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In the work by Lorenzo Del Re entitled ”Two-particle self-consistent approach for broken
symmetry phases,” the author introduces a generalization of the Two-Particle Self-Consistent
(TPSC) method to treat broken SU(2) magnetic phases of the Hubbard model. The method
is applied to the antiferromagnetic phase on a cubic lattice, allowing the author to observe
a Higgs mode below the quasi-particle continuum, which is not visible in mean-field (RPA)
calculations. The manuscript is well-written and contains a detailed derivation of the method,
with all approximations explicitly discussed.

The topic of the work is timely. Indeed, there are not many methods that enable the
calculation of correlated systems within broken symmetry phases, and this research direction is
far from being complete. In this regard, I kindly disagree with the previous referee’s statement
that it ”is clearly addressed to a specialist audience,” especially since the formation of various
dynamically symmetry-broken phases is one of the hallmarks of correlated systems. In addition,
the non-symmetry-broken version of the TPSC method has already been successfully applied
to realistic systems (see, e.g., [Phys. Rev. Lett. 123, 256401 (2019)]), so the broken-symmetry
formulation represents an important extension of the method.

Nevertheless, there are a few important drawbacks that should be addressed before this
work can be published.

We thank the Referee for their time and effort in reviewing our manuscript.

(1) - In the abstract, the author asserts that the developed method is ”efficient yet reliable.”
However, in my view, the manuscript does not contain enough information to conclusively
evaluate the reliability of the method, particularly regarding the limits of its applicability. For
instance, a recent study [arXiv:2410.00962] suggests that the non-symmetry-broken TPSC
approach fails even at moderate interaction strengths. If I am not mistaken, the claim re-
garding the method’s reliability is based solely on a comparison of the magnetization and
double occupancy with exact results from the diagrammatic Monte Carlo (DiagMC) method.
While this comparison is indeed impressively accurate, the calculations are performed very
deep inside the ordered phase, where electronic correlations are expected to be significantly
diminished. Moreover, magnetization and double occupancy are local and static quantities,
which are among the ”easiest” to compute accurately. Therefore, it would be beneficial if the
author could provide a comparison of these quantities at higher temperatures, closer to the
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transition temperature. Additionally, it would be valuable to see a comparison of momentum-
and frequency-dependent quantities, such as the self-energy, across different temperature and
interaction regimes. The self-energy could be taken from the same DiagMC calculations used
for magnetization and double occupancy. Alternatively, these quantities could be compared
with results from DMFT and the Dynamical Vertex Approximation (DΓA). In fact, the author
of this manuscript is also the first author of the work [Phys. Rev. B 104, 085120 (2021)],
which introduces the DΓA method for spontaneously broken SU(2) symmetry.

We thank the referee for bringing this preprint to our attention. It was published online
after our resubmission, so we could not have included it in the previous version. Once it
became available, we recognized its importance and promptly incorporated it into the updated
manuscript.

Regarding the limitations and strengths of TPSC, we note that spontaneous symmetry
breaking reduces correlation effects, as indicated by the factor λ = ⟨n↑n↓⟩/(n↑n↓), which
increases as the temperature is lowered from the critical value.

It is well-established in the literature on paramagnetic phases of the Hubbard model
(previously cited) that TPSC breaks down at higher temperatures and large interaction
strengths. More generally, TPSC does not account for local moment formation, which explains
why the Heisenberg limit is not reached as Hubbard U increases. Additionally, deep within
the broken symmetry phase and in the Heisenberg regime, the current TPSC formulation is
insufficient for capturing certain dynamic electron properties, such as the high-energy coherent
spin-polaron peaks in the spectral function [see Phys. Rev. B 73, 205121]. We have added
these considerations to the main text in the updated manuscript.

We followed the referee’s advice to display the numerical data for the improved self-energy,
which we now present in the new Figure 7. Additionally, we have included an entire section
dedicated to discussing our numerical findings. In this section, we compare the results of
TPSC with those of DMFT. While at weak coupling (U/t = 3) the two methods gives pretty
much the same results, for larger values of the interaction (U/t = 5) the quantitative deviation
from DMFT are more pronounced. This discrepancy is expected, as DMFT does not account
for gapless quantum fluctuations from Goldstone modes due to its local, single-site formu-
lation. Specifically, DMFT lacks two-particle self-consistency, meaning that the local spin
fluctuations obtained from the effective Anderson impurity model (AIM) do not match the
sum of the Fourier components of the lattice susceptibility: χAIM

↑↓,loc(ω) ̸=
1
V

∑
q χ

DMFT
↑↓ (q, ω)

[1]. Consequently, while χDMFT
↑↓ (q, ω) may correctly predict Goldstone modes [2], these modes

do not influence the DMFT self-energy, which remains a purely local quantity. Although
TPSC captures electron scattering with collective modes, the Green’s function appearing in
the equation of motion lacks self-energy damping. This limitation may lead to overestimated
quantum corrections in TPSC. A comprehensive comparison with dynamical quantities calcu-
lated using DiagMC in the broken symmetry phase could further clarify TPSC’s strengths and
limitations, which we leave for future work. We could not compare our results with DiagMC,
as the necessary data are currently unavailable. According to private communication with the
authors of Phys. Rev. Lett. 132, 246505 (2024), they did not numerically sample dynamical
observables, such as the Green’s function, so these data are not available.

(2)- In my opinion, one of the key advantages of the TPSC method is its ability to account
for the momentum- and frequency-dependent self-energy. This feature enables calculations
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for realistic materials [Phys. Rev. Lett. 123, 256401 (2019)] and allows the method to be
combined with DMFT (see, e.g., [Phys. Rev. B 107, 235101 (2023)]) to non-perturbatively
account for the effects of local correlations. However, although the ”improved” (momentum-
and frequency-dependent) self-energy is introduced in Eq. (21), it seems that only the local
self-energy given by Eq. (8) is used in the actual numerical calculations. As a result, the
method can no longer be combined with DMFT and closely resembles a simple extension of
the Hartree-Fock (HF) theory. In this context, I agree with the previous referee that, in its
current form, the work represents only ”minor technical progress.” It would be great, therefore,
to see some results that involve the calculation of the ”improved” self-energy.

As discussed in our response to point (2), we have numerically computed the improved
self-energy, with Figure 7 illustrating its momentum and frequency dependence. This improved
self-energy deviates significantly from the static and local prediction of mean-field theory. In
the conclusions, we have also included the reference suggested by the referee, noting that
combining DMFT with TPSC in the broken symmetry phase could provide further insights
into the non-local quantum corrections to the spin-polaron peaks emerging at strong coupling
in the Heisenberg regime [see also our answer to point (2)].

(3)-One might expect that, at small values of U , the results of the developed TPSC method
would coincide with those of the HF method. In fact, at U = 3 , one can observe that the
value of both spin vertices match the bare interaction. However, the magnetizations obtained
at U = 3 using TPSC and HF are still quite different, and the two curves do not appear to
converge at smaller values of U. Could the author comment on why the results presented in
Figure 3(d) and Figure 4 for small values of U are not consistent?

We thank the Referee for this comment cause it actually raises a subtle point about the
weak coupling limit. In fact, for small values of U, second order perturbation theory already
predicts sizable deviation of the critical temperature from the one calculated in mean-field
theory see Phys. Rev. B 65, 081105(R) for example. Furthermore, we observe that our
prediction agrees well with DiagMC which is expected to reproduce second-order perturbation
theory at weak coupling. We added this consideration as well as the citation to this reference
in the main text.

(4)-I was somewhat confused to discover that the vertex corrections discussed throughout
the manuscript are not three-frequency- and/or momentum-dependent objects, but rather
scalar quantities that correspond to a renormalized bare interaction. This is likely the terminol-
ogy used within the TPSC community, but it would be helpful to clarify this point somewhere
in the text to avoid confusion with actual vertex functions, as used, for example, in DΓA.

In general, two-particle vertex functions depend on three frequencies/momenta and are
channel-specific: that is, Γch

kk′q, where k = (ν,k) and q = (ω,q), with ν = (2n + 1)πT and
ω = 2nπT . The available channels are determined by the symmetry of the system: for example,
with SU(2) symmetry, the independent channels in the particle-hole sector are the charge and
spin channels. When the symmetry is reduced to U(1), as in our case, additional channels
emerge, as discussed in our paper.

However, handling such complex vertex functions represents the main bottleneck in di-
agrammatic many-body theories. Approximations at the level of these two-particle objects
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are necessary to make calculations feasible. For instance, in ladder-DΓA, the two-particle
irreducible vertex function is approximated to a local quantity that depends only on frequencies,
not on momenta, i.e., Γch

kk′q ∼ Γch
νν′ω. In TPSC, the two-particle irreducible vertex function is

further simplified to a single value for every channel. Unlike the RPA, which keeps the bare
interaction identical across all physical channels, TPSC allows for a non-trivial dependence of
the vertex function on each specific channel, i.e., Γch

kk′q ∼ Γch, where the different Γch are not
simply related as in the RPA.

Let us note that a similar correction have been obtained starting from perturbation
theory on the local vertex function. For example, in this paper Phys. Rev. B 55, 942, the
authors perform a second order expansion of the vertex function in the spin-channel that reads
Γch=spin
ν,ν′,0 ∼ −U [1− Uχpp

0 (ν + ν ′)], and subsequently approximate the dynamical correction to
a static one which reduces the absolute value of the spin vertex causing a reduction in the
Néel temperature. This is a well knwon phenomenon called screening of the spin fluctuations
that is well captured already by TPSC, as one can see from the sub-linear behavior of the
vertex function in the spin channel as a function of the bare one [Figure 4].

In short, TPSC is perhaps the method that incorporates vertex corrections to the bare
interaction in the simplest way, allowing for efficient exploration of their consequences in model
Hamiltonians that describe materials.

On the other hand, we know that at strong coupling the frequency dependence of the
vertex function is essential for reproducing the correct value of the Néel temperature and also
to understand phase separation in the Hubbard model [see Phys. Rev. Lett. 125, 196403 and
Phys. Rev. Lett. 133, 066502 ], therefore, TPSC is not suited for this parameter regime.

We further clarified these points in the text of our manuscript.

(5)-I am puzzled by the fact that the susceptibilities in the spin z and charge density ( ρ )
channels have such a simple form. Typically, in the presence of spin polarization, the spin z
channel becomes intertwined with the ρ channel, and the same applies to the spin x and y
channels. Could the author comment on why, in this work, the spin z and charge density ρ
channels can be easily decoupled, while the spin x and y channels are still coupled to each other?

