REPLY TO REFEREE 1

We thank the Referee for the thorough report and useful comments. Below we provide a point-by-point reply

Referee I am not really convinced that the definition of the exciton-phonon coupling provided in previous works such as in
Ref. [73,75] of the present manuscript is affected by overscreening. From basic equations of many body Green’s function theory,
the Bethe-Salpeter equation (BSE) in presence of electron-phonon interaction can be obtained once an approximation for the
electron self-energy in terms of the electron-phonon coupling is given. In particular, the functional derivative of the electron
self-energy respect to the electron Green’s function gives the kernel of the BSE from which we can extract an effective exciton
self-energy that provides also the definition of the exciton-phonon coupling as discussed in Ref. [50] of the present manuscript.

Authors Before delving into the technicalities of this point we consider it essential to point out that that we did not claim that
the exciton-phonon coupling G is affected by overscreening. Our statement is slightly more complex. We are claiming that
1) the use of G in the electronic self-energy of Fig. 1a gives rise to an overscreening

* The equation of motion for the polarization are calculated directly from ¥, so no functional derivative is needed here. As
the correct X is the one in Fig. 1b, the occurrence of the asymmetric G is unavoidable.

2) the use of G in the diagrams for L of Fig. 2 gives rise to an overscreening

* This point is intimately related to the next, and deserves a careful discussion. In fact, the derivation in Section 2.3 is, to the
best of our knowledge, original. Starting from the first-principles electron-phonon Hamiltonian, one finds that the Dyson
equation for L is [see Eq. (25)]

L=L-iL(v+ gDgg)L,

where L satisfies the BSE with kernel Ky = 0X4./0G. As shown in Eq. (28), a more convenient (since the dreesed
electron-phonon coupling appears) way of writing the above equation is

L=L" -iLg°Dg°L

where L) satisfies the BSE with kernel Ky, = 0XHy/0G. The diagrams in Fig. 2 represent the second term in this
equation. Again, the occurrence of the asymmetric G is unavoidable.

3) the use of G in the kernel for L) of Fig. 3 does not give rise to an overscreening.

* We here fully agree with the Referee, and our results are perfectly in line with Ref. [73,75]. According to Eq. (67) [now
Eq. (69)], we have

LW = [HSEX P HSEX e (v) — ¢4 0Ky L)

In other words, in electron-phonon systems the full L does not satisfy a BSE with the kernel Ky = 0X1,/0G. Instead, it
is L) that satisfies it. One of the key messages of this work is that the (so far ignored) second term of the full L — that is
—ifgs D gsf — is the one responsible for converting coherent excitons into incoherent excitons (and is expressed in terms
of the asymmetric G) whereas the term containing the kernel K¢ is the one responsible for the inelastic exciton-phonon
scattering studied also in Ref. [73,75] (and is expressed in terms of the symmetric G).

We would like to point out that the above statements do not imply the absence of a BSE for the full L. Adding the Ehrenfest
self-energy Xg, = gU [with U = —iDygG the coherent lattice displacement, see Eqs. (93) and (121a) in PHYS. REV. X 13,
031026 (2023)] to the Hartree+exchance+correlation self-energy one finds the BSE

L=C(+ gKEthHXCL’

where Kgpypyxe = 0(Zgn + Lhxe)/0G. Notice that 0(Xy + Xgp)/0G = v + gDy g is precisely the kernel of the Dyson equation
above [which is Eq. (25) in the manuscript].

Referee Still in that work the authors have shown that a suitable approximation for the electron self-energy is that reported
in Fig. 1 (b) of the present manuscript. Indeed in this expression, as mentioned by the authors, the electron-phonon coupling
is not overscreened in contrast with the expression reported in Fig.1 (a) where the overscreening is clear. Thus, I totally agree
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FIG. R1. Top: Self-energy diagram where the screened g° is expanded (see faint blue area). Bottom: kernel diagrams resulting from the cut of
line 1 (left) and 2 (right).

with authors that the correct expression of the electron self-energy is that reported in Fig. 1 (b). At this point, it is important
to note that the structure of the exciton self-energy (and hence the exciton-phonon coupling) depends from the way in which
the functional derivative of the electron self-energy is performed. In Ref. [50] the functional derivative is done neglecting the
explicit dependence from the electron Green’s function of K (SEX and the electron-phonon matrix elements g°. This leads to an
expression of the exciton self-energy in terms of the proper part of the tow-particle correlation function LSEX instead of the full
LHSEX 4 in Ref. [73,75]. This is the origin of the asymmetric structure of the exciton-phonon coupling G in Eq.(52).

