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The present work develops a two-particle self-consistent (TPSC) approach for broken symmetry
phases and applies it to the three-dimensional Hubbard model. A benchmark against the
Quantum Monte Carlo (QMC) data of Ref. [13] looks promising.

We thank the Referee for taking the time for reviewing our manuscript.

(I) - However, the manuscript clearly addresses a specialist audience. For example, there is
a big leap from Eq. (1) to Eq. (2), i.e., as of the second page of the text, the author is talking
to specialists only. Moving parts of Appendix A into the main text may help, but I expect
that the manuscript will remain very technical nevertheless.

We understand the referee’s comment and have decided to significantly improve the paper
to reach a broader audience.

In response to the referee’s suggestion, we have integrated the Appendix into the main text.
This adjustment will help less experienced readers better understand the formalism of TPSC.

Additionally, based on the referee’s advice and with the aim of reaching a broader audience,
we have added two new figures (Figure 1 and Figure 2 in the revised version). These figures
will aid readers in developing a better physical intuition about the method, even if they are
not specialists.

Figure 1 shows a diagrammatic expression of the electron self-energy, which resembles
the one seen in Hartree-Fock (HF) theory. We clarify at the beginning of Section 3 that this
assumption simplifies the expressions for the Green’s function and two-particle susceptibilities,
which can then be analytically obtained using a formula similar to the Random Phase
Approximation (RPA). In the following paragraph, we explain how TPSC, despite its similarities
to mean-field approaches, goes beyond a simple mean-field description. Finally, we direct the
reader to Figure 2, which presents a flow diagram summarizing the main steps and equations
of the TPSC method.

The revised paper structure, now supported by the additional figures, provides a comprehen-
sive overview of the method from the outset, making it accessible even to non-specialist readers.

(II)- Another point if the exponent β = 1/2 mentioned at the beginning of section 4. For
the three-dimensional Heisenberg (O(3)) universality class, it should rather be β ∼ 0.369 see
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for example M. Campostrini et al., Phys. Rev. B 63, 214503 (2001) (also mentioned in Ref.
[13]). To me, this is a strong indication that TPSC remains a mean-field theory after all, and
I would find a related discussion plus references appropriate.

We thank the referee for the insightful comment, as it allows us to highlight a particularly
subtle and important aspect of the theory. The exponent value for the order parameter β = 1

2
might suggest that TPSC is a mean-field theory. However, the method actually belongs to a
different universality class.

The critical exponents for TPSC, as well as those for other theories based on λ-Moriya
corrections [see, for example, Phys. Rev. B 99, 045137], fall within the O(N) universality class
in the limit N → ∞ [see Phys. Rev. B 53, 14236. This class is distinct from the mean-field
theory, which is obtained in the limit of infinite spatial dimensions and is characterized by the
exponents ν = 1

2 , γ = 1, and β = 1
2 . In contrast, in three dimensions, the critical exponents

for O(∞) are ν = 1, γ = 2, and β = 1
2 .

In two dimensions, the critical temperature vanishes, as predicted by the Mermin-Wagner
theorem, which also holds for the O(3) case. This can be understood by considering the
divergence of the sum in Eq.(14) at finite temperature in 2D within the broken symmetry
phase, while it remains finite at T = 0, where the discrete sum over Matsubara frequencies
is replaced by an integral over a continuous variable. Such a divergence prevents the system
from ordering at finite temperature, and the correlation length of AF fluctuations grows
exponentially as the temperature is reduced.

Our results for the critical exponent β = 1
2 confirm that TPSC belongs to the O(∞)

universality class, as expected. However, it is important to note that the critical exponents in
TPSC are approximate and do not exactly match those of the O(3) universality class, as the
referee correctly pointed out.

We have added this discussion and the following Phys. Rev. B 65, 144520 reference in the
revised version of the manuscript.

(III)-Furthermore, there are other (lattice) QMC investigation of the Néel transition in the
half-filled three-dimensional Hubbard model. P. R. C. Kent et al., Phys. Rev. B 72, 060411(R)
(2005) and S. Fuchs et al., Phys. Rev. Lett. 106, 030401 (2011) may be a good starting point
to access further literature (actually, both references are also cited in Ref. [13]).

We thank the Referee for pointing out these important works, which we have now included
in our references.

From our understanding, these studies estimate the Néel temperature and critical behavior
of the Hubbard model from the symmetric side of the phase diagram, rather than within the
broken symmetry phase. In this sense, they complement the works we originally cited, where
the authors used Diagrammatic Monte Carlo to directly address the Hubbard model within
the broken symmetry phase.

We believe that the inclusion of the works suggested by the Referee has enhanced the
quality of our paper, and we have added them to our references accordingly.

Inspired by the referee’s advice, we have expanded our literature review including additional
references on Monte Carlo techniques. We have also added a recent preprint that presents a
comprehensive Monte Carlo study of the Hubbard model in the symmetric phase.

(IV)-To conclude, I believe that there is some interest in this work such that it ultimately
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merits publication in some form. However, my impression at least of the present manuscript is
a minor technical progress that is of interest mainly to specialists. Therefore, I recommend
transfer of a suitably revised version to SciPost Physics Core.

We recognize that the previous structure of the paper made it difficult to fully appreciate
the potential of extending TPSC to treat magnetic phases of the Hubbard model.

For example, the approach we present here can be applied to models hosting altermagnetism
[see e.g. Phys. Rev. X 12, 040501 ], a recently identified category of broken-symmetry phases.
Group theory predictions suggest that a large number of such materials may exist in three
dimensions [see Phys. Rev. X 14, 031039], where our algorithm can be readily applied.
We anticipate that many new magnetic materials will soon be theoretically proposed and
experimentally realized. Given the increasing complexity of these materials, it is crucial to
develop efficient algorithms capable of capturing quantum fluctuations, which our method
does.

Additionally, TPSC has already been successfully integrated with ab-initio methods,
though only for symmetric phases [see Phys. Rev. Lett. 123, 256401]. This opens up exciting
possibilities for extending our method to broken symmetry phases in combination with DFT
(Density Functional Theory) for realistic electronic structure calculations.

We also demonstrated that TPSC is an effective tool for studying the amplitude (Higgs)
mode, which is often elusive in most mean-field theories [see e.g. Phys. Rev. Lett. 115,
157002]. This paves the way for theoretical calculations of amplitude collective modes in
altermagnets, providing not only a reference for future experimental investigations but also
insights into fundamental questions –such as how the topological properties of altermagnets
electronic structures are reflected in their collective modes.

We have included this discussion, along with new references, in the conclusions as part of
the outlook, which should clarify the potential of the approach introduced in this work.

Extending TPSC to broken symmetry phases of the Hubbard model marks a significant
step in describing complex magnetic materials. We believe this advancement will interest a
broader audience, a point reflected in the expanded literature in this latest version of the
manuscript. Scipost Physics offers a more suitable venue for sharing our findings, as it will
help us reach a wider readership. Additionally, the paper’s revised structure makes it more
accessible to non-specialists.

Reuqested changes:

1-Move part of Appendix A to the beginning of section 3 in order to make the discussion
more self-contained.

We followed the Referee’s instructions and improved the paper structure inspired by the
Referee’s comments. [See our answer to point (I)]

2-Add discussion to the result β = 1/2 at the beginning of section 4 and cite relevant
references, such as Phys. Rev. B 63, 214503 (2001) .
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We added the discussion as well as the reference where the universality class of the Heisen-
berg models have been estimated. [See our answer to point (II)]

3-Mention further investigations of the half-filled three-dimensional Hubbard model such
as P. R. C. Kent et al., Phys. Rev. B 72, 060411(R) (2005) and S. Fuchs et al., Phys. Rev.
Lett. 106, 030401 (2011) and compare, e.g., the Néel temperature TN with these.

We have added these references to our literature [see our answer to point (III)]. The
comparison of methods for determining the Néel temperature using QMC techniques has
already been addressed in previous works, which we have cited in the main text. Since the Néel
temperature determined in our study aligns with the results of earlier research –where TPSC
was used to estimate the critical behavior of the magnetic phases of the Hubbard model from
the symmetric side of the phase diagram– we opted not to include this redundant information.

4-I liked the last three sentences of the Introduction (section 1) and hope that I have
passed the test.

We have removed these sentences.

5-I believe that many equations would fit on one line, which would render the manuscript
more readable. Examples: Eqs. (4), (10), (16), (18), (19), (21), (28), (37), (40), and (42).
Same for a reduction of Eqs. (29) and (41) from three to two lines.

We reduced the number of lines as the Referee suggested.

6-Between Eqs. (5) and (6) there is an abbreviation ”BSE” that has not been introduced.

In the revised version of the manuscript, the acronym BSE has now been defined.

7-Appendix C is quite short such that the cross-references generate unnecessary overhead.
Why not move the content of the appendix to the appropriate place in section 4?

We agree with the referee’s comment and have incorporated Appendix C into the Results
section.

8-In panels (c) and (d) of Fig. 3, clarity would be improved of the labels ”TPSC” and
”RPA” had the same colors as the corresponding lines.

We have changed the colors of the lines that are now the same as the corresponding labels.

9-I can guess what the bar means, e.g., in the δab̄ below Eq. (17), but I believe that an
explanation would be helpful.

We have added an explanation of this notation to the text.

10-If the meaning of the bar in the y in Eq. (18) and below was specified, I have missed
this description.
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We decided to replace y with y′ and explained in the text that y′ is a repeated index and
that summation is implied over repeated indices.

11-Below Eq. (41), there is a reference to ”The last equation”, but Eq. (41) actually is not
an equation.

We fixed this.

12-Some preprint references are actually published. Maybe some appeared only after
submission of the manuscript, but I still recommend an update. Specifically: [13] is published
in Phys. Rev. Lett. 132, 246505 (2024). [19] is published in Phys. Rev. B 109, 045155 (2024).
[28] is published in Phys. Rev. B 108, 075144 (2023). [34] is published in Phys. Rev. B 109,
075143 (2024).

We have updated all these references in the new version of the manuscript.

13-The URLs in Refs. [29,30] are redundant and could be omitted.

We removed the URLs from these references.