The referee is correct that the spin-longitudinal and charge channels are generally coupled
via mixed χρz terms. However, at half-filling and on a bipartite lattice, the system exhibits
particle-hole symmetry, which imposes specific constraints on the correlation functions (see
Phys. Rev. B 104, 085120). In particular, at particle-hole symmetry, the mixed χρz terms
vanish, and the RPA susceptibilities simplify.

(6)-Could point 5) be related to some ambiguity in formulating the symmetry-broken
TPSC approach, similar to the one present in the multi-orbital formulation of the method
[arXiv:2410.00962]?

Since the de-coupling is exact at half-filling, in this case we have no ambiguity. An ambi-
guity might arise away from particle-hole symmetry whose analysis has been left to future work.

(7)-Could the author provide the results for the spin transverse channel along with the
spin longitudinal susceptibility already shown in Figure 5?

In Figure 5 of the new version of our manuscript we added the numerical results about the
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dynamical susceptibility in the spin-transverse channel evaluated using TPSC and RPA. We
also added a paragraph where we discuss the new data.

(8)-Could the author comment on how difficult it would be to extend the developed
approach to handle more sophisticated spin-ordered phases, such as spin spirals or even more
complex incommensurate orderings?

In principle, the same scheme could be applied to ordered states with larger unit cells,
though the technical challenges depend strongly on the type of incommensurate order.

For instance, in the case of spiral order, where the order parameter rotates in a plane
with momentum Q, e.g., mR ∝ (cos(Q · R), sin(Q · R), 0), the computation is simplified by
re-expressing the original Hamiltonian in a new basis, where translational symmetry is restored.
This approach is similar to that used for studying the Hubbard model in the presence of
artificial gauge fields (see SciPostPhys. 14.3.048).

However, for striped collinear order, where the amplitude of the order parameter is
modulated, e.g., mR ∝ (0, 0, cos(Q ·R)), the situation is more complicated. In this case, the
entire enlarged unit cell must be considered explicitly, which increases the computational cost
by requiring the inclusion of additional orbitals.

This issue does not stem from the assumptions of TPSC, which instead simplifies the
problem. Rather, it arises from the nature of the stripe-ordered phase itself, which is inherently
challenging to study with any method. We have added a comment on this topic in the outlook
of our paper.

(9)-The discussion in the Introduction might benefit from the following citations, which
could broaden the scope and interest in the current work: Phys. Rev. B 104, 085120 (2021)
- DΓA method for spontaneously broken SU(2) symmetries Phys. Rev. Lett. 123, 256401
(2019) - materials calculations using the TPSC method Phys. Rev. B 107, 235101 (2023) -
TPSC+DMFT approach arXiv:2410.00962 - multi-orbital extension of the TPSC method

In addition, there has been recent development of a fluctuating field method for symmetry-
broken phases, based on the variational optimization of an effective bare interaction in a given
instability channel, which likely shares some similarities in spirit with the TPSC method:Phys.
Rev. B 102, 224423 (2020), Phys. Rev. B 105, 035118 (2022), Phys. Rev. B 108, 035143
(2023), Phys. Rev. B 108, 205156 (2023).

Some of the references suggested by the referee were already included in the previous
version of the manuscript. We have now added the missing ones in the updated version.

Reply to Referee 3 [Report # 2]

In this paper, the author presents a generalization of the two-particle self-consistent method
for the antiferromagnetic broken-symmetry state of the Hubbard model. The main equations
for the methods are derived, after which the method is benchmarked against diagrammatic
Monte-Carlo results. Overall, the presentation is very good, and enough details are given
to allow the reader to reproduce most of the steps. The results for the three-dimensional
Hubbard model do a good job of showing how the method compares with RPA and exact
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Monte-Carlo results.
Some minor aspects of the article could be clarified. The proposed modifications are

presented in the next section. I believe that, once those minor changes are made to the article,
the article should be published in SciPost Physics

We appreciate the Referee for dedicating their time and effort to reviewing our manuscript

(1)-In the caption of Fig. 1, it would be helpful to specify that the diagram refers only to
the first-level self-energy in TPSC, and not the improved self-energy computed in Sec. 3.3.

We added some text to the caption in Figure 1 where we made this point clear.

(2)-The gap equation for the order parameter (Eq. 13) is presented with no explanation
to how it can be derived. A bit more justification would help the reader understand the method.

After showing the gap equation Eq. (13) we added some text where we explicitly show how
that is obtained, i.e. by imposing m = 1

V β

∑
kν e

i0−ν [GAA
↑ (k)−GAA

↓ (k)] and by substituting
Eq.12 into the last equation.

(3)-In the footnote at the bottom of page 5, there is an extra period after ”zero-field”.

We have fixed that.

(4)-On page 6, under Eq.10, the author writes ”Since the vertex function in Eq. (8)”. I
believe the correct equation to refer here is Eq. 9.

The referee is correct here. We have changed the text and put a reference to the correct
equation.

(5)-The method that was used by the author to compute the spatial Fourier transforms
was clearly presented in Sec. 4. However, there is no mention of the way the time-frequency
Fourier transforms were computed (nor is there mention of the analytic continuation method
that was used to compute the real-frequency susceptibility in Fig. 5). Mentioning the methods
used would help in making the work presented more easily reproducible

We thank the Referee for this comment. For the summation over Matsubara frequencies,
we evaluated the momentum integrals up to 24 bosonic frequencies. We then performed a fit
to extrapolate the high-frequency quadratic tails, which allowed us to extend the summation
to thousands of frequencies. We have added this in text right after the description of the
evaluation of integrals over momenta.

Regarding the computation of the two-particle spectra on the real axis, since the bubble
terms can be expressed analytically using Lindhard’s formulae we did not have to use any numer-
ical method for their analytic continuation. We added this remark in the text of our manuscript.

(6)-In most of the work, the terms ”spin-transverse” and ”spin-longitudinal” are used to
describe the scattering channels. However, in some cases (pages 6, 7 and 14 specifically), the
order is reversed, with the terms ”longitudinal-spin” and ”transverse-spin”. It would probably
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be better to stick to one of the two conventions.

We agree with the Referee and now the same notation is used in a consistent way.

(7)-In Fig.3c, the label of the y-axis is at the bottom of the axis, in contrast with the other
subplots (where the label is centered). Centering it would help readability.

We fixed this.

(8)-In Fig.5c and d, the vertical dashed lines marking the start of the particle-hole contin-
uum are hard to see. Making them a bit darker would help.

We made the dahsed lines darker.

(9)-In the same panels, the vertical arrow used to label the curves could easily be mistaken
for dirac peaks in the data. Reorienting them diagonally (or using the same legend as the one
used in Figs. 3 and 4) would prevent this misunderstanding.

We have corrected this by changing the arrows direction (from top to bottom now) and
increasing their distance from the curves they refer to.

Reply to Referee 1 [Report # 3]

With his revised version, the author has significantly improved the manuscript. I do appreciate
the effort and now have the pleasure to recommend publication.

However, I still believe that SciPost Physics Core would be the more appropriate venue.
One of the reasons for this assessment is that the universality class of the phase transition does
not come out correctly from TPSCA, i.e., the accuracy of the approach is necessarily limited,
even if I am grateful for the clarification (compare beginning of section 4). However, I admit
that this assessment has a subjective component; maybe I am also biased by the previous
version that definitely addressed a specialist audience.

There are still a small number of minor typographic issues that I list as ”Requested
changes”. In my opinion, these could be addressed during production.

We thank the Referee for reviewing our work and we appreciate the Referee’s acknowl-
edgment that the revised version of our manuscript has significantly improved. However, we
respectfully disagree with the assessment of our theory’s validity based solely on universality
classes. While our theory may not be optimal for identifying universality classes, it offers valu-
able insights into non-universal but crucial material properties–such as spectral characteristics,
order parameters, critical temperatures, and mechanisms underlying instabilities. Moreover,
we have demonstrated that our theory is most applicable deep within the broken symmetry
phase, where deviations from exact critical exponents become negligible.

Furthermore, the deviation from the exact critical exponents is expected to decrease with
an increasing number of bands, as this effectively enhances the number of flavors. This feature
makes the TPSC approach especially well-suited for studying intricate ordering in multiband
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systems, where exact methods like DiagMC or cluster theories may become computationally
prohibitive.

(1)-Panels (c) and (d) of Fig. 5: It may be clearer if the direction if the arrows were
inverted (compare also comment 9 by Referee 3).

We have inverted the direction of the arrows.

(2)-I think that the last two lines of Eq. (25) would fit on one line, and this would improve
readability of this equation.

We fit the equation in two lines.

(3)-Two lines below Eq. (37): ”in” → ”into”.

We fixed this.

(4)-Correct lower-casing of names in titles of References [4,12,13,15,17,18,23,24,33,44-
50,52,54,66] (”Nambu”, ”Goldstone”, ”Hubbard”, ”Néel”, ”Monte Carlo”, ”Heisenberg”,
”Higgs”, ”Mott”, ”Fermi”, ”Hedin”, ”Weyl”).

We have corrected the lower-casing of these names in the titles of References.

(5)-Correct chemical formulas in titles of References: [31] ”LiFeAs” [60] ”RuO 2 ” [61] ” α
-MnTe” [64] ”KV 2 Se 2 O” [65] ”CoNb 4 Se 8 ”

We have fixed these too.

Reply to Referee 5 [Report # 4]

In this manuscript the author presents an extension of the two-particle self-consistent approach
(TPSC) to describe antiferromagnetic broken-symmetry phases in electron correlated systems
and calculates, benchmarks and discusses, as a showcase, the one-band Hubbard model on the
cubic lattice at half-filling.

This a nice and well-written paper on a topic of present interest. TPSC was developed in
the past as a method to describe correlated phases beyond mean field in a computationally
efficient way. A hallmark of TPSC is that it includes momentum- and frequency-dependent
self-energies, and has been successfully applied to understand the nature of paramagnetic
phases in correlated metals, in the parameter region where the method is applicable.

The present manuscript introduces a valid extension to antiferromagnetic broken-symmetry
phases that is worth publishing and, in my opinion, suitable for publication in Scipost.

