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4-, two 6- and three 8-forms which is manifestly invariant under global SL(2, R)
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Introduction

p-branes naturally (electrically) couple to (p + 1)-form potentials [1–12].1 However, the
theories that describe the bulk dynamics of those (p + 1)-form potentials (supergravity
theories, typically) are usually written in terms of the lowest-rank potentials which are
dual to them. Thus, N = 2A, d = 10 supergravity, the effective fields theory of the
type IIA superstring, is usually written in terms of the metric, dilaton (a scalar), NSNS
2-form, and RR 1- and 3-forms plus a mass parameter (Romans’) while the solitonic 5-
brane couples to the NSNS 6-form dual to the 2-form, and the D4-, D6- and D8-branes
couple to RR 5-, 7- and 9-forms dual, respectively, to the RR 3- and 1-forms and to the
mass parameter.

Defining the higher-rank forms needed to describe the couplings of higher-dimensional
branes is always possible on-shell, providing equations of motion for all of them. It
is always desirable to have an action from which those equations of motion can be
derived.2 However, the field strengths of the higher-rank forms typically contain the
lower-rank ones and, very often, it is not possible to find an action for the higher-rank

1More references can be found in the reviews [13, 14].
2There is another reason why one may need the presence of the higher-rank forms in the action:

in flux compactifications, their fluxes make relevant contributions [15]. In particular, in Refs. [16, 17] it
is manifestly shown that, under the presence of Dp/Op systems, the modifications of the electric field
strengths (and their Bianchi identities) induced by open string fluxes are read off from the couplings of
the dual potentials to such objects.
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forms because it must contain, at the same time, the lower-rank ones, which are related
to the former in a highly non-local way through the duality relations.

The fact that an action for the higher-rank forms must also contain the lower-rank
ones can be turned into an advantage if one manages to give consistence to the simul-
taneous presence of dual fields in the action.3 A solution to this problem is to use ex-
tensions of the Pasti-Sorokin-Tonin formalism [22] which is based on the introduction
of an auxiliary scalar field in the action. This method has been used in Ref. [23, 24]4 to
construct covariant actions of N = 2B, d = 10 supergravity containing the 4-form but
also 8-form duals of the scalar fields and also in Refs. [27, 28] to construct an action of
D = 1, d = 11 supergravity containing the 3-form and its dual 6-form simultaneously.
By dimensional reduction one can obtain an action of N = 2B, d = 10 supergravity
containing the fundamental and dual fields [29]. In a slightly different context, it has
been used in Ref. [30] to construct a covariant worldvolume action of the M5-brane.

An alternative solution, proposed in Ref. [31], consists in including all the fields
and treating them all on an equal footing as independent (making it democratic). This
procedure doubles the degrees of freedom and one has to impose by hand the twisted
duality [32,33] relations between (p+ 1)- and (d− p− 3)-forms only after the equations
of motion have been derived from the action. Since the duality relations are not derived
from the action, one is actually dealing with a pseudoaction. The pseudoaction intro-
duced in Ref. [34] for N = 2B, d = 10 supergravity, which includes the 4-form with
selfdual 5-form field strength provides a good example: it contains an unconstrained
(not selfdual) 4-form which describes twice the degrees of freedom of the selfdual one
and the selfduality constraint must be imposed after the equations of motion have been
derived.

Each of these solutions5 presents advantages and disadvantages: the PST method
introduces unwanted auxiliary variables but gives a proper action from which all the
equations of motion can be derived while the second method does not introduce un-
wanted auxiliary fields but only gives a pseudoaction. If one is interested in evaluating
the action on-shell (in order to study black-hole thermodynamics, say), it is not clear
whether the PST action gives the same value as the original one. However, the demo-
cratic pseudoaction does, in Euclidean signature, as we are going to discuss.

In this paper we are going to use the second method of dealing simultaneously
with fundamental and dual fields. Thus, our goal will be to construct democratic
pseudoactions containing all the fields and their duals whose equations of motion give
back the original ones upon use of duality constraints. Our main concern will be the
dualization of the scalar fields, which usually couple non-linearly among themselves

3See Ref. [18] for the case of nonlinear electrodynamics and Ref. [19] for the extension to (p+ 1)-form
potentials and their duals in arbitrary dimensions. The results of Ref. [19] could be used to formulate
proper actions for the systems described in the current work via pseudoactions. For the free fields, this
approach was introduced in Ref. [20] and discussed in detail for arbitrary (p + 1)-form potentials and
their duals in arbitrary dimensions in Ref. [21].

4See Ref. [25] and, specially, the more recent Ref. [26] for a review
5A more recent and different proposal can be found in Ref. [35] for N = 2A, B, d = 10 supergravities.
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and to other fields, into (d− 2)-form potentials.
The standard dualization procedure is only possible when the equation of motion

can be written, on-shell, as a total derivative. This happens to the equation of motion of
a given scalar field when there is a global symmetry of the action acting on it, typically
as a constant shift. The equation of motion, then, is equivalent to the conservation
of the associated Noether current. Even if this is not immediately apparent, in that
case the action can be rewritten in terms of derivatives of the scalar and one can use
the Poincaré dualization method in the action. In absence of this kind of symmetry,
it is not known how to dualize the scalar field, but in supergravity theories, there are
typically many of these symmetries associated to dualities.

When the theory contains several scalar fields which parametrize a non-linear σ-
model, things become more complicated. The shift symmetries are isometries of the
σ-model metric. One can always use coordinates (scalar fields) adapted to a given
isometry. In those coordinates the scalar field shifted by the isometry does not occur
explicitly in the metric and the action can always be written in terms of its derivatives
only. The equation of motion will be a total derivative. One can only use coordinates
adapted to several isometries for those isometries that generate an Abelian subgroup.
However, even if the isometries do not commute, there are many conserved currents
as isometries and this guarantees that there are as many combinations of the equations
of motion as isometries that can be written as total derivatives. These combinations
can be used to define on-shell duals of scalars. Carrying it out this program in the full
theory can be, in practice, quite complicated. See, for example, Refs. [36–38].

Often (in all d = 4 maximal and half-maximal supergravities, for instance), the
target space is a G/H Riemannian symmetric manifold, with more isometries and
conserved Noether currents than scalar fields. One can define a dual (d − 2)-form
potential associated to each of the Noether currents (see, for instance Ref. [24]), but,
then, the number of dual fields, dim G, would be larger than the number of original
scalar fields, dim G−dim H, which is not acceptable. However, since the set of all
dual (d − 2)-forms transform in the adjoint representation of G, removing from the
action any number of them would break the global G-invariance of the theory. This is
one of the problems of the democratic pseudoaction of N = 2B, d = 10 supergravity
proposed in Ref. [31]: only the RR scalar C(0) was dualized into the RR 8-form C(8)

and, therefore, the pseudoaction is not SL(2, R)-invariant as the original theory.
A possible way out is to use a singular, but G-covariant, kinetic matrix in the pseu-

doaction, as suggested in Ref. [39]. In this paper we will identify the additional terms
which are necessary to construct the complete pseudoaction and we will use this result
to construct duality-invariant pseudoactions for several interesting theory, including all
the d = 4 maximal and half-maximal supergravities and N = 2B, d = 10 supergravity.

We are going to consider cases of increasing complexity: in Section 1 we start with
the dualization of a single, massless, real scalar φ coupled to gravity in d spacetime
dimensions, to establish the notation and the basic facts. In Section 2 we consider
a generic non-linear σ-models with isometries and we will study the dualization of
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scalars associated to an Abelian subgroup. This will show us which are the needed
additional terms mentioned above, which are the first interesting results of this paper.
In Section 3, we study the dualization of a Riemannian symmetric σ-model and con-
struct, using the additional terms mentioned above and the singular but G-covariant
kinetic matrix suggested in Ref. [39], the democratic pseudoaction that contains the
scalars that parametrize the G/H coset space and the dual (d − 2)-form potentials
while preserving the global G invariance. In Section 4 we apply this result to the case
in which the scalars are coupled to (p + 1)-form potentials, including the particular
case d = 2(p + 2), in which some of the transformations in G are electric-magnetic du-
alities which leave invariant the equations of motion but not the action. This particular
case covers the bosonic sector of all the maximal and half-maximal 4-dimensional su-
pergravities. Finally, in Section 5 we consider the case of N = 2B, d = 10 supergravity,
the effective field theory of the type IIB superstring and propose a pseudoaction that
contains the dilaton and RR 0-form and a triplet of 8-forms dual to them, the SL(2, R)
doublet of 2-forms (NSNS and RR) and the dual doublet of 6-forms and a 4-form
which is a SL(2, R) singlet. The equations of all these fields derived from the pseu-
doaction reduce to those of the fundamental fields when the (self-) duality constraints
are imposed on them.

Our conclusions and future directions of research are contained in Section 6.

