_configuration(
voltage_point=voltage_point)

print("voltage_and_charge_config =",
voltage_and_charge_config)

Charge configuration at chosen point [7, 0] :
Voltage point considered: [6.86440678 0.08474576
1. 1. 1. 1. 1. |

Charge configuration: [1. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.0.0.0.0.0]

voltage and charge config =
(array([6.86440678, 0.08474576, 1. , 1. , 1. , 1. ,
1.]), array([1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0.,0.,0])

Custom Device Configuration

Users have two main options for configuring custom
devices. The first option involves only specifying the lo-
cations of the quantum dots. In this case, an individual
control system is assumed (one gate per dot), and stan-
dard mutual capacitance matrices are derived based on
a simple model that considers distance, focusing on first
and second nearest neighbors interactions. The second
option allows for the further manual specification of the
mutual capacitance matrices between dots (dot-to-dot)
and between dots and gates (dot-to-gate), thus enabling
simulation of complex gate-dot configurations.

14

Below we show examples of both approaches to custom
device simulation.

Individual control: dot location specification

First, we consider a scenario where the simulation
of a custom device focuses solely on the placement
of quantum dots. This can be achieved by creat-
ing an instance of the QDDevice class and utilizing
the set_custom_dot_locations method. The order
of coordinates tuples directly maps to the dots’ in-
dices. The use of set_custom_dot_locations triggers
an internal function that calculates the mutual capac-
itance matrices for both dot-to-dot and dot-to-gate in-
teractions. As a result, printing the device informa-
tion shows these matrices as configured attributes within
the class. Similar to the method for the default archi-
tectures shown above, minor customizations can be im-
plemented through the boolean parameters equal_dots,
equal_gates, and crosstalk_strength for adjusting
crosstalk strength. Additionally, the default capacitance
value, set at 0.12, can be altered via the cO parameter to
suit specific requirements.

Python Code

create a quantum dot device object
gddevice = QDDevice()

set the custom dot locations
qddevice.set_custom_dot_locations([[2, 2],
(3, 1.5]1, [4, 21, [1, 11, [5, 11,

(2, o], [3, 0.5]1, [4, 011,
equal_dots=False, equal_gates=False,
crosstalk_strength=0.2, c0=0.12)

print the device information
qddevice.print_device_info()

plot the device with sensor

qddevice.plot_device(
sensor_locations=[[1,2]],
sensor_labels=[’S0’])

Device type: custom

Number of dots: 8

Number of gates: 8

Physical dot locations:
[12,2],[3,1.5],[4,2],[1,1],[5,1], 2, 0], [3,0.5], [4, 0]]
Dot-dot mutual capacitance matrix:

[0.12 0.06 0.00 0.04 0.00 0.00 0.00 0.00]
0.06 0.12 0.06 0.00 0.00 0.00 0.08 0.00
0.00 0.06 0.12 0.00 0.04 0.00 0.00 0.00
0.04 0.00 0.00 0.13 0.00 0.04 0.00 0.00
0.00 0.00 0.04 0.00 0.11 0.00 0.00 0.04
0.00 0.00 0.00 0.04 0.00 0.12 0.06 0.00
0.00 0.08 0.00 0.00 0.00 0.06 0.13 0.06
10.00 0.00 0.00 0.00 0.04 0.00 0.06 0.12

Dot-gate mutual capacitance matrix:

[0.14 0.01 0.00 0.01 0.00 0.00 0.00 0.00]
0.01 0.13 0.01 0.00 0.00 0.00 0.01 0.00
0.00 0.01 0.12 0.00 0.01 0.00 0.00 0.00
0.01 0.00 0.00 0.12 0.00 0.01 0.00 0.00
0.00 0.00 0.01 0.00 0.10 0.00 0.00 0.01
0.00 0.00 0.00 0.01 0.00 0.10 0.02 0.00
0.00 0.01 0.00 0.00 0.00 0.02 0.14 0.01
10.00 0.00 0.00 0.00 0.01 0.00 0.01 0.13

Physical device

® Dot
52 ¥ &0 @2 Vv Sensor
= !
211 @3 &1
8 %
> 0 - &> &’

1 2 3 4 5
X Location (au)

FIG. 6. A schematic plot of the custom design with sensor,
which is the output of the plot_device method.

Figure 6 shows an outline of the custom device, allow-
ing verification of the dot indices against the provided
list of coordinates. Currently, a schematic depiction of
the gates in custom designs is not available, though such
a feature may be incorporated in future releases. In this
case each dot is controlled by an individual gate.