We thank the Referee for their positive assessment of our work and for carefully reviewing
both our manuscript and the reports from the other Referees.
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Like any (approximate) many-body method, TPSC has its limitations, which have been
recently discussed in the context of paramagnetic phases and some of them will be also present
in the broken-symmetry phases. Nevertheless, this is not a reason for not pursuing extensions
of this approach, as far as one is in a reliable phase-space region, specially considering the fact
that the approach is computationally feasible. Referees 2 and 3 ask very valid points to the
author, that I second.

We appreciate the constructive feedback from referees 2 and 3. We have addressed all the
points raised, in detail. After careful revision, we believe the manuscript is now significantly
improved and ready for publication.
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Two-particle self-consistent approach for broken symmetry
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Abstract

Spontaneous symmetry breaking of interacting fermion systems constitutes a
major challenge for many-body theory due to the proliferation of new independent
scattering channels once absent or degenerate in the symmetric phase. One exam-
ple is given by the ferro/antiferromagnetic broken symmetry phase (BSP) of the
Hubbard model, where vertices in the spin-transverse and spin-longitudinal chan-
nels become independent with a consequent increase in the computational power
for their calculation. Here we generalize the formalism of the non-perturbative
Two-Particle-Self-Consistent method (TPSC) to treat broken SU(2) magnetic
phases of the Hubbard model, providing with a efficient yet reliable method.
We show that in the BSP, the sum-rule enforcement of susceptibilities must be
accompanied by a modified gap equation resulting in a renormalisation of the
order parameter, vertex corrections and the preservation of the gap-less feature
of the Goldstone modes. We then apply the theory to the antiferromagnetic
phase of the Hubbard model in the cubic lattice at half-filling. We compare our
results of double occupancies and staggered magnetisation to the ones obtained
using Diagrammatic Monte Carlo showing excellent quantitative agreement. We
demonstrate how vertex corrections play a central role in lowering the Higgs
resonance with respect to the quasi-particle excitation gap in the spin-longitudinal
susceptibility, yielding a well visible Higgs-mode.
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1 Introduction

The characterisation of broken symmetry phases (BSP) in correlated quantum systems remains
a formidable challenge for many-body theory. In fact, determining the precise ground state of
spin Hamiltonians, such as the 3D-Heisenberg model with antiferromagnetic exchange, remains
an open question to this day. Even though the precise ground state may remain elusive, it is
possible to improve mean-field predicted groundstates , e.g. the Néel state, including quantum
corrections encoded in the long-range and low-energy Goldstone modes [3, 4, 5, 6, 7], e.g.
spin-waves in antiferromagnets [8].

The situation becomes richer when interacting electrons in solids are strongly correlated.
A minimal model to describe such materials is the Hubbard model [?], where electrons
interact through on-site Coulomb repulsion, enhancing electron localisation [9]. The theoretical
challenge with strongly correlated BSP lies in simultaneously accounting for long-range
fluctuations encoded in Goldstone modes and the localisation of electrons.

Such an ambitious task could be achieved by employing cluster [10] or diagrammatic [11]
extensions of Dynamical Mean Field Theory (DMFT) [12], as well as Monte Carlo techniques
[13, 14, 15, 16, 17, 18]. However, the inclusion of long-range modes for cluster theories would
be limited by the maximum size of the cluster used in the calculations, even if clever clustering
schemes that permit an optimal finite-size scaling analysis are available [19]. In diagrammatic
approaches, the proliferation of independent vertex components [20, 21, 2, 22, 23, 24, 25], once
absent or degenerate in the symmetric phase, strongly increases the computational power
needed for their numerical evaluation.

Hence, it is of great interest to develop efficient algorithms that require fewer computational
resources while still accurately including correlation effects. In this context, the Two-Particle-
Self-Consistent (TPSC) approach [26, 27, 28, 29, 30, 31, 32, 33] has proven to be a reliable and
efficient method for describing the physics of the Hubbard model in the weak-to-intermediate
interaction regime. Given its reduced computational complexity, TPSC has already been
successfully extended to multi-orbital models [30]

:::::::
[30, 34], interfaced with ab-intio calculations

[31] and applied to non-equilibrium [32]. However, current TPSC formulations are limited to
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symmetric phases, preventing their application to parameter regimes where materials exhibit
broken symmetry phases (BSP). Additionally, because TPSC uses Moriya corrections to two-
particle propagator masses [35, 36, 37, 1, 38] to include correlation effects, a straightforward
generalisation of TPSC equations might violate Goldstone’s theorem, leading to an unphysical
energy gap in the Goldstone modes. In this work, we extend the TPSC formalism to handle
spontaneous symmetry breaking while correctly preserving the Goldstone modes.

We apply the new formulation to the antiferromagnetic phase of the three-dimensional
Hubbard model on a cubic lattice. Our results show excellent quantitative agreement with
Diagrammatic Monte Carlo (DiagMC) [17] across a wide range of interaction values. We
demonstrate that as the temperature decreases from the critical value, the degree of correlation
is reduced, which extends the theory’s applicability to higher interaction values deep in
the broken symmetry phase. Additionally, we show that symmetry breaking leads to a
differentiation of vertex corrections in various scattering channels. This differentiation plays a
central role in lowering the Higgs resonance relative to the quasi-particle excitation gap in the
spin-longitudinal susceptibility, resulting in a clearly distinguishable Higgs mode.

The manuscript is organised as follows: in Sec. 2 we introduce the Hubbard model and
establish the notation; Sec.3 describes the method and explains how two-particle self-consistency
can be achieved in magnetic broken symmetry phases while preserving the Goldstone modes;
in Sec.4 we show the numerical data of the order parameter and double occupancies comparing
them with DiagMC, and we also show how TPSC is able to capture the elusive amplitude
(Higgs) mode in the susceptibility spectra; in Sec.5 we provide our conclusions and outlook;
in Appendix A we discuss some technical details relative to the derivation of the effective
irreducible vertices; in Appendix B we present the derivation of the Bethe-Salpeter equations;
in Appendix C we show the steps needed to obtain the corrected one-loop self-energy.

2 The model

In this work we will explicitly consider the single band Hubbard model in the cubic lattice,

H = −t
∑
⟨ij⟩σ

c†iσcjσ + U
∑
i

n̂i↑n̂i↓, (1)

where t is the electronic hopping amplitude between nearest-neighbours and U is the local
Coulomb repulsion. In the case of the AF phase, the system loses the full translational
symmetry of the original cubic lattice and it is useful to introduce the sub-lattice index
a = A,B for specifying whether the fermionic field c†iaσ is evaluated at one site belonging to
the sub-lattice A or B. Therefore, it is useful to introduce the generalised multi-flavor indices α,
which for example coincide with α = (a, σ) containing both sub-lattice (a) and spin (σ) indices
in the AF or to spin indices in the FM case. Then, we can rewrite the Hubbard Hamiltonian
in the following form:

H =
∑
⟨ij⟩

∑
αβ

c†iαH
αβcjβ +

1

2

∑
i

∑
αβ

Uαβ n̂iαn̂iβ. (2)

In the case of FM, we have that Hαβ = −tδαβ and Uαβ = δαβ̄U , whereas for the AF case we

have Hαβ = −tδσσ′δab̄ and Uαβ = δσσ̄′δabU , where ℓ̄ denote the opposite of index ℓ, referring
to the complementary spin or sub-lattice index (e.g., if ℓ is spin-up or sub-lattice A, then ℓ̄ is
spin-down or sub-lattice B).
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3 The method

The Two-Particle Self-Consistent (TPSC) method requires relatively low computational power
and achieves its efficiency through a series of approximations, which we will examine in detail
in this section. In practice, the self-energy is approximated in a form similar to that used in
Hartree-Fock (HF) (see Figure 1). This assumption simplifies the expressions for the Green’s
function and two-particle susceptibilities, which can then be analytically obtained using a
formula akin to the Random Phase Approximation (RPA).

However, unlike in HF and RPA, the vertex in the self-energy and susceptibility diagrams is
represented not by the bare interaction but by an effective vertex. This effective vertex includes
a renormalisation factor that depends on the double occupations, which are determined by
imposing an exact sum rule on the susceptibility in the spin-transverse channel. This sum rule
complements the ’usual’ gap equation for the order parameter by coupling it to the double
occupancies, which, unlike in HF, are determined self-consistently.

While we will provide an explicit derivation of all the equations, readers primarily interested
in the results may refer to Figure 2, which presents a flow diagram summarizing the main
steps and equations of the TPSC method.

3.1 The TPSC ansatz

The core of TPSC consists in finding an approximate form for the electron self-energy from
which one can construct a conserving approximation in the Baym-Kadanoff sense [39, 40]. In
order to do so, one can start from the equation of motion that reads:

Σαγ(x, y′)Gγ,β(y′, y) = UαγG
(2)βα

γγ (y, x+ 0−, x+ 0+, x), (3)

where Gαβ(x, y) = −Tt

〈
cα(x)c

†
β(y)

〉
is the Green’s function, with x = (Ri, τi) being a four-

vector containing the lattice coordinate Ri and the imaginary time τi, cα(x) = eHτiciαe
−Hτi ,

Σαβ(x, y) is the electronic self-energy, andG
(2)αβ

γδ (x1, x2, x3, x4) = Tτ

〈
c†α(x1)cβ(x2)c

†
γ(x3)cδ(x4)

〉
represents the two-particle Green’s function. In Eq.(3), a summation is intended for the re-
peated indices γ and y′. Due to the presence of G(2), Eq.(3) is not closed for the self-energy
and single-particle Green’s function, and in order to obtain an explicit expression for Σ further
approximations must be carried on. In mean-field theory the two-particle Green’s function is
replaced by its disconnected part, that is a valid approximation only at weak coupling. In
TPSC [26, 27, 29, 30], in order to take into account of correlation effects, and at the same
time to reduce the complexity of Eq.(3), the following assumption is considered:

Σαγ(x, y′)Gγ,β(y′, y) ∼ λαγ Uαγ

[
Gαβ(x, y)nγ − sαγGγβ(x, y)

]
, (4)

where nα = ⟨n̂iα⟩, sαβ =
〈
c†iβciα

〉
, and λαβ is an extra-coefficient that must be determined

self-consistently and contains correlation effects. When λαβ = 1 mean-field theory is recovered.
The parameter λ can be determined by requiring that the equal-time/position limit of Eq.(3),

13



SciPost Physics Reply and diff

i.e. y = x+ 0++, is preserved exactly when β = α 1, by imposing:

λαγ =
⟨n̂α n̂γ⟩

nαnγ − sαγsαγ
. (5)

From Eq.(4), we can isolate the self-energy that reads:

Σαβ(x− y) = δ(x− y)
(
δαβλ

αγUαγnγ − λαβUαβs
αβ

)
. (6)

In the FM/AF phase of the Hubbard model, the expression for the λ parameter simplifies as
follows:

λ =
⟨n̂↑n̂↓⟩
n↑n↓

, (7)

which is identical to the one in the paramagnetic case [27, 29]. Since in the FM/AF phase Eq.(7)
does not depend on the spin/sub-lattice indices, we omitted those indices in the expression of
λ, and therefore we need to optimize only one parameter even within the broken-symmetry
phases under scrutiny. Hence, in the AF phase the expression of the self-energy can be written
as:

Σab
σσ′(x, y) = δ(x− y)δabU↑↓

(
δσσ′naσ̄ − δσσ̄′sσσ̄a

)
, (8)

where U↑↓ = λU , a, b are sub-lattice indices. We notice that in a AF phase the components of

the self-energy off-diagonal in the spin indices should vanish, i.e. sσσ̄ = 0. However, it is useful
to keep those terms in the expression of the self-energy for the derivation of the Bethe-Salpeter
equation in the spin-transverse channel. Therefore, we will consider the presence of an external
field that breaks spin-conservation and eventually compute the functional derivatives of Σ
with respect to the off-diagonal component of the propagator in the limit of a vanishing field.