14-There are issues with the English text, such as: a) The manuscript mixes British and
American English. For example, there are occurrences of ”magnetisation” (British English)
and ”magnetization” (American English). I recommend that the author settles on one version
and runs the manuscript through an appropriate spellchecker. b) There are several instances
of ”as following” which in my opinion should read ”as follows”. c) There is a duplicate ”for
for” in the caption of Fig. 3. Overall, I believe that the manuscript would benefit from careful
proofreading, preferably also from somebody else than the author, and ideally a native English
speaker.

We have addressed points (a), (b), and (c) and followed the referee’s advice. We believe
that the level of English in our paper has significantly improved.
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Abstract

Spontaneous symmetry breaking of interacting fermion systems constitutes a
major challenge for many-body theory due to the proliferation of new independent
scattering channels once absent or degenerate in the symmetric phase. One exam-
ple is given by the ferro/antiferromagnetic broken symmetry phase (BSP) of the
Hubbard model, where vertices in the spin-transverse and spin-longitudinal chan-
nels become independent with a consequent increase in the computational power
for their calculation. Here we generalize the formalism of the non-perturbative
Two-Particle-Self-Consistent method (TPSC) to treat broken SU(2) magnetic
phases of the Hubbard model, providing with a efficient yet reliable method.
We show that in the BSP, the sum-rule enforcement of susceptibilities must be
accompanied by a modified gap equation resulting in a renormalisation of the
order parameter, vertex corrections and the preservation of the gap-less feature
of the Goldstone modes. We then apply the theory to the antiferromagnetic
phase of the Hubbard model in the cubic lattice at half-filling. We compare our
results of double occupancies and staggered magnetisation to the ones obtained
using Diagrammatic Monte Carlo showing excellent quantitative agreement. We
demonstrate how vertex corrections play a central role in lowering the Higgs
resonance with respect to the quasi-particle excitation gap in the spin-longitudinal
susceptibility, yielding a well visible Higgs-mode.
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1 Introduction

The characterization
:::::::::::::::
characterisation

:
of broken symmetry phases (BSP) in correlated quantum

systems remains a formidable challenge for many-body theory. In fact, determining the precise
ground state of spin Hamiltonians, such as the 3D-Heisenberg model with antiferromagnetic ex-
change, remains an open question to this day. Even if the precise knowledge of the groundstate
might remain out of reach

::::::
though

::::
the

:::::::
precise

:::::::
ground

::::::
state

::::
may

:::::::
remain

:::::::
elusive, it is possible to

improve mean-field predicted groundstates , e.g. the Néel state, including quantum corrections
encoded in the long-range and low-energy Goldstone modes [1, 2, 3, 4, 5], e.g. spin-waves in
antiferromagnets [6].

The situation becomes richer when interacting electrons in solids get
::
are

:
strongly correlated.

A minimal model to describe correlated materials is given by
::::
such

:::::::::
materials

:::
is the Hubbard

model [7], where electrons interact via
::::::::
through

:
on-site Coulomb repulsionthat enhances

:
,

::::::::::
enhancing electron localisation [8]. The theoretical challenge with strongly correlated BSP
consists in taking into account at the same time the

:::
lies

:::
in

:::::::::::::::
simultaneously

:::::::::::
accounting

::::
for

long-range fluctuations encoded in the Goldstone modes and
:::
the

:
localisation of electrons.

Such an ambitious task could be achieved by employing cluster [9] or diagrammatic [10]
extensions of Dynamical Mean Field Theory (DMFT) [11], or Diagrammatic Monte Carlo
(DiagMC) [12, 13]

::
as

::::
well

:::
as

:::::::
Monte

::::::
Carlo

:::::::::::
techniques

::::::::::::::::::::::
[14, 15, 12, 16, 13, 17]. However, the

inclusion of long-range modes for cluster theories would be limited by the maximum size of
the cluster used in the calculations,

:::::
even

::
if
::::::
clever

::::::::::
clustering

:::::::::
schemes

:::::
that

:::::::
permit

:::
an

::::::::
optimal

:::::::::
finite-size

:::::::
scaling

:::::::::
analysis

:::
are

:::::::::
available

:::::
[18]. In diagrammatic approaches, the proliferation

of independent vertex components [19, 20, 21, 22, 23, 24, 25], once absent or degenerate in
the symmetric phase, strongly increases the computational power needed for their numerical
evaluation.

Hence, it is of great interest to develop efficient algorithms requiring less computational
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resources but that at the same time are able to include
::::
that

::::::::
require

::::::
fewer

:::::::::::::::
computational

:::::::::
resources

:::::
while

:::::
still

::::::::::
accurately

::::::::::
including

:
correlation effects. In this realm

:::::::
context, the Two-

Particle-Self-Consistent (TPSC) approach [26, 27, 28, 29, 30, 31, 32, 33] has been proven to
be a reliable and efficient method to describe

:::
for

::::::::::
describing

:
the physics of the Hubbard model

in the weak-to-intermediate interaction regime. Given its reduced computational complexity,
TPSC has already been successfully extended to multi-orbital models [30], interfaced with
ab-intio calculations [31] and applied to non-equilibrium [32]. However, TPSC formulations
available today can only treat

:::::::::
However,

:::::::
current

:::::::
TPSC

:::::::::::::
formulations

:::
are

::::::::
limited

::
to

:
symmetric

phases, which prevents the application of the theory
::::::::::
preventing

:::::
their

:::::::::::
application

:
to parameter

regimes where materials are found in BSP. Furthermore, since
:::::::
exhibit

:::::::
broken

::::::::::
symmetry

:::::::
phases

:::::::
(BSP).

::::::::::::
Additionally,

::::::::
because

:
TPSC uses Moriya corrections to two-particle propagators masses

[34, 35, 36, 37, 38] for including
:::::::::::
propagator

:::::::
masses

:::::::::::::::::::
[34, 35, 36, 37, 38]

::
to

:::::::
include

:
correlation

effects, a straightforward generalisation of TPSC equations could
:::::
might

:
violate Goldstone’s

theoremintroducing
:
,
::::::::
leading

::
to

:
an unphysical energy gap to

::
in

:
the Goldstone modes. In this

work, we show how to properly extend the TPSC formalism to the case of
:::::::
handle spontaneous

symmetry breaking , which correctly preserves
:::::
while

:::::::::
correctly

::::::::::
preserving

:
the Goldstone modes.

We apply the new formulation to the antiferromagnetic phase of the three-dimensional
Hubbard model in the

::
on

::
a
:
cubic lattice. We compared our results with DiagMC [13]

showing an
::::
Our

:::::::
results

::::::
show excellent quantitative agreement for

:::::
with

::::::::::::::
Diagrammatic

:::::::
Monte

:::::
Carlo

:::::::::::
(DiagMC)

:::::
[13]

::::::
across

:
a wide range of interaction values. We show that the degree

of correlation is reduced by decreasing temperature
::::::::::::
demonstrate

:::::
that

:::
as

::::
the

:::::::::::::
temperature

:::::::::
decreases

:
from the critical value, extending the range of applicability of the theoryto higher

values of the interactions
:::
the

:::::::
degree

:::
of

:::::::::::
correlation

::
is

:::::::::
reduced,

:::::::
which

::::::::
extends

::::
the

:::::::::
theory’s

::::::::::::
applicability

:::
to

::::::
higher

::::::::::::
interaction

::::::
values

:
deep in the BSP. We demonstrate how symmetry

breaking implies
::::::
broken

:::::::::::
symmetry

:::::::
phase.

::::::::::::::
Additionally,

:::
we

::::::
show

:::::
that

:::::::::::
symmetry

:::::::::
breaking

:::::
leads

:::
to

:
a differentiation of vertex corrections in different scattering channels, which play

:::::::
various

::::::::::
scattering

::::::::::
channels.

:::::
This

:::::::::::::::
differentiation

::::::
plays a central role in lowering the Higgs

resonance with respect
:::::::
relative

:
to the quasi-particle excitation gap in the spin-longitudinal

susceptibility, yielding a well visible Higgs-mode. The stage is yours. Write your article
here.The bulk of the paper should be clearly divided into sections with short descriptive titles,
including an introduction and a conclusion.

::::::::
resulting

:::
in

:
a
::::::::
clearly

:::::::::::::::
distinguishable

::::::
Higgs

::::::
mode.

::::
The

::::::::::::
manuscript

::
is

::::::::::
organised

:::
as

:::::::
follows:

:::
in

:::::
Sec.

::
2
::::
we

::::::::::
introduce

:::
the

::::::::::
Hubbard

::::::
model

:::::
and

::::::::
establish

::::
the

:::::::::
notation;

:::::
Sec.3

:::::::::
describes

::::
the

::::::::
method

::::
and

::::::::
explains

::::
how

::::::::::::
two-particle

:::::::::::::::
self-consistency

:::
can

:::
be

:::::::::
achieved

:::
in

:::::::::
magnetic

:::::::
broken

::::::::::
symmetry

:::::::
phases

::::::
while

:::::::::::
preserving

:::
the

:::::::::::
Goldstone

:::::::
modes;

::
in

::::
Sec.

:
4

::
we

::::::
show

:::
the

::::::::::
numerical

:::::
data

::
of

::::
the

:::::
order

::::::::::
parameter

:::::
and

::::::
double

::::::::::::
occupancies

:::::::::::
comparing

:::::
them

:::::
with

::::::::::
DiagMC,

::::
and

:::
we

:::::
also

::::::
show

::::
how

:::::::
TPSC

::
is
:::::
able

:::
to

::::::::
capture

::::
the

:::::::
elusive

:::::::::::
amplitude

:::::::
(Higgs)

::::::
mode

:::
in

:::
the

::::::::::::::
susceptibility

::::::::
spectra;

:::
in

:::::
Sec.5

::::
we

::::::::
provide

::::
our

:::::::::::
conclusions

::::
and

:::::::::
outlook;

::
in

::::::::::
Appendix

:::
A

:::
we

::::::::
discuss

:::::
some

::::::::::
technical

:::::::
details

::::::::
relative

:::
to

::::
the

::::::::::
derivation

:::
of

::::
the

:::::::::
effective

::::::::::
irreducible

:::::::::
vertices;

::
in

::::::::::
Appendix

::
B

:::
we

::::::::
present

::::
the

::::::::::
derivation

::
of

::::
the

:::::::::::::::
Bethe-Salpeter

::::::::::
equations;

::
in

::::::::::
Appendix

::
C

:::
we

::::::
show

::::
the

:::::
steps

:::::::
needed

:::
to

:::::::
obtain

::::
the

:::::::::
corrected

:::::::::
one-loop

:::::::::::
self-energy.