1 Dualization of a single real scalar

In order to establish the notation and describe what we want to do, it is convenient to
start with the simplest case, namely that of a single, massless, real scalar, φ, coupled to
gravity, described by the Vielbein ea = ea

µdxµ, in d spacetime dimensions. The action
that dictates the dynamics of this system is6

S[ea, φ] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
2 dφ ∧ ?dφ

}
. (1.1)

In this action ? denotes the Hodge dual and, therefore,

? (ea ∧ eb) =
1

(d− 2)!
εc1···cd−2

abec1 ∧ · · · ∧ ecd−2 . (1.2)

ωab = ωµ
abdxµ is the torsionless, metric-compatible, Levi-Civita spin connection7 and

Rab = 1
2 Rµν

abdxµ ∧ dxν is its curvature 2-form

Rab ≡ dωab −ωa
c ∧ωcb . (1.3)

The equations of motion which follow from this action are

6In this paper we are using differential-form language and the conventions of Ref. [14].
7It is antisymmetric ωab = −ωba and satisfies Dea = dea −ωa

b ∧ eb = 0.
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Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

2 (ıadφ ∧ ?dφ + dφ ∧ ıa ? dφ) , (1.4a)

E = −d ? dφ . (1.4b)

Locally, the equation of motion of the scalar φ can be solved by introducing a
(d− 2)-form C such that

G ≡ dC = ?dφ . (1.5)

The equation of motion of the scalar φ becomes the Bianchi identity of G (dG = 0) and
the Bianchi identity of the scalar field strength dφ (d2φ = 0) becomes the equation of
motion of the dual (d− 2)-form C (d ? G = 0).

Observe that the field strength G is invariant under gauge transformations

δΣC = dΣ , (1.6)

where Σ is an arbitrary (d− 3)-form.
It is not difficult in this case to replace in the Einstein equations dφ by ?G8 obtaining

the equations of motion of a theory that contains the metric and the (d − 2)-form C
only:

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
2 (ıaG ∧ ?G + G ∧ ıa ? G) , (1.9a)

E = −d ? G . (1.9b)

We can easily guess the action these equations of motion can be derived from.9

However, there is a more systematic and direct procedure (often called Poincaré duality)
that can be used as long as the action depends only on the field strength dφ and not

8We have to take into account that, with our conventions, for a (k + 1)-form ω(k+1)

?2 ω(k+1) = (−1)k(d−1)ω(k+1) , (1.7)

and also that the canonical normalization of the action of a k-form with (k + 1)-form field strength
ω(k+1) is

(−1)dk

2 ω(k+1) ∧ ?ω(k+1) . (1.8)

9As usual in electric-magnetic duality, it is not possible to replace φ by its dual field C directly in
the action since the relation between these variables is non-local, even though the relation between their
field strengths is. Substituting dφ by ?dC directly in the action leads to the wrong sign for the kinetic
term of the dual field C.
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on the scalar field φ.10 In these conditions, we can obtain an equivalent action by
replacing the scalar field φ by its 1-form field strength, which we provisionally call A,
as independent variable as long as we add a Lagrange-multiplier term enforcing the
Bianchi identity dA = 0. This constraint implies the local existence of φ and allows us
to recover the original scalar equation of motion. Calling C this Lagrange multiplier
and defining G ≡ dC, the equivalent action takes the form

S[ea, C, A] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
(−1)d

2 A ∧ ?A + G ∧ A
}

. (1.10)

The equation of motion of A is algebraic:

A = ?G , (1.11)

and its solution can be used in the above action to get

S[ea, C] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
(−1)d

2 G ∧ ?G
}

, (1.12)

which is the action from which the equations of motion (1.9a) and (1.9b) can be derived.
This action is invariant under the gauge transformations Eq. (1.6). Notice that, by

following this procedure, we have obtained the right sign for the kinetic term of C.
This dual action is not our real goal, though. We are interested in actions in which

the original (“electric”) and the dual (“magnetic”) variables appear simultaneously.
Since this implies a redundancy of degrees of freedom, it is necessary to use the rela-
tion between these variables (Eq. (1.5), in this case) after the equations of motion are
derived from the action. Actions which need to be supplemented by constraints in
order to derive the equations of motion were called pseudoactions in Ref. [34]. Thus,
we are interested in pseudoactions which contain both electric and magnetic variables
and which give equations of motion equivalent to those of the original theory after the
duality relations have been imposed. In the context of N = 2, A, B, d = 10 supergravity
(the effective field theories of the type IIA and IIB superstrings), this kind of formula-
tions of the theories were called democratic in Ref. [31]. Thus, we are interested in the
democratic formulation of the theory given by the original action Eq. (1.1), which will
be described by a pseudoaction.

In this simple case, it is not difficult to see that the pseudoaction we are after,
containing φ and C simultaneously, can be obtained by combining the kinetic terms of
φ and C multiplied by 1/2,11

S[ea, φ, C] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
4 dφ ∧ ?dφ + (−1)d

4 G ∧ ?G
}

, (1.13)

10Sometimes it is possible to rewrite an action with explicit dependencies on φ in such a way that it
only depends on dφ. As a general rule, this happens when the action is invariant under constant shifts
of φ: φ→ φ + c. We will discuss this point in more detail later.

11In this case, other, less symmetric combinations of coefficients of the kinetic terms of φ and C give
the same result.
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and that it has to be supplemented by the constraint Eq. (1.5). Indeed, if we use the
duality constraint in the equations of motion

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

4 (ıadφ ∧ ?dφ + dφ ∧ ıa ? dφ)

+ 1
4 (ıaG ∧ ?G + G ∧ ıa ? G) , (1.14a)

Eφ = −1
2 d ? dφ , (1.14b)

EC = −1
2 d ? G , (1.14c)

to eliminate C, the energy-momentum (d− 1)-form of C becomes equal to that of φ and
one recovers the Einstein equation (1.4a) with the right coefficient and the equation of
motion of C equation is automatically solved and one is left with the scalar equation of
motion with an overall factor of 1/2. If, instead, one uses the constraint to eliminate φ
one obtains the dual result, i.e. the equations of motion (1.9a) and (1.9b), the later with
an overall factor of 1/2.

Before ending this section, observe that using the duality relation directly in the
democratic pseudoaction does not lead to the original action because the two kinetic
terms simply cancel each other.12 This implies that, if we try to evaluate the action on-
shell, since any solution satisfies the duality constraint, the contributions of the kinetic
terms will also cancel each other. However, usually, it is the Euclidean action that one is
interested in evaluating, not the Lorentzian one. A field and its dual must necessarily
have opposite parities and one of them will by multiplied by i when Wick-rotated, its
kinetic term acquiring an additional minus sign that will transform the cancellation of
the contributions of the dual kinetic terms into its addition.

2 Non-linear σ-models with isometries

The basic dualization procedure used in the previous section will fail when the action
cannot be rewritten written in terms of the scalar field strength only. This happens,
generically, when the scalar field interacts with other fields. We will consider the
coupling of scalars to (p + 1)-form potentials in Section 4 and now we will consider
interactions between several scalar fields.

When we have several scalar fields φx in our theory (in absence of scalar potential),
the situation becomes more complicated since the scalars can couple non-trivially to
the kinetic terms of other scalars. A convenient way to describe all these possibilities in

12With different coefficients they may not cancel completely, but they will never give the original
action back.
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a geometric way is through the non-linear σ-model formalism in which the scalar fields
are interpreted as mappings from spacetime to some “target space” in which they play
the role of coordinates. The couplings between scalars and kinetic terms are collected
in the σ-model (or target-space) metric gxy(φ). The kinetic term (a combination of the
kinetic terms of all the scalars and their couplings)

1
2 gxy(φ)dφx ∧ ?dφy , (2.1)

can then be understood as the pull-back of the line element from the target space to
spacetime. Scalar field redefinitions can be reinterpreted as general coordinate trans-
formations in the target space.

The action of this system coupled to gravity takes the form

S[ea, φx] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
2 gxy(φ)dφx ∧ ?dφy

}
, (2.2)

and the equations of motion are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

2 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy) , (2.3a)

Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw] , (2.3b)

where Γzw
y are the components of the Christoffel symbols of the target-space metric

gxy. The scalar equation of motion is, then, the pullback of the geodesic equation in
target space.

We would like to dualize the scalars φx into (d− 2)-form fields. In the single scalar
case, we used the fact that the equation of motion d ? dφ = 0 could be understood as
a statement on the closedness of certain differential form, ?dφ that we could locally
solve by saying that the differential form is exact ?dφ = dC. In this theory, though, the
equations of motion of the scalars only have that form if the Christoffel symbols take
a very particular form. Since they are not tensors, this depends very strongly on the
coordinates (scalar fields, φx) chosen, which complicates the problem of finding out
which scalars can be dualized and when.