In order to obtain self-consistency at the two-particle level, we have to calculate physical
susceptibilities and therefore we need the knowledge of the irreducible vertex function Γ, which
is obtained by carrying the functional derivative of Σ with respect toG, i.e. Γ(1, 2, 3, 4) = δΣ(2,1)

δG(3,4)

[41]. In the FM/AF phases the original SU(2) symmetry of the Hubbard Hamiltonian is
spontaneously broken and the two independent scattering channels to be considered are the
spin-transverse and spin-longitudinal channels [22].

3.1.1 Spin-transverse channel

The vertex function in the spin-transverse channel is defined as:

Γabcd
↑↓ (x1, x2, x3, x4) =

δΣba
↓↑(x2, x1)

δGcd
↓↑(x3, x4)

= −λUδabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4), (9)

where we used Eq.(8) and the fact that sσσ̄a = Gaa
σσ̄(x, x+ 0−) 2.

1In the case of the AF phase that we address in this work, spin conservation implies that
〈
c†αn̂γcβ

〉
= 0 at

zero field. ,
:
when α ̸= β, and therefore we shall introduce the λ-correction only for the two-particle Green’s

functions that do not vanish in the limit of zero external field.
2We used the overline symbol, i.e. ↑↓, to distinguish this vertex component from those belonging to the

longitudinal spin
::::::::::::::
spin-longitudinal channel, that are defined in the next paragraphs.
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σ

σ

σ σ σ

σ σσ
(a) (b)

Σ

Figure 1: Diagrammatic representation of the diagonal (a) and off-diagonal (b) components
of the self-energy, as analytically expressed in Eq.(8). The wiggly line represents the effective
vertex Γ↑↓, which must be obtained self-consistently along with the order parameter (encoded
in the Green’s function, represented by the thick continuous line). Both are determined
through the simultaneous solution of Eqs.(13,14).

::::
The

::::::::::
diagrams

::::::
shown

:::::
here

::::::
refer

:::
to

::::
the

:::::::::
first-level

:::::::::::
self-energy,

:::::::::
however

::
in

:::::::
TPSC

:::
it

::
is

::::::::
possible

:::
to

:::::::::
calculate

:::
an

::::::::::
improved

::::::::
version

::
of

:::
Σ

::::::
which

::::::::
includes

:::::::::
non-local

:::::
and

::::::::::
dynamical

:::::::::
quantum

:::::::::::
corrections

:::::
(see

::::::::
Section

:::
3.2

::::
and

:::::::
Figure

::::
2).

Let us now define the physical susceptibility in the transverse-spin
:::::::::::::::
spin-transverse channel:

χab
σσ̄(x1, x2) = Tτ

〈
Sσσ̄
a (x1)S

σ̄σ
b (x2)

〉
, (10)

where Sσσ′
a (x) = eHτ c†iaσciaσ′e−Hτ , with x = (Ri, τ). Since the vertex function in Eq.(8

::
9) is

local and static, the Bethe-Salpeter equation (BSE) [see Appendix B for the derivation] for
the physical susceptibilities is similar to the one obtained in RPA [22] and reads:

¯̄χ−1
σσ̄

(q) = ¯̄χ−1
0,σσ̄

(q) + ¯̄Γσσ̄, (11)

where we used the double bar to indicate 2×2 matrices, q = (iωn,q) with ωn = 2πn/β and q
being respectively the bosonic Matsubara frequency and crystalline exchanged momentum,
¯̄χσσ̄(q) is given by the Fourier transform of the susceptibility defined in Eq.(10), ¯̄Γσσ̄ = −λU I2×2

and χab
0,σσ̄

= − 1
V β

∑
k G

ab
σ (k)Gab

σ̄ (k + q). The Green’s function is obtained using the Dyson
equation and reads:

¯̄G−1
σ (k) = ϵk σ

x + [iν + µ−
Γ↑↓
2

(n+ σm)]I2×2, (12)

where n is the electron density and m = nA↑ − nA↓ is the staggered magnetisation.
In order to univocally determine single-particle and two-particle properties, we have to solve

a set of self-consistent equations that will allow us to find the chemical potential, staggered
magnetisation and double occupancies (µ, m, ⟨n̂↑n̂↓⟩) as a function of the electron density,
on-site interaction and temperature. In this work we will specialize in the case of the three-
dimensional cubic lattice at half-filling , i.e. n = 1, that corresponds to fixing the chemical

potential to µ =
Γ↑↓
2 .

Since the self-energy is static and local, the gap equation for the order parameter is similar
to the one obtained in mean-field theory and is given by following expression:

1

(2π)3

∫
BZ

dk
|Γ↑↓|
2Ek

tanh

(
βEk

2

)
= 1, (13)
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where Ek =

√
ϵ2k +

(
mΓ↑↓

2

)2
, with ϵk = −2t [cos(kx) + cos(ky) + cos(kz)]. ,:::::::

which
::
is

:::::::::
obtained

::
by

::::::::::
imposing

::::::::::::::::::::::::::::::::::::
m = 1

V β

∑
kν e

i0−ν [GAA
↑ (k)−GAA

↓ (k)]
:::::
and

:::
by

::::::::::::
substituting

::::::::
Eq.(12)

:::::
into

::::
the

::::
last

:::::::::
equation.

:
Differently from mean-field theory however, the order parameter is not univocally

determined by the gap equation, because the double occupancies, appearing in Eq.(13), are
still unknown.

As a direct consequence of its definition in Eq.(10), the susceptibility in the transverse
channel assumes the following limiting value

∑
σ χ

aa
σσ̄

(x, x+ 0−) = n− 2 ⟨n̂↑n̂↓⟩, which implies
the following sum rule for its Fourier transform:

1

β(2π)3

∑
ωnσ

∫
BZ

dqχaa
σσ̄(q) = n− 2 ⟨n̂↑n̂↓⟩ . (14)

Hence, Eqs.(13,14) provide with a closed set of equations that must be solved self-consistently
in order to determine the order parameter and the double occupancies.

3.2 Spin-longitudinal channel

The irreducible vertex function in the longitudinal-spin
::::::::::::::::
spin-longitudinal channel reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣba
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

∼ Uσσ′δσσ̄′δabδacδad δ(x1 − x2)δ(x1 − x3)δ(x1 − x4).

(15)

Differently from Eq.(9) which is an exact equality, a further approximation, similar to the one
performed in the charge channel in the paramagnetic phase [26, 29], is needed to write Eq.(15)
in its final form (see Appendix A).

Let us define the susceptibilities in the spin-longitudinal channel:

χab
σσ′(x1, x2) = Tτ ⟨naσ(x1)nbσ′(x2)⟩ − ⟨naσ⟩ ⟨nbσ′⟩ (16)

Given the local and static form of the vertex function in Eq.(15), the expression of
the susceptibilities in the charge and spin-longitudinal channel, in presence of particle-hole
symmetry 3, can be written as follows:

χz(q) =
χ0,∥(q)

1− Γzχ0,∥(q)
(17)

χρ(q) =
χ0,∥(q)

1 + Γρχ0,∥(q)
, (18)

where χz = 1
2

∑
abσσ′(−1)a+b+σ+σ′

χab
σσ′ , χρ = 1

2

∑
abσσ′ χab

σσ′ , Γz = 1
2

∑
σσ′(−1)σ+σ′

Γσσ′ , Γρ =
1
2

∑
σσ′ Γσσ′ , χ0,∥ = − 1

2V β

∑
kσbG

Ab
σ (k)GbA

σ (k+q). Analogously for the spin-transverse channel,
we can determine the value of the vertices Γz and Γρ by imposing the following sum rule for
the longitudinal channel susceptibilities:

2

β(2π)3

∑
ωn

∫
BZ

dqχz(q) = n− 2 ⟨n̂↑n̂↓⟩ −m2 (19)

2

β(2π)3

∑
ωn

∫
BZ

dqχρ(q) = n+ 2 ⟨n̂↑n̂↓⟩ − n2. (20)

3In general, the charge and longitudinal-spin
:::::::::::::
spin-longitudinal

:
channels interact via a mixed terms χz̄ρ

[42, 43] that vanishes only in presence of particle-hole symmetry [22].
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Since Eqs.(13,14) are a set of closed equations, Eqs.(19,20) can be solved separately once
the values of m and ⟨n̂↑n̂↓⟩ have been self-consitently obtained from the spin-transverse channel.

3.3 Improved one-loop self-energy

In TPSC it is possible to obtain an improved self-energy that, differently from the one appearing
in Eq.(8), depends on both momenta and frequency. This can be achieved by computing the
TPSC vertices and susceptbilities and using them as input for the equation of motion [27, 44].
Extending this procedure to the broken symmetry phase we obtain the following expression
for the improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄ χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q), (21)

where Gab
σ (k) is given by Eq.(12). In appendix C we show the derivation of Eq.(21).

