Response to report 4

We thank the referee for the time and effort in reviewing our manuscript. Below we address the
conceptual and technical questions posed in their report.

The paper describes that introducing an “impurty” in the hopping can eliminate
the so-called the non-Hermitian skin effect. The authors use a transfer-matrix
formulation to show the evidence numerically. The authors do not consider a
topological insulator but demand the non-Hermitian system to obey the “near-
sightedness principle.” The numerical evidence that the authors found is actually
argued analytically as I show below. I thereby find the authors’ claim that the
non-Hermitian skin effect is not a topological phenomenon quite unfair. | therefore
do not recommend its publication.

We believe that the referee's summary of our work is not completely accurate.

Specifically, the transfer matrix approach presents a rigorous analytical lower bound (Eq. (3)) on the
impurity strength that removes the non-Hermitian skin effect, and the numerical diagonalization (Fig.
2) demonstrates that this lower bound holds. Further, we do not "demand that the non-Hermitian
system obeys the near-sightedness principle", but rather demonstrate that this principle does not
apply, as stated in the title and the abstract.

We thank the referee for sharing the analytical calculation that agrees with our findings in a concrete
system. We chose to rely on the transfer matrix approach because unlike the rescaling used by the
referee, it applies to any Hamiltonian rather than just the Hatano-Nelson model.

Aside of the above remarks, it appears that the referee considers our claim that the non-Hermitian
skin effect is not a topological phenomenon "unfair". Because the notion of topology and topological
phenomena are broad and somewhat vague, this is a reasonable concern. Despite that our abstract
clearly stated in what sense we consider NHSE not topological, we have now rephrased this claim and
state: "we demonstrate that the non-Hermitian skin effect has weaker bulk-edge correspondence
than topological insulators". To the best of our knowledge, this fact has not been previously pointed
out in the literature.

While we believe that this clarification leaves no room for misunderstanding of our claim, we
nevertheless address the rest of the referee's remarks for completeness.

First of all, the authors define the “near-sightedness principle” as the robustness
of the insulator, and particularly the topological insulator, against local
perturbations. This is because the bulk states of the insulator are localized in real
space.




We disagree with this statement. The near-sightedness principle fully applies to band insulators,
where all eigenstates are delocalized plane waves according to the Bloch's theorem. That the wave
function localization is not a requirement is also stated directly in Kohn's original manuscript
(https://doi.org/10.1103/PhysRevLett.76.3168), which we quote here: "The present paper makes a
contribution to this effort [of finding O(N) computational methods]. Unlike some other recent work,
it does not depend on the existence of well-localized generalized Wannier functions, which exist only
in large-gap insulators. It applies to both insulators and metals."

The authors incorrectly extend only the part “topological” to non-Hermitian
systems, ignoring the part “insulator” and mistakenly conclude that the non-
Hermitian skin effect is not topological because it is not robust against a local
change. Since the authors’ model originally does not contain any randomness or
any other effects to localize bulk states, it is not an insulator and surely does not
obey the “near-sightedness principle.” If the authors would introduce the
randomness as the original Hatano-Nelson model, the conclusion would have been
different.

The last statement is incorrect. Because the transfer matrix establishes a lower bound on the wave
function growth, Eq. (3) holds also in presence of arbitrary disorder. In the updated version of the
manuscript, we added a statement on how the lower bound of Eq. (3) applies to the disordered case.

We also note that the disorder strength at which all eigenstates of the Hatano-Nelson model are
localized is the one that does not have a point gap, and thus does not have the non-Hermitian skin
effect.

Next, the non-Hermitian skin effect is analytically explained by the introduction of
the imaginary gauge transformation, For the Hatano-Nelson model under the open
boundary condition, ... Egs. (R1)-(R13) ... It surely decreases exponentially at the
right edge if (L — 1)h < himp but increases exponentially up to the hopping
impurity. Notice that the conclusion would be different if the eigenvector wH (x)
for the Hermitian Hamiltonian were localized due to a random potential, and
hence the system were indeed an insulator.

We thank the referee for presenting an alternative proof of the collapse of NHSE in the Hatano-
Nelson model. We chose the transfer matrix formalism because it applies to arbitrary Hamiltonians.