There is, however, a coordinate-invariant characterization of the scalars that can be
dualized based on the following observation: scalar equations of motion which are
equivalent to the closedness of a (d− 1)-form can be interpreted as the conservation
law of a (d− 1)-form current J,

dJ = 0 . (2.4)

If the theory is invariant under global symmetries acting on the scalar fields, Noether’s
theorem ensures that there will be as many conserved currents as symmetries. The on-
shell conservation laws of these currents will be combinations of some of the equations
of motion of the scalar fields that can be used to dualize them.

9



In order to characterize the scalar symmetries of the theory we denote by

δAφx = kA
x(φ) , (2.5)

their infinitesimal generators. The indices A label the independent symmetries13 and
kA

x(φ) are some given (not arbitrary) functions of the scalar fields, as the symmetries
we are considering are global (not local) and take the form

δφx = αAkA
x(φ) , (2.6)

for constant, infinitesimal parameters αA.
It is not hard to see that the action Eq. (2.2) is invariant under the transformations

Eq. (2.5) if and only if the kA
x(φ) are Killing vectors of the target-space metric, i.e. if

∇(x|kA |y) = 0 , (2.7)

where ∇x is the target-space covariant derivative with the connection Γxy
z and kA x =

kA
ygyx. The associated Noether current (d− 1)-forms are given by

JA = ?k̂A , (2.8)

where k̂A is the pullback of the 1-forms dual to the Killing vectors

k̂A ≡ kA
xgxydφy . (2.9)

Furthermore, it is not difficult to see, using the Killing equation, that

kA
xEx = −dJA , (2.10)

which establishes the relation between the scalar equations of motion and the on-shell
conservation of the Noether currents we were looking for.

The above conservation laws suggest that we may try to define dual (d− 2)-forms
CA with field strengths GA associated the conserved currents via

GA ≡ dCA = JA . (2.11)

Since the currents JA only transform under global G transformations, GA must be
gauge invariant and the (d− 2)-forms only transform under gauge transformations

δΣCA = dΣA . (2.12)

The currents JA do not occur explicitly in the action and, therefore, it is not clear
how one can use the Poincaré duality procedure. When the Killing vectors kA

x com-
mute, though, it is possible to use coordinates adapted to all the isometries.14 In this

13That is: they take values in the adjoint representation of the Lie algebra of the symmetry group G.
14We can also restrict ourselves to an Abelian subgroup of the isometry group of the target space

metric.
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adapted coordinate system the target-space metric gxy is independent of the scalars
associated to the Killing vectors and they can be Poincaré-dualized in the standard
fashion because those scalars only occur through their field strengths. We are going to
consider this particular case first.

2.1 Non-linear σ-models with commuting isometries

In this case we can use the machinery and notation (hats for original fields) of Kaluza-
Klein dimensional reductions for the target space metric. We choose coordinates
adapted to all the commuting isometries (all the Killing vectors kA

x) to be consid-
ered splitting the coordinate indices into those related to the isometries, A, and the
rest, m, {x} = {A, m} and using the notation {φ̂x} = {ϕA, φm}. In these coordinates,
the components of the Killing vectors are kA

x = δA
x (i.e. kA

B = δA
B , kA

m = 0).
By definition, the target-space metric only depends on the scalar fields φm and its

components and those of its inverse can be written in the form

(
ĝxy
)
=

 gAB gAC AC
n

gBC AC
m gmn + AA

m AB
ngAB

 ,

(ĝxy) =

 gAB + AA
m AB

ngmn −AA
pgpn

−AB
pgpm gmn

 ,

(2.13)

where

gABgBC = δA
C , gmngnp = δm

p . (2.14)

We stress that all the target-space fields gAB, gmn and AA
m are independent of the

scalars ϕA.
In terms of these new variables (actually, combinations of scalar fields), the action

Eq. (2.2) takes the form

S[ea, ϕA, φm] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
2 gABDϕA ∧ ?DϕB + 1

2 gmndφm ∧ ?dφn
}

,

(2.15)
where we have defined

DϕA ≡ dϕA + AA
mdφm . (2.16)

The equations of motion take now the form

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

2 gAB

(
ıaDϕA ∧ ?DϕB +DϕA ∧ ıa ?DϕB

)
11



+ (−1)d

2 gmn (ıadφm ∧ ?dφn + dφm ∧ ıa ? dφn) , (2.17a)

EA = −d
[

gAB ?DϕB
]

, (2.17b)

Em = −gmn
[
d ? dφn + Γpq

ndφp ∧ ?dφq]+ 1
2

∂gAB

∂φm DϕA ∧ ?DϕB

+ gABFA
mndφn ∧ ?DϕB + AA

mEA . (2.17c)

The equations of motion of the scalars ϕA can be understood as the expression
of the conservation of the Noether currents associated to the invariance of the action
under the constant shifts generated by the Killing vectors because the currents JA are
given by

JA ≡ gAB ?DϕB , ⇒ EA = −dJA . (2.18)

Then, we can solve locally the equations of motion of those scalars by introducing the
dual (d− 2)-forms CA:

GA ≡ dCA = JA . (2.19)

The field strengths GA are invariant under gauge transformations of the form

δΣCA = dΣA , (2.20)

where the ΣA are (d− 3)-forms.
The duality relation Eq. (2.19) together with the definition of the currents JA can be

used to express the field strengths of the scalars ϕA in terms of the dual (d− 2)-forms
CA (and the rest of the scalars)

dϕA = gAB ? GB − AA
mdφm . (2.21)

Then, the Bianchi identity of these field strengths, d2ϕA = 0) gives the equations of
motion of (d− 2)-forms CA:

d
(

gAB ? GB

)
− FA = 0 , (2.22)

where

FA ≡ 1
2 FA

mndφm ∧ dφn , with FA
mn ≡ 2∂[m AA

n] . (2.23)

The scalar fields ϕA can be completely eliminated from the action by standard
Poincaré dualization and the result is an action that contains the field variables CA
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and φm (which we do not know how to dualize) and which is invariant up to a total
derivative under the δΣ gauge transformations defined in Eq. (2.20)

S[ea, CA, φm] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
(−1)d

2 gABGA ∧ ?GB + CA ∧ FA

+1
2 gmndφm ∧ ?dφn

}
.

(2.24)

The equations of motion that follow from this action are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
2 gAB

(
ıaGA ∧ ?GB + (−1)dGA ∧ ıa ? GB

)

+ (−1)d

2 gmn(ıadφm ∧ ?dφn + dφm ∧ ıa ? dφn) , (2.25a)

EA = −d(gAB ? GB) + FA , (2.25b)

Em = −gmn[d ? dφn + Γpq
ndφp ∧ ?dφq] + (−1)d

2
∂gAB

∂φm GA ∧ ?GB

− 2(−1)d−1GA ∧ FA
nmdφn , (2.25c)

are completely equivalent to those of the original fields upon use of the duality relation
Eq. (2.19).15 Furthermore, we can construct a democratic action by simply adding the
original kinetic term of the ϕAs to this action, changing the normalization of the kinetic
terms to get the right normalization of the energy-momentum tensor in the Einstein
equation (the topological term CA ∧ FA does not contribute to it):

S[ea, CA, ϕS, φm] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
4 gABDϕA ∧ ?DϕB

+ (−1)d

4 gABGA ∧ ?GB + 1
2CA ∧ FA + 1

2 gmndφm ∧ ?dφn
}

.

(2.26)

The equations of motion that follow from this action are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
4 gAB

(
ıaGA ∧ ?GB + (−1)dGA ∧ ıa ? GB

)
15The Bianchi identity of the target-space 2-form field strengths FA occur in the equation of motion of

the φm and explains why the term CA ∧ FA does not contribute to them.
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+ (−1)d

2 gmn(ıadφm ∧ ?dφn + dφm ∧ ıa ? dφn)

+ (−1)d

4 gAB(ıaDϕA ∧ ?DϕB +DϕA ∧ ıa ?DϕB) , (2.27a)

EA = −1
2 d(gAB ?DϕB) , (2.27b)

EA = −1
2 d(gAB ? GB) +

1
2 FA , (2.27c)

Em = −gmn[d ? dφn + Γpq
ndφp ∧ ?dφq] +

1
4

∂gAB

∂φm DϕA ∧ ?DϕB

+ (−1)d

4
∂gAB

∂φm GA ∧ ?GB + gABFA
mndφn ∧ ?DϕB

− (−1)d−1GA ∧ FA
nmdφn . (2.27d)

This is a simple case in which the scalars ϕA can be completely replaced by its dual
(d− 2)-forms CA. Still, we have learned that it is necessary to include the topological
term CA ∧ FA in the dual action.

It is not clear at all how to dualize the rest of the scalars, if this is possible at all. On
general grounds we expect the scalars related to symmetries to be “dualizable” because
their equations of motion are related to the conservation of certain Noether currents
and then we can dualize on shell those equations. If there are enough symmetries, we
may be able to dualize all the scalars, at least in the sense of being able to define the
(d− 2)-form potentials dual to them. However, when the isometries do not commute,
we cannot use coordinates adapted to all the isometries and we cannot use the Poincaré
dualization procedure and, any putative action containing the dual fields should also
include the original scalar fields. On the other hand, if we do use all the currents (all
the isometries) the dual (d− 2)-form potentials will not fill a linear representation of
the symmetry group and the invariance of the theory containing the dual fields under
this group will in general be broken.