Authors In the light of the clarifications given in the previous points, we hope that the Referee now appreciates that this is
not the reason of the origin G in Eq. (52) [now Eq. (54)]. In Eq. (52) we have simply evaluated the scattering term XG with the
self-energy of Fig. 1b — no functional derivative is involved.

A comment about Ref. [50]. As we wrote in the manuscript, looking at Fig. 5 of Ref. [50] we can infer that the authors of
Ref. [50] have considered a scattering channel different from the one of Refs. [73,75], and hence the one of Fig. 3 of the present
manuscript. In fact, their Eq. (45) contains a kernel depending on L whereas our Eq. (72) [now Eq. (74)] contains a kernel
depending on L, in agreement with Refs. [73,75].

Referee However, in principle there is no reason to neglect the functional derivative of §° which depends from the electron
Green’s function through the screening. This leads to the appearance of additional diagrams in the exciton self-energy. In par-
ticular, I suspect that, when the screening is evaluated using L"SEX (i.e. consistently with our treatment of vertex corrections),
the inclusion of the terms arising from 6g°/50G would lead to the natural appearance of LHSEX iy the exciton self-energy and
thus to a symmetric exciton-phonon coupling G as in Eq. (44).

Authors This is an extremely interesting point. As already pointed out, the contribution stemming from the kernel in Fig. 3
is already written in terms of the symmetric G [see Eqgs. (86), now Egs. (88)], since K¢[L] is a functional of the full L. However,
the way we have deduced such functional dependence was simply through the observation reported in the manuscript below
Eq. (70) [now Eq. (72)], i.e., “We emphasize that no overscreening issue arises if we use the screened e-ph coupling in K. In
fact, the Green’s functions entering an e-ph vertex come from different xc functions, ensuring that screening is counted only
once”. The Referee is suggesting that the same kernel can be derived by taking the functional derivative of the self-energy in
Fig. 1b where the 0¢°/0G is not discarded. This suggestion certainly deserves to be further investigated. We are inclined to
agree with the Referee provided that g° is screened with the full L (not just the bare € leading to an RPA screening) and that only
specific contributions to 6¢°/0G are retained. Let us motivate this answer.

In Fig. R1(top) we show one of the self-energy diagrams of Fig. 1b in the main text. The screened electron-phonon coupling
on the right is expanded as ¢° = ¢ + gLv + gLvLv +... where L is calculated in the SEX approximation. The faint blue area
surrounds the piece of the diagram corresponding to g°. Let us now consider two Green’s function lines: line 1 which is directly
connected to a bare v, and line 2 which is an internal line of the polarization diagrams. Cutting line 1 we obtain the kernel in the
bottom-left of Fig. R1. We recognize the diagrammatic structure belonging to g° (faint blue area) and the diagrammatic structure
belonging to LHSEX (faint orange area). These diagrams belong to the kernel in Fig. 3 of the main text. However, if we now cut
line 2 we find the kernel in the bottom-right of Fig. R1. These type of kernel diagrams are not included in Fig. 3 of the main text



(their inclusion would not allow to close the equations). To conclude, it seems reasonable to state that the kernel in Fig. 3 of the
main text results from taking the functional derivative of the self-energy in Fig. 1 of the main text, but contributions to 6¢°/6G
where G is an internal line of L have to be discarded.

Referee In the present manuscript, an expression of the exciton-phonon matrix element formally equivalent to that of Ref.
[50] has been obtained evaluating the collision integral in Eq. (43) using the ansatz in Eq. (46) and taking only terms linear
in the off-diagonal part of G. However in doing this, the authors consider only off-diagonal G appearing in the external lines.
But what about the linear terms where the off-diagonal G appear inside g°? I suspect that neglecting these terms is in some way
equivalent to neglect 0g°/0G in the derivation of Ref. [50].

1 suggest to think about this point before resubmitting the manuscript.

Authors In the light of the clarifications given in the first point, we hope that the Referee now appreciates that the occurrence
of G is not related to the neglect of the off-diagonal part of G inside g°. We also point out that in Appendix A we have discussed
the contributions arising from off-diagonal internal Green’s function lines. The conclusion is that these contributions are of
higher order in the excitation density, and can therefore be discarded for the typical excitation densities attained in experiments.