Finally, the reference list lacks some important papers. Upon introducing the
Hatano-Nelson Hamiltonian, the authors do not cite the original Hatano-and-
Nelson papers:

- N. Hatano and D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996)



- N. Hatano and D.R. Nelson, Phys. Rev. B 56, 8651 (1997)

The critical papers on the non-Hermitian skin effect and those on the topological
property of non-Hermitian systems are lacking too.

- S. Yao and Z. Wang, Phys. Rev. Lett 121, 086803 (2018)

- Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda,
Phys. Rev. X 8, 031079 (2018)

- K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X 9, 041015 (2019)

Also, the review paper [4] lacks the names of the authors.

We thank the referee for pointing out the missing and incorrectly formatted references. We have
fixed these in
the new version of the manuscript.
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We thank the referee for the time and effort in reviewing our
manuscript. Below we address the technical and conceptual questions
posed in their report.

The authors show that the near-sightedness principle breaks down in the presence
of a non-Hermitian impurity. They demonstrate this effect for one- and two-
dimensional systems both in the case of a non-Hermitian and Hermitian system.
While the effect seems somewhat intuitive, | appreciate that the authors put this
effect in the wider context of topological systems.

We thank the referee for their positive assessment.

I have a few questions for the authors about their work:

1. The breakdown of the near-sightedness principle is demonstrated for the one-
dimensional system in Fig. 1(a). To show the effect, the authors choose t_R=0.9
andt L =11, i.e., the states in the model propagate to the left. The impurity is
implemented in such a way that if h_imp # 0 and > 0, t L becomes smaller and t R
becomes larger. In other words, at the impurity, the states would prefer to move in
the opposite direction as compared to the rest of the chain. As such, it is not
surprising to me that turning on h_imp > 0, one would at some point find an h_imp



large enough for which all the states will accumulate at the impurity. Did the
authors also check whether this effect takes place for h_imp < 07?

Indeed the behavior is quite intuitive, as captured by Eq. (3): when the
impurity amplification strength is sufficient to overcome that of the bulk, the
states accumulate at the impurity. For that reason h_imp < 0 would not result
in the breakdown of NHSE.

2. The text in the paper seems to imply that any non-Hermitian impurity would
result in a breakdown of the near-sightedness principle. However, this is probably
only the case for a non-reciprocal impurity like the one in red in Fig. 1(a). Is that
indeed correct?

Indeed, our work demonstrates that given a general bulk Hamiltonian, it is
always possible to engineer an impurity that removes NHSE in a system of

arbitrary fixed size. As the referee correctly expects, this impurity must be

non-reciprocal in order to counteract the non-reciprocal nature of the bulk
Hamiltonian.



Lack of near-sightedness principle in non-Hermitian
systems

Hélene Spring!”, Viktor Konye?, Anton R. Akhmerov!, and Ton Cosma Fulga?

1 Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 4056, 2600
GA Delft, The Netherlands
2 Institute for Theoretical Solid State Physics, IFW Dresden and Wiirzburg-Dresden
Cluster of Excellence ct.qmat, Helmholtzstr. 20, 01069 Dresden, Germany
*helene.spring@outlook.com

Abstract

The non-Hermitian skin effect is a phenomenon in which an extensive num-
ber of states accumulates at the boundaries of a system. It has been as-
sociated to nontrivial topology, with nonzero bulk invariants predicting its
appearance and its position in real space. Here, we demonstrate that the
non-Hermitian skin effect isnet-a-has weaker bulk-edge correspondence than
topological phenemenen-in—generalinsulators: when translation symmetry is
broken by a single non-Hermitian impurity, skin modes are depleted at the
boundary and accumulate at the impurity site, without changing any bulk in-
variant. This-Similarly, a single non-Hermitian impurity may eceur-evenfor

deplete the states from a region of Hermitian bulk.

In the absence of long-range interactions, local changes made to an insulator have a
local effect. This phenomenon is known as the near-sightedness principle: far from the
perturbation, the properties of the system remain as they were_[1,2]. Topological insu-
lators, like trivial insulators, obey the near-sightedness principle. The bulk properties of
topological insulators stabilize gapless modes at their boundaries in a phenomenon known
as bulk-edge correspondence (BEC). symmetry-preserving perturbation at the boundary
that destroys the topological phase will locally shift the position of the boundary modes
but will not remove them.