We do not know how to solve this problem in general. However, in the case in
which the target space is a Riemannian symmetric manifold, inspired by the form of
the action that we have just constructed (the necessity of the topological term CA ∧ FA),
we have found a way to construct a democratic action which manifestly preserves all
the symmetries of the original one. We describe this construction in the next section.
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3 Dualization of Riemannian symmetric σ-models

In this section we are interested in the case in which the target-space metric gxy(φ)
of the non-linear σ-model action Eq. (2.2) is that of a G/H coset space which is a
Riemannian symmetric space.16 In particular, we are going to assume that gxy(φ) has
been constructed using the restriction of the Killing metric of G, gAB, to the horizontal
space,17 gmn and the horizontal components of the Maurer-Cartan 1-form vm = vm

xdφx

as Vielbeins:

gxy = gmnvm
xvn

y . (3.1)

Thus, gxy admits, at least,18 dim G Killing vectors, kA
x, which generate as many global

symmetries of the action Eq. (2.5). Associated to them, there are dim G closed (d− 1)-
form currents, JA, of the form Eq. (2.8) and, by construction, there are more conserved
currents (dim G) than physical scalars (dim G-dim H). However, as noticed in Ref. [39],
only if we use all of them will the whole global symmetry group, G, be preserved.
Therefore, we must define dim G (d− 2)-forms CA and their respective field strengths
GA, through Eq. (2.11) and we must use all of them in the action, but we must find a
way to make dim H of the (d− 2)-forms CA non-dynamical.

On the other hand, as we have discussed, it is clear that it is impossible to construct
an equivalent action in which only the dual (d− 2)-forms CA, and not the scalar fields
φx occur. The best we can hope for is a democratic pseudoaction.

Taking into account all this and the discussions in Ref. [39], we propose the follow-
ing democratic action for all these fields:

SDem[ea, φx, CA] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
4 gxydφx ∧ dφy

+ (−1)d

4 MABGA ∧ ?GB − (−1)d

2 gABGA ∧ k̂B

}
,

(3.2)

where the dim G×dim G matrix MAB is defined as

MAB = gACgBDkC
xkD

ygxy , (3.3)

and where the equations of motion are meant to be supplemented by the duality rela-
tions Eqs. (2.11).

16In this section we are going to use, with minimal changes, the notation and conventions of Refs. [14,
39] to which we refer for further references and details on symmetric σ-models.

17This vector space, t is the complement of the Lie subalgebra h of H in g (the Lie algebra of G), that
is, g = h⊕ t. We use indices A, B, · · · = 1, . . . ,dim G to label the adjoint representation of G, indices
i, j, . . . = 1, . . . ,dim H to label that of H and m, n, . . . = 1, . . . ,dim G-dim H to label a basis of t. The
scalars are labeled by x, y, . . . = 1, . . . ,dim G-dim H.

18We will ignore, for the sake of simplicity, any other Killing vectors of gxy.
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It is not difficult to prove that the matrix MAB has dim G-dim H eigenvectors so
that rankM =dim G-dim H.19This means that in the above action there are dim H
combinations of the magnetic field strengths GA which do not occur in the kinetic
term, which is what we need in order not to have too many dynamical fields.

We are going to show that the equations of motion that follow from the above
democratic action are those of the original σ-model upon use of the duality relations
Eqs. (2.11).

Observe that the original kinetic term for the scalar fields can be rewritten in terms
of the Noether 1-form currents using the matrix M as

MAB ? JA ∧ JB = gACgBDkC
xkD

ygxykA zkB wdφz ∧ ?dφw = gxydφx ∧ ?dφy , (3.6)

by virtue of the property

gABkA
mkB

n = gmn , ⇒ gABkA
xkB

y = gxy . (3.7)

Observe that, then,

MABkA xkB y = gABkA xkB y = gxy . (3.8)

The Einstein equations that follow from the democratic action are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

4 gxy (ıadφx ? dφy + dφx ∧ ıa ? dφy)

+ 1
4M

AB
(

ıaGA ∧ ?GB + (−1)dGAıa ? GB

)
.

(3.9)

It is enough to consider the last term (the energy-momentum (d− 1)-form of the
dual (d− 2)-forms). Using the duality relations Eqs. (2.11) and the property Eq. (3.5),
that term takes the form

19The eigenvectors are, precisely, the dim H momentum maps PA
i = ΓAdj(u−1)i

A [39]: taking into
account that the Killing vectors are given by kA

m = −ΓAdj(u−1)m
A and that the Killing metric is g-

invariant and block-diagonal,

MABPB
i = −gACkC

mgmnΓAdj(u−1)n
AgBDΓAdj(u−1)i

A = −gACkC
mgmngni = 0 . (3.4)

On the other hand, using the same properties we can show that

MABkB
m = gABkB

m . (3.5)

These results are compatible because in G/H only dim G− dim H vectors are linearly independent at
any given point.
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1
4M

AB
(

ıa ? k̂A ∧ k̂B + (−1)d ? k̂Aıak̂B

)
= (−1)d

4 MAB
(

k̂A ∧ ıa ? k̂B + ıak̂A ? k̂B

)

= (−1)d

4 MABkA xkB y (dφx ∧ ıa ? dφy + ıadφx ? dφy)

= (−1)d

4 gxy (dφx ∧ ıa ? dφy + ıadφx ? dφy) ,
(3.10)

by virtue of Eq. (3.8) and it can be added to the energy-momentum (d− 1)-form of the
scalars to recover the energy-momentum tensor of the scalars in the original theory.

The equations of motion of the scalars are, after use of the Killing equation

Ex = −1
2 gxy {d ? dφy + Γzw

ydφz ∧ ?dφw}+ (−1)d

4 ∂xM
ABGA ∧ ?GB

− 1
2 gABkA xdGB + (−1)d+1gAB∇xkA yGB ∧ dφy .

(3.11)

Let us consider the last term first. Using the duality relations Eqs. (2.11)

(−1)d+1gAB∇xkA ykB z ? dφz ∧ dφy = (−1)d+1

2 ∇xgyz ? dφz ∧ dφy = 0 , (3.12)

since we are using the target-space Levi-Civita connection. The second term can be
put in the form

(−1)d

2 gACgBD∇xkC ykD
ykA zkB w ? dφz ∧ dφw = (−1)d

2 gAC∇xkC wkA z ? dφz ∧ dφw = 0 ,
(3.13)

for the same reason.
The third (next to last) term in Eq. (3.11) vanishes on account of the Bianchi identity

of GA, which is related to the equation of motion of the scalars. Thus, instead of
throwing it away, we are going to use the duality relation and Eq. (2.10) in it

−1
2 gABkA xdGB = −1

2 gABkA xdJB

= −1
2 gABkA xkB y {d ? dφy + Γzw

ydφz ∧ ?dφw}

= −1
2 gxy {d ? dφy + Γzw

ydφz ∧ ?dφw} ,

(3.14)

and we recover the original equation of motion of the scalars with identical normaliza-
tion.

Finally, the equations of motion of the (d− 2)-form potentials CA
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EA = 1
2 d
[
MAB ? GB − gABk̂B

]
, (3.15)

are solved automatically by the duality relation upon use of the properties of the matrix
MAB.

The scalars of all the maximal and half-maximal supergravities parametrize a Rie-
mannian symmetric σ-model. However, in all those theories they are also coupled to
other fields. In the next section we consider the coupling to (p + 1)-form potentials
as a toy model since “real” supergravities usually have several of these with different
ranks and with Chern-Simons terms in the action and field strengths.

4 Dualization of Riemannian symmetric σ-models cou-
pled to (p + 1)-forms

The next step consists in the coupling of a Riemannian symmetric σ-model to a set of
(p + 1)-form potentials (the fields p-branes naturally couple to)

AΛ =
1

(p + 1)!
AΛ

µ1···µp+1dxµ1 ∧ · · · ∧ dxµp+1 , (4.1)

with (p + 2)-form field strengths

FΛ = dAΛ , (4.2)

invariant under the gauge transformations

δχ AΛ = dχΛ , (4.3)

where each χΛ is an arbitrary p-form.
In arbitrary dimension d, the action that describes this coupling takes the generic

form

S[ea, AΛ, φx] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
2 gxydφx ∧ ?dφy − (−1)(p+1)d

2 IΛΣFΛ ∧ ?FΣ
}

,

(4.4)
IΛΣ being a symmetric and negative-definite scalar-dependent matrix.