For the device simulation itself we simply repeat the
procedure defined for the default devices: create a simula-
tor instance, specify the sensor(s) locations, and execute
the

15

simulate_charge_stability_diagram method. Note
that, despite the system featuring more than two gates,
neither the fixed_voltage nor the gate_voltages pa-
rameters are employed. This is due to reliance on the
default setting where, in the absence of explicit spec-
ifications for these parameters, the system defaults to
fixed_voltage = 0.

The outcome of the simulation can be plotted like so
(output shown in Figure 7):

Python Code

create a quantum dot simulator object
gdsimulator = QDSimulator(simulate=
’Electrons’)

set the sensor locatiomns
gdsimulator.set_sensor_locations([[1, 2]])

simulate the charge stability diagram
qdsimulator.
simulate_charge_stability_diagram(

qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 3],
use_ray=True)

plot the charge stability diagrams

gdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=True,
gaussian_noise=False, white_noise=False
pink_noise=False)

gdsimulator.plot_charge_stability_diagrams (
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=False, white_noise=False
pink_noise=False)

gdsimulator.plot_charge_stability_diagrams (
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True, white_noise=True,
pink_noise=True)

Shared control: specifying the dot-to-gate mutual capacitance
matrix

In this example, we evolve the previously discussed cus-
tom model by transitioning from an individual control
system to introducing a custom shared control system,
reflected through modifications to the dot-to-gate mutual
capacitance matrix.

We adopt a notation that allows us to specify which

(a)
0 6
15 >
3
a8
10 g
C
38
2
51 kel
2 3
3 g
3 -
s 1
(0]
(o))
S
£-5 0
> -5
—~
@20 (b) 1.0
8 -
05 2
10 2
0.0 ¥
o
T -1.0

Gate 0 voltage (a.u.)

FIG. 7. Simulated charge stability diagrams for a custom
design with individual control. (a) Potential sensed without
noise. (b) Current calculated from the gradient of the poten-
tial matrix, without noise. (c) Current calculated from the
gradient of the potential matrix, with noise.

dots are controlled by which gate. Specifically, let’s as-
sume we want to use four gates overall to control all dots.
We add one of the following four letters: n,w, e, s, repre-
senting north, west, east, and south, respectively. Dots
sharing the same letter are understood to be under the
control of the same gate.

Let us illustrate this concept on the concrete example:

Python Code

create a quantum dot device object
qddevice = QDDevice()

set the custom dot locations
qddevice.set_custom_dot_locations([[2, 2],
(3, 1.51, [4, 2], [1, 11, [5, 11,

[2, ol, [3, 0.51, [4, 011,
equal_dots=False, equal_gates=False,
crosstalk_strength=0.2, c0=0.12)

plot the device with custom labels
and sensor
qddevice.plot_device(
sensor_locations=[[1,2]],
sensor_labels=[’S0"],
custom_dot_labels=[’DOn’, ’Din’, °’D2n’,
’D3w’,’D4e’, ’D5s’,’D6s’, ’D7s’])

16

Physical device

® Dot
=21 0 @on @2r v Sensor
& in
= ¢
211 L
8 @6s
>0 ®5s &7

1 2 3 4 5
X Location (au)

FIG. 8. Another schematic plot of the custom design, in which
the labels of the dots have been manually changed to adhere
to the new labelling system: 'D’ stands for dot, the integer
number represents the dot index, the letter represents the gate
controlling the dot.

In the example above, Dots 0, 1, and 2 are controlled
by the northern gate, Dot 3 is governed by the western
gate, Dot 4 responds to the eastern gate, while Dots 5,
6, and 7 are controlled by southern gate.

The next step involves encoding this gate-dot archi-
tecture into the dot-to-gate mutual capacitance matrix.
The dot-to-dot mutual capacitance matrix remains un-
changed, still calculated automatically based on the prox-
imity of the dots. For the purpose of matrix notation,
we adopt the indexing scheme [n : 0,w : 1,e: 2,5 : 3],
needed for the construction of an 8x4 matrix representing
the dot-to-gate interactions.

This conversion is accomplished through the
code snippet below, wherein we employ the
set_dot_gate_mutual_capacitance_matrix setter
method. This allows us to update the dot-to-gate mu-
tual capacitance matrix from the default, automatically
generated one, indicative of individual control, to our
newly conceptualized matrix that reflects the shared

control system.