In non-Hermitian systems, the near-sightedness principle fails. The spectrum and
eigenstates are highly sensitive to boundary conditions: shifting from periodic to open
boundary conditions (PBC and OBC) leads to the bulk modes exponentially localizing
at the new boundaries [3]. This phenomenon is known as the non-Hermitian skin effect
(NHSE). In early works, when the NHSE was discussed from the point of view of non-trivial
topology, it was considered to be a failure of the conventional BEC_[4]. More recently, it
was shown that the 1D NHSE is indeed a topological phenomenon, and the location of the
edge modes is predicted by the winding number of the bulk spectrum 5} [5-8]. In higher
dimensions however, especially when eigenstate accumulation occurs at corners, multiple
invariants have been proposed for different types of NHSE. A recent review has concluded
that understanding the formation of corner skin modes is mostly done on a case-by-case
basis, and that there is no current consensus on the general theoretical formalism behind
it [9].

In the presence of impurities, the failure of the near-sightedness principle in non-
Hermitian systems is further demonstrated. Non-Hermitian impurities are observed to
attract the modes of the system with a localization length that is proportional to the



system size [10-13]. This phase is scale-invariant and is therefore considered distinct from
the NHSE phase.

In this work, we show that an appropriately selected non-Hermitian impurity is ca-
pable of exponentially localizing all modes present in the system, thus challenging the
association between the NHSE and nen-trivialtepelegyBEC. We show that when transla-
tion symmetry is broken, the appearance of this effect as well as its position in real space
becomes independent of any bulk topological index. This phenomenon occurs even when
the bulk is fully Hermitian, further highlighting the breakdown of bulk-boundary corre-
spondence and the near-sightedness principle. In the following, we explore these features
using a simple one-dimensional (1D) model, highlighting first why this effect is expected
to occur, followed by a concrete numerical demonstration. We then show this effect is also
are present in a two-dimensional (2D) model.

The NHSE can be understood in terms of transfer matrices that relates the wave
function at one boundary in a translationally invariant chain to the bulk wave function at

a given energy E [14,15]:
Y(@N1)) _ N Y(21)
(i) = (5o W

where ¥ (zy) is the possibly multi-component wave function of the N-th unit cell, and
Tp(F) is the transfer matrix of one unit cell of the bulk of the chain. In non-Hermitian
systems that host the NHSE, there is a preferred direction of transmission towards the
boundary with the skin effect. The largest eigenvalue Ag(F) of the transfer matrix Tp(FE)
representing transmission away from this boundary has a modulus smaller than 1, resulting
in the largest eigenvalue of the transfer matrix T4 (E) being |AY (E)| < 1. The magnitude
of the eigenvalues of the transfer matrices are therefore directly linked to the accumulation
of modes at a certain site: in non-Hermitian systems, they predict which boundary will
host the NHSE.

Adding an impurity to the system modifies the transfer matrix. The transfer matrix
relating the wave function components on the left side of the chain to those at an impurity
on site NV + 2 is given by

T(N, E) = Tiup(E)T5 (E), (2)

where Timp (E) is the transfer matrix between the wave function components (¥ (zy), ¥ (xn—_1))"
and (Y(zn41),V(xn))T. If Mimp(E), the smallest eigenvalue of the impurity transfer ma-

trix Timp (E), is much larger than AN (E), the largest eigenvalue of the bulk transfer matrix