:
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2 The model

In this work we will explicitly consider the single band Hubbard model in the cubic lattice,

H = −t
∑
⟨ij⟩σ

c†iσcjσ + U
∑
i

n̂i↑n̂i↓, (1)

where t is the electronic hopping amplitude between nearest-neighbors
::::::::::::::::::
nearest-neighbours

and U is the local Coulomb repulsion. In the case of the AF phase, the system loses the
full translational symmetry of the original cubic lattice and it is useful to introduce the
sub-lattice index a = A,B for specifying whether the fermionic field c†iaσ is evaluated at one
site belonging to the sub-lattice A or B.

::::::::::
Therefore,

::
it
:::
is

::::::
useful

:::
to

::::::::::
introduce

:::
the

::::::::::::
generalised

:::::::::::
multi-flavor

:::::::
indices

:::
α,

::::::
which

:::
for

:::::::::
example

::::::::
coincide

:::::
with

::::::::::
α = (a, σ)

:::::::::::
containing

:::::
both

:::::::::::
sub-lattice

:::
(a)

::::
and

:::::
spin

::::
(σ)

:::::::
indices

:::
in

::::
the

:::
AF

:::
or

:::
to

:::::
spin

:::::::
indices

:::
in

:::
the

:::::
FM

:::::
case.

:::::::
Then,

:::
we

::::
can

::::::::
rewrite

:::
the

:::::::::
Hubbard

:::::::::::::
Hamiltonian

::
in

::::
the

:::::::::
following

::::::
form:

:

H
:
=

∑
⟨ij⟩

∑
αβ

c†iαH
αβcjβ +

1

2

∑
i

∑
αβ

Uαβ n̂iαn̂iβ.

:::::::::::::::::::::::::::::::::::::::::

(2)

::
In

::::
the

::::
case

:::
of

:::::
FM,

:::
we

:::::
have

:::::
that

:::::::::::::
Hαβ = −tδαβ:::::

and
:::::::::::::
Uαβ = δαβ̄U ,

::::::::
whereas

:::
for

::::
the

::::
AF

::::
case

::::
we

::::
have

:::::::::::::::::
Hαβ = −tδσσ′δab̄::::

and
::::::::::::::::
Uαβ = δσσ̄′δabU ,

:::::::
where

:
ℓ̄
::::::::
denote

:::
the

:::::::::
opposite

:::
of

::::::
index

::
ℓ,

:::::::::
referring

::
to

::::
the

:::::::::::::::
complementary

:::::
spin

::
or

:::::::::::
sub-lattice

::::::
index

:::::
(e.g.,

::
if
::
ℓ
::
is

::::::::
spin-up

::
or

:::::::::::
sub-lattice

:::
A,

:::::
then

::
ℓ̄

::
is

::::::::::
spin-down

::
or

:::::::::::
sub-lattice

::::
B).

:

3 The method

::::
The

:::::::::::::
Two-Particle

::::::::::::::
Self-Consistent

::::::::
(TPSC)

::::::::
method

::::::::
requires

::::::::::
relatively

:::
low

:::::::::::::::
computational

::::::
power

::::
and

::::::::
achieves

:::
its

:::::::::
efficiency

::::::::
through

::
a
::::::
series

::
of

::::::::::::::::
approximations,

:::::::
which

:::
we

::::
will

::::::::
examine

:::
in

::::::
detail

::
in

::::
this

::::::::
section.

:::
In

:::::::::
practice,

::::
the

:::::::::::
self-energy

::
is

::::::::::::::
approximated

::
in

::
a
:::::
form

::::::::
similar

::
to

:::::
that

:::::
used

:::
in

::::::::::::
Hartree-Fock

::::::
(HF)

::::
(see

:::::::
Figure

:::
1).

::::::
This

:::::::::::
assumption

::::::::::
simplifies

:::
the

::::::::::::
expressions

:::
for

::::
the

::::::::
Green’s

::::::::
function

::::
and

:::::::::::::
two-particle

:::::::::::::::
susceptibilities,

:::::::
which

::::
can

:::::
then

:::
be

::::::::::::
analytically

::::::::::
obtained

::::::
using

::
a

:::::::
formula

:::::
akin

:::
to

::::
the

::::::::
Random

:::::::
Phase

:::::::::::::::
Approximation

:::::::
(RPA).

:

:::::::::
However,

::::::
unlike

:::
in

::::
HF

::::
and

::::::
RPA,

:::
the

:::::::
vertex

:::
in

:::
the

:::::::::::
self-energy

::::
and

:::::::::::::
susceptibility

::::::::::
diagrams

:
is
::::::::::::
represented

::::
not

::::
by

::::
the

:::::
bare

:::::::::::
interaction

::::
but

:::
by

:::
an

:::::::::
effective

::::::::
vertex.

:::::
This

:::::::::
effective

:::::::
vertex

::::::::
includes

:
a
::::::::::::::::
renormalisation

::::::
factor

::::
that

::::::::
depends

:::
on

::::
the

:::::::
double

::::::::::::
occupations,

::::::
which

:::
are

::::::::::::
determined

::
by

::::::::::
imposing

:::
an

:::::
exact

:::::
sum

::::
rule

:::
on

::::
the

:::::::::::::
susceptibility

:::
in

:::
the

:::::::::::::::
spin-transverse

:::::::::
channel.

:::::
This

:::::
sum

::::
rule

:::::::::::::
complements

:::
the

:::::::
’usual’

::::
gap

:::::::::
equation

:::
for

:::
the

::::::
order

::::::::::
parameter

:::
by

:::::::::
coupling

::
it

::
to

::::
the

:::::::
double

::::::::::::
occupancies,

:::::::
which,

::::::
unlike

:::
in

::::
HF,

::::
are

:::::::::::
determined

::::::::::::::::
self-consistently.

:

::::::
While

:::
we

::::
will

:::::::
provide

:::
an

::::::::
explicit

::::::::::
derivation

::
of

:::
all

:::
the

:::::::::::
equations,

:::::::
readers

:::::::::
primarily

::::::::::
interested

::
in

::::
the

:::::::
results

:::::
may

:::::
refer

:::
to

:::::::
Figure

:::
2,

::::::
which

:::::::::
presents

::
a

::::
flow

:::::::::
diagram

:::::::::::::
summarizing

::::
the

::::::
main

:::::
steps

::::
and

::::::::::
equations

::
of

::::
the

:::::::
TPSC

::::::::
method.

:

3.1 The TPSC ansatz

The starting point
::::
core

:
of TPSC consists in assuming

::::::
finding

:
an approximate form of

:::
for

:
the

electron self-energy . In particular, we assume the following ansatz for the self-energy:
:::::
from

9
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::::::
which

:::
one

::::
can

::::::::::
construct

::
a

:::::::::::
conserving

::::::::::::::
approximation

:::
in

:::
the

::::::::::::::::
Baym-Kadanoff

::::::
sense

:::::::
[39, 40]

:
.
:::
In

:::::
order

:::
to

:::
do

:::
so,

::::
one

::::
can

:::::
start

:::::
from

::::
the

:::::::::
equation

:::
of

:::::::
motion

:::::
that

::::::
reads:

:

Σab
σσ′

αγ
::
(x, y′)= δGγ,β

::::
(x− yy′, y

:::
)δab λ=

:
Uδσσ′naσ̄ − δσσ̄′sσσ̄a αγG

(2)βα
γγ (y

::::::::::

, x+ 0−, x+ 0+, x),
:::::::::::::::::

(3)

where x = (R, τ) is a quadrivector
::::::::::::::::::::::::::::
Gαβ(x, y) = −Tt

〈
cα(x)c

†
β(y)

〉
:::
is

::::
the

::::::::
Green’s

::::::::::
function,

::::
with

::::::::::::
x = (Ri, τi)::::::

being
:::
a

:::::::::::
four-vector

:
containing the lattice coordinates (R)

::::::::::
coordinate

::::
Ri

::::
and

:::
the

:::::::::::
imaginary

:::::
time

:::
τi,:::::::::::::::::::::

cα(x) = eHτiciαe
−Hτi ,

::::::::::
Σαβ(x, y)

::
is
::::
the

::::::::::
electronic

:::::::::::
self-energy,

:::::
and

::::::::::::::::::::::::::::::::::::::::::::::::::::
G

(2)αβ
γδ (x1, x2, x3, x4) = Tτ

〈
c†α(x1)cβ(x2)c

†
γ(x3)cδ(x4)

〉
::::::::::
represents

:::
the

::::::::::::
two-particle

::::::::
Green’s

:::::::::
function.

::
In

::::::::
Eq.(3),

::
a

:::::::::::
summation

::
is
:::::::::
intended

::::
for

::::
the

:::::::::
repeated

:::::::
indices

::
γ
:::::
and

:::
y′.

:::::
Due

:::
to

::::
the

:::::::::
presence

::
of

:::::
G(2),

:::::::
Eq.(3)

::
is

::::
not

::::::
closed

::::
for

:::
the

:::::::::::
self-energy

:
and the imaginary time (τ), naσ =

〈
c†iaσciaσ

〉
,

sσσ
′

a =
〈
c†iaσ′ciaσ

〉
, and :

:::::::::::::
single-particle

::::::::
Green’s

:::::::::
function,

:::::
and

::
in

::::::
order

:::
to

:::::::
obtain

:::
an

::::::::
explicit

::::::::::
expression

:::
for

::
Σ

:::::::
further

:::::::::::::::
approximations

::::::
must

::
be

:::::::
carried

::::
on.

:::
In

::::::::::
mean-field

:::::::
theory

:::
the

::::::::::::
two-particle

:::::::
Green’s

:::::::::
function

:::
is

:::::::::
replaced

:::
by

:::
its

::::::::::::::
disconnected

:::::
part,

:::::
that

:::
is

::
a
::::::
valid

:::::::::::::::
approximation

:::::
only

::
at

::::::
weak

:::::::::
coupling.