Python Code

dot_gate_matrix = np.array([
[0.14, 0.00, 0.00, 0.00],
[0.14, 0.00, 0.00, 0.00],
[0.14, 0.00, 0.00, 0.00],
[0.00, 0.13, 0.00, 0.00],
[0.00, 0.00, 0.12, 0.00],
[0.00, 0.00, 0.00, 0.15],
[0.00, 0.00, 0.00, 0.15],
[0.00, 0.00, 0.00, 0.15]

D

qddevice.
set_dot_gate_mutual_capacitance_matrix(

dot_gate_matrix)
qddevice.print_device_info()

Device type: custom

Number of dots: 8

Number of gates: 4

Physical dot locations:
[12,2],[3,1.5],[4,2],[1,1],[5,1], [2, 0], [3,0.5], [4, 0]]
Dot-dot mutual capacitance matrix:

[0.12 0.06 0.00 0.04 0.00 0.00 0.00 0.00]
0.06 0.12 0.06 0.00 0.00 0.00 0.08 0.00
0.00 0.06 0.12 0.00 0.04 0.00 0.00 0.00
0.04 0.00 0.00 0.12 0.00 0.04 0.00 0.00
0.00 0.00 0.04 0.00 0.12 0.00 0.00 0.04
0.00 0.00 0.00 0.04 0.00 0.12 0.06 0.00
0.00 0.08 0.00 0.00 0.00 0.06 0.12 0.06
10.00 0.00 0.00 0.00 0.04 0.00 0.06 0.12]

Dot-gate mutual capacitance matrix:

[0.14 0.00 0.00 0.00]
0.14 0.00 0.00 0.00
0.14 0.00 0.00 0.00
0.00 0.13 0.00 0.00
0.00 0.00 0.12 0.00
0.00 0.00 0.00 0.15
0.00 0.00 0.00 0.15
10.00 0.00 0.00 0.15]

Finally, we proceed to simulate and plot the charge
stability diagrams in Figure 9.

17

Python Code

create a quantum dot simulator object
gdsimulator = QDSimulator(simulate=
’Electrons’)

set the sensor locations
gdsimulator.set_sensor_locations([[2, 1]])

simulate the charge stability diagram
qdsimulator.
simulate_charge_stability_diagram(

qd_device=qddevice, solver=’MOSEK’,
v_range_x=[-5, 20],
v_range_y=[-5, 20],
n_points_per_axis=60,
scanning_gate_indexes=[0, 3],
use_ray=True)

plot the charge stability diagrams

gdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’ ,plot_potential=True,
gaussian_noise=False, white_noise=False
pink_noise=False)

gdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’,plot_potential=False,
gaussian_noise=False, white_noise=False
pink_noise=False)

gqdsimulator.plot_charge_stability_diagrams(
cmapvalue=’RdBu’, plot_potential=False,
gaussian_noise=True, white_noise=True,
pink_noise=True)

Running QDsim on a cluster

To enhance the utility of QDsim for generating datasets,
we have implemented the QDParallelSimulator class.
This class leverages the parallelization capabilities of the
mpidpy package, allowing for efficient and scalable simu-
lations. Users can define the devices and configurations
they wish to simulate, as illustrated below:

15 4

10 +

ge (a.u.)

|
(S}

Gate 1 volta

10 4

0 20
Gate 0 voltage (a.u.)

FIG. 9. Simulated charge stability diagrams for a custom de-
sign with shared control. (a) Potential sensed without noise.
(b) Current calculated from the gradient of the potential ma-
trix, without noise. (c¢) Current calculated from the gradient

of the potential matrix, with noise.

w ~ U OO0 N

Sensed potential (a.u.)

N

1.0
0.5
0.0
-0.5
-1.0

Current (a.u.)