4 Numerical results

Fig. (3-a) shows the order parameter as a function of temperature for different values of the
on-site interaction. The order parameter decreases as a function of increasing temperature
until it vanishes at the critical temperature. Close to the phase transition, the order parameter
behaves like m = α|T − Tc|β with critical exponent β = 1/2, which is different from the exact
one belonging to the O(3) (Heisenberg) universality class β ∼ 0.369 [45]. The exponent value
for the order parameter β = 1

2 might suggest that TPSC is a mean-field theory. However, the
method actually belongs to a different universality class. The critical exponents for TPSC,
as well as those for other theories based on λ-Moriya [35, 36] corrections [see, for example,
[37, 1, 46], fall within the O(N) universality class in the limit N → ∞ [28]. This class is
distinct from the mean-field, which is obtained in the limit of infinite spatial dimensions and
is characterized by the exponents ν = 1

2 , γ = 1, and β = 1
2 . In contrast, in three dimensions,

the critical exponents for O(∞) are ν = 1, γ = 2, and β = 1
2 . In two dimensions, the critical

temperature vanishes, as predicted by the Mermin-Wagner theorem, which also holds for the
O(3) case. This can be understood by considering the divergence of the sum in Eq.(14) at
finite temperature in 2D within the broken symmetry phase, while it remains finite at T = 0,
where the discrete sum over Matsubara frequencies is replaced by an integral over a continuous
variable. Our results for the critical exponent β = 1

2 is therefore consistent with previous
calculations showing that TPSC belongs to the O(∞) universality class.

In Fig.(3-b), we show the value of the vertex renormalisation λ = |Γ↑↓|/U as a function of
temperature for different values of U . We observe that λ decreases as a function of increasing
interactions, as expected, since the system get more correlated when U increases. On the
other hand, λ increases by decreasing the temperature from the critical one, which can be
rationalised in the following way: when symmetry breaking is allowed, the system can reduce
the number of double occupancies ⟨n̂↑n̂↓⟩ = λ

4 (n
2 −m2), shown in Fig.(3-c), (and therefore

minimize the potential energy) by increasing the order parameter, rather than by decreasing
λ. Hence, our results show that the degree of correlation of the system is reduced deep in the
broken symmetry phase far away from the the critical temperature.
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G−1
σ = G−10 − Σσ χab0,σσ̄ = − 1

Vβ ∑k Gab
σ (k)Gab

σ̄ (k + q)
Green’s function Bubble-terms

⟨n↑n↓⟩

1
(2π)3 ∫BZ

dk
|Γ ↑ ↓ |

2Ek
tanh ( βEk

2 ) = 1,

1
Vβ ∑

q,σ
[ ¯̄χ−1

0,σσ̄(q) + ¯̄Γσσ̄]
−1

aa
= ⟨n⟩ − 2 ⟨n↑n↓⟩

Gap equation + Feedback from the Goldstone modes

Modified gap equation + sum-rule are satisfied?
Yes 

No

New params 
are picked

2
Vβ ∑

q

χ0,∥(q)
1 − Γz χ0,∥(q) = n − 2 ⟨n↑n↓⟩ − m2,

Σab
σ (k) − Unaσ̄ = − U

2Vβ ∑
q

Gab
σ̄ (k + q)Γa

σσ̄ χab
σσ̄(q) + U

2Vβ ∑
qσ1

Gab
σ (k + q)Γa

σσ1χ
ab
σ1σ̄(q)

m

2
Vβ ∑

q

χ0,∥(q)
1 + Γρ χ0,∥(q) = n + 2 ⟨n↑n↓⟩ − n2

Sum rules for the longitudinal channel

Eq.(12)

Eq.(13)

Eq.(19)

Improved Self-Energy 

Eq.(14)

Eq.(21)

Eq.(20)

χ0,∥ = − 1
2Vβ ∑

kσb

GAb
σ (k)GbA

σ (k + q)

Figure 2: Work-flow of the Two-Particle Self-Consistent (TPSC) method for
antiferromagnetic phases of the Hubbard model. The first box at the top shows how the
staggered magnetisation m = nA↑ − nA↓ and double occupancies are obtained self-consistently
by solving the gap equation [Eq. (13)] and the sum rule [Eq. (14)] for the spin-transverse
channel, where Goldstone modes appear. An initial guess for m and ⟨n↑n↓⟩ is used to calculate
the Green’s function and susceptibility. If Eqs. (13) and (14) are not satisfied, a minimisation
routine adjusts the values. Once satisfied, the next step is to find the renormalized

::::::::::::
renormalised

vertices in the spin-longitudinal channel by enforcing Eqs. (19) and (20), shown in the middle
box. With all renormalized

::::::::::::
renormalised

:
interactions in the different channels, the improved

electron self-energy can finally be computed using Eq. (21) displayed in the box at the bottom.
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Figure 3: (a) Staggered magnetisation m as a function of T for three different values of
U/t = 3, 4, 5. Dashed lines are best fits of the function α|T − Tc|1/2 close to Tc. (b) λ
parameter as a function of the reduced temperature θ = T−Tc

Tc
for the three different values of

the on-site interaction. (c) Double occupancies D = ⟨n̂↑n̂↓⟩ as a function of θ for the three
different U values. (d) Magnetisation and double occupancies as a function of U for T/t = 1/10.
TPSC data (open symbols) are compared to the DiagMC results (filled symbols) adapted from
Ref. [17]. The black dashed line is the magnetisation curve obtained using Hartree-Fock.

In Fig.(3-d), we show the order parameter and double occupancies as a function of U
by fixing the temperature to T/t = 1/10. As expected we observe that the order parameter
(double occupancies) increases (decrease) as a function of U . It is worth to highlight that
the introduction of quantum fluctuations leads to a significant decrease in the staggered
magnetisation compared to its mean-field predicted value [black curve in Fig. (3-d)]. We
compared our results to the ones obtained using Monte Carlo in Ref. [17] and we observe an
excellent quantitative agreement.

::
It

::
is
:::::::
worth

::::::
noting

:::::
that

::::
HF

:::::::::
deviates

::::::::::::
significantly

:::::
from

::::
the

:::::
exact

:::::::::
DiagMC

:::::::
results

::::
and

::::
the

::::::
TPSC

:::::
ones

:::::
even

:::
at

:::::
weak

:::::::::
coupling.

::::::
This

::::::::
behavior

:::
is

::::::::::
somewhat

::::::
similar

:::
to

:::::
what

::::
has

:::::
been

::::::::::
predicted

::
in

::::
the

::::::::::
symmetric

::::::
phase

:::::
near

::::::::::
criticality,

::::::
where

:::::::::::::
second-order

::::::::::::
perturbation

:::::::
theory

::::::
shows

::
a
:::::::
sizable

::::::::::
deviation

:::::
from

::::::::::
mean-field

::::::::::::
predictions

::::
[47].

:

After solving Eqs.(13,14) we can use the values of double occupations and staggered
magnetisation as input for Eqs.(19,20) in order to obtain the renormalised vertices in the
longitudinal channel. In Fig.(4), we show the renormalisation factors of the vertices, i.e. Γρ/U ,
Γz/U and λ as a function of U for T/t = 1/7.5. We observe that Γρ is highly enhanced
with respect to the bare vertex which is similar to what has been already observed in the
paramagnetic phase of the Hubbard model using TPSC [27]. Differently from the symmetric
case, in the AF phase Γz ̸= |Γ↑↓|, and our results show that Γz > |Γ↑↓| for all values of U and
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Figure 4: Vertex renormalisations in the density (Γρ/U), spin-longitudinal (Γz/U) and spin
transverse (λ = |Γ↑↓|/U) channels as a function of the bare interaction for T/t = 1/7.5.

that the difference between the two vertices increases as a function of the on-site interaction.
Interestingly, while |Γ↑↓| is always lower than the bare vertex (as Us in the paramagnetic phase
[27]), this is not true anymore for Γz/U , which is also an increasing function of U and crosses
the unity at U/t ∼ 5.4 for T/t = 1/7.5 [see Figure 4].

Integrals in the Brillouin zone were numerically calculated using the trapezoidal rule in
three dimensions, employing grids of Nk ×Nk ×Nk points with Nk values up to 32. For the
numerical integration of the spin-transverse susceptibility evaluated at zero frequency, i.e.,∫
dq

∑
σ χσσ̄(q, 0), a specific strategy was applied. Since this function diverges at q = Π, that

point was excluded from the integration grid. We evaluated the integral for different Nk values
(21, 24, 28, 32) and then extrapolated the integral value by fitting the function I + h/Nk,
where I represents the extrapolated value.

:::
For

::::
the

:::::::::::
summation

:::::
over

:::::::::::
Matsubara

::::::::::::
frequencies,

::
we

::::::::::
evaluated

::::
the

::::::::::::
momentum

::::::::
integrals

:::
up

:::
to

:::
24

::::::::
bosonic

::::::::::::
frequencies.

::::
We

:::::
then

::::::::::
performed

::
a
:::
fit

::
to

:::::::::::
extrapolate

::::
the

:::::::::::::::
high-frequency

::::::::::
quadratic

:::::
tails,

::::::
which

::::::::
allowed

:::
us

:::
to

:::::::
extend

:::
the

::::::::::::
summation

::
to

::::::::::
thousands

:::
of

::::::::::::
frequencies.

:

4.1 Dynamical Susceptibilities

We can use the solution of the self-consistent equations to evaluate spectral properties of
two-particle propagators. Regarding the spin-transverse channel, we observe that self-energy
and vertex corrections are both controlled by the same quantity, i.e. Γ↑↓, which substitutes de
facto the bare vertex appearing in RPA. Therefore, the spin-transverse dynamical susceptibility
defined in Eq.(11), which contains the information about the Goldstone modes, calculated at
a given U corresponds to the RPA one evaluated at a lower value of the interaction, namely
|Γ↑↓(U)|.
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TPSC RPA

Figure 5:
::::::::::
Imaginary

:::::
part

:::
of

:::::
the

:::::::::::::::
spin-transverse

:::::::::::::::
susceptibilities

::::::::::::
χx(ω + iη)

::::
for

:::::::::
U/t = 5,

:::::::::::
T/t = 1/7.5

::
,
::::::::
η = 0.03

:::::::::::
calculated

:::::
using

:::::::
TPSC

:::::
(left

::::::
panel)

:::::
and

:::::
RPA

::::::
(right

:::::::
panel).
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Figure 6: (a) Imaginary part of χz(ω + iη,q) (in log scale) defined in Eq.(17) evaluated along
the BZ high-symmetry path and for a wide range of real frequencies, for U/t = 12, T/t = 1/7.5,
and η/t = 0.03. (b) Imaginary part of χz(ω + iη,q) (in log scale) calculated using RPA for
U/t = 12, T/t = 1/7.5, and η/t = 0.02. (c) Imχz(ω + iη,q) evaluated using TPSC and RPA
at fixed momentum q = (π, π, π + 0.1) at U/t = 12, T/t = 1/7.5 and for η = 0.03. (d) Same
as (c) but for U/t = 5.
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::
In

:::::::
Figure

::
5,

:::
we

:::::
show

::::
the

::::::::::
imaginary

:::::
part

::
of

:::
the

:::::::::::::::
spin-transverse

:::::::::::::
susceptibility

::::::::::::::::
Imχx(ω + iη,q)

:::::::::
evaluated

:::
on

::::
the

::::
real

:::::
axis,

::::::
where

:::::::::::::::::::::::::::
χx = 1

2(χ
AA
↑↓ + χBB

↑↓ ) + χAB
↑↓ .