TH (E), then all of the modes of the system will accumulate at the impurity site instead of

the boundary that hosts the NHSE. Therefore the condition for the NHSE to completely
disappear from the system boundary is:

min A3 (B)Aimp(E)| > 1, (3)

where E is any energy that lies within the boundary defined by the PBC eigenvalues of
the HamitbonianHamiltonian—or in other words within the point gap. Eq. (3) describes
the case where all of the modes have shifted to the impurity, but the majority of the
modes are likely displaced well below this condition. The lower bound on the impurity

strength provided by Eq. (3) directly generalizes to the case when the bulk is disordered

in which case slowest decaying eigenvalue of the transfer matrix is replaced by the largest
Lyapunov exponent of the system [16]. Alternatively, a weaker but more straightforwardl

valid lower bound follows by minimizing Ag(FE) over disorder realizations in addition to
energy.
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Figure 1: Breakdown of the correspondence of the skin effect and bulk topology via a
non-Hermitian hopping impurity in the bulk, model Eq. (4). (a) Schematic of the tight-
binding system Eq. (4) around the impurity site (in red). (b) The SPD [Eq. (5)] of a 1D
chain of 60 sites in a non-Hermitian system (tg = 0.9 and ¢, = 1.1) with a non-Hermitian
impurity located at Zimp = 30, as a function of increasing impurity strength Aimp. (c)
Same as (b) for a Hermitian system (¢t = 1 and ¢, = 1). Plot details in App. A.

As a concrete example, we now apply our reasoning to the Hatano-Nelson Hamiltonian
17,18], a 1D single-orbital non-Hermitian Hamiltonian:

N

H(m,N) =" trlj}(j — 1| + trlj — 1){j| )

+ ehlmptR‘m><m — 1‘ + e_himptL’m - ]‘><m’7

where the sum runs over the lattice sites j of the system, IV is the total number of sites
of the chain, m corresponds to the impurity site, and hiyp models the magnitude of the
hopping asymmetry that defines the impurity [Fig. 1 (a)]. Aimp = O results in a uniform
system with no impurity. For simplicity we do not consider onsite terms, and the non-
Hermiticity of the bulk arises from the hopping asymmetry in the bulk, tg # tr.

We observe the effect of a non-Hermitian impurity in this model by tracking the spatial
distribution of modes in the system, in order to determine its effect on the NHSE. An
extensively used method of characterizing the NHSE is the calculation of the real-space
sum of probability densities (SPD) of all eigenstates of a system:

SPD(z;) = Y [T ()|, (5)

where ¥, (z;) is amplitude of the n-th eigenvector on site z;. While the local density
of states is defined for individual energies, the SPD is akin to a local density of states
evaluated at all energies of the system. We set {; > tr. In doing so, we realize a
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Figure 2: Breakdown of bulk-edge correspondence in a system with an amplifying non-
Hermitian impurity, model Eq. (4). (a) The modulus of the largest eigenvalue of Tg
[Eq. (6)] for all energies within the boundary defined by the PBC eigenvalues (in red),
for tp = 0.9 and ¢, = 1.1. (b)-(c) the smallest ratio of eigenvector components at the
impurity |¥(zimp)|? and the eigenvector components at the left boundary |¥(zo)|? as a
function of the impurity strength hinp and impurity position i, for (b) non-Hermitian
(tr = 0.0003 and ¢z, = 2980) and (c) Hermitian systems (tg = 1 and ¢;, = 1). The bound
IAB™ 2 (E)Nimp(E)| = 1 [Eq. (3)] is shown as a dotted line in (b) and (c), where E is the
energy for which the modulus of the wave component at the impurity is the smallest. Plot
details in App. A.

non-Hermitian system where the NHSE appears on the left of the chain, with modes
exponentially localized around site j = 0. In non-Hermitian systems, as hiynp increases,
the skin effect shifts away from the system boundaries to the impurity site in the bulk,
as evidenced by the change in SPD [Fig. 1 (b)]. In Hermitian systems (tgr = t, = 1), the
non-Hermitian impurity depletes the modes to its left and accumulates them to its right
[Fig. 1 (c)].

We now analyze the model Eq. (4) in terms of transfer matrices and the condition
Eq. (3). We first examine the transfer matrix of the system without impurities. The
transfer matrix relating wave functions of different unit cells in the bulk of the chain is
given by:

o) = By i) ©

As shown in Fig. 2 (a), the modulus of the largest eigenvalue of Tg(E) [Eq. (6)] is smaller
than 1 for any energy that lies within the limits of the PBC spectrum. This means that
the largest eigenvalue of the transfer matrix connecting increasingly distant points of the
chain will be much smaller than 1.

