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Figure 1: Average orbital participation entropy (as de�ned in Eq. (9)) for h = 3, and system sizes

L = 16, 18, 20, 22, 24.
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Figure 2: Half-chain entanglement entropy growth on two free fermions chains. The entanglement entropy

is computed in high energy product states.
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Figure 3: Saturation half-chain entanglement entropy divided by the Page prediction for the thermal value

Sth = L
2 ln 2 − 1

2 . Initial states are product states whose average energy is at one sigma from the in�nite

temperature energy ET=∞ = −∆/4, except for the L = 18 data where the average is performed over the

50 product states whose energy is the closest to in�nite temperature energy.
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Figure 4: Entanglement growth for initial high energy product states at h = 1, for a �xed sample which

is progressively extended on its right.
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Figure 5: Fit of the dynamical exponent z(h = 1) using entanglement growth data in a two time windows,

as a function of system size. For L ≥ 20, the numerics is compatible with a size-independent exponent.
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