:::::
The

::::::
TPSC

::::::::::
spectrum,

::::::
much

::::
like

::::
that

::::::::
derived

:::::
from

::::::
RPA,

::::::::::
accurately

:::::::::
predicts

::::
the

:::::::::
existence

::
of

:::::::::::
Goldstone

:::::::
gapless

:::::::
modes

:::
at

::::
the

:::::::
R-point

:::
in

::::
the

:::::::::
Brillouin

:::::
zone.

:::::::
While

:::::::
TPSC

::::::::::
introduces

::
a
:::::::::::::
quantitative

:::::::::::::::
renormalization

:::
to

::::
the

::::::::::
low-energy

::::::::
modes,

::::
the

:::::::::::
qualitative

:::::::::
behavior

::::::::
remains

::::::::::
consistent

:::::
with

::::::
RPA4.

::
Conversely, the

vertex in the spin-longitudinal susceptibility Γz assumes different values than Γ↑↓ because
of symmetry breaking, and Γz > |Γ↑↓| as shown in Figure 4. This implies that the spin-
longitudinal susceptibility evaluated in TPSC does not correspond to any RPA one evaluated
at different effective parameters, and consequently the two methods yield qualitatively different
results for the spin-longitudinal susceptibility. In particular, since Γz > |Γ↑↓| the gap in
the χz spectrum is reduced with respect to the quasi-particle gap predicted by TPSC, i.e.
2∆TPSC = |Γ↑↓|m, which is controlled by self-energy corrections. In Fig.(6-a) we show a
color plot of Imχz(q) that has been evaluated in the high-symmetry path of the BZ and for a
wide range of frequencies at U/t = 12 and T/t = 1/7.5. We observe that a well visible Higgs
mode appears well below the quasi-particle continuum starting at 2∆TPSC, it has a minimum
at R = (π, π, π), and presents a substantial dispersion along the M-R and R-Γ directions.
This is in stark contrast with the RPA predicted spectrum [shown in Fig.(6-b)], where the
Higgs resonance occurs at ω/t = 2∆HF and therefore is overdamped by the particle-hole
continuum [48, 49]. Our findings agree qualitatively with recent numerical results based on a
time-dependent Gutzwiller approach showing that the Higgs resonance is shifted below the
edge of the particle-hole continuum upon increasing the interaction [50]. In Figs.(6-c/,d) we
show Imχz evluated using TPSC and RPA as a function of the real frequencies for a fixed
momentum close to R and two values of the interactions U/t = 12, 5 and at T/t = 1/7.5. It is
apparent that for both values of the interaction the Higgs resonance predicted by TPSC is
well separated from the particle-hole continuum and occurs at lower energies, while RPA does
not yield any true isolated pole.

4.2
:::::::::::
Improved

::::::::::::::
self-energy

::
In

::::
this

::::::::
section,

:::
we

:::::::
discuss

::::::::::
numerical

::::::
results

:::
for

::::
the

:::::::::
improved

:::::::::::
self-energy

:::::::::
obtained

::
by

::::::::::::::
incorporating

::::::
TPSC

::::::::::
collective

:::::::
modes

::::
into

::::
the

:::::::::
equation

:::
of

::::::::
motion

:
[
:::
Eq.

::::::
(21)].

::::::::
Unlike

::::
the

:::::::::::::::
mean-field-like

::::::::::
self-energy

:::::::
shown

:::
in

:::::::
Figure

::
1,

::::
the

::::::::::
improved

:::::::::::
self-energy

:::::::::
exhibits

::::::::::
frequency

::::
and

::::::::::::
momentum

::::::::::::
dependence.

::::::::
Figure

:::::
(7a)

:::::::::
displays

::::
the

:::::::::::
imaginary

:::::
part

:::
of

::::
the

:::::::::
electron

:::::::::::
self-energy

::::
for

::::
the

::::::::
majority

:::::
spin

:::::::
species

:::
as

::
a
:::::::::
function

::
of

:::::::::::
crystalline

::::::::::::
momentum,

:::::
with

:::::::::
U/t = 3

::::
and

::::::::::::
T/t = 1/10,

:::::::::
evaluated

:::
at

:::
the

:::::
first

:::::::::::
Matsubara

::::::::::
frequency

:::::::::
ν = π/β.

::::
We

::::::::
observe

:::::
that

::::
ImΣ

:::::::
peaks

::
in

:::::::::
absolute

:::::
value

:::
at

:::::::::
momenta

:::::::::::::
k = (π, π2 , 0):::::

and
:::::::::::::
k = (π2 ,

π
2 ,

π
2 ),:::::::

where
::::
the

::::
gap

:::::::::
between

::::
the

:::::::::::::
quasiparticle

::::::
bands

:::::::
reaches

::::
its

:::::::::
minimum

:::::::
value.

:::::::
Figure

:::::
(7b)

:::::::
shows

::::
the

:::::
same

:::::::::
quantity

::::
for

:::::::::
U/t = 5.

::::::
Here,

:::::
while

::::
the

::::::::::
qualitative

:::::::::
behavior

::
of

::::
the

::::::::::
self-energy

::::::::
remains

::::::::
similar,

:::
its

::::::
overall

:::::::::::
magnitude

:::::::::
increases

::::::::::::
significantly.

:

:::
We

:::::
next

::::::::
examine

::::
the

::::::::::
frequency

:::::::::::
dependence

::
of

::::
the

:::::::::::
self-energy

::
at

:::::
fixed

::::::::::
crystalline

::::::::::::
momentum.

::::::
Figure

:::::
(7c)

::::::::::
illustrates

:::::
ImΣ

:::
as

::
a
:::::::::
function

::
of

::::::::::::
Matsubara

::::::::::
frequency

:::
for

:::::
two

:::::::
chosen

::::::::::
momenta:

::::::
k1 = Γ

::::::
(blue

:::::::::
squares)

::::
and

:::::::::::::
k2 = (π, π2 , 0):::::

(red
::::::
dots),

::::::
where

::::
the

:::::::::::
self-energy

:::::::
reaches

:::
its

:::::::::
extreme

::::::
values

:::
at

:::
the

:::::::
lowest

::::::::::
frequency,

::::
for

:::::::::
U/t = 3,

::::::::::::
T/t = 1/10.

::::
For

::::::::::::
comparison,

::::
we

:::::::
include

::::::::
DMFT

::::::
results

::::::
from

:::
the

::::::::::::::::::
antiferromagnetic

::::::::
solution

::::::
(gray

::::::::::
triangles)

::::
[51]

:
.
::::
At

:::::::::
U/t = 3,

:::::
both

:::::::::
methods

:::::
show

:::::
good

::::::::::
agreement

::::::::
overall,

:::::::
though

:::::
some

:::::::::::
noticeable

::::::::::
differences

:::::::
emerge

:::
at

::::::
higher

::::::::::::
frequencies.

4
:::
We

::::::::
evaluated

::::
the

::::::
spectra

:::
on

:::
the

::::
real

:::
axis

:::::
using

::::
the

::::::::
analytical

::::::::::
expressions

::::
[22]

::
for

::::
the

::::::
bubble

:::::
terms

::::
and

::::
used

:
a
::::
grid

::
of

:::
32

::
×

::
32

::
×

:::
32

::::::
internal

:::::::::
momenta.
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:::::::
Despite

::::
the

:::::::::
moderate

::::::::::::::
k-dependence

::
of

::::
the

::::::::
electron

:::::::::::
self-energy

:::::::::
(variation

:::
of

:::::::
around

:::::
16%

::
at

::::
the

::::::
lowest

:::::::::::
frequency),

::::
the

::::
two

:::::::::
methods

::::::::
display

:::::::
similar

:::::::::::
qualitative

:::::::::
features.

::::
For

::::::::
U/t = 5

:
[
::::::
Figure

::
7d]

:
,
:::
the

::::::::::::
quantitative

::::::::::
deviation

::::::::
between

::::::
TPSC

::::
and

:::::::
DMFT

:::::::::
becomes

:::::
more

::::::::::::
pronounced,

:::::
with

::::
the

::::::
TPSC

:::::::::::
self-energy

:::::::
having

::
a

:::::::
greater

::::::::::::
magnitude.

:::::
This

::::::::::::
discrepancy

::
is

::::::::::
expected,

::
as

::::::::
DMFT

:::::
does

:::
not

::::::::
account

:::
for

:::::::
gapless

:::::::::
quantum

::::::::::::
fluctuations

:::::
from

::::::::::
Goldstone

:::::::
modes

::::
due

::
to

:::
its

::::::
local,

::::::::::
single-site

::::::::::::
formulation.

::::::::::::
Specifically,

::::::::
DMFT

:::::
lacks

:::::::::::::
two-particle

::::::::::::::::
self-consistency,

:::::::::
meaning

::::
that

::::
the

::::::
local

::::
spin

::::::::::::
fluctuations

::::::::
obtained

:::::
from

::::
the

::::::::
effective

::::::::::
Anderson

::::::::
impurity

:::::::
model

::::::
(AIM)

:::
do

::::
not

::::::
match

::::
the

::::
sum

::
of

::::
the

:::::::
Fourier

::::::::::::
components

::
of

::::
the

::::::
lattice

::::::::::::::
susceptibility:

:::::::::::::::::::::::::::::::
χAIM
↑↓,loc(ω) ̸=

1
V

∑
q χ

DMFT
↑↓ (q, ω)

:::
[1]

:
.
::::::::::::::
Consequently,

::::::
while

:::::::::::::
χDMFT
↑↓ (q, ω)

:::::
may

:::::::::
correctly

:::::::
predict

:::::::::::
Goldstone

::::::
modes

::::
[2],

::::::
these

:::::::
modes

::
do

::::
not

::::::::::
influence

::::
the

::::::::
DMFT

:::::::::::
self-energy,

:::::::
which

::::::::
remains

::
a
:::::::
purely

::::::
local

:::::::::
quantity.