:::::
In

::::::
TPSC

::::::::::::::::
[26, 27, 29, 30],

:::
in

::::::
order

:::
to

:::::
take

:::::
into

:::::::::
account

::
of

::::::::::::
correlation

:::::::
effects,

::::
and

::
at

::::
the

::::::
same

:::::
time

::
to

:::::::
reduce

::::
the

:::::::::::
complexity

:::
of

:::::::
Eq.(3),

::::
the

:::::::::
following

::::::::::::
assumption

::
is

:::::::::::
considered:

:

Σαγ(x, y′)Gγ,β(y′, y)
:::::::::::::::::::

∼ λαγ Uαγ

[
Gαβ(x, y)nγ − sαγGγβ(x, y)

]
,

:::::::::::::::::::::::::::::::::::::::

(4)

::::::
where

:::::::::::
nα = ⟨n̂iα⟩,::::::::::::::::

sαβ =
〈
c†iβciα

〉
,
:::::
and

::::
λαβ

::
is

:::
an

:::::::::::::::::
extra-coefficient

::::
that

::::::
must

:::
be

::::::::::::
determined

:::::::::::::::
self-consistently

::::
and

:::::::::
contains

::::::::::
correlation

:::::::
effects.

:::::::
When

::::::::
λαβ = 1

::::::::::
mean-field

:::::::
theory

::
is

::::::::::
recovered.

::::
The

::::::::::
parameter

::
λ
::::
can

:::
be

:::::::::::
determined

:::
by

:::::::::
requiring

:::::
that

::::
the

:::::::::::::::::::
equal-time/position

:::::
limit

:::
of

:::::::
Eq.(3),

:::
i.e.

:::::::::::::
y = x+ 0++,

::
is
::::::::::
preserved

::::::::
exactly

:::::
when

:::::::
β = α

:

1,
:::
by

::::::::::
imposing:

:

λαγ
:::

=
⟨n̂α n̂γ⟩

nαnγ − sαγsαγ
.

::::::::::::::::::

(5)

:::::
From

:::::::
Eq.(4),

::::
we

::::
can

::::::
isolate

::::
the

:::::::::::
self-energy

:::::
that

::::::
reads:

:

Σαβ(x− y) = δ(x− y)
(
δαβλ

αγUαγnγ − λαβUαβs
αβ

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

::
In

::::
the

::::::::
FM/AF

::::::
phase

:::
of

:::
the

::::::::::
Hubbard

:::::::
model,

:::
the

:::::::::::
expression

:::
for

::::
the

::
λ
:::::::::::
parameter

:::::::::
simplifies

:::
as

:::::::
follows:

:

λ =
⟨n̂↑n̂↓⟩
n↑n↓

, (7)

which is the same prefactor appearing
::::::::
identical

:::
to

:::
the

::::
one

:
in the paramagnetic case [27, 29, 41].

In the next section, we will see how the parameter
:::::::
[27, 29]

:
.
::::::
Since

::
in

::::
the

::::::::
FM/AF

::::::
phase

:::::::
Eq.(7)

1
::
In

:::
the

::::
case

:::
of

:::
the

:::
AF

::::::
phase

::::
that

:::
we

::::::
address

:::
in

:::
this

::::::
work,

::::
spin

:::::::::::
conservation

::::::
implies

::::
that

::::::::::::

〈
c†αn̂γcβ

〉
= 0

::
at

::::
zero

::::
field.

:::::
when

::::::
α ̸= β,

::::
and

::::::::
therefore

::
we

:::::
shall

::::::::
introduce

:::
the

:::::::::::
λ-correction

::::
only

:::
for

:::
the

::::::::::
two-particle

:::::::
Green’s

:::::::
functions

::::
that

:::
do

:::
not

::::::
vanish

::
in

:::
the

:::::
limit

::
of

::::
zero

:::::::
external

::::
field.

10
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Figure 1:
::::::::::::::
Diagrammatic

::::::::::::::
representation

:::
of

::::
the

::::::::
diagonal

::::
(a)

::::
and

::::::::::::
off-diagonal

::::
(b)

::::::::::::
components

::
of

:::
the

::::::::::::
self-energy,

::
as

::::::::::::
analytically

:::::::::
expressed

:::
in

::::::::
Eq.(22).

:::::
The

:::::::
wiggly

::::
line

::::::::::
represents

:::
the

:::::::::
effective

::::::
vertex

::::
Γ↑↓,::::::

which
::::::
must

:::
be

:::::::::
obtained

:::::::::::::::
self-consistently

::::::
along

:::::
with

::::
the

:::::
order

:::::::::::
parameter

:::::::::
(encoded

::
in

::::
the

::::::::
Green’s

::::::::::
function,

::::::::::::
represented

:::
by

::::
the

::::::
thick

:::::::::::
continuous

::::::
line).

:::::::
Both

::::
are

::::::::::::
determined

::::::::
through

:::
the

:::::::::::::
simultaneous

:::::::::
solution

::
of

::::::::::::
Eqs.(13,14).

::::
does

::::
not

::::::::
depend

:::
on

:::
the

::::::::::::::::
spin/sub-lattice

::::::::
indices,

:::
we

::::::::
omitted

::::::
those

:::::::
indices

::
in

::::
the

::::::::::
expression

:::
of

λ, or equivalently the double occupancies, can be evaluated self-consistently together with the
order parameter, by imposing specific sum rules of physical susceptibilities.

:::
and

::::::::::
therefore

:::
we

::::
need

:::
to

:::::::::
optimize

::::
only

::::
one

:::::::::::
parameter

:::::
even

::::::
within

::::
the

:::::::::::::::::
broken-symmetry

:::::::
phases

::::::
under

:::::::::
scrutiny.

::::::
Hence,

:::
in

::::
the

::::
AF

::::::
phase

:::
the

:::::::::::
expression

::
of

::::
the

:::::::::::
self-energy

::::
can

:::
be

::::::::
written

:::
as:

:

Σab
σσ′(x, y)

:::::::::
= δ(x− y)δabU↑↓

(
δσσ′naσ̄ − δσσ̄′sσσ̄a

)
,

::::::::::::::::::::::::::::::::::::

(8)

::::::
where

::::::::::
U↑↓ = λU ,

::::
a, b

:::
are

:::::::::::
sub-lattice

::::::::
indices. We notice that in the

:
a
:
AF phase the off-diagonal

components of the self-energy
:::::::::::
off-diagonal

:
in the spin indices should vanish, i.e. sσσ̄ = 0.

However, it is useful to keep those terms in the expression of the self-energy for the derivation
of the Bethe-Salpeter equation in the spin-transverse channel. Therefore, we will consider
the presence of an external field that breaks spin-conservation to

::::
and

:::::::::::
eventually compute

the functional derivatives of Σ with respect to the off-diagonal component of the propagator
evaluated in the limit of a vanishing field.

In Appendix ?? we show that the expression for Σ in Eq.(??) can be derived starting from
the equation of motion and by performing an approximation at the two-particle level that
preserves an exact constraint in the limit of equal times and positions.

In order to obtain self-consistency at the two-particle level, we have to calculate physical
susceptibilities and therefore we need the knowledge of the irreducible vertex function Γ, which
is obtained by carrying the functional derivative of Σ with respect toG, i.e. Γ(1, 2, 3, 4) = δΣ(2,1)

δG(3,4)

[42].
In the FM/AF phases the original SU(2) symmetry of the Hubbard Hamiltonian is

spontaneously broken and the two independent scattering channels to be considered are the
spin-transverse and spin-longitudinal channels [22].

3.1.1 Spin-transverse channel

The vertex function in the spin-transverse channel is defined as:

Γabcd
↑↓ (x1, x2, x3, x4) =

δΣba
↓↑(x2, x1)

δGcd
↓↑(x3, x4)

= −λUδabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4), (9)

11
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where we used Eq.(??
::
22) and the fact that sσσ̄a = Gaa

σσ̄(x, x+ 0−) 2.
Let us now define the physical susceptibility in the transverse-spin channel:

χab
σσ̄(x1, x2) = Tτ

〈
Sσσ̄
a (x1)S

σ̄σ
b (x2)

〉
, (10)

where Sσσ′
a (x) = eHτ c†iaσciaσ′e−Hτ , with x = (Ri, τ). Since the vertex function in Eq.(??

::
22) is

local and static, the BSE (
::::::::::::::
Bethe-Salpeter

:::::::::
equation

:::::::
(BSE)

:
[see Appendix B for the derivation)

] for the physical susceptibilities is similar to the one obtained in RPA [22] and reads:

¯̄χ−1
σσ̄

(q) = ¯̄χ−1
0,σσ̄

(q) + ¯̄Γσσ̄, (11)

where we used the double bar to indicate 2×2 matrices, q = (iωn,q) with ωn = 2πn/β and q
being respectively the bosonic Matsubara frequency and crystalline exchanged momentum,
¯̄χσσ̄(q) is given by the Fourier transform of the susceptibility defined in Eq.(10), ¯̄Γσσ̄ = −λU I2×2

and χab
0,σσ̄

= − 1
V β

∑
k G

ab
σ (k)Gab

σ̄ (k + q). The Green’s function is obtained using the Dyson
equation and reads:

¯̄G−1
σ (k) = ϵk σ

x + [iν + µ−
Γ↑↓
2

(n+ σm)]I2×2, (12)

where n is the electron density and m = nA↑ − nA↓ is the staggered magnetisation.
In order to univocally determine single-particle and two-particle properties, we have to solve

a set of self-consistent equations that will allow us to find the chemical potential, staggered
magnetization

::::::::::::::
magnetisation

:
and double occupancies (µ, m, ⟨n̂↑n̂↓⟩) as a function of the

electron density, on-site interaction and temperature. In this work we will specialize in the
case of the three-dimensional cubic lattice at half-filling , i.e. n = 1, that corresponds to fixing

the chemical potential to µ =
Γ↑↓
2 .

Since the self-energy is static and local, the gap equation for the order parameter is similar
to the one obtained in mean-field theory and is given by following expression:

1

(2π)3

∫
BZ

dk
|Γ↑↓|
2Ek

tanh

(
βEk

2

)
= 1, (13)

where Ek =

√
ϵ2k +

(
mΓ↑↓

2

)2
, with ϵk = −2t [cos(kx) + cos(ky) + cos(kz)]. Differently from

mean-field theory however, the order parameter is not univocally determined by the gap
equation, because the double occupancies, appearing in Eq.(13), are still unknown.