18

Python Code

simsetups = [
{
’qd_device’: device,
’simulation_type’: ’Electrons’,
’configurations’: [
List of Tuples. Each Tuple
represents the configuration
for a single simulation of the
charge stability diagram for
the device.
Configurations are specified
with a Tuple with the following
elements:
- sensor_location
- scanning_gate_indexes
- gates_voltages
- fixed_voltage
((2, 1), (0, 1), None, 1.5),
1, 2), (2, 3), (1.89, 1.56,
None, None), None),
1,
’n_points_per_axis’: 60,
’v_range_x’: [-5, 20],
’v_range_y’: [-5, 20],
’solver’: ’SCIP’,
’save_voltage_occupation_data’: True,
’save_sensing_data’: True,
’save_current_data’: True,
’save_charge_stability_diagram_plot’
: True,
’charge_stability_diagram_plot_settings
i q
’cmapvalue’: ’RdPu’,
’gaussian_noise’: False,
’white_noise’: False,
’pink_noise’: False,
’plot_potential’: False,

Noise parameters
’gaussian_noise_params’: None,
’white_noise_params’: None,
’pink_noise_params’: None,
’plot_format_extension’: ’pdf’

3]

After defining a quantum dot device, users can utilize
a dictionary format to specify all the necessary attribute
values for running the simulation. In the example pro-
vided, we simulate one device in two different configu-
rations. The keyword ’configurations’ contains a list of
two elements, each identifying a unique simulation con-
figuration, including sensor locations, the gates to be

scanned, and the plunger gate voltage values. The list
simsetups defined above can contain any number of dic-
tionaries, with each dictionary corresponding to a specific
device being simulated. The code can thus be executed
on any cluster, facilitating and accelerating the process
of dataset creation.

PERFORMANCE EVALUATION AND
CONSTRAINTS

QDsim package is designed to equip the scientific com-
munity with a user-friendly tool for simulating charge
stability diagrams of arbitrary architectures. Our pri-
mary goal is to create an accessible codebase, allowing re-
searchers to efficiently simulate charge stability diagrams
for extensive quantum dot arrays with a minimal setup
and little preliminary knowledge. The ultimate objective
of QDsim package is to introduce a rapid and efficient tool
for generating comprehensive datasets for subsequent use
in machine learning model training.

Among comparable available tools, the QTT package
[33] stands out, although it primarily addresses highly
specialized experimental scenarios. QTT is geared more
towards analysis and measurements within precise ex-
perimental frameworks, rendering it somewhat challeng-
ing for beginners and limiting its applicability to a nar-
row range of devices (e.g., double dots, in-line 6 dot ar-
ray, triple dot, square dot) all under individual control
schemes. This specificity in focus is the primary reason
a detailed comparison with QTT has not been pursued,
as the two packages cater to distinct needs and applica-
tions. Furthermore, very recently a new package named
SimCATS [34] has been published. It aims to achieve a
maximally realistic description of CSD especially with re-
gards to sensing and noise implementations. While hav-
ing a different focus, it caters to the need of realistic noise
and could be a promising addition to our approximated
solution. Additionally, another similar package, QArray
[35], has been made available to the community. Like
QDsim, it has a focus on simulation speed, while also in-
cluding more effects such as latching and thermal broad-
ening. It achieves much faster simulations results, in the
order of milliseconds, for small-to-medium devices of up
to 16 dots, but it falls short on simulating the large-scale
devices with more than 50 dots, which has been the most
successful goal of QDsim.

Furthermore, our work is complementary to a simul-
taneously published package called QDarts [36], which
leverages a polytope-finding algorithm to efficiently sim-
ulate and locate charge transitions in the presence of tun-
nel couplings, non-constant charging energy and realistic
noise. However due higher computational complexity, it
focuses on smaller dot arrays (approximately 10 dots).

Focusing on the strengths of our package, QDsim dis-
tinguishes itself with its speed and capability to simulate

19

extensive arrays. To quantify these advantages, all sim-
ulations and time measurements discussed herein were
conducted on an Apple M2 chip equipped with 16 GB of
memory.

Speed optimization in the package is influenced by two
main factors: the device architecture size (i.e. number
of dots and gates), reflected by the matrix dimensions,
which offers limited parallelization opportunities, and the
plot granularity, which can benefit from advanced paral-
lelization techniques.

Here we compare across several configurations, includ-
ing double dots, in-line 6 dots, and shared control arrays
of sizes 4x4, 6x6, and 8x8.

The comparison results are illustrated in Figure 10.

400 -
o 2 Dots (IC)
2300 - 6 Dots (IC)
E 4x4 Dots (SC)
@200 —&— 6x6 Dots (SC)
o
= —&— 8x8 Dots (SC)
E
£100
o
O

0 -

20 40 60 80 100
Axis granularity

FIG. 10. Comparing the computational time (in seconds) to
simulate a specific architecture, with respect to the granu-
larity of the plot’s axis. The number of points evaluated for
the plot is therefore the x-axis numbers squared. From the
plot we can see how the computational time increases with
increasing number of plot points, but also with the size of the
device, i.e. more dots require more computational time for a
given axis granularity. A 64-dot device with shared control
system can be simulated with good granularity on a laptop in
less than 4 minutes.