:::::::::::
Although

::::::
TPSC

:::::::::
captures

::::::::
electron

:::::::::::
scattering

:::::
with

:::::::::
collective

::::::::
modes,

::::
the

::::::::
Green’s

:::::::::
function

::
in

:::::
Eq.

:::::
(21)

:::::
lacks

:::::::::::
self-energy

:::::::::
damping.

::::::
This

::::::::::
limitation

:::::
may

:::::
lead

:::
to

::::::::::::::
overestimated

:::::::::
quantum

::::::::::::
corrections

::
in

:::::::
TPSC.

:::
A

::::::::::::::
comprehensive

::::::::::::
comparison

:::::
with

::::::::::
dynamical

:::::::::::
quantities

::::::::::
calculated

::::::
using

:::::::::
DiagMC

::
in

::::
the

:::::::
broken

::::::::::
symmetry

::::::
phase

::::::
could

:::::::
further

:::::::
clarify

::::::::
TPSC’s

::::::::::
strengths

::::
and

:::::::::::
limitations,

:::::::
which

::
we

::::::
leave

:::
for

:::::::
future

::::::
work.

::::
We

:::::::
expect

:::::
that

::::
the

:::::::::::::
applicability

::
of

:::::::
TPSC

::
is
::::::::
limited

:::
in

:::::::
regions

:::
of

::::::::::
parameter

::::::
space

::::::
where

::::
the

:::::::::::
dynamical

:::::::::
structure

:::
of

::::
the

:::::::
vertex

::::::::
function

::::::::
cannot

:::
be

::::::::::
neglected

::::::::::
[52, 53, 54]

:
.
:

5 Conclusions

We extended the formalism of TPSC to account for spontaneous symmetry breaking and
applied the new method to the AF phase of the single-band Hubbard model on a cubic lattice
at half-filling. Our comparison with DiagMC reveals excellent quantitative agreement between
the two methods for the order parameter and double occupancies.

We show that the differentiation of vertex corrections in the different scattering channels
due to symmetry breaking (Γz ̸= |Γ↑↓|) has remarkable effects in the spin-longitudinal channel.
In particular, the Higgs resonance occurs at energies lower than the quasi-particle continuum
leading to a well visible Higgs mode for a wide range of parameters.

::
In

::::::::
TPSC,

:::
an

::::::::::
improved

:::::::::
electron

:::::::::::
self-energy

::::
can

:::
be

:::::::::::::
constructed,

::::::::::
exhibiting

::
a
:::::::::::
nontrivial

:::::::::
frequency

::::
and

:::::::::::
momentum

::::::::::
structure,

:::
as

::::::
shown

::
in

::::
the

::::::
latter

::::
part

::
of

::::
our

:::::::
results

:::::::
section.

::::::::::
Although

::
we

:::::::::
observe

::
a

::::::::
limited

::::::::::::
dependence

:::
on

::::
the

:::::::::::
crystalline

:::::::::::::
momentum,

::::
the

:::::::
TPSC

:::::::::::
self-energy

:::
is

:::::::::
generally

::::::
larger

:::
in

:::::::::::
magnitude

::::::::::
compared

:::
to

::::::
that

:::::::::
obtained

:::::
from

:::::::::
DMFT,

:::::::::
similarly

:::
to

::::::
what

:
is
:::::::
found

:::
in

::::::::::::
ladder-DΓA

:::
in

::::
the

:::::::::::::
paramagnetic

:::::::
phase

:::::
close

:::
to

::::::::::
criticality

::::
[46]

:
.
::::::
This

::::::::::
difference

:::::
arises

:::::::::
because

::::::
TPSC

:::::::::::::
incorporates

:::::::::::
Goldstone

:::::::
modes

::
in

::::
the

:::::::::::
self-energy

::::::::::::
calculation,

:::::::::
whereas

:::::::
DMFT

:::::
does

::::
not.

::::
We

::::::
leave

::
to

:::::::
future

:::::
work

::::
the

::::::::::::
exploration

::
of

:::::::
doped

:::::::::::::::::
antiferromagnetic

:::::::
states,

::::::
where

:::
the

::::::::::::
momentum

:::::::::::
dependence

:::
of

::::
the

::::::::
electron

:::::::::::
self-energy

::::::
could

:::::::
become

::::::
more

::::::::::::
pronounced.

Since our data demonstrate that the level of correlation decreases by decreasing temperature
deep in the BSP, one could argue that TPSC is particularly suited to the study of BSP where
correlation are not negligible but less pronounced.

Additionally, TPSC has already been successfully integrated with ab-initio methods, though
only for symmetric phases [31]. This opens up exciting possibilities for extending our method
to broken symmetry phases in combination with DFT (Density Functional Theory) for realistic
electronic structure calculations.

Also, since TPSC already has been used as a benchmark for cold atomic simulators [55, 56],
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Figure 7:
:::
(a)

:::::::::::
Imaginary

:::::
part

::
of

::::
the

:::::::::::
self-energy

:::
as

::
a
:::::::::
function

::
of

::::
the

:::::::::::
crystalline

::::::::::::
momentum

:::
for

::::::
σ =↑,

:::::::::
U/t = 3,

:::::::::::
T/t = 1/10

::::::::::
evaluated

:::
at

::::::::::
ν = π/β.

::::
(b)

::::::
Same

:::
as

:::
(a)

::::
but

::::
for

:::::::::
U/t = 5.

::::
(c)

::::::::::
Imaginary

::::
part

:::
of

:::
the

:::::::::::
self-energy

::
as

::
a
::::::::
function

:::
of

:::
the

::::::::::
fermionic

::::::::::
Matsubara

::::::::::
frequency

::::::::::
evaluated

::
at

::::
two

::::::::
different

:::::::
points

::
in

::::
the

:::
BZ

:::::::::::::
k1 = (0, 0, 0) [

::::
blue

::::::::
squares]

:::
and

:::::::::::::
k2 = (π, π2 , 0):[ :::

red
::::::
circles]

::::
and

:::
for

:::::::::
U/t = 3,

::::::::::::
T/t = 1/10.

:::::
The

::::::::::
imaginary

:::::
part

:::
of

::::
the

:::::::
(local)

:::::::::::
self-energy

::::::::::
evaluated

::
in

::::::::
DMFT

:::
for

:::
the

::::::
same

:::::::::::
parameters

::
is
::::::::::::
represented

:::
by

:::::
gray

:::::::::
triangles.

::::
(d)

::::::
Same

:::
as

:::
(c)

::::
but

::::
for

:::::::::
U/t = 5.
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its generalisation will provide further guidance to cold-atom experiments exploring broken
symmetry phases [57].

Generalising improved version of TPSC
::::::::::::
Generalising

::::::::::
improved

::::::::
versions

:::
of

:::::::
TPSC,

:
such as

TPSC+ and TPSC+SFM [33]
:
, to the BSP case could lead to the partial inclusion of dynamical

effects, which have been shown to be particularly important close to the Neél temperature
[58, 59], and is left to .

:::::::
These

:::::::
effects

::::
are

::::::::::::
particularly

::::::::::
important

:::::
near

::::
the

:::::
Néel

:::::::::::::
temperature

:::::::
[58, 59]

:
,
::::
and

::::
will

:::
be

::::::::::
addressed

::
in

:
future work.

:::::::::::::
Additionally,

::::::::::
combining

:::::::
TPSC

:::::
with

:::::::
DMFT

:::::::::
[60, 61]

:
in

::::
the

::::::::::::::::::
antiferromagnetic

::::::
phase

::::::
could

:::::::
provide

:::::::
deeper

::::::::
insights

::::
into

::::
the

:::::::::
non-local

:::::::::
quantum

:::::::::::
corrections

:::
to

::::
the

::::::::::::
spin-polaron

::::::
peaks

:::::
that

:::::::
emerge

::
at

:::::::
strong

::::::::
coupling

:::
in

::::
the

:::::::::::
Heisenberg

::::::
regime

::::::::::::
[62, 51, 63].

::::::::::::::
Furthermore,

:::::::
similar

:::::
steps

:::
as

:::::
those

::::::::::
presented

::
in

:::::
this

:::::
work

::::::
could

:::
be

:::::::
applied

:::
to

:::::::
extend

:::::::
TPSC

::
to

::::::
study

:::::::
charge

::::::::
density

::::::
waves

::::
and

:::::::::::::::::
superconductivity

:::
in

::::
the

::::::::::
attractive

::::
and

:::::::::
extended

:::::::::
Hubbard

::::::::
models

::::::::::::::::::
[64, 46, 65, 66, 67]

:
.
:

The potential for applying TPSC to understand complex magnetic phases in novel ma-
terials is vast. For example, the approach we present here can be applied to models hosting
altermagnetism [68, 69, 70, 71], a recently identified category of broken-symmetry phases.
Group theory predictions suggest that many such materials might exist in three dimensions
[72], providing an ideal scenario where our method can be readily applied. Investigations of
these novel magnetic phases in candidate compounds [73, 74, 75, 76, 77, 78] are underway, and
we anticipate that new magnetic materials will soon be proposed theoretically and realized
experimentally. We also demonstrated that TPSC is an effective tool for studying the ampli-
tude (Higgs) mode, which is often elusive in most mean-field theories. This paves the way for
theoretical calculations of amplitude collective modes in altermagnets, providing a reference
for future experimental investigations and offering insights into fundamental questions–such as
how the topological properties of altermagnets electronic structures [79]

::::::::
[79, 80] are reflected

in their collective modes.

::::
Let

::
us

:::::
note

:::::
that

:::
in

::::::::::
principle,

:::
the

::::::
same

:::::::
scheme

::::::::::
presented

:::::
here

::::
can

:::
be

::::::::
applied

:::
to

::::::::
ordered

:::::
states

:::::
with

::::::
larger

:::::
unit

:::::
cells,

:::::::
though

:::
the

:::::::::
technical

::::::::::
challenges

::::::::
depend

:::
on

:::
the

:::::
type

::
of

::::::::::::::::
incommensurate

::::::
order.