We now consider the system with an impurity (himp # 0). The transfer matrix relating

(,(b(mimp)) w(ximpfl))T to (w(l'impfl)7 w(ximpf2))T is:

(7)

him 2him
e pE t —e*Mimp¢ t
Ti (E) < . /L R/ L>'

We diagonalize Eq. (4) for various hopping asymmetry strengths at the impurity located
at Timp, and extract the components of all the eigenvectors at the boundary W, (x¢) and
the components at the impurity site ¥,,(zimp). The smallest ratio of these components,

min [ Uy (Timp)[*/ | ¥ (20)|* (8)
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Figure 3: Shifting modes via a non-Hermitian impurity in a 2D non-Hermitian system
hosting the NHSE. (a) Schematic of the 2D system with an impurity at the center. Black
arrows indicate the direction of transfer operated by the rectangular transfer matrix Txr
across the boundary marked by a black dashed line. Red arrows indicate the direction
of transfer of the impurity transfer matrix 7., across the boundary marked by the red
dashed line. (b) SPD [Eq. (5)] of a 2D non-Hermitian system Eq. (9) with no impurities.
Darker color indicates a larger SPD. (c) SPD of the same bulk non-Hermitian Hamiltonian
with an impurity Aimp/2zimp = 6. Darker color indicates a larger SPD. (d) SPD at the
impurity site as a function of increasing impurity hopping asymmetry Aimp/Zimp, in a
system with t;, =ty = e' and tg = tp = e~ !. Plot details in App. A.

belongs to the eigenstate of the system that is the most localized at the boundary. With
decreasing impurity distance from the boundary and/or increasing impurity strength, this
ratio can be made arbitrarily large [Fig. 2 (b)], indicating that all of the modes of the
system accumulate at the impurity for a large enough hopping asymmetry at the impu-
rity. We also calculate Agmp*Q(E))\imp(E), where E is the energy for which the modulus
of the wave function at the impurity is the smallest. We use this expression to determine
the threshold where the eigenvector most localized at the edge starts to shift towards
the impurity, by plotting )\g"‘p_Q(E))\imp(E) = 1. As shown in Fig. 2 (b), this thresh-
old aligns with mgn]\Iln(ximp)\Q/\\I/n(xo)P = 1, where the most localized eigenstate is
equally present at the system boundary and at the impurity. For a fully Hermitian bulk
(tr = tr, = 1), the crossover threshold is located at himp = 0 [Fig. 2 (c)]. Fluctuations in
mrjn | U (Timp)|?/|Wn (20)|? present in Fig. 2 (b)-(c) are due to finite-size effects, see App. A.

We now extend our analysis to higher-dimensional systems. In a general d-dimensional
system, we conjecture that a similar analysis can be performed by examining transfer
matrices in the radial direction. We take 2D systems as an example [Fig. 3 (a)]. We
consider the following 2D Hamiltonian:

Nz Ny

H(mg,my, Ny Ny) = > Y talje + 1, y) (oo dyl + trlies dy) G + 1,y

+ tuljes y + 1) s Jy| + tD|jas Jy) s Jy + 1

+ el (¢ Img, my) (Mg + 1,my| + talme, my)(me —1,m,| (%)
+ tplme, my) (Mae, my + 1| + ty|ma, my) (me, my, — 1)

+ e (tp lmy 4+ 1,my) (mg, my| + tglme — 1,my) (mg, m,|

+ tp|mg, my + 1) (mg, my| + ty|mg, my — 1) (mg, my|)

where the sums run over the coordinate indices of the lattice sites j;, j, of the system,



the impurity is located at (j.,jy) = (ms, my), and for simplicity we consider the hopping
asymmetry at the impurity hiyp to be the same in both the x and y directions. There are
four hopping asymmetry impurities, two to the immediate left and right of the impurity
site, and two immediately above and below the impurity site.