The equations of motion that follow from this action are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
(−1)d

2 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy)

+ (−1)(p+1)d

2 IΛΣ

(
ıaFΛ ∧ ?FΣ + (−1)p+1FΛ ∧ ıa ? FΣ

)
, (4.5a)
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Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw]− (−1)(p+1)d

2 ∂x IΛΣFΛ ∧ ?FΣ , (4.5b)

EΛ = d
(

IΛΩ ? FΩ
)

. (4.5c)

For a non-constant kinetic matrix IΛΣ the action is invariant under all the trans-
formations of the scalars Eq. (2.5) associated to the symmetries of the σ-model, if the
(p + 1)-forms also transform according to

δA AΛ = TA
Λ

Σ AΣ , (4.6)

for some matrices TA, and the kinetic matrix IΛΣ satisfies the property

δA IΛΣ = −£kA IΛΣ = −2TA
Ω
(Λ IΣ)Ω . (4.7)

The Noether current (d− 1)-forms associated to these symmetries are

JA = ?k̂A + (−1)(p+1)dTA
Λ

Σ AΣ ∧
(

IΛΩ ? FΩ
)

. (4.8)

The first term of this current is invariant under the gauge transformations Eq. (4.3)
but the second is not: it transforms into a total derivative on-shell. Thus, if we try to
dualize JA using its conservation law dJA = 0

? k̂A + (−1)(p+1)dTA
Λ

Σ AΣ ∧
(

IΛΩ ? FΩ
)
≡ dC̃A , (4.9)

the right definition for a gauge-invariant field strength is

? k̂A = dC̃A − (−1)(p+1)dTA
Λ

Σ AΣ ∧
(

IΛΩ ? FΩ
)
≡ GA , (4.10)

and the total derivative generated by the gauge transformations of the (p+ 1)-form po-
tentials AΛ must be absorbed by a gauge transformation of the (d− 2)-form potentials
that we will described shortly.

The Chern-Simons term in the field strength is unusual but can be transformed
using the dual of the (p + 1)-form potentials: their equations of motion EΛ = 0 can be
locally solved with the introduction of the dual ( p̃ + 1)-forms ÃΛ, with p̃ ≡ d− p− 4:

IΛΩ ? FΩ ≡ dÃΛ ≡ F̃Λ . (4.11)

The field strengths F̃Λ are invariant under the dual gauge transformations

δχ̃ ÃΛ = dχ̃Λ . (4.12)

Using this definition, we can write

GA = dC̃A − (−1)(p+1)dTA
Λ

Σ AΣ ∧ F̃Λ , (4.13)
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and, integrating by parts in order to get a more symmetric expression, we arrive at
the final definition of the (d− 2)-form potentials and their field strengths dual to the
scalars:

GA ≡ dCA − (−1)(p+1)d

2 TA
Λ

Σ

(
AΣ ∧ F̃Λ + (−1)p(d+1) ÃΛ ∧ FΣ

)
= ?k̂A . (4.14)

The gauge invariance of the field strengths GA implies the following gauge trans-
formations of the (d− 2)-form potentials

δCA = dΣA + (−1)(p+1)d

2 TA
Λ

Σ

(
χΣ ∧ F̃Λ + (−1)p(d+1)χ̃Λ ∧ FΣ

)
. (4.15)

Observe that in this theory

kA
xEx = −dJA + (−1)(p+1)(d+1)TA

Λ
Σ AΣ ∧ EΛ . (4.16)

Based on our previous experience, we propose the following gauge- and G-invariant
democratic action for this theory:

SDem[ea, AΛ, ÃΛ, φx, CA] =
∫ {

(−1)d−1 ? (ea ∧ eb) ∧ Rab +
1
4 gxydφx ∧ dφy

− (−1)(p+1)d

4 IΛΣFΛ ∧ ?FΣ − (−1)( p̃+1)d

4 IΛΣ F̃Λ ∧ ?F̃Σ

+ (−1)d

4 MABGA ∧ ?GB − (−1)d

2 gABGA ∧ k̂B

}
,

(4.17)

where

IΛΩ IΩΣ = δΛ
Σ , (4.18)

where we must use the duality relations

IΛΩ ? FΩ = F̃Λ , (4.19a)

?k̂A = GA , (4.19b)

in the equations of motion in order to recover those of the original theory,20 as it can
easily be checked.

Coupling the scalars to more potentials of different ranks should only involve more
Chern-Simons terms in the definition of the dual field strengths GA. However, there

20Those of the (p + 1)-form potentials appear with a factor of 1/2.
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can be additional complications, as we will see in the case of the N = 2B, d = 10
theory.

On the other hand, when d = 2(p + 2) new couplings between the scalars and (p +
1)-form potentials are possible. This is a specially interesting case because it includes
all the N ≥ 3, d = 4 ungauged supergravities and because some of the symmetries of
the theory (electric-magnetic dualities) are realized as symmetries of the equations of
motion only. We consider it next.

4.1 The d = 2(p + 2) case and electric-magnetic dualities

4.1.1 The theory and its dualities

When d = 2(p+ 2) it is possible to add a gauge-invariant topological (metric-independent)
term to the action Eq. (4.4), which takes the generic form

S[ea, AΛ, φx] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

1
2 gxydφx ∧ ?dφy − 1

2 IΣΛFΣ ∧ ?FΛ − 1
2 RΣΛFΣ ∧ FΛ

}
,

(4.20)
where the new matrix RΣΛ also depends on the scalar fields.

While IΛΣ is always symmetric (and, conventionally, negative-definite) the symme-
try properties of RΣΛ depend on the dimension d:21

RT = −ξ2R , ξ2 = (−1)p+1 . (4.22)

The equations of motion that follow from this action are

Ec = ıc ?
(

ea ∧ eb
)
∧ Rab +

1
2 gxy (ıcdφx ∧ ?dφy + dφx ∧ ıc ? dφy)

− 1
2 IΣΛ

(
ıcFΣ ∧ ?FΛ + ξ2FΣ ∧ ıc ? FΛ

)
, (4.23a)

Ez = −gzw
[
d ? dφw + Γxy

wdφx ∧ ?dφy]− 1
2 ∂z IΣΛFΣ ∧ ?FΛ − 1

2 ∂zRΣΛFΣ ∧ FΛ , (4.23b)

21One should also take into account that, for (p + 2)-forms in d = 2(p + 2) dimensions

?2FΛ = ξ2FΛ , (4.21a)

FΛ ∧ FΣ = −ξ2FΣ ∧ FΛ , (4.21b)

?FΛ ∧ ?FΣ = −FΛ ∧ FΣ . (4.21c)
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EΣ = d
(

IΣΛ ? FΛ + RΣΛFΛ
)

, (4.23c)

The equations of motion of the (p + 1)-forms AΛ can be locally solved by introduc-
ing dual (p + 1)-forms AΛ such that

IΣΛ ? FΛ + RΣΛFΛ = dAΛ ≡ FΛ , (4.24)

where FΛ are the associated (p + 2)-form field strengths. it is, then, natural, to intro-
duce (

AM
)
≡
(

AΛ

AΛ

)
,

(
FM
)
≡ d

(
AM
)
≡
(

FΛ

FΛ

)
. (4.25)

The dual field strengths FΛ have been defined in terms of the original ones FΛ

and the scalars. Therefore, it is not surprising that FM satisfies the so-called twisted
self-duality constraint

? FM = ξ2ΩMNMNPFP , (4.26)

where we have defined

Ω ≡ (ΩMN) ≡
(

0 δΛ
Σ

ξ2δΛ
Σ 0

)
, Ω−1 ≡

(
ΩMN

)
≡
(

0 ξ2δΛ
Σ

δΛ
Σ 0

)
= ξ2Ω ,

(4.27)
which, for ξ2 = −1 is the Sp(2n, R) metric and for ξ2 = +1 is the off-diagonal O(n, n)
metric, and the symmetric scalar matrix

M = (MMN) =

IΛΣ − ξ2RΛΓ IΓΩRΩΣ ξ2RΛΓ IΓΣ

−IΛΓRΓΣ IΛΣ

 =

I − ξ2RI−1R ξ2RI−1

−I−1R I−1

 ,

(4.28)
which is symplectic for ξ2 = −1 or orthogonal for ξ2 = +1 because

M−1 TΩM−1 = Ω . (4.29)

The equations of motion of the (p + 1)-forms EΛ and the Bianchi identities of their
(p + 2)-form field strengths BΛ = dFΛ can be written in a compact way as Bianchi
identities for FM

d
(

FM
)
=

(
BΛ

EΛ

)
= 0 . (4.30)

These equations are invariant under GL(2n, R) transformations

FM ′ = SM
N FN , or F ′ = SF , (4.31)
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but the twisted self-duality constraint Eq. (4.26) is only invariant if, at the same time,
the scalar matrixM transforms as

M′ =
(

ΩSΩ−1
)
MS−1 . (4.32)

This implies that the scalar fields must transform as well.
Since the energy-momentum tensor of the (p + 1)-form potentials can be written in

the form

− 1
2 IΣΛ

(
ıcFΣ ∧ ?FΛ + ξ2FΣ ∧ ıc ? FΛ

)
= −1

2 ΩMNıcFM ∧ FN , (4.33)

the Einstein equations will be invariant if

STΩS = Ω , ⇒ ΩSΩ−1 = S−1 T , (4.34)

i.e. if S ∈ Sp(2n, R) when ξ2 = −1 (p even, d = 4n) and S ∈O(n, n) when ξ2 = +1
(p odd, d = 4n + 2). This is a well-known generalization of the Gaillard-Zumino result
for p = 0, presented in Ref. [40]22.