Granularity requirements will vary based on the de-
sired plot quality and voltage space size; naturally,
broader voltage ranges would likely necessitate higher
granularity levels. For instance, in our example sec-
tion, a voltage range of 25 and a granularity level of 60
yielded satisfactory plots in under a minute, highlighting
the package’s emphasis on speed and ease of use.

In addition, we compared QDsim with two other promi-
nent simulation packages, QArray and QDarts. The com-
parative results are presented in Figure 11. This analysis
evaluates the quality and features of our simulator rela-
tive to the other packages for two distinct device architec-
tures: a double quantum dot (left column) and a six-dot
array (right column). The results demonstrate that
all three simulators qualitatively capture the key high-
level features of charge stability diagrams, including the
interdot regions and clear charge transition lines. This

0.0

)
N
o

1.00

0.75
0.50
0.25

Gate 1 voltage (a.u.

-10 0 10 -10 0 10
Gate 0 voltage (a.u.)

FIG. 11. Comparison of simulated results for three packages:
(a) and (d) are from QDsim, (b) and (e) are from QArray, (c)
and (f) are from QDarts. The column on the left, including
figures (a), (b), and (c), shows the charge stability diagram
of a double quantum dot device. Plot (c) is a close-up of an
interdot transition. The column on the right, including figures
(d), (e), and (f) shows the close up of the charge stability
diagram of a quantum dot array of 6 dots. For the plots
of QDsim and QArray, the same mutual capacitance matrices
were used, while some random capacitance matrices where
used in QDarts.

consistency across the simulators is anticipated, as they
are all based on the constant-interaction model. How-
ever, QArray distinguishes itself by offering additional ad-
vanced features, such as the physical implementation of
charge sensors, modeling of semi-classical phenomena like
latching, thermal broadening, and various noise models.
These enhancements contribute to a more realistic rep-
resentation of the quantum dot behavior, as illustrated
in Figure 11 (b) and (e). The inclusion of these features
results in simulations that not only depict the fundamen-
tal charge configurations but also mimic the experimen-
tal conditions and phenomena, thereby providing a more
comprehensive and realistic output.

When considering limitations, we identify two main
categories: physical and functional constraints. On the
physical side, it is crucial to acknowledge that the sim-
ulations are based on electrostatics and do not account
for quantum mechanical effects. This limitation impacts
the simulations’ realism, potentially affecting the preci-
sion in modeling actual devices. Beyond comparison to
other effective models shown in Figure 11 there is a sig-
nificant body of literature exploring full quantum simu-

20

lation of quantum dot arrays based on Fermi-Hubbard
model [37-42]. Visual comparison of QDsim charge sta-
bility diagrams with these works confirm that constant
interaction model is generally able to identify position
and direction of charge transition without an ability to
resolve more subtle features. In this context we want to
emphasize that the primary goal of QDsim is not to per-
fectly replicate physical systems but rather to generate
datasets for machine learning and other data driven ap-
plications, where models can be initially trained or test
on sufficiently accurate simulated data and later fine-
tuned with real experimental data. A recent example
of this approach is illustrated in Ref. [43].

From a functional perspective, potential enhancements
could include improved visualizations of gate configura-
tions, optimization of parallel processing routines for in-
creased speed, and the development of a graphical user
interface (GUI). This GUI could allow users to intuitively
position dots and gates, with the software automatically
suggesting starting points for mutual capacitance values
between dots and gates.

CONCLUSION

The development of QDsim package was driven by the
ambition to offer the scientific community a highly ac-
cessible and user-friendly tool, specifically designed to
streamline the generation of charge stability diagrams for
extensive quantum dot arrays. With a focus on efficiency
and speed, this package aims to significantly reduce the
time and complexity traditionally associated with such
simulations. By simplifying the process for both students
and professionals, whether in theoretical or experimental
domains, the package opens up new avenues for explo-
ration and discovery in the field of quantum computing
and nanotechnology. Furthermore, it lays the ground-
work for the creation of comprehensive datasets, essen-
tial for the advancement of machine learning applications
within this sphere.

As we look forward to contributions from the commu-
nity, enriching the package with more sophisticated mod-
els, our ultimate hope is that it becomes a cornerstone
for innovation, fostering advancements that leverage both
computational simulations and machine learning to un-
ravel the complexities of quantum systems.