::::
For

:::::::
spiral

::::::
order,

:::::::
where

::::
the

::::::
order

:::::::::::
parameter

:::::::
rotates

:::
in

::
a
::::::
plane

:::::
with

::::::::::::
momentum

:::
Q

:::::
(e.g.,

::::::::::::::::::::::::::::::::
mR ∝ (cos(Q ·R), sin(Q ·R), 0)),

:::::
the

:::::::::::::
computation

::
is
:::::::::::
simplified

:::
by

::::::::::::::
re-expressing

::::
the

::::::::::::
Hamiltonian

:::
in

::
a

::::
new

::::::
basis,

::::::::::
restoring

:::::::::::::
translational

:::::::::::
symmetry.

:::::
This

::::::::::
approach

::
is
::::::::
similar

:::
to

::::
that

:::::
used

::
in

:::::::
studies

:::
of

:::
the

:::::::::
Hubbard

:::::::
model

::::
with

:::::::::
artificial

::::::
gauge

:::::
fields

::::
[81]

:
.
:::::::::
However,

::::
for

:::::::
striped

::::::::
collinear

::::::
order,

::::::
where

::::
the

:::::
order

:::::::::::
parameter

::::::::::
amplitude

::
is

::::::::::
modulated

:::::
(e.g.,

::::::::::::::::::::::::
mR ∝ (0, 0, cos(Q ·R))),

:::
the

:::::::::
enlarged

::::
unit

::::
cell

:::::
must

:::
be

::::::::::
explicitly

::::::::::
considered

::::
[82]

:
,
::::::::::
increasing

:::::::::::::::
computational

::::
cost

::::
due

:::
to

:::
the

:::::::::
inclusion

:::
of

::::::::::
additional

:::::::::
orbitals.

:
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A Irreducible vertices

In this section we shall give some details about the derivation of the expression for the
irreducible vertices in the spin-transverse and spin-longitudinal channels.

A.1 Spin-transverse channel

It is worth to note that the expression for the irreducible vertex in the spin-transverse channel
presented in the main text is an exact equality. In fact, even if λ is a functional of the Green’s
function, it does not appear in the expression of the irreducible vertex function because its
functional derivative with respect to the off-diagonal propagator vanishes, i.e.

δλ

δGcd
↓↑(x3, x4)

= 0. (22)

In fact, from Eq.(3) we can derive the following formula for the double occupancies:

⟨n̂aσn̂aσ̄⟩ =
1

2U
Σaa′
σσ′(x, y′)Ga′a

σ′σ(y
′, x). (23)

Let us now compute the functional derivative of the double occupancies:

δ ⟨n̂a↑n̂a↓⟩
δG↓↑

cd(x3, x4)
∝ δ(x− x4)δadΣ

↑↓
dc(x4, x3) +

δΣ↑σ′

aa′ (x, y
′)

δG↓↑
cd(x3, x4)

Gσ′↑
a′a(y

′, x), (24)

where we can now easily see that the LHS does not conserve the spin along the z-axis and
therefore vanishes at zero external field.

A.2 Spin-longitudinal channel

On the other hand the expression for the irreducible vertex in the spin-longitudinal channel given
in the main text is not an exact equality. Here we shall clarify where the extra approximation
comes from. The irreducible vertex function in the longitudinal-spin

::::::::::::::::
spin-longitudinal

:
channel

reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣab
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

= U↑↓δσσ̄′δabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4)

+ U naσ̄ δ(x1 − x2)δab
δλ

δGcd
σ′σ′(x3, x4)

. (25)

Therefore, the irreducible vertex in the spin-longitudinal channel acquires non-local and
dynamical corrections, which would complicate the expression of the Bethe-Salpeter equations
and further approximations are needed. In practice, one approximates the extra dynamical
term to a constant deviation from the value obtained in the spin-transeverse channel, i.e.
Γρ/z ∼ −Γ↑↓ + δUρ/z.

26



SciPost Physics Reply and diff

B Bethe-Salpeter Equations

Let us define the generalized susceptibility as:

χ1234 =
δG(21)

δh(34)
, (26)

where G(12) = −Tτ

〈
cα(x1)c

†
β(x2)

〉
is the propagator, x = (R, τ), 1 = (α, x1) and h(12) is the

perturbing field whose action reads:

Sext = −
∫

d1d2h(1, 2) c(1)c(2), (27)

where in the last equations c and c are Grassmann variables, and
∫
d1 =

∑
α

∑
R

∫ β
0 dτ , with

β = 1/kBT . Given the form of the external perturbation, the inverse of the non-interacting
propagator reads:

G−1
0 (12) = [∂τ + µ−H0]12 + h(12). (28)

We now want to obtain a closed equation for χ1234 by explicitly performing the functional
derivative in Eq.(26). For doing so we first note that:

δG(21)

δh(34)
= −

∫ ∫
d1′d2′G(2, 2′)

δG−1(2′1′)

δh(34)
G(1′, 1). (29)

We can further develop Eq.(29) by making use of the Dyson equation, that reads:

G−1(12) = G−1
0 (12)− Σ(12). (30)

In fact, by substituting Eq.(30) into Eq.(29) and using Eq.(28), we obtain the following identity:

χ1234 = −G(2, 3)G(4, 1) +

∫ 4∏
i=1

di′G(2, 2′)G(1′, 1)Γ1′2′3′4′χ4′3′34, (31)

where we defined the two-particle irreducible (2PI) vertex function Γ1234 = δΣ(2,1)
δG(3,4) . Let us

express the last equation in Fourier space. For this purpose let us expand the propagators and
vertices in terms of their Fourier components, i.e.:

f1234 =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]fαβ
γδ (k, k

′, q),

G(1, 2) =
1

V β

∑
k

e−ik(x1−x2)Gαβ
k . (32)

We first note that:

−G(2, 3)G(4, 1) =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]χ αβ
0,γδ (k, k

′, q), (33)
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α (a, σ)

β (b, σ′)

γ (c, σ′′)

α′ (a1, σ1)

β′ (a2, σ2)

γ′ (a3, σ3)

δ′ (a4, σ4)

Table 1: Relation between indices expressed in the compact and extended notations.

where we defined the bubble terms as:

χ αβ
0,γδ (k, k

′, q) = −(V β) δkk′ G
δα
k Gβγ

k+q. (34)

The final equation in Fourier space reads:

χαβ
γδ (kk

′q) = χ αβ
0,γδ (k, k

′, q)− 1

(V β)2

∑
k1k2

∑
α′β′γ′δ′

χ α β
0,β′α′(k, k1, q) Γ

α′β′

γ′δ′ (k1, k2, q)χ
δ′γ′

γ δ (k2, k
′, q) .

(35)

C Improved one-loop self-energy

Let us note that from its definition the generalised susceptiblity is related to the two-

particle Green’s function in the following way: χαβ
γδ (x1, x2, x3, x4) = G

(2)αβ
γδ (x1, x2, x3, x4) −

Gβα(x2, x1)G
δγ(x4, x3). Hence, we can rewrite the RHS of Eq.(3) in the following way:

1

V β

∑
kγ

e−ik(x−y)UαγnγG
αβ
k +

1

(βV )3

∑
kk′q

∑
γ

Uαγe
−ik(x−y)χαβ

γγ (kk
′q).

If we substitute Eq.(35) into the second term of last equation we obtain the following expression:

− 1

(V β)2

∑
kk′q

∑
γ

eik(x−y)UαγG
γα
k Gβγ

k+q

+
1

(V β)4

∑
kk′qk1

∑
γα′β′γ′δ′

UαγG
α′α
k Gββ′

k+qΓ
α′β′

γ′δ′ (kk1q)χ
γ′β′
γγ (k1k

′q), (36)

which is a generic and exact expression of the RHS of Eq.(3). Now we shall specialize to the
antiferromagnetic phase of the Hubbard model, and approximate the vertex function to a local
quantity that does not depend on the crystalline momenta. In order to do so it is useful to
explicitly express the spin-orbital indices in sub-lattice and spin indices as shown in Table 1.

Furthermore, if we assume spin-conservation we can express the irreducible vertex function
as follows:

Γa1a2
a3a4 |

σ1σ2
σ3σ4

∼ δa1a2δa1a3δa1a4(Γ
a1
σ1σ2

δσ1σ2δσ3σ4 + Γa1
σ1σ̄1

δσ1σ̄2δσ3σ̄4δσ1σ3), (37)
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where we used the following notation Γa
σσ′ = Γaa

aa|σσσ′σ′ and Γa
σσ̄

= Γaa
aa|σσ̄σ̄σ. Substituting Eq.(37)

in
:::
into

:
Eq.(36) we obtain the following expression for the equation of motion in momentum

space:

Σab
σ (k)− Unaσ̄ =

U

(V β)3

∑
k1k′qσ1

Gab
σ (k + q)Γb

σσ1
(νν ′ω)χba

σ1σ̄(k1k
′q). (38)

We notice that in this representation the self-energy is expressed in terms of the longitudinal
scattering channel only. It is possible to obtain an equivalent expression where the transverse
vertex and susceptibility appear by using the following crossing relation:

G(2)βα
γγ (y, x+ 0−, x+ 0+, x) = −G(2)βγ

γα(y, x, x+ 0+, x+ 0−). (39)

Plugging the last equation into the equation of motion in Eq.(3) and following similar passages
to the ones we did for obtaining Eq.(38), we obtain the following expression for the self-energy:

Σab
σ (k)− Unaσ̄ = − U

(V β)3

∑
k1k′q

Gab
σ̄ (k + q)Γa

σσ̄(νν
′ω)χab

σσ̄(k1k
′q). (40)

In TPSC the irreducible vertices are local and static, i.e. they do not depend on the Mastubara
frequencies and further simplification arise. In particular, if we assume static and local
vertex functions, if we average Eqs.(38,40) we obtain the following expression for the one-loop
improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q).

(41)
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[82] T. I. Vanhala and P. Törmä, Dynamical mean-field theory study of stripe order and
d-wave superconductivity in the two-dimensional Hubbard model, Phys. Rev. B 97, 075112
(2018), doi:10.1103/PhysRevB.97.075112.

35

2408.08835
2403.09520
2408.14288
2408.14288
https://doi.org/10.1103/PhysRevB.97.075112

	Introduction
	The model
	The method
	The TPSC ansatz
	Spin-transverse channel

	Spin-longitudinal channel
	Improved one-loop self-energy

	Numerical results
	Dynamical Susceptibilities
	blueImproved self-energy

	Conclusions
	Irreducible vertices
	Spin-transverse channel
	Spin-longitudinal channel

	Bethe-Salpeter Equations
	Improved one-loop self-energy
	References