Then, we conclude that, under symplectic or orthogonal rotations of the potentials,
M must transform as

M′ = S−1 TMS−1 , (4.35)

for the twisted self-duality constraint to be respected. These rotations preserve the
energy-momentum tensor of the potentials. If we rewrite their kinetic term in the
action in the form

∼ Tr
(

dM−1 ∧ ?dM
)

, (4.36)

the invariance of this kinetic term and of the corresponding energy-momentum tensor
is manifest. However, this invariance is only apparent since we have not yet described
the action of these transformations on the scalar fields, which only transform via field
redefinitions or, equivalently, coordinate transformations in the target space, which
take the infinitesimal form

δαφx = αkx(φ) , (4.37)

where α is an infinitesimal parameter and kx(φ) is a target space vector field. Since
these transformations must preserve the kinetic term, they must be Killing vectors of
the target space metric gxy(φ). If {kA

x} is the set of these Killing vectors, the possible
transformations are

δαφx = αAkA
x(φ) , (4.38)

22See Refs. [41, 14, 39] and references therein.
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where now we have as many independent infinitesimal parameters αA as Killing vec-
tors. These Killing vectors generate an isometry group G which is, in general smaller
than Sp(2n, R) or O(n, n).

These transformations act on the scalar matrixM as

δαM = αAkA
x∂xM , (4.39)

and, according to the previous discussion, they will lead to an invariance of the equa-
tions of motion if they are equivalent to the linear transformations Eq. (4.35). Infinites-
imally

S = 1 + αATA , (4.40a)

δαM = −αA
(

TA
TM+MTA

)
, (4.40b)

where the matrices TA generate a representation of the isometry group G through
Sp(2n, R) or O(n, n) matrices.

The condition that the matrixM must satisfy for G to be a symmetry of the equa-
tions of motion and Bianchi identities of the (p+ 1)-form potentials and of the Einstein
equations is, therefore,

kA
x∂xM+ TA

TM+MTA = 0 . (4.41)

It only remains to show that these conditions are also sufficient for the transforma-
tions to leave invariant the scalar equations of motion. First, we need to rewrite them
in a more symmetric form, using the matrix MMN and the vector of field strengths
FM.

The simplest invariant that we can construct with these elements

− 1
4MMN FM ∧ ?FN , (4.42)

vanishes identically when we use the twisted self-duality constraint Eq. (4.26) and the
preservation of Ω byM Eq. (4.29):

−1
4MMN FM ∧ ?FN = −1

4 ξ2MMNΩNPMPQFM ∧ FQ

= −1
4 ΩMQFM ∧ FQ ,

(4.43)

which vanishes identically because ΩMN = ξ2ΩNM while FM ∧ FN = −ξ2FN ∧ FM.
However,

− 1
4 ∂zMMN FM ∧ ?FN = −1

4 ξ2∂zMMNΩNPMPQFM ∧ FQ , (4.44)

does not vanish because, by taking the derivative of Eq. (4.29), one can easily see that
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(
∂zMΩ−1M

)T
= −ξ2∂zMΩ−1M . (4.45)

A straightforward calculation shows that

− 1
4 ∂zMMN FM ∧ ?FN = −1

2 ∂z IΣΛFΣ ∧ ?FΛ − 1
2 ∂zRΣΛFΣ ∧ FΛ , (4.46)

and we can rewrite the scalar equation of motion Eq. (4.23b) in the form

Ez = −gzw
[
d ? dφw + Γxy

wdφx ∧ ?dφy]− 1
4 ∂zMMN FM ∧ ?FN . (4.47)

Under the infinitesimal transformations

δAφx = kA
x , δAF = TAF , (4.48)

where F ≡ (FM), the scalar equations of motion (4.47) transform as

δAEz = ∂zkA
vEv

− 2∇(z|kA|w)

[
d ? dφw + Γxy

wdφx ∧ ?dφy]
− gzw

(
∇x∇ykw + kvRvxy

w) dφx ∧ ?dφy

− 1
4 ∂z

(
kA

v∂vMPQ +MMQTA
M

P +MPNTA
N

Q

)
FP ∧ ?FQ .

(4.49)

The second and third lines vanish when kA
x is a Killing vector of the target space

metric, while the fourth vanishes upon use of the condition Eq. (4.41).

4.1.2 Democratic pseudoaction I: the potentials

Using the results of the previous section it is not difficult to make an educated guess
for the democratic pseudoaction that contains the original and dual potentials as inde-
pendent variables:

S[ea, AM, φx] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

1
2 gxydφx ∧ ?dφy − 1

4MMN FM ∧ ?FN
}

. (4.50)

Observe that the last term vanishes automatically when we use the twisted self-
duality constraint. However, we are only going to impose it on the equations of motion,
which are given by

Ec = ıc ?
(

ea ∧ eb
)
∧ Rab +

1
2 gxy (ıcdφx ∧ ?dφy + dφx ∧ ıc ? dφy)
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− 1
4MMN

(
ıcFM ∧ ?FN + ξ2FM ∧ ıc ? FN

)
, (4.51a)

Ez = −gzw
[
d ? dφw + Γxy

wdφx ∧ ?dφy]− 1
4 ∂zMMN FM ∧ ?FN , (4.51b)

EM = 1
2 d
(
MMN ? FN

)
. (4.51c)

Observe that scalar equation of motion has exactly the same form as the one coming
from the original action Eq. (4.47) and this form will not change when we use the
twisted self-duality constraint. Using this constraint in the last equation and using
Eq. (4.29) we see that it takes the form Eq. (4.30). Finally, using the constraint in the
Einstein equations brings the energy-momentum tensor of the potentials to the form
Eq. (4.33). Thus, all the original equations of motion are recovered upon use of the
twisted self-duality constraint.

Let us now consider the dualization of the scalars.

4.1.3 Democratic pseudoaction II: the scalars

Following the general prescription, we start by computing the Noether-Gaillard-Zumino
currents in the democratic theory we have just constructed in which FM = dAM. Hit-
ting the scalar equations of motion with the Killing vectors kA

z Eq. (4.51b) and using
the Killing vector equations and the condition Eq. (4.41) we get

kA
zEz = −kA w

[
d ? dφw + Γxy

wdφx ∧ ?dφy]− 1
4 kA

z∂zMMN FM ∧ ?FN

= −d ? k̂A + 1
2 TA

M
PFP ∧MMQ ? FQ

= −d
[
?k̂A − 1

2 TA
M

P AP ∧MMQ ? FQ
]
+ (−1)pTA

M
P AP ∧ EM .

Using the twisted self-duality constraint we get a more conventional form

kA
zEz = −d

[
?k̂A − 1

2 TA
M

PΩMN AP ∧ FN
]
+ (−1)pTA

M
P AP ∧ EM , (4.52)

which leads to on-shell conserved NGZ currents

JA ≡ ?k̂A − 1
2 TA

M
PΩMN AP ∧ FN , (4.53)

and to the definition of the dual (d− 2)-forms CA

dCA ≡ ?k̂A − 1
2 TA

M
PΩMN AP ∧ FN , (4.54)
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and of their gauge-invariant field strengths GA

GA ≡ dCA + 1
2 TA

M
PΩMN AP ∧ FN = ?k̂A . (4.55)

The gauge invariance of GA follows from that of the Killing vector and implies that
the dual (d− 2)-form potentials CA and the (p + 1)-form potentials AM transform as

δΛ AM = dΛM , δΛCA = dΛA − 1
2 TA

M
PΩMNΛP ∧ FN , (4.56)

where ΛM and ΛA are arbitrary p- and (d− 3)-forms, respectively.
Based on our previous results, we propose the fully democratic pseudoaction

S[ea, AM, φx, CA] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

1
4 gxydφx ∧ ?dφy

−1
4MMN FM ∧ ?FN + 1

4M
ABGA ∧ ?GB − 1

2 gABGA ∧ k̂B

}
,

(4.57)

whose equations of motion have to be supplemented by the twisted self-duality con-
straint Eq. (4.26) and by the duality relation Eq. (4.55).