In a one-dimensional chain, a transfer matrix argument connecting neighboring sites
is sufficient to track the shifting of the modes towards an impurity [Fig. 2 (b)]. In two
dimensions, we extend this argument to transfer matrices Tr(E) that connect outer regions
of a sample to its inner regions, following the example shown in Fig. 3 (a):

Yin = Tr(E)Pout, (10)

where 1, are the wave components on the sites that lie immediately within the boundary
denoted by the black dashed line, and 1),y are the wave components on sites lying imme-
diately outside the same boundary. Since the size of 1, is smaller than the size of Yoy,
Tr(E) is a rectangular matrix.

In the presence of an impurity at the center of a N x N lattice, the transfer matrix
from the outer boundaries to the impurity is given by:

T(E) =T1(E)T2(E) - - - Tnjo—1(E)Timp(E), (11)

where T;(E) are rectangular transfer matrices, and Timp (E) is the impurity transfer matrix
as shown schematically in Fig. 3 (a). Since the radial transfer matrices are rectangular,
there are wave functions at the edge of the system that inevitably have an exactly zero
weight at the impurity. However, wave functions satisfying generic and not fine-tuned
boundary conditions have weight in all the components, and therefore have a finite coupling
to the impurity. Therefore we expect that in the general case, a non-Hermitian impurity
that amplifies wave functions incoming from all directions should suppress all NHSE in a
finite sample.

We now verify numerically that a non-Hermitian impurity in 2D is capable of at-
tracting all of the modes in the system. We first consider the system with no impurity
(himp = 0). We set t, = tp = 1.1 and tg = ty = 0.9, which results in a NHSE mani-
festing at the lower-left region of the 2D system [Fig. 3 (b)]. By then increasing himp, all
of the modes of the system are attracted to the impurity [Fig. 3 (c)-(d)]. For Hermitian
systems, a similar accumulation of system modes at the impurity site is observed to occur.

We have shown that local non-Hermitian perturbations draw the NHSE into the bulk
of a system, which demonstrates the breakdown of BEC of the NHSE in 1D and 2D in the
absence of translation symmetry. Predicting the position of the skin effect using topological
invariants thus becomes unreliable once translation symmetry is broken. In real/non-
ideal systems, translation symmetry is not guaranteed to be preserved, highlighting the
importance of studying non-Hermitian systems in a manner that is sensitive to local details,
such as wave packet dynamics [19], rather than bulk invariants.

The non-Hermitian impurities that we have considered here affect only a few hoppings,
but they not purely local perturbations, in the sense that global information (the system
size) is required in order to know how strong the hopping asymmetry at the impurity has
to be before attracting all of the modes of the system.

Our work indicates that, owing to lack of a near-sightedness principle, impurities play
a much larger role in non-Hermitian systems than they do in Hermitian ones. This may
prove useful for experiments seeking to produce a non-Hermitian skin effect in a variety
of material and meta-material systems [20-24]. Rather than tailor gain and loss or nonre-
ciprocity throughout the entire bulk of the experimental system, a single, non-Hermitian
local perturbation would be sufficient to generate the NHSE.
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A Model and plotting parameters

In this section additional details of the plots are listed in order of appearance.

For Fig. 1, simulations were done for 1D systems composed of 60 sites. The values of
himp used are 0, 0.05L, and 0.25L, for both the non-Hermitian and the Hermitian systems.
For panel (b), the bulk Hamiltonian parameters are t;, = ! = 1.1 and tg = ¢~ %! = 0.9.
For panel (c), the bulk Hamiltonian parameters are t; = 1 and tg = 1.

For Fig. 2 (a), simulations were done for 1D systems composed of 10 sites. For the
non-Hermitian system shown in panel (b), bulk parameters t; = €® and tg = =8 were
used. The high hopping asymmetry in the bulk is used to reduce the oscillations of

min | W, (Timp) |2/ |¥n(70)|? that arise due to the penetration of the skin effect into the bulk
n

(as shown for example in Fig. 1 (b)). Parameters t;, = 1 and tg = 1 were used for the
Hermitian system shown in panel (c).

For Fig. 3, simulations shown in panels (b)-(d) were performed using 2D systems
composed of 31 x 31 sites with bulk hopping parameters t;, =ty =e! and tp =tp = e~ !
(see (9)). In panels (b) and (c), the impurity hopping asymmetry is Aimp/Zimp = 0 in (b)
and himp/Timp = 6 in (c).
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