Referee The eigen-value problem in Eq. (2) describes excitons in absence of population. Thus it can be used only for optical
absorption. In the present case the authors are treating excitons out-of-equilibrium. What about the Pauli blocking factors. Is
there a reason to neglect them in Eq. (2)? Is this related to some assumption concerning the laser pulse (frequency of the laser
pulse close to the exciton energy, small population etc)?

The author should clarify this point in the manuscript.

Authors The Referee is correct. Our theory is applicable only for small excitation densities, and contains contributions up to
second order in the excitation density. However, this does not mean that our theory contains all second order contributions. In
particular, the renormalization of the excitonic wavefunctions due to Pauli blocking factors is neglected. Thus, we are implicitly
assuming that the change of the exciton wavefunctions and exciton energies affect only slightly the rates governing the XBE
dynamics. Let us observe that the inclusion of these effects would be numerically unaffordable. Indeed, one should solve the
finite-momentum BSE with updated Pauli blocking factors for all momenta at every time-step. To the best of our knowledge, the
impact of the Pauli blocking factors in the exciton dynamics has not been explored by anyone so far.

In the revised version we comment on this limitation of the theory at the end of Section 2.

Referee The Bloch equations obtained in this work should describe how photoexcited coherent excitons are converted into
incoherent excitons and how the latter propagate and eventually thermalize. Thus when the quasi-equilibrium is reached, these
equations predict a photoexcited system consisting of a thermalized incoherent exciton gas. However, in general we expect a
configuration in which incoherent excitons coexist with an electron-hole plasma [see for example: phys. stat. sol. (b) 131, 151
(1985)]. What about the electron-hole plasma? What is the regime in which the theory developed by the authors is applicable?

[ think the author should discuss these aspects in the article.

Authors The applicability of the XBE is only limited by the excitation density. As we write in the manuscript below Eq.(3):
“Henceforth we use the word excitons for all solutions (bound and unbound) of Eq. (2)”. Therefore, excitons and particle-hole
pairs (plasma) are treated on equal footing. We clarify this point at the end of the introduction and below Eq. (3).

Of course, that for high excitation densities the screening of the Coulomb interaction differs from its equilibrium value and
must be updated. The update of the screening is not accounted for in the current version of the theory. In the revised version we
comment on this limitation of the theory at the end of Section 2.

Referee In Eq. (2) I do not see any index associated to the spin degrees of freedom. Thus, I suppose that spin variables have
been summed up in some way. This requires the introduction of two decoupled BSEs. One for the singlet channel and one for the
triplet channel [see: RIVISTA DEL NUOVO CIMENTO VOL. 11, N. 12]. If this is the case Eq. (2) refer to the singlet channel
[see Phys. Rev. B 62, 4927 (2000)]. As a consequence, the matrix elements of the bar Coulomb potential in Eq. (3) should be
multiplied for a factor 2.

Authors The band indices p, v etc are spin-orbital indices. In fact, the theory can equally be applied to systems with spin-orbit
interactions. For systems described by a Hamiltonian that is invariant under spin rotations then y = m, 0, v = n,0 etc can be
written as a pair of indices, the first describing the orbital part and the second describing the spin-projection onto, say, the z axis.
In the revised manuscript we clarify this point at the beginning of Section 2.1.

Referee In the manuscript the author call v “direct electron-hole interaction” and W “exchange electron-hole interaction”.
In the literature, on the contrary, direct and exchange are usually used to indicate W and v, respectively.



Author We are aware of this different terminology. However, it’s important to note that the BSE kernel W arises from
the derivative of the (screened) exchange self-energy whereas v stems from the derivative of the (Hartree) direct self-energy.
In diagrammatic treatments of L, the terms “direct” and “exchange” are often interchanged: the functional derivative of the
“exchange” self-energy is referred to as the “direct” kernel W. We find this terminology somewhat counterintuitive.

REPLY TO REFEREE 2

We thank the Referee for the thorough report and useful comments. Below we provide a point-by-point reply

Referee The BSE has a spin structure exhibiting different channels: excitons (singlet and triplet) plus magnons. In the case
of collinear spin polarization, singlet and triplet excitons are mixed. In the case of spin-orbit interaction, excitons and magnons
are mixed. [See Bechstedt, Many-Body Approach to Electronic Excitations, Chapter 18.2] The theory presented here is most
likely applicable to the exciton channel (singlet+triplet) for all kinds of spin polarizations and including spin-orbit coupling,
while neglecting the magnon channel. The authors could explicitly remark on this.