As a direct consequence of its definition in Eq.(10), the susceptibility in the transverse
channel assumes the following limiting value

∑
σ χ

aa
σσ̄

(x, x+ 0−) = n− 2 ⟨n̂↑n̂↓⟩, which implies
the following sum rule for its Fourier transform:

1

β(2π)3

∑
ωnσ

∫
BZ

dqχaa
σσ̄(q) = n− 2 ⟨n̂↑n̂↓⟩ . (14)

Hence, Eqs.(13,14) provide with a closed set of equations that must be solved self-consistently
in order to determine the order parameter and the double occupancies.

2We used the overline symbol, i.e. ↑↓, to distinguish this vertex component from those belonging to the
longitudinal spin channel, that are defined in the next paragraphs.
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3.2 Spin-longitudinal channel

The irreducible vertex function in the longitudinal-spin channel reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣba
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

∼ Uσσ′δσσ̄′δabδacδad δ(x1 − x2)δ(x1 − x3)δ(x1 − x4).

(15)

Differently from Eq.(9) which is an exact equality, a further approximation, similar to the one
performed in the charge channel in the paramagnetic phase [26, 29], is needed to write Eq.(15)
in its final form (see Appendix A).

Let us define the susceptibilities in the spin-longitudinal channel:

χab
σσ′(x1, x2) = Tτ ⟨naσ(x1)nbσ′(x2)⟩ − ⟨naσ⟩ ⟨nbσ′⟩ (16)

Given the local and static form of the vertex function in Eq.(15), the expression of
the susceptibilities in the charge and spin-longitudinal channel, in presence of particle-hole
symmetry 3, can be written as following

:::::::
follows:

χz(q) =
χ0,∥(q)

1− Γzχ0,∥(q)
(17)

χρ(q) =
χ0,∥(q)

1 + Γρχ0,∥(q)
, (18)

where χz = 1
2

∑
abσσ′(−1)a+b+σ+σ′

χab
σσ′ , χρ = 1

2

∑
abσσ′ χab

σσ′ , Γz = 1
2

∑
σσ′(−1)σ+σ′

Γσσ′ , Γρ =
1
2

∑
σσ′ Γσσ′ , χ0,∥ = − 1

2V β

∑
kσbG

Ab
σ (k)GbA

σ (k+q). Analogously for the spin-transverse channel,
we can determine the value of the vertices Γz and Γρ by imposing the following sum rule for
the longitudinal channel susceptibilities:

2

β(2π)3

∑
ωn

∫
BZ

dqχz(q) = n− 2 ⟨n̂↑n̂↓⟩ −m2 (19)

2

β(2π)3

∑
ωn

∫
BZ

dqχρ(q) = n+ 2 ⟨n̂↑n̂↓⟩ − n2. (20)

Since Eqs.(13,14) are a set of closed equations, Eqs.(19,20) can be solved separately once
the values of m and ⟨n̂↑n̂↓⟩ have been self-consitently obtained from the spin-transverse channel.

3.3 Improved one-loop self-energy

In TPSC it is possible to obtain an improved self-energy that, differently from the one appearing
in Eq.(??

::
22), depends on both momenta and frequency. This can be achieved by computing

the TPSC vertices and susceptbilities and using them as input for the equation of motion
[27, 45]. Extending this procedure to the broken symmetry phase we obtain the following
expression for the improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄ χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q), (21)

where Gab
σ (k) is given by Eq.(12). In appendix C we show the derivation of Eq.(21).

3In general, the charge and longitudinal-spin channels interact via a mixed terms χz̄ρ [43, 44] that vanishes
only in presence of particle-hole symmetry [22]
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G−1
σ = G−10 − Σσ χab0,σσ̄ = − 1

Vβ ∑k Gab
σ (k)Gab

σ̄ (k + q)
Green’s function Bubble-terms

⟨n↑n↓⟩

1
(2π)3 ∫BZ

dk
|Γ ↑ ↓ |

2Ek
tanh ( βEk

2 ) = 1,

1
Vβ ∑

q,σ
[ ¯̄χ−1

0,σσ̄(q) + ¯̄Γσσ̄]
−1

aa
= ⟨n⟩ − 2 ⟨n↑n↓⟩

Gap equation + Feedback from the Goldstone modes

Sum-rule + modified gap equation are satisfied?
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2
Vβ ∑

q
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Σab
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2Vβ ∑
q
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σ̄ (k + q)Γa

σσ̄ χab
σσ̄(q) + U

2Vβ ∑
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σ (k + q)Γa

σσ1χ
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m

2
Vβ ∑

q
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Sum rules for the longitudinal channel
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χ0,∥ = − 1
2Vβ ∑

kσb

GAb
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Figure 2:
::::::::::::
Work-flow

:::
of

:::::
the

:::::::::::::::
Two-Particle

::::::::::::::::::
Self-Consistent

::::::::::
(TPSC)

:::::::::
method

:::::
for

:::::::::::::::::::
antiferromagnetic

::::::::
phases

:::
of

::::
the

::::::::::
Hubbard

::::::::
model.

::::
The

::::
first

::::
box

:::
at

:::
the

::::
top

::::::
shows

::::
how

::::
the

:::::::::
staggered

::::::::::::::
magnetisation

:::::::::::::::
m = nA↑ − nA↓::::

and
:::::::
double

::::::::::::
occupancies

:::
are

:::::::::
obtained

::::::::::::::::
self-consistently

::
by

::::::::
solving

::::
the

::::
gap

:::::::::
equation

:
[
:::
Eq.

:::::
(13)]

:::
and

::::
the

:::::
sum

::::
rule

:
[
:::
Eq.

::::::
(14)]

:::
for

::::
the

:::::::::::::::
spin-transverse

::::::::
channel,

::::::
where

::::::::::
Goldstone

:::::::
modes

:::::::
appear.

::::
An

::::::
initial

::::::
guess

:::
for

:::
m

::::
and

::::::
⟨n↑n↓⟩::

is
:::::
used

:::
to

:::::::::
calculate

:::
the

::::::::
Green’s

::::::::
function

::::
and

::::::::::::::
susceptibility.

::
If
:::::
Eqs.

:::::
(13)

::::
and

:::::
(14)

:::
are

::::
not

:::::::::
satisfied,

::
a

:::::::::::::
minimisation

:::::::
routine

:::::::
adjusts

::::
the

:::::::
values.

:::::::
Once

:::::::::
satisfied,

::::
the

:::::
next

::::
step

:::
is

::
to

:::::
find

::::
the

:::::::::::::
renormalized

::::::::
vertices

::
in

::::
the

:::::::::::::::::
spin-longitudinal

::::::::
channel

:::
by

::::::::::
enforcing

::::
Eqs.

::::::
(19)

::::
and

:::::
(20),

:::::::
shown

:::
in

::::
the

:::::::
middle

:::::
box.

:::::
With

:::
all

:::::::::::::
renormalized

::::::::::::
interactions

::
in

::::
the

::::::::
different

::::::::::
channels,

:::
the

::::::::::
improved

::::::::
electron

:::::::::::
self-energy

:::
can

:::::::
finally

:::
be

::::::::::
computed

::::::
using

::::
Eq.

:::::
(21)

:::::::::
displayed

:::
in

:::
the

:::::
box

::
at

::::
the

::::::::
bottom.

:
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4 Numerical results

(a) Staggered magnetisation m as a function of T for three different values of U/t = 3, 4, 5.
Dashed lines are best fits of the function α|T − Tc|1/2 close to Tc. (b) λ parameter as a
function of the reduced temperature θ = T−Tc

Tc
for the three different values of the on-site

interaction. (c) Double occupancies D = ⟨n̂↑n̂↓⟩ as a function of θ for the three different U
values. (d) Magnetisation and double occupancies as a function of U for T/t = 1/10. TPSC
data (open symbols) are compared to the DiagMC results (filled symbols) adapted from Ref.
[13]. The black dashed line is the magnetisation curve obtained using Hartree-Fock.

Fig. (3-a) shows the order parameter as a function of temperature for different values of
the on-site interaction. The order parameter decreases as a function of increasing temperature
until it vanishes at the critical temperature. Close to the phase transition, the order parameter
behaves like m = α|T − Tc|β with critical exponent β = 1/2, which is consistent with the
universality class of the spherical model [28, 46]. In

::::::::
different

::::::
from

::::
the

::::::
exact

::::
one

::::::::::
belonging

::
to

::::
the

:::::
O(3)

:::::::::::::
(Heisenberg)

::::::::::::
universality

:::::
class

::::::::::
β ∼ 0.369

::::
[47]

:
.
:::::
The

:::::::::
exponent

::::::
value

:::
for

::::
the

::::::
order

::::::::::
parameter

::::::
β = 1

2:::::::
might

::::::::
suggest

:::::
that

:::::::
TPSC

::
is

::
a
:::::::::::
mean-field

::::::::
theory.

::::::::::
However,

::::
the

:::::::::
method

::::::::
actually

:::::::
belongs

:::
to

::
a
:::::::::
different

:::::::::::
universality

::::::
class.

:::::
The

:::::::
critical

::::::::::
exponents

::::
for

:::::::
TPSC,

:::
as

::::
well

:::
as

:::::
those

:::
for

::::::
other

::::::::
theories

::::::
based

::::
on

:::::::::
λ-Moriya

::::::::
[34, 35]

:::::::::::
corrections

:
[
::::
see,

:::
for

:::::::::
example,

:::::::::::
[36, 37, 46]

:
,

:::
fall

:::::::
within

:::
the

::::::
O(N)

::::::::::::
universality

:::::
class

::
in

::::
the

:::::
limit

::::::::
N → ∞

::::
[28]

:
.
:::::
This

:::::
class

::
is

::::::::
distinct

:::::
from

::::
the

::::::::::
mean-field,

:::::::
which

::
is

:::::::::
obtained

::
in

::::
the

:::::
limit

::
of

:::::::
infinite

:::::::
spatial

:::::::::::
dimensions

:::::
and

::
is

:::::::::::::
characterized

:::
by

:::
the

::::::::::
exponents

:::::::
ν = 1

2 , ::::::
γ = 1,

::::
and

:::::::
β = 1

2 .:::
In

:::::::::
contrast,

::
in

:::::
three

::::::::::::
dimensions,

::::
the

:::::::
critical

::::::::::
exponents

:::
for

::::::
O(∞)

::::
are

::::::
ν = 1,

:::::::
γ = 2,

::::
and

:::::::
β = 1

2 .:::
In

::::
two

::::::::::::
dimensions,

::::
the

:::::::
critical

:::::::::::::
temperature

:::::::::
vanishes,

::
as

:::::::::
predicted

:::
by

::::
the

::::::::::::::::
Mermin-Wagner

:::::::::
theorem,

:::::::
which

::::
also

:::::
holds

::::
for

:::
the

::::::
O(3)

:::::
case.