ACKNOWLEDGEMENTS

The authors acknowledge fruitful discussions with
Francesco Borsoi, Brennan Undseth, Maia Rigot, Sam
Katiraee-Far and Menno Veldhorst and the help and col-
laboration of Barnaby van Straaten and Jan A. Krzywda
in sharing their data with us. The project was supported

by the Digital Competence Centre, Delft University of
Technology.

Funding information This research was supported by
the European Union’s Horizon Europe programme un-
der the Grant Agreement 101069515 — IGNITE. This
publication is part of the project Engineered Topological
Quantum Networks (with Project No. VI.Veni.212.278)
of the research program NWO Talent Programme Veni
Science domain 2021 which is financed by the Dutch Re-
search Council (NWO).

[1] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R.
Petta, Semiconductor spin qubits, Reviews of Modern
Physics 95, 025003 (2023).

[2] D. Loss and D. P. DiVincenzo, Quantum computation
with quantum dots, Physical Review A 57, 120 (1998).

[3] A. Chatterjee, P. Stevenson, S. De Franceschi,
A. Morello, N. P. de Leon, and F. Kuemmeth, Semicon-
ductor qubits in practice, Nature Reviews Physics 3, 157
(2021).

[4] L. Vandersypen, H. Bluhm, J. Clarke, A. Dzurak, R. Ishi-
hara, A. Morello, D. Reilly, L. Schreiber, and M. Veld-
horst, Interfacing spin qubits in quantum dots and
donors—hot, dense, and coherent, npj Quantum Infor-
mation 3, 34 (2017).

[5] S. G. Philips, M. T. Madzik, S. V. Amitonov, S. L.
de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. Lawrie,
D. Brousse, L. Tryputen, et al., Universal control of a
six-qubit quantum processor in silicon, Nature 609, 919
(2022).

[6] F. Borsoi, N. W. Hendrickx, V. John, M. Meyer, S. Motz,
F. Van Riggelen, A. Sammak, S. L. De Snoo, G. Scap-
pucci, and M. Veldhorst, Shared control of a 16 semicon-
ductor quantum dot crossbar array, Nature Nanotechnol-
ogy 19, 21 (2024).

[7] R. Durrer, B. Kratochwil, J. V. Koski, A. J. Landig,
C. Reichl, W. Wegscheider, T. Thn, and E. Greplova,
Automated tuning of double quantum dots into specific
charge states using neural networks, Physical Review Ap-
plied 13, 054019 (2020).

[8] S. S. Kalantre, J. P. Zwolak, S. Ragole, X. Wu, N. M.
Zimmerman, M. Stewart Jr, and J. M. Taylor, Machine
learning techniques for state recognition and auto-tuning
in quantum dots, npj Quantum Information 5, 6 (2019).

[9] R. Koch, D. Van Driel, A. Bordin, J. L. Lado, and E. Gre-
plova, Adversarial hamiltonian learning of quantum dots
in a minimal kitaev chain, Physical Review Applied 20,
044081 (2023).

[10] D. T. Lennon, H. Moon, L. C. Camenzind, L. Yu, D. M.
Zumbiihl, G. A. D. Briggs, M. A. Osborne, E. A. Laird,
and N. Ares, Efficiently measuring a quantum device us-
ing machine learning, npj Quantum Information 5, 79
(2019).

[11] J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson,
E. MacQuarrie, D. Savage, M. Lagally, S. Coppersmith,
M. A. Eriksson, and J. M. Taylor, Autotuning of double-
dot devices in situ with machine learning, Physical review
applied 13, 034075 (2020).

21

[12] J. Schuff, M. J. Carballido, M. Kotzagiannidis, J. C.
Calvo, M. Caselli, J. Rawling, D. L. Craig, B. van
Straaten, B. Severin, F. Fedele, et al., Fully autonomous
tuning of a spin qubit, arXiv preprint arXiv:2402.03931
(2024).

[13] J. Bucko, F. Schifer, F. Herman, R. Garreis, C. Tong,
A. Kurzmann, T. Thn, and E. Greplova, Automated re-
construction of bound states in bilayer graphene quantum
dots, Physical Review Applied 19, 024015 (2023).