Author In the revised version, see beginning of Section 2.1, we clarify that the band indices y, v etc include both spin and
orbital degrees of freedom - they are spin-orbital indices. We agree with the Referee that for systems without spin polarization
singlet and triplet can be treated separately. However, we choose to maintain a more general discussion to encompass a broader
range of materials (including those for which the spin-orbit interaction cannot be discarded).

Referee The authors could remark on the connection between the exciton polarization in Eq. (15), which is derived from
the disconnected part of the two-particles Green’s function, and photoabsorption spectra. This could be useful since in most
textbook derivations of the BSE, which are in the context of linear response and Hedin’s equations, photoabsorption spectra are
obtained starting from the Dyson’s equation for L instead of GG. [See e.g. Strinati, Rivista del Nuovo Cimento, 11, 12 (1988)]

Author We have inserted a discussion on the connection between p,,, and the photoabsorption spectrum at the beginning of
Section 3.

Referee The theory is formulated in the Tamm-Dancoff approximation, in which the Coulomb couplings between resonant
and antiresonant valence-conduction transitions are neglected in the BSE kernel. It is presently unclear how much these terms
are important out of equilibrium (even for a semiconductor), but I suspect that if they are included in the phonon-assisted kernel,
they will also lead to the explicit appearance of the interband valence-conduction (screened) electron-phonon couplings inside
additional exciton-phonon contributions. Do the authors have any comments on this?

Author This is certainly an interesting point, though it is rather challenging to address. We can say that phonon-induced
valence-conduction transitions should be taken into account when their contribution to the recombination time becomes com-
parable to the radiative recombination time. This finite (high?) excitation-density correction has not been accounted for. Other
corrections are the renormalization of the exciton energies and wavefunctions due to Pauli blocking factors as well as the update
of the screened Coulomb interaction W during the time evolution. Unfortunately, all these corrections would considerably com-
plicate the formulation, making practical implementations unfeasible. In the revised version we clarify that the excitonic Bloch
equations derived in this work are applicable for small excitation densities [containing effects up to second order], and state that
the aforementioned finite-density corrections have been discarded, see end of Section 2.3.

Referee The authors distinguish between the coherent exciton regime, where the exciton-phonon coupling is “irreducible”,
and the incoherent regime, where it is “reducible”. Excitonic polarizations are then converted to populations again via the
irreducible exciton coupling with phonons. The overscreening discussion in the coherent case, along with the identification of
the correct electron-phonon self-energy and irreducible ex-ph coupling, is equivalent to the findings in Ref. [50] starting from
linear response. The discussion of the exciton-phonon BSE kernel and relative reducible ex-ph coupling for the incoherent case
is equivalent to Refs. [75] and [Cudazzo, PRB 102, 045136 (2020)] starting from an extension of the static BSE kernel (here I
propose that the latter reference may be cited in the text). However, while these cited papers assumed that either the irreducible
or reducible couplings should be used in all cases, the present paper makes the case for both formulations being correct, albeit
in different regimes. It could be useful to explicitly state this in the text in order to make the points of convergence and departure
with previous works clearer. I do have some additional comments on this.

Author We thank the Referee for this suggestion. At the beginning of Section 6 we have inserted the following sentence:

“It is noteworthy that the irreducible exciton-phonon coupling G governs the dynamics of coherent excitons, while the reducible
exciton-phonon coupling G governs the dynamics of incoherent excitons. The XBE reconciles previous works that advocate
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for either G [50] or G [53,71-74], by clarifying that both are essential, though relevant in different regimes (or equivalently at
different timescales).”
We have also added a citation to the work of Cudazzo, before Eq. (46) and in the discussion of the kernel K¢ in Section 5.