:::::
This

::::
can

:::
be

:::::::::::
understood

:::
by

:::::::::::
considering

::::
the

:::::::::::
divergence

:::
of

:::
the

:::::
sum

:::
in

::::::::
Eq.(14)

::
at

::::::
finite

:::::::::::::
temperature

::
in

::::
2D

::::::
within

::::
the

:::::::
broken

::::::::::
symmetry

:::::::
phase,

::::::
while

::
it

::::::::
remains

::::::
finite

:::
at

:::::::
T = 0,

::::::
where

::::
the

::::::::
discrete

:::::
sum

::::
over

:::::::::::
Matsubara

:::::::::::
frequencies

::
is
:::::::::
replaced

:::
by

:::
an

::::::::
integral

:::::
over

:
a
:::::::::::
continuous

:::::::::
variable.

:::::
Our

:::::::
results

:::
for

:::
the

::::::::
critical

:::::::::
exponent

::::::
β = 1

2::
is

:::::::::
therefore

::::::::::
consistent

:::::
with

:::::::::
previous

::::::::::::
calculations

::::::::
showing

:::::
that

::::::
TPSC

::::::::
belongs

::
to

::::
the

:::::::
O(∞)

:::::::::::
universality

::::::
class.

:

::
In

:
Fig.(3-b), we show the value of the vertex renormalisation λ = |Γ↑↓|/U as a function of

temperature for different values of U . We observe that λ decreases as a function of increasing
interactions, as expected, since the system get more correlated when U increases. On the
other hand, λ increases by decreasing the temperature from the critical one, which can be
rationalised in the following way: when symmetry breaking is allowed, the system can reduce
the number of double occupancies ⟨n̂↑n̂↓⟩ = λ

4 (n
2 −m2), shown in Fig.(3-c), (and therefore

minimize the potential energy) by increasing the order parameter, rather than by decreasing
λ. Hence, our results show that the degree of correlation of the system is reduced deep in the
broken symmetry phase far away from the the critical temperature.

In Fig.(3-d), we show the order parameter and double occupancies as a function of U
by fixing the temperature to T/t = 1/10. As expected we observe that the order parameter
(double occupancies) increases (decrease) as a function of U . It is worth to highlight that
the introduction of quantum fluctuations leads to a significant decrease in the staggered
magnetization

::::::::::::::
magnetisation compared to its mean-field predicted value [black curve in Fig.

(3-d)]. We compared our results to the ones obtained using Monte Carlo in Ref. [13] and we
observe an excellent quantitative agreement.

After solving Eqs.(13,14) we can use the values of double occupations and staggered
magnetisation as input for Eqs.(19,20) in order to obtain the renormalised vertices in the
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Figure 3:
::
(a)

:::::::::::
Staggered

::::::::::::::
magnetisation

:::
m

:::
as

::
a
:::::::::
function

:::
of

:::
T

:::
for

::::::
three

:::::::::
different

:::::::
values

:::
of

::::::::::::
U/t = 3, 4, 5.

:::::::::
Dashed

::::::
lines

::::
are

:::::
best

::::
fits

:::
of

::::
the

:::::::::
function

:::::::::::::
α|T − Tc|1/2 :::::

close
:::
to

::::
Tc.:::::

(b)
:::
λ

::::::::::
parameter

:::
as

:
a
:::::::::
function

:::
of

::::
the

::::::::
reduced

:::::::::::::
temperature

:::::::::
θ = T−Tc

Tc ::::
for

::::
the

:::::
three

:::::::::
different

:::::::
values

::
of

::::
the

:::::::
on-site

::::::::::::
interaction.

:::::
(c)

::::::::
Double

::::::::::::
occupancies

::::::::::::
D = ⟨n̂↑n̂↓⟩:::

as
::
a
:::::::::
function

:::
of

::
θ
::::
for

::::
the

:::::
three

:::::::::
different

::
U

::::::::
values.

::::
(d)

:::::::::::::::
Magnetisation

::::
and

:::::::
double

::::::::::::
occupancies

:::
as

::
a
:::::::::
function

:::
of

::
U

::::
for

:::::::::::
T/t = 1/10.

:::::::
TPSC

:::::
data

::::::
(open

:::::::::
symbols)

::::
are

::::::::::
compared

::
to

::::
the

:::::::::
DiagMC

:::::::
results

::::::
(filled

:::::::::
symbols)

::::::::
adapted

:::::
from

:::::
Ref.

:::::
[13]

:
.
:::::
The

::::::
black

:::::::
dashed

:::::
line

::
is

::::
the

::::::::::::::
magnetisation

:::::::
curve

:::::::::
obtained

::::::
using

:::::::::::::
Hartree-Fock.

:
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Figure 4: Vertex renormalisations in the density (Γρ/U), spin-longitudinal (Γz/U) and spin
transverse (λ = |Γ↑↓|/U) channels as a function of the bare interaction for T/t = 1/7.5.

longitudinal channel. In Fig.(4), we show the renormalisation factors of the vertices, i.e. Γρ/U ,
Γz/U and λ as a function of U for T/t = 1/7.5. We observe that Γρ is highly enhanced
with respect to the bare vertex which is similar to what has been already observed in the
paramagnetic phase of the Hubbard model using TPSC [27]. Differently from the symmetric
case, in the AF phase Γz ̸= |Γ↑↓|, and our results show that Γz > |Γ↑↓| for all values of U and
that the difference between the two vertices increases as a function of the on-site interaction.
Interestingly, while |Γ↑↓| is always lower than the bare vertex (as Us in the paramagnetic phase
[27]), this is not true anymore for Γz/U , which is also an increasing function of U and crosses
the unity at U/t ∼ 5.4 for T/t = 1/7.5 [see Figure 4].

In Appendix ?? we describe how the integral appearing in Eq. (14) has been numerically
evaluated

::::::::
Integrals

:::
in

:::
the

:::::::::
Brillouin

:::::
zone

:::::
were

::::::::::::
numerically

::::::::::
calculated

::::::
using

:::
the

:::::::::::
trapezoidal

:::::
rule

::
in

::::::
three

:::::::::::
dimensions,

:::::::::::
employing

::::::
grids

::
of

:::::::::::::::
Nk ×Nk ×Nk ::::::

points
:::::
with

::::
Nk:::::::

values
:::
up

:::
to

:::
32.

:::::
For

:::
the

::::::::::
numerical

::::::::::::
integration

:::
of

::::
the

:::::::::::::::
spin-transverse

:::::::::::::
susceptibility

:::::::::::
evaluated

::
at

:::::
zero

:::::::::::
frequency,

:::
i.e.,

:::::::::::::::::::

∫
dq

∑
σ χσσ̄(q, 0),::

a
:::::::
specific

:::::::::
strategy

::::
was

::::::::
applied.

::::::
Since

::::
this

:::::::::
function

::::::::
diverges

:::
at

:::::::
q = Π,

::::
that

::::::
point

::::
was

::::::::::
excluded

:::::
from

::::
the

:::::::::::
integration

::::::
grid.

::::
We

::::::::::
evaluated

::::
the

::::::::
integral

::::
for

:::::::::
different

:::
Nk ::::::

values
:::::
(21,

::::
24,

::::
28,

::::
32)

::::
and

:::::
then

:::::::::::::
extrapolated

::::
the

::::::::
integral

::::::
value

:::
by

:::::::
fitting

::::
the

:::::::::
function

:::::::::
I + h/Nk,:::::::

where
::
I

::::::::::
represents

::::
the

:::::::::::::
extrapolated

:::::
value.

4.1 Dynamical Susceptibilities

We can use the solution of the self-consistent equations to evaluate spectral properties of
two-particle propagators. Regarding the spin-transverse channel, we observe that self-energy
and vertex corrections are both controlled by the same quantity, i.e. Γ↑↓, which substitutes de
facto the bare vertex appearing in RPA. Therefore, the spin-transverse dynamical susceptibility
defined in Eq.(11), which contains the information about the Goldstone modes, calculated at
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Figure 5: (a) Imaginary part of χz(ω + iη,q) (in log scale) defined in Eq.(17) evaluated along
the BZ high-symmetry path and for a wide range of real frequencies, for U/t = 12, T/t = 1/7.5,
and η/t = 0.03. (b) Imaginary part of χz(ω + iη,q) (in log scale) calculated using RPA for for
U/t = 12, T/t = 1/7.5, and η/t = 0.02. (c) Imχz(ω + iη,q) evaluated using TPSC and RPA
at fixed momentum q = (π, π, π + 0.1) at U/t = 12, T/t = 1/7.5 and for η = 0.03. (d) Same
as (c) but for U/t = 5.
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a given U corresponds to the RPA one evaluated at a lower value of the interaction, namely
|Γ↑↓(U)|.