The equations of motion that follow from the above action are

Ec = ıc ?
(

ea ∧ eb
)
∧ Rab +

1
2 gxy (ıcdφx ∧ ?dφy + dφx ∧ ıc ? dφy)

− 1
4MMN

(
ıcFM ∧ ?FN + ξ2FM ∧ ıc ? FN

)

+
1
4
MAB (ıcGA ∧ ?GB + GA ∧ ıc ? GB) , (4.58a)

Ez = −1
2 gzw

[
d ? dφw + Γxy

wdφx ∧ ?dφy]− 1
4 ∂zMMN FM ∧ ?FN

+ 1
4 ∂zM

ABGA ∧ ?GB − 1
2 gABGA ∧ dφx∂zkB x − 1

2 d
(

gABGAkB z

)
, (4.58b)

EM = 1
2 d
(
MMN ? FN

)
+ 1

2
δGA

AM ∧
(
MAB ? GB − gABk̂B

)
, (4.58c)

EA = −1
2 d
(
MAB ? GB − gABk̂B

)
. (4.58d)

Using the duality constraints and following the same steps as in previous sections
we recover the equations of motion of the original theory.
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5 A democratic pseudoaction for N = 2B, d = 10 super-
gravity

The bosonic fields of N = 2B, d = 10 supergravity are the (Einstein-frame) Zehnbein
1-form ea, a SL(2, R) doublet of 2-forms Bi, i = 1, 2, 4-form D, which is a SL(2, R)
singlet and whose 5-form field strength is self-dual and the complex scalar τ that
parametrizes a SL(2, R)/SO(2) coset. The relation between these fields and those of
the effective action of the type IIB superstring (string-frame Zehnbein ea

s , NSNS and
RR 2-forms B, C(2), RR 4-form C(4) and dilaton ϕ and RR 0-form C(0)) is [14]23

ea = e−ϕ/4ea
s ,

τ = C(0) + ie−ϕ ,

(Bi) =

(
C(2)

B

)
,

D = C(4) − 1
2 B ∧ C(2) .

(5.1)

The self-duality of the 5-form field strength forbids the existence of a covariant
action free of auxiliary fields and one, if one does not want to deal with auxiliary fields,
one must necessarily work with equations of motion. The equations of motion of this
theory were first found in Ref. [43] in the Einstein frame and using a SU(1, 1)/U(1)
formulation of the coset space parametrized by the scalar fields. A pseudoaction which
had to be supplemented by the self-duality constraint was first constructed in Ref. [34].
A pseudoaction containing the duals of the 1- and 3-form RR field strengths and some
higher RR field strengths was constructed in Ref. [31]. While this action was “RR-
democratic” it was certainly not “NSNS-democratic”. Furthermore, this incomplete
democratization breaks the manifest SL(2, R) symmetry of the theory. Our goal in this
section is to improve on those results constructing a manifestly SL(2, R)-invariant and
fully democratic pseudoaction using the results of the previous sections.

The transformation of the scalars under SL(2, R) can be conveniently described
through the symmetric SL(2, R) matrix

23Observe that the RR 4-form C(4) is not an SL(2, R) and, as a matter of fact, transforms in a com-
plicated way under those transformations. On the other hand, in the rescaling between the string- and
Einstein-frame metrics it is very important to take into account the effect of the constant value of the
dilaton at infinity, in order to preserve the standard normalization of the metric at infinity [42]. The
relation between the string and the so-called modified Einstein frame should, then, be ea = e−(ϕ−ϕ∞)/4ea

s .
This leads to the occurrence of factors of powers of eϕ∞/4 in in different terms of the action that have
to be removed by absorbing them in redefinitions of the rest of the fields. We will not study these
redefinitions here because they are not relevant to the construction of the democratic pseudoaction.
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(
Mij

)
≡ 1
=m τ

 |τ|2 <e τ

<e τ 1

 , (5.2)

whose inverse is

(
Mij

)
≡ 1
=m τ

 1 −<e τ

−<e τ |τ|2

 . (5.3)

If we act with the SL(2, R) transformation matrix(
S−1 i

j

)
≡
(

α γ
β δ

)
, αδ− βγ = +1 , (5.4)

on objects with indices

B′i = BjS−1 j
i , M′

ij =MklS−1 k
iS−1 l

j , Mij ′ = S i
kS j

lMkl , (5.5)

then τ transforms as

τ′ =
ατ + β

γτ + δ
. (5.6)

The field strength of the doublet of 2-forms is the doublet of 3-forms

Hi ≡ dBi , (5.7)

while the field strength of the 4-form is the SL(2, R)-invariant 5-form

F ≡ dD − 1
2 εijBi ∧Hj . (5.8)

The doublet of 3-form field strengths Hi and the 5-form F are invariant under the
gauge transformations

δΛBi = dΛi , δΛD = dΛ + 1
2 εijΛi ∧Hj , (5.9)

where Λ and Λi are, respectively, a 4-form and a doublet of 1-forms.
This field strength is constrained to be self-dual24

F = ?F , (5.10)

and this condition relates the Bianchi identity

dF + 1
2 εijHi ∧Hj = 0 , (5.11)

to the equation of motion [43]

24This constraint is, actually, the equation of motion, sensu stricto.
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d ?F + 1
2 εijHi ∧Hj = 0 , (5.12)

Since it also implies that F ∧ ?F = 0, this constraint makes it impossible to write a
covariant action for the theory. Ignoring it, one can write a pseudoaction which leads
to the above equation of motion for D (and to the right equations of motion for the rest
of the fields [34]. This pseudoaction can be written in the manifestly SL(2, R)-invariant
form

S[ea, τ,Bi, D] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

dτ ∧ ?dτ̄

2(=m τ)2 + 1
2M

ijHi ∧ ?Hj

+1
4F ∧ ?F − 1

4 εijD ∧Hi ∧Hj

}
,

(5.13)

and the equations of motion have to be supplemented by the self-duality constraint
Eq. (5.10).

Our goal is to generalize this pseudoaction to include the 8-form duals of the scalar
fields (a SL(2, R) triplet) as well as the 6-form duals of the 2-form fields (a dual SL(2, R)
doublet). We start by writing all the equations of motion. It is convenient to define the
real scalars {φx} by τ = C(0) + ie−ϕ ≡ φ1 + iφ2, so that

dτ ∧ ?dτ̄

2(=m τ)2 = 1
2 gxydφx ∧ ?dφy , (gxy) =

1
(φ2)2

(
1 0
0 1

)
. (5.14)

Then, the equations of motion take the form

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
2 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy)

+ 1
2M

ij (ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj
)
+ 1

4 (ıaF ∧ ?F +F ∧ ıa ?F ) , (5.15a)

Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw] + 1

2 ∂xMijHi ∧ ?Hj , (5.15b)

Ei = −d
(
Mij ?Hj

)
− 1

2 εijHj ∧ (F + ?F ) + 1
2 εijBj ∧ E , (5.15c)

E = −1
2

{
d ?F + 1

2 εijHi ∧Hj

}
. (5.15d)

The Einstein equations and the equations of motion of the 2-forms and 4-form
simplify when the self-duality constraint is imposed. In particular, since the equation
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of motion of the 4-form becomes the Bianchi identity, it is automatically solved. The
remaining non-trivial equations of motion are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
2 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy)

+ 1
2M

ij (ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj
)
+ 1

2 ıaF ∧F , (5.16a)

Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw] + 1

2 ∂xMijHi ∧ ?Hj , (5.16b)

Ei = −d
(
Mij ?Hj

)
− εijHj ∧ F , (5.16c)

together with the self-duality constraint Eq. (5.10).

5.1 Dualization of the 2-forms

In order to construct the democratic pseudoaction, we start by considering the dual-
ization of the doublet of 2-forms Bi into a doublet of 6-forms that we will denote by
Bi.

The equations of motion of the doublet of 2-forms can be written as a total deriva-
tive:

Ei = −d
[
Mij ?Hj + εijBj ∧

(
dD − 1

6 εklBk ∧Hl

)]
, (5.17)

and, therefore, they can be locally solved by identifying the expression in square brack-
ets with dBi. Then,

Mij ?Hj = dBi − εijBj ∧
(

dD − 1
6 εklBk ∧Hl

)
≡ Hi , (5.18)

where Hi is the SL(2, R) doublet of 7-form field strengths, invariant under the gauge
transformations Eqs. (5.9) if the 6-forms transform according to

δΛBi = dΛi + εijΛj ∧ dD − 1
6 εijεlkBj ∧ Bl ∧ dΛk , (5.19)

where Λi is a doublet of 5-forms.
The Bianchi identity of the 3-form field strengths

dHi = 0 , (5.20)

becomes the equation of motion of the 6-forms upon use of the duality relation

Hi =Mij ?Hj , (5.21)

31



that is

d
(
Mij ?Hj

)
= 0 . (5.22)

The dual 6-forms that we have just defined can easily be included in a semi-
democratic pseudoaction25

SSemiDem[ea, τ,Bi, D,Bi] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

1
2 gxydφx ∧ ?dφy + 1

4M
ijHi ∧ ?Hj

+1
4F ∧ ?F + 1

4MijHi ∧ ?Hj + 1
4 εijD ∧Hi ∧Hj

}
.