[14] S. Cazischek, V. Yon, M.-A. Genest, M.-A. Roux, S. Ro-
chette, J. C. Lemyre, M. Moras, M. Pioro-Ladriére,
D. Drouin, Y. Beilliard, et al., Miniaturizing neural
networks for charge state autotuning in quantum dots,
Machine Learning: Science and Technology 3, 015001
(2021).

[15] J. Darulov4, S. Pauka, N. Wiebe, K. W. Chan, G. Gar-
dener, M. J. Manfra, M. C. Cassidy, and M. Troyer,
Autonomous tuning and charge-state detection of gate-
defined quantum dots, Physical Review Applied 13,
054005 (2020).

[16] V. Nguyen, S. Orbell, D. T. Lennon, H. Moon, F. Vi-
gneau, L. C. Camenzind, L. Yu, D. M. Zumbiihl, G. A. D.
Briggs, M. A. Osborne, et al., Deep reinforcement learn-
ing for efficient measurement of quantum devices, npj
Quantum Information 7, 100 (2021).

[17] J. P. Zwolak, J. M. Taylor, R. Andrews, J. Benson,
G. Bryant, D. Buterakos, A. Chatterjee, S. D. Sarma,
M. A. Eriksson, E. Greplova, et al., Data needs and chal-
lenges of quantum dot devices automation: Workshop
report, arXiv preprint arXiv:2312.14322 (2023).

[18] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen,
S. Tarucha, R. M. Westervelt, and N. S. Wingreen, Elec-
tron transport in quantum dots, Mesoscopic electron
transport , 105 (1997).

[19] S. Yang, X. Wang, and S. D. Sarma, Generic hubbard
model description of semiconductor quantum-dot spin
qubits, Physical Review B 83, 161301 (2011).

[20] T. Ihn, Semiconductor Nanostructures: Quantum states
and electronic transport (OUP Oxford, 2009).

[21] J. C. Maxwell, A treatise on electricity and magnetism,
Vol. 1 (Oxford: Clarendon Press, 1873).

[22] G. H. Golub and C. F. Van Loan, Matriz computations
(JHU press, 2013).

[23] M. Gil’, On invertibility and positive invertibility of
matrices, Linear Algebra and its Applications 327, 95
(2001).

[24] S. P. Boyd and L. Vandenberghe, Convex optimization
(Cambridge University Press, Cambridge, UK ; New
York, 2004).

[25] C. Renshaw-Whitman, Electrostatic Modelling of Quan-
tum Dot Arrays, Master’s thesis, Delft University of Tech-
nology, Delft, Netherlands (2022).

[26] V. Gualtieri, C. Renshaw-Whitman, V. F. Hernandes,
and E. Greplova, Qdsim, https://gitlab.com/QMAI/
papers/qdsim/ (2024).

[27] E. Chatzikyriakou, J. Wang, L. Mazzella, A. Lacerda-
Santos, M. C. d. S. Figueira, A. Trellakis, S. Birner,
T. Grange, C. Bauerle, and X. Waintal, Unveiling the
charge distribution of a gaas-based nanoelectronic device:
A large experimental dataset approach, Phys. Rev. Res.
4, 043163 (2022).

[28] S. R. Kuppuswamy, H. Kerstens, C.-X. Liu, L. Wang,
and A. Akhmerov, Impact of disorder on the distribution
of gate coupling strengths in a spin qubit device (2022),

https://gitlab.com/QMAI/papers/qdsim/
https://gitlab.com/QMAI/papers/qdsim/
https://gitlab.com/QMAI/papers/qdsim/
https://doi.org/10.1103/PhysRevResearch.4.043163
https://doi.org/10.1103/PhysRevResearch.4.043163
https://arxiv.org/abs/2208.02190
https://arxiv.org/abs/2208.02190

arXiv:2208.02190 [cond-mat.mes-hall|.

[29] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. 1. Jordan,
et al., Ray: A distributed framework for emerging {Al}
applications, in 13th USENIX symposium on operating
systems design and implementation (OSDI 18) (2018) pp.
561-577.

[30] Ray Project Contributors, Ray: a unified framework
for scaling ai and python applications, https://github.
com/ray-project/ray (2023), version 2.7.1.

[31] J. Waldmann, pyplnoise: Arbitrarily long streams of
power law noise using NumPy and SciPy, https:
//github.com/janwaldmann/pyplnoise/ (2022), version
1.4.

[32] J. Ziegler, F. Luthi, M. Ramsey, F. Borjans, G. Zheng,
and J. P. Zwolak, Tuning arrays with rays: Physics-
informed tuning of quantum dot charge states, Phys. Rev.
Appl. 20, 034067 (2023).