Conversely, the vertex in the spin-longitudinal susceptibility Γz assumes different values
than Γ↑↓ because of symmetry breaking, and Γz > |Γ↑↓| as shown in Figure 4. This implies that
the spin-longitudinal susceptibility evaluated in TPSC does not correspond to any RPA one
evaluated at different effective parameters, and consequently the two methods yield qualitatively
different results for the spin-longitudinal susceptibility. In particular, since Γz > |Γ↑↓| the
gap in the χz spectrum is reduced with respect to the quasi-particle gap predicted by TPSC,
i.e. 2∆TPSC = |Γ↑↓|m, which is controlled by self-energy corrections. In Fig.(5-a) we show a
color plot of Imχz(q) that has been evaluated in the high-symmetry path of the BZ and for a
wide range of frequencies at U/t = 12 and T/t = 1/7.5. We observe that a well visible Higgs
mode appears well below the quasi-particle continuum starting at 2∆TPSC, it has a minimum
at R = (π, π, π), and presents a substantial dispersion along the M-R and R-Γ directions.
This is in stark contrast with the RPA predicted spectrum [shown in Fig.(5-b)], where the
Higgs resonance occurs at ω/t = 2∆HF and therefore is overdamped by the particle-hole
continuum [48, 49]. Our findings agree qualitatively with recent numerical results based on a
time-dependent Gutzwiller approach showing that the Higgs resonance is shifted below the
edge of the particle-hole continuum upon increasing the interaction [50]. In Figs.(5-c/d) we
show Imχz evluated using TPSC and RPA as a function of the real frequencies for a fixed
momentum close to R and two values of the interactions U/t = 12, 5 and at T/t = 1/7.5. It is
apparent that for both values of the interaction the Higgs resonance predicted by TPSC is
well separated from the particle-hole continuum and occurs at lower energies, while RPA does
not yield any true isolated pole.

5 Conclusions

We extended the formalism of TPSC to the case of
:::::::
account

:::
for

:
spontaneous symmetry breaking

and employed
:::::::
applied

:
the new method to the AF phase of the single band Hubbard model

in the
:::::::::::
single-band

:::::::::
Hubbard

:::::::
model

:::
on

::
a

:
cubic lattice at half-filling. Our comparison with

DiagMC shows an
:::::::
reveals excellent quantitative agreement between the two methods for the

order parameter and double occupancies.
We show that the differentiation of vertex corrections in the different scattering channels

due to symmetry breaking (Γz ̸= |Γ↑↓|) has remarkable effects in the spin-longitudinal channel.
In particular, the Higgs resonance occurs at energies lower than the quasi-particle continuum
leading to a well visible Higgs mode for a wide range of parameters.

Since our data demonstrate that the level of correlation decreases by decreasing temperature
deep in the BSP, one could argue that TPSC is particularly suited to the study of BSP where
correlation are not negligible but less pronounced.

The formalism that we developed is generic and could be adapted to more complicated
multi-band models and open the possibility for efficient treatment of correlation effects in
realistic materials in BSP.

::::::::::::
Additionally,

:::::::
TPSC

::::
has

:::::::
already

::::::
been

:::::::::::
successfully

:::::::::::
integrated

:::::
with

::::::::
ab-initio

:::::::::
methods,

::::::::
though

::::
only

::::
for

::::::::::
symmetric

:::::::
phases

::::
[31]

:
.
:::::
This

::::::
opens

:::
up

::::::::
exciting

::::::::::::
possibilities

:::
for

::::::::::
extending

::::
our

::::::::
method

:::
to

::::::::
broken

::::::::::
symmetry

:::::::
phases

:::
in

:::::::::::::
combination

:::::
with

::::::
DFT

:::::::::
(Density

::::::::::
Functional

:::::::::
Theory)

:::
for

::::::::
realistic

::::::::::
electronic

:::::::::
structure

:::::::::::::
calculations.

:

Also, since TPSC already has been used as a benchmark for cold atomic simulators [51, 52],
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its generalisation will provide further guidance to cold-atom experiments exploring broken
symmetry phases [53].

Generalising improved version of TPSC such as TPSC+ and TPSC+SFM [33] to the BSP
case could lead to the partial inclusion of dynamical effects, which have been shown to be
particularly important close to the Neél temperature [54, 55], and is left to future work.

::::
The

:::::::::
potential

:::
for

:::::::::
applying

::::::
TPSC

:::
to

:::::::::::
understand

::::::::
complex

:::::::::
magnetic

:::::::
phases

::
in

::::::
novel

:::::::::
materials

:
is
:::::
vast.

:::::
For

::::::::
example,

::::
the

:::::::::
approach

:::
we

::::::::
present

::::
here

::::
can

:::
be

:::::::
applied

::
to

::::::::
models

:::::::
hosting

:::::::::::::::
altermagnetism

::::::::::::::
[56, 57, 58, 59]

:
,
::
a
:::::::::
recently

:::::::::
identified

::::::::::
category

:::
of

:::::::::::::::::
broken-symmetry

::::::::
phases.

:::::::::
Group

:::::::
theory

::::::::::
predictions

::::::::
suggest

::::
that

::::::
many

:::::
such

:::::::::
materials

::::::
might

:::::
exist

::
in

::::::
three

:::::::::::
dimensions

::::
[60],

::::::::::
providing

:::
an

:::::
ideal

::::::::
scenario

::::::
where

::::
our

:::::::
method

::::
can

:::
be

:::::::
readily

::::::::
applied.

::::::::::::::
Investigations

:::
of

:::::
these

::::::
novel

:::::::::
magnetic

::::::
phases

:::
in

::::::::::
candidate

:::::::::::
compounds

:::::::::::::::::::::::
[61, 62, 63, 64, 65, 66]

:::
are

::::::::::
underway,

:::::
and

:::
we

::::::::::
anticipate

:::::
that

::::
new

:::::::::
magnetic

::::::::::
materials

::::
will

:::::
soon

:::
be

:::::::::
proposed

:::::::::::::
theoretically

::::
and

::::::::
realized

::::::::::::::::
experimentally.

::::
We

::::
also

::::::::::::::
demonstrated

::::
that

:::::::
TPSC

::
is
::::
an

::::::::
effective

:::::
tool

:::
for

:::::::::
studying

::::
the

:::::::::::
amplitude

:::::::
(Higgs)

:::::::
mode,

::::::
which

:
is
::::::
often

:::::::
elusive

::
in

:::::
most

::::::::::
mean-field

:::::::::
theories.

:::::
This

::::::
paves

:::
the

::::
way

::::
for

::::::::::
theoretical

::::::::::::
calculations

::
of

::::::::::
amplitude

::::::::::
collective

::::::
modes

:::
in

::::::::::::::
altermagnets,

::::::::::
providing

:
a
::::::::::
reference

:::
for

:::::::
future

:::::::::::::
experimental

:::::::::::::
investigations

::::
and

::::::::
offering

:::::::::
insights

::::
into

:::::::::::::
fundamental

:::::::::::::::
questions–such

:::
as

:::::
how

:::
the

::::::::::::
topological

::::::::::
properties

::
of

:::::::::::::
altermagnets

::::::::::
electronic

::::::::::
structures

:::::
[67]

:::
are

:::::::::
reflected

::
in

::::::
their

:::::::::
collective

:::::::
modes.

:
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A Equation of motion and TPSC ansatz

Let us introduce the generalised multi-flavor indices α, which for example coincide with
α = (a, σ) containing both sub-lattice (a) and spin (σ) indices in the AF or to spin indices in
the FM case. Then, we can rewrite the Hubbard hamiltonian in the following form:

H=
∑
⟨ij⟩

∑
αβ

c†iαH
αβcjβ +

1

2

∑
i

∑
αβ

Uαβ n̂iαn̂iβ.

In the case of FM, we have that Hαβ = −tδαβ and Uαβ = δαβ̄U , whereas for the AF case we

have Hαβ = −tδσσ′δab̄ and Uαβ = δσσ̄′δabU .

Let us define the electronic Green’s function as Gαβ(x, y) = −Tt

〈
cα(x)c

†
β(y)

〉
, where

x = (Ri, τi) is a four-vector containing the lattice coordinate Ri and the imaginary time τi,
and cα(x) = eHτiciαe

−Hτi . Then, the equation of motion of the Green’s function reads:

∂τiG
αβ(x, y)= δαβδ(x− y)−Hαγ(x, y)Gγβ(y, y)

−UαγG
(2)βα

γγ (y, x+ 0−, x+ 0+, x),
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where a summation over repeated indices is intended, Hαγ(x, y) = Hαβ
ij δ(τi − τj), and G(2) is

the two-particle Green’s function, that is defined as following:

G
(2)αβ

γδ (x1, x2, x3, x4) = Tτ

〈
c†α(x1)cβ(x2)c

†
γ(x3)cδ(x4)

〉
.

Let us introduce the self-energy Σ through the Dyson’s equation:

Σαγ(x, y)Gγ,β(y, y)= G−1αγ
0 (x, y)Gγβ(y, y)

+δαβδ(x− y).

If we substitute the last equation into Eq. (??), we obtain the equation of motion in the
following form:

Σαγ(x, y)Gγ,β(y, y) = UαγG
(2)βα

γγ (y, x+ 0−, x+ 0+, x).

Due to the presence of G(2), Eq.(3) is not closed for the self-energy and single-particle
Green’s, and in order to obtain an explicit expression for Σ further approximations must
be carried on. In mean-field theory the two-particle Green’s function is replaced by its
disconnected part, that is a valid approximation only at weak coupling. In TPSC [26, 27, 29, 30]
, in order to take into account of correlation effects, and at the same time to reduce the
complexity of Eq.(3), the following assumption is considered:

Σαγ(x, y)Gγ,β(y, y)∼

λαγ Uαγ

[
Gαβ(x, y)nγ − sαγGγβ(x, y)

]
,

where nα = ⟨n̂iα⟩, sαβ =
〈
c†iβciα

〉
, and λαβ is an extra-coefficient that must be determined

self-consistently and contains correlation effects. When λαβ = 1 mean-field theory is recovered.
The parameter λ can be determined by requiring that the equal-time/position limit of Eq.(3)
, i.e. y = x+ 0++, is preserved exactly when β = α 4, by imposing:

λαγ=
⟨n̂α n̂γ⟩

nαnγ − sαγsαγ
.

From Eq.(3), we can isolate the self-energy that reads:

Σαβ(x− y) = δ(x− y)
(
δαβλ

αγUαγnγ − λαβUαβs
αβ

)
.