(5.23)
The equations of motion that follow from this pseudoaction are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
2 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy)

+ 1
4M

ij (ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj
)
+ 1

4 (ıaF ∧ ?F +F ∧ ıa ?F )

+ 1
4Mij

(
ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj

)
, (5.24a)

Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw] + 1

4 ∂xMijHi ∧ ?Hj +
1
4 ∂xMijHi ∧ ?Hj , (5.24b)

Ei = −1
2

{
d
(
Mij ?Hj

)
+ εijMjk ?Hk ∧ F

}
+ 1

2 εijHj ∧ (?F −F )

+ 1
2 εijBj ∧ E− 2

3 εijεklBi ∧ Bj ∧ Ek , (5.24c)

E = −1
2

{
d ?F − 1

2 εijHi ∧
(
Hj − 2Mjk ?Hk

)}
+ εijBj ∧ Ek , (5.24d)

Ei = −1
2 d
(
Mij ?Hj

)
. (5.24e)

Upon use of the duality relations Eq. (5.21) the equations of motion of the 6-forms
Ei become the Bianchi identities of the 3-forms and are automatically solved. Further-
more, using the same duality relations plus the self-duality constraint Eq. (5.10) the last
two lines and the third term of the first line of the equations of motion of the 2-forms

25Observe that the sign of the Chern-Simons term has been reversed.
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Ei vanish and what remains becomes, up to a factor of 1/2, the original equations of
motion of the 2-forms. The rest of the equations of motion are trivially recovered.

5.2 Dualization of the scalars

The next step towards the construction of the democratic pseudoaction is the dualiza-
tion of the scalars, which in this theory parametrize the symmetric Riemannian mani-
fold SL(2, R)/SO(2). This means that we can use the general procedure described in
Sections 3 and 4.

Under the three independent infinitesimal SL(2, R) transformations labeled by A,
the fields that we have introduced so far transform according to

δAφx = kA
x(φ) , δABi = −Bj (TA)

j
i , δABi = (TA)

i
jBj , (5.25)

while the kinetic matrixMij and its inverseMij satisfy

kA
x∂xMij = −2Mk(j (TA)

k
i) , kA

x∂xMij = 2 (TA)
(i

kMj)k . (5.26)

Observe that due to the fact that εij and εij are SL(2, R)-invariant tensors, the ma-
trices TA satisfy

(TA)
[i

kεj]k = (TA)
k
[iε j]k = 0 . (5.27)

Then, we can obtain the Noether-Gaillard-Zumino 9-form currents JA using the
Killing vector equation, the duality relations and the equations of motion of the 2- and
6-forms and these properties, obtaining

kA
xEx = −d

[
?k̂A − 1

2 (TA)
i

kBi ∧Hk + 1
2 (TA)

k
iBi ∧Hk

+ 1
24 (TA)

i
kεkjεmnBi ∧ Bj ∧ Bm ∧Hn

]
.

(5.28)

This expression vanishes on-shell, and we can solve it locally by introducing a
SL(2, R) triplet of 8-forms CA whose exterior derivative equals the expression in brack-
ets. Since the Killing vectors are gauge invariant, we can define the following gauge-
invariant triplet of 9-form fields strengths

?k̂A = dCA + 1
2 (TA)

i
kBi ∧Hk − 1

2 (TA)
k

iBi ∧Hk

− 1
24 (TA)

i
kεkjεmnBi ∧ Bj ∧ Bm ∧Hn

≡ GA .

(5.29)
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GA is invariant under the gauge transformations in Eqs. (5.9) and (5.19) if the 8-
forms transform as

δCA = dΛA − 1
2 (TA)

i
k

{
Λk ∧Hi −Λi ∧Hk + 1

4 εklεmnBi ∧ Bl ∧Λm ∧Hn

}
. (5.30)

Having defined the 8-form duals of the scalars and using our previous experience,
we propose the following manifestly gauge- and SL(2, R) fully democratic pseudoac-
tion

SDem[ea, τ,Bi, D,Bi, CA] =
∫ {
− ? (ea ∧ eb) ∧ Rab +

1
4 gxydφx ∧ ?dφy + 1

4M
ijHi ∧ ?Hj

+ 1
4F ∧ ?F + 1

4MijHi ∧ ?Hj + 1
4M

ABGA ∧ ?GB

−1
2 gABGA ∧ ?k̂B + 1

4 εijD ∧Hi ∧Hj

}
.

(5.31)
The explicit form of this action depends on the particular choice of Killing vector basis.
A convenient choice is

k1 = C(0)∂C − ∂ϕ , k2 = (e−2ϕ − C(0)2)∂C + 2C(0)∂ϕ , k3 = ∂C . (5.32)

Since, in this basis, k3 generates the constant shifts of the RR 0-form C(0), we can
identify the 8-form C3 with the RR 8-form C(8).

The Lie brackets of these vectors are

[k1, k3] = −k3 , [k2, k3] = 2k1 , [k1, k2] = k2 , (5.33)

which leads to the Killing metric KAB

KAB = fAC
D fBD

C =

2 0 0
0 0 4
0 4 0

 . (5.34)

In our conventions the metric gAB used to construct the σ-model metric is then
related with the Killing metric by

gAB = 1
2 KAB =

1 0 0
0 0 2
0 2 0

 . (5.35)

Then the matrix MAB defined in Eq. (3.3) is given by
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(
MAB

)
=



1 + e2ϕC(0)2 1
2 e2ϕC(0) −1

2C(0)
[
1 + e2ϕC(0) 2

]
1
2 e2ϕC(0) 1

4 e2ϕ 1
4

[
1− e2ϕC(0) 2

]
−1

2C(0)
[
1 + e2ϕC(0) 2

]
1
4

[
1− e2ϕC(0) 2

]
1
4 e−2ϕ

[
1 + e2ϕC(0) 2

]2


.

(5.36)
We have explicitly checked that it satisfies the essential property Eq. (3.5).
The equations of motion that follow from the democratic pseudoaction Eq. (5.31)

are

Ea = ıa ? (ec ∧ ed) ∧ Rcd +
1
4 gxy (ıadφx ∧ ?dφy + dφx ∧ ıa ? dφy)

+ 1
4M

ij (ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj
)
+ 1

4 (ıaF ∧ ?F +F ∧ ıa ?F )

+ 1
4Mij

(
ıaHi ∧ ?Hj +Hi ∧ ıa ?Hj

)
+ 1

4M
AB (ıaGA ∧ ?GB + GAıa ? GB) ,

(5.37a)

Ex = −gxy [d ? dφy + Γzw
ydφz ∧ ?dφw] + 1

4 ∂xMijHi ∧ ?Hj +
1
4 ∂xMijHi ∧ ?Hj

+ 1
2 gAC∂xkC yGA ∧

[
gBDkD

y ? GB − dφy
]

, (5.37b)

Ei = −1
2

{
d
(
Mij ?Hj

)
+ εijMjk ?Hk ∧ F

}
+ 1

2 εijHj ∧ (?F −F )

+ 1
2

δGA

δBi
∧
[
MAB ? GB − k̂B

]
+ 1

2 εijBj ∧ E− 2
3 εijεklBi ∧ Bj ∧ Ek , (5.37c)

E = −1
2

{
d ?F − 1

2 εijHi ∧
(
Hj − 2Mjk ?Hk

)}
+ 1

2
δGA

δD ∧
[
MAB ? GB − k̂B

]
,

(5.37d)

Ei = −1
2 d
(
Mij ?Hj

)
+ 1

2
δGA

δBi ∧
[
MAB ? GB − k̂B

]
εijBj ∧ Ej , (5.37e)
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EA = −1
2 d
[
MAB ? GB − k̂B

]
. (5.37f)

Using the duality relations and the results obtained in the previous sections we
recover the original equations of motion of N = 2B, d = 10 supergravity.

6 Conclusions

The results obtained in this paper and, in particular, the democratic and manifestly
duality-invariant pseudoactions of d = 4 maximal and half-maximal supergravities
and of N = 2B, d = 10 supergravity can be used in different ways. For instance

1. They can be used to revisit many of the results on flux compactifications and
gauged supergravities in a duality-invariant form [44, 45].

2. They can be used to study black-hole thermodynamics using Euclidean methods
[46].26

3. They can be used to improve our understanding of the interplay between T and
S dualities. In particular, one can improve our understanding of the duality
between type IIB 7- and type IIA 8-branes [48, 15, 45].

However, several extensions of the results presented here are still necessary:

1. The supersymmetry transformation rules of all the dual fields we have introduced
should be found.

2. The 10-forms which are known to exist and play an important role inN = 2B, d =
10 supergravity [49] should be added somehow to the pseudoaction in order to
have a complete picture of the dualities between fields and fluxes.

Work on some of these directions is in progress.
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