[33] QuTech-Delft Contributors, Qtt, https://github.com/
QuTech-Delft/qtt/ (2023).

[34] F. Hader, S. Fleitmann, J. Vogelbruch, L. Geck, and S. V.
Waasen, Simulation of charge stability diagrams for au-
tomated tuning solutions (simcats), TechRxiv (2024).

[35] B. van Straaten, J. Hickie, L. Schorling, J. Schuff,
F. Fedele, and N. Ares, Qarray: a gpu-accelerated con-
stant capacitance model simulator for large quantum dot
arrays (2024), arXiv:2404.04994 [cond-mat.mes-hall].

22

[36] J. Krzywda, W. Liu, E. van Nieuwenburg, and O. Krause,
Qdarts (2024).

[37] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. Van Diepen,
C. Reichl, W. Wegscheider, S. Das Sarma, and L. M.
Vandersypen, Quantum simulation of a fermi—hubbard
model using a semiconductor quantum dot array, Nature
548, 70 (2017).

[38] S. Yang, X. Wang, and S. Das Sarma, Generic hubbard
model description of semiconductor quantum-dot spin
qubits, Phys. Rev. B 83, 161301 (2011).

[39] S. Das Sarma, X. Wang, and S. Yang, Hubbard model de-
scription of silicon spin qubits: Charge stability diagram
and tunnel coupling in si double quantum dots, Phys.
Rev. B 83, 235314 (2011).

[40] X. Wang, S. Yang, and S. Das Sarma, Quantum theory
of the charge-stability diagram of semiconductor double-
quantum-dot systems, Phys. Rev. B 84, 115301 (2011).

[41] A. Knothe and G. Burkard, Extended hubbard model de-
scribing small multidot arrays in bilayer graphene, Phys.
Rev. B 109, 245401 (2024).

[42] Z. D. Merino, B. Khromets, and J. Baugh, Simulated
charge stability in a mosfet linear quantum dot array,
arXiv preprint arXiv:2402.15499 (2024).

[43] D. van Driel, R. Koch, V. P. Sietses, S. L. ten Haaf, C.-
X. Liu, F. Zatelli, B. Roovers, A. Bordin, N. van Loo,
G. Wang, et al., Cross-platform autonomous control of
minimal kitaev chains, arXiv preprint arXiv:2405.04596
(2024).

https://arxiv.org/abs/2208.02190
https://github.com/ray-project/ray
https://github.com/ray-project/ray
https://github.com/janwaldmann/pyplnoise/
https://github.com/janwaldmann/pyplnoise/
https://doi.org/10.1103/PhysRevApplied.20.034067
https://doi.org/10.1103/PhysRevApplied.20.034067
https://github.com/QuTech-Delft/qtt/
https://github.com/QuTech-Delft/qtt/
https://arxiv.org/abs/2404.04994
https://arxiv.org/abs/2404.04994
https://arxiv.org/abs/2404.04994
https://arxiv.org/abs/2404.04994
https://doi.org/10.5281/zenodo.1234567
https://doi.org/10.1103/PhysRevB.83.161301
https://doi.org/10.1103/PhysRevB.83.235314
https://doi.org/10.1103/PhysRevB.83.235314
https://doi.org/10.1103/PhysRevB.84.115301
https://doi.org/10.1103/PhysRevB.109.245401
https://doi.org/10.1103/PhysRevB.109.245401

	QDsim: A user-friendly toolbox for simulating large-scale quantum dot devices
	Abstract
	Introduction
	Formulation of the electrostatic model: charge stability diagrams
	Derivation of the Constant-Capacitance Model Energy Equation
	Ground States and Coulomb Polytopes in V-Space

	QDsim package
	The quantum dot device class: QDDevice
	Indexing

	The simulator class: QDSimulator
	The powerhouse of the package: the CapacitanceQuantumDotArray class

	Examples
	The double dot device
	Customization via default attributes
	Customization via setter methods
	Simulation
	Plotting and adding noise

	The crossbar 4x4 shared control device
	Simulation
	Getting the charge configuration

	Custom Device Configuration
	Individual control: dot location specification
	Shared control: specifying the dot-to-gate mutual capacitance matrix

	Running QDsim on a cluster

	Performance Evaluation and Constraints
	Conclusion
	Acknowledgements
	References