Referee The authors emphasize that the coherent part of the theory could be expressed in terms of reducible excitons if bare
el-ph couplings were used. In the text they write g°L = gL(”), but the implication seems to be — by looking at Appendix B — that
actually the v-reducible L could be replaced with LSEX i.e. only the first term in Eq. (67). Is this correct? This means that the
exciton-phonon self-energy obtained with the irreducible ex-ph coupling and the irreducible L should be equivalent to the one
obtained with the bare ex-ph coupling and the reducible — actually HSEX — L. But LHSEX and L have different poles. How can
Eq. (88) still be valid (including in the low-density regime) in the gLHSEX formulation? In particular, in Ref. [50] it is pointed
out that the g°L treatment gives rise to intrinsic nonzero phonon-mediated linewidths also for the lowest-lying excitonic state.
don’t understand how a treatment with gLFSEX could give the same.

Author The attempt of formulating the theory in terms of excitons and bare electron-phonon coupling is developed in Ap-
pendix B. Relegating this formulation to an appendix was intentional. As we have explicitly written in the last sentence of
the Appendix, the fact that bare interband (valence-conduction) couplings come into play “complicates the whole theory as the
equations of motion can no longer be closed solely on exciton numbers”. The point we wanted to emphasize is that a formulation
in terms of excitons only is problematic.

No complications arise if the bare intraband electron-phonon couplings are zero — in this case the equations of motion close
on p, and Nj\r(‘zc If such a physical system exists, then Eq. (109) would be a legittimate alternative to Eq. (55), and the accuracy

of each should be further investigated. We emphasize that the gL(") formulation is alternative but not equivalent to the g°L
formulation. Indeed, the diagrammatic content of the self-energy and, more important, the way the electron-phonon couplings
are screened (static versus dynamic) are different [compare Fig. 1 with Fig. 4].

Referee About the incoherent excitons. In this case, the authors do not start from an electronic self-energy, but rather from
the BSE for L (the correlated part of the two-particles Green’s function) with a general interaction kernel, which is then approxi-
mated to HSEX for the Coulomb part, and to first order in D (the phonon Green’s function) for the phonon part. Are these choices
compelled by consistency with the previous coherent treatment (such as: approximating L as LSEX requires L to become LHSEX)
and/or compliance with state-of-the art simulations (since BSE calculations are usually done in the HSEX approximation)? Is
it not possible to obtain an electronic self-energy whose functional derivative with respect to the Green’s function would yield
this HSEX+ph kernel? And if not, can there be consistency issues (such as missed cancellations) between terms arising from
the dressing of the electron Green’s functions (quasiparticle corrections) and those appearing in the incoherent exciton-phonon
kernel?

Author Given the intricate diagrammatic structure of the kernel, addressing the Referee’s questions poses significant chal-
lenges. The question on the existence of a self-energy leading to the kernel in Fig. 3 has been asked by Referee 1 as well. We
invite the Referee to read our reply to the third point of Referee 1, where we provide a partial answer to the question.

Regarding the consistency issues, the Referee is probably referring to the violation of the Ward identities. Such violation is
rather common in many-body approximations, and its significance depends on the physical system. Unfortunately, we are unable
to provide a precise answer to this point.

Referee On a related note: does Eq. (66) for the conservation of the total exciton number remain valid independently of the
approximation chosen for N in Eq. (65), that is, the type of incoherent kernel employed?

Author The answer is negative. Equation (66) [now Eq. (68)] holds true only when all four diagrams of the kernel shown in
Fig. 3 are included. Any approximation that omits one or more diagrams would violate the conservation law.

Referee Does N'"(t) tend to relax to a Bose-Einstein distribution after long times? What about N(t)? In other words, can
this theory provide some hints at the form of the “exciton” occupation function after they have relaxed to the bottom of their
dispersion curves, before recombination?

Author We thank the Referee for this comment. N?"¢(t) relaxes to a Bose-Einstein distribution with the same temperature
of the phonon bath. This follows from the fact that the r.h.s. of Eq. (85) [now Eq. (87)] vanishes if f Ph and N"¢ are both a
Bose distribution, and from the fact that f 1 — 0 in the long time limit — thus the whole r.h.s. of t[le third equation in Table 1
approaches zero. Since both N*"*“ and fP" are described by a Bose distribution when t — oo, then N — N*"* in the same limit.
Indeed, for N = N”¢ the r.h.s. of the second equation in Table 1 is zero. In the revised manuscript we have added a discussion
on the long-time limit behavior of the XBE at the end of Section 6.



Referee Spotted typos:

-Eq. (7): the last z* should be z'*

- Before Eq. (50): NHSEX in the text should be NSEX
Author Thank you, we have corrected both typos.
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