In the FM/AF phase of the Hubbard model, the expression for the λ parameter simplifies as
following:

λ=
⟨n̂↑n̂↓⟩
n↑n↓

,

4In the case of the AF phase that we address in this work, spin conservation implies that
〈
c†αn̂γcβ

〉
= 0

at zero field. when α ̸= β, and therefore we shall introduce the λ-correction only for the two-particle Green’s
functions that do not vanish in the limit of zero external field.
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which is identical to the one in the paramagnetic case [27, 29]. Since in the FM/AF phase
Eq.(7) does not depend on the spin/sub-lattice indices, we omitted those indices in the
expression of λ, and therefore we need to optimize only one parameter even within the
broken-symmetry phases under scrutiny. Hence, in the AF phase the expression of the
self-energy can be written as:

Σab
σσ′(x, y)= δ(x− y)δabU↑↓

(
δσσ′naσ̄ − δσσ̄′sσσ̄a

)
,

where U↑↓ = λU , a, b are sub-lattice indices. We notice that in a AF phase the components of

the self-energy off-diagonal in the spin indices should vanish, i.e. sσσ̄ = 0. However, it is useful
to keep those terms in the expression of the self-energy for the derivation of the Bethe-Salpeter
equation in the spin-transverse channel. Therefore, we will consider the presence of an external
field that breaks spin-conservation and eventually compute the functional derivatives of Σ with
respect to the off-diagonal component of the propagator in the limit of a vanishing field.

A Irreducible vertices

In this section we shall give some details about the derivation of the expression for the
irreducible vertices in the spin-transverse and spin-longitudinal channels.

A.1 Spin-transverse channel

It is worth to note that the expression for the irreducible vertex in the spin-transverse channel
presented in the main text is an exact equality. In fact, even if λ is a functional of the Green’s
function, it does not appear in the expression of the irreducible vertex function because its
functional derivative with respect to the off-diagonal propagator vanishes, i.e.

δλ

δGcd
↓↑(x3, x4)

= 0. (22)

In fact, from Eq.(3) we can derive the following formula for the double occupancies:

⟨n̂aσn̂aσ̄⟩ =
1

2U
Σaa′
σσ′(x, y′

:
)Ga′a

σ′σ(y
′

:
, x). (23)

Let us now compute the functional derivative of the double occupancies:

δ ⟨n̂a↑n̂a↓⟩
δG↓↑

cd(x3, x4)
∝ δ(x− x4)δadΣ

↑↓
dc(x4, x3) +

δΣ↑σ′

aa′ (x, y)

δG↓↑
cd(x3, x4)

δΣ↑σ′

aa′ (x, y
′)

δG↓↑
cd(x3, x4)

::::::::::::

Gσ′↑
a′a(y

′
:
, x), (24)

where we can now easily see that the LHS does not conserve the spin along the z-axis and
therefore vanishes at zero external field.
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A.2 Spin-longitudinal channel

On the other hand the expression for the irreducible vertex in the spin-longitudinal channel
given in the main text is not an exact equality. Here we shall clarify where the extra
approximation comes from. The irreducible vertex function in the longitudinal-spin channel
reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣab
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

= U↑↓δσσ̄′δabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4)

+ U naσ̄ δ(x1 − x2)δab
δλ

δGcd
σ′σ′(x3, x4)

. (25)

Therefore, the irreducible vertex in the spin-longitudinal channel acquires non-local and
dynamical corrections, which would complicate the expression of the Bethe-Salpeter equations
and further approximations are needed. In practice, one approximates the extra dynamical
term to a constant deviation from the value obtained in the spin-transeverse channel, i.e.
Γρ/z ∼ −Γ↑↓ + δUρ/z.

B Numerical evaluation of integrals

Integrals in the Brillouin zone have been numerically calculated employing the trapezoidal rule
in three dimensions and using grids of Nk ×Nk ×Nk points with Nk up to 32. A particular
numerical strategy has been employed for the numerical integration of the spin-transverse
susceptibility evaluated at zero frequency, i.e.

∫
dq

∑
σ χσσ̄(q, 0). In fact, since this function

diverges at q = Π, we have excluded that point from the grid of integration. We evaluated
the integral for different values of Nk = 21, 24, 28, 32 and then we extrapolated the integral
value by fitting the function I + h/Nk, where I is the extrapolated value.

B Bethe-Salpeter Equations

Let us define the generalized susceptibility as:

χ1234 =
δG(21)

δh(34)
, (26)

where G(12) = −Tτ

〈
cα(x1)c

†
β(x2)

〉
is the propagator, x = (R, τ), 1 = (α, x1) and h(12) is the

perturbing field whose action reads:

Sext = −
∫

d1d2h(1, 2) c(1)c(2), (27)

where in the last equations c and c are Grassmann variables, and
∫
d1 =

∑
α

∑
R

∫ β
0 dτ , with

β = 1/kBT . Given the form of the external perturbation, the inverse of the non-interacting
propagator reads:

G−1
0 (12) = [∂τ + µ−H0]12 + h(12). (28)

23



SciPost Physics Reply and Diff

We now want to obtain a closed equation for χ1234 by explicitly performing the functional
derivative in Eq.(26). For doing so we first note that:

δG(21)

δh(34)
= −

∫ ∫
d1′d2′G(2, 2′)

δG−1(2′1′)

δh(34)
G(1′, 1). (29)

We can further develop Eq.(29) by making use of the Dyson equation, that reads:

G−1(12) = G−1
0 (12)− Σ(12). (30)

In fact, by substituting Eq.(30) into Eq.(29) and using Eq.(28), we obtain the following identity:

χ1234 = −G(2, 3)G(4, 1) +

∫ 4∏
i=1

di′G(2, 2′)G(1′, 1)Γ1′2′3′4′χ4′3′34, (31)

where we defined the two-particle irreducible (2PI) vertex function Γ1234 = δΣ(2,1)
δG(3,4) . Let us

express the last equation in Fourier space. For this purpose let us expand the propagators and
vertices in terms of their Fourier components, i.e.:

f1234 =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]fαβ
γδ (k, k

′, q),

G(1, 2) =
1

V β

∑
k

e−ik(x1−x2)Gαβ
k . (32)

We first note that:

−G(2, 3)G(4, 1) =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]×χ αβ
0,γδ (k, k

′, q), (33)

where we defined the bubble terms as:

χ αβ
0,γδ (k, k

′, q) = −(V β) δkk′ G
δα
k Gβγ

k+q. (34)

The final equation in Fourier space reads:

χαβ
γδ (kk

′q) = χ αβ
0,γδ (k, k

′, q)− 1

(V β)2

∑
k1k2

∑
α′β′γ′δ′

χ α β
0,β′α′(k, k1, q) Γ

α′β′

γ′δ′ (k1, k2, q)χ
δ′γ′

γ δ (k2, k
′, q) .

(35)

C Improved one-loop self-energy

Let us note that from its definition the generalised susceptiblity is related to the two-

particle Green’s function in the following way: χαβ
γδ (x1, x2, x3, x4) = G

(2)αβ
γδ (x1, x2, x3, x4) −

Gβα(x2, x1)G
δγ(x4, x3). Hence, we can rewrite the RHS of Eq.(??

:
3) in the following way:

1

V β

∑
kγ

e−ik(x−y)UαγnγG
αβ
k +

1

(βV )3

∑
kk′q

∑
γ

Uαγe
−ik(x−y)χαβ

γγ (kk
′q).
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α (a, σ)

β (b, σ′)

γ (c, σ′′)

α′ (a1, σ1)

β′ (a2, σ2)

γ′ (a3, σ3)

δ′ (a4, σ4)

Table 1: Relation between indices expressed in the compact and extended notations.

If we substitute Eq.(35) into the second term of last equation we obtain the following expression:

− 1

(V β)2

∑
kk′q

∑
γ

eik(x−y)UαγG
γα
k Gβγ

k+q

+
1

(V β)4

∑
kk′qk1

∑
γα′β′γ′δ′

UαγG
α′α
k Gββ′

k+qΓ
α′β′

γ′δ′ (kk1q) ×χγ′β′
γγ (k1k

′q)., (36)

The last equation is quite generic and valid for the exact case.
::::::
which

::
is

::
a
:::::::
generic

:::::
and

::::::
exact

::::::::::
expression

::
of

::::
the

:::::
RHS

:::
of

:::::::
Eq.(3).

::
Now we shall specialize to the antiferromagnetic phase of

the Hubbard model, and approximate the vertex function to a local quantity that does not
depend on the crystalline momenta. In order to do so it is useful to explicitly express the
spin-orbital indices in sub-lattice and spin indices as shown in Table 1.

Furthemore
:::::::::::
Furthermore, if we assum

:::::::
assume

:
spin-conservation we can express the irre-

ducible vertex function as following:
:::::::
follows:

:

Γa1a2
a3a4 |

σ1σ2
σ3σ4

∼ δa1a2δa1a3δa1a4(Γ
a1
σ1σ2

δσ1σ2δσ3σ4 + Γa1
σ1σ̄1

δσ1σ̄2δσ3σ̄4δσ1σ3), (37)

where we used the following notation Γa
σσ′ = Γaa

aa|σσσ′σ′ and Γa
σσ̄

= Γaa
aa|σσ̄σ̄σ. Substituting Eq.(37)

in Eq.(36) we obtain the following expression for the equation of motion in momentum space:

Σab
σ (k)− Unaσ̄ =

U

(V β)3

∑
k1k′qσ1

Gab
σ (k + q)Γb

σσ1
(νν ′ω)χba

σ1σ̄(k1k
′q). (38)

We notice that in this representation the self-energy is expressed in terms of the longitudinal
scattering channel only. It is possible to obtain an equivalent expression where the transverse
vertex and susceptibility appear by using the following crossing relation:

G(2)βα
γγ (y, x+ 0−, x+ 0+, x) = −G(2)βγ

γα(y, x, x+ 0+, x+ 0−). (39)

Plugging the last equation into the equation of motion in Eq.(??
:
3) and following similar

passages to the ones we did for obtaining Eq.(38), we obtain the following expression for the
self-energy:

Σab
σ (k)− Unaσ̄ = − U

(V β)3

∑
k1k′q

Gab
σ̄ (k + q)Γa

σσ̄(νν
′ω)χab

σσ̄(k1k
′q). (40)

In TPSC the irreducible vertices are local and static, i.e. they do not depend on the Mastubara
frequencies and further simplification arise. In particular, if we assume static and local
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vertex functions, if we average Eqs.(38,40) we obtain the following expression for the one-loop
improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q).

(41)
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