
Comments of Reviewer 2:

1. The first part is intended to be abstract and general. This approach is
appropriate when the hopping ratios decrease with nonlinearity. However, in
the case of increasing hopping ratios, a careful reading of the section reveals
several additional conditions that have been established. For instance, there
is a kind of saturable nonlinearity, where the nonlinearity must maintain the
first hopping ratio at 1 once a2 =a1 is reached. Furthermore, they also con-
sider the nonlinearity from the subsequent section. I recommend that the
authors clarify that this is not a general case, but rather a specific scenario
motivated by their physical context.

We thank the reviewer for the question. We agree with the reviewer that our
estimation in Fig.1 does not apply to all kinds of nonlinearities, especially
when hopping ratios in A increase with nonlinearity. We do add one addi-
tional assumption to derive the corresponding results. However, we would
like to clarify that,

(1), It is impossible to derive one deterministic law that is valid regard-
less of the nonlinear contents, since nonlinearity, in principle, can arbitrarily
depend on the amplitude. For this reason, we have focused on nonlinearities
with monotonic dependence on amplitudes, a property shared by most of the
’common’ nonlinearities.

(2), We impose that the hopping ratio stays at 1 once a2 = a1 is achieved.
This comes from the concern about the physical instability in practical sit-
uations, as we state in the manuscript ”After that, if nonlinearity still can
increase the hopping ratio, ..., inevitably ending with a physical instability
of the system.”. Our aim of this work is to observe in practice the greatest
variation of the nonlinear edge state, we thus restrict ourselves to the case
where the system remains physically stable at all nonlinear magnitudes.

(3), we agree with the reviewer that such a ’saturable’ type of nonlinear
hopping ratio may not include all monotonic amplitude-dependent nonlin-
earities. However, when the hopping ratio is saturable, the corresponding
hopping terms are not limited to the saturation types, they can also be poly-
nomial (quadratic, cubic,...) or even other exotic ones such as exponential.
And most importantly, they can also be non-local (as in the case we show

1



in Figs.2-3). Therefore, we still believe that our estimations in Fig.1 can
apply to a broad class of nonlinearities, not only to the specific nonlinearity
presented in the subsequent section.

(4), When hopping ratios in A are increased with nonlinearity, the sites in
B inevitably rise due to the finite dimensions of the systems. However, the
variations of the relevant hopping ratios are not unique since nonlinearity in
B can theoretically be random (different from that in A), That is why we
have utilized the nonlinearity in the concrete case to draw the variation in B.
Despite this, the evolution in the sublattice A, the main focus of this section,
is not derived depending on a specific case. It can apply to a broad family
of nonlinearities, as stated in the manuscript and explained above in (1)-(3).

We corrected the texts in section 3 and added descriptions in the caption
of Fig.1 to make our estimations/interpretations clearer and more rigorous.

2. The authors aim to propose a physical system that exhibits the key fea-
tures of chiral nonlinearity. However, the proposed setting is unnecessarily
complicated. This is evident in Fig. 4, where at the frequency fH , the lin-
ear identical resonators (Helmholtz resonators) behave like an open circuit.
By the way for the not specialists in electronics, the authors should clarify
why this behavior occurs at high frequencies rather than at low frequencies.
Wouldn’t a variation of the approach presented in Phys. REVIEW AP-
PLIED 20, 014022 (2023), using only membranes and active control, suffice
to achieve the desired outcomes?

We thank the reviewer for the comments. We reply in the following points,

(1), We would like first to point out that, the behaviors of the resonators at
low and high frequencies are just about the fact that the capacitor behavior
of a single-degree-of-freedom resonator is dominant at low frequencies. In
contrast, its mass behavior is dominant at high frequencies. This is not rele-
vant to any further derivations such as the mentioned PRApplied. We added
more explanations in the paragraph describing the corresponding Fig.6 in
Appendix B.1.

Then, we would like to clarify that at high frequencies, the dominant mass
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behaviors of the linear resonators LFn cause their impedance to be large.
However, assuming this impedance is close to infinity (as an open circuit)
is actually rude and uncritical. We thus corrected Fig.6 to more precisely
approximate the linear resonators as masses at high frequencies, rather than
as open circuits. These linear resonators do have an impact, they change
the frequency fH of the edge state, despite the predominance of the nonlin-
ear resonators HFn therein, as can be derived from Eq.(A.5) in Appendix A.1.

(2), We demonstrated with Fig.6 that our system is equivalent to a topo-
logical lattice made of single resonant unit cells at two different frequencies.
That is to say, when simplifying it by removing the linear resonators LFn in
the lumped element circuit (the Helmholtz resonators in acoustic system),
the same recurrent relations between the sites an+1 (bn−1) and an (bn) can
be obtained as in the current system (Eq.(4)). From this point of view, the
reviewer is right that the simplified system can also allow the nonlinear topo-
logical edge state to be generated.

(3), In contrast to the simplified case, the advantage of the current complex
system is that, within one single lattice, one can achieve two topological edge
states with completely different features: the one we show in the main text
(at the frequency fH) is very robust in response to all kinds of losses, as
evidenced by the experimental results. However, the second one (at the fre-
quency fL) is very sensitive to losses, leading to severe distortion in its shape
and frequency. From our knowledge, such dual-band topological edge states
achieved in one single system have hardly been demonstrated in the existing
research in nonlinear topology. This is the reason for our choice, which we
may not have explicitly emphasized in the main texts.

To describe and evidence our choice, we added more explanations in Sec-
tion 4 and Appendix B.1 (in paragraph for Fig.6). A theoretical comparison
between the two edge states is provided in Fig.8 in Appendix B.1, where the
loss in each constituent element is considered in turn. We additionally added
two figures (Figs.17 and 18) in Appendix B.3 to showcase the experimental
results for the second edge state at fL, from which one can notice the clear
difference with the one at fH.

3. Considering a setting like finite SSH chains with medium hopping ra-
tios, one would expect to observe two edge modes, coupled and with energies
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both below and above zero energy. It appears that the authors do not take
this into account. Although the spectral figures, such as Fig. 2 and Fig. 3,
show a dominant peak that is not at the frequency fH (the ”zero” energy) but
rather below it. The figure captions indicate that “the whole system starts
and ends with the controlled loudspeakers,” suggesting that the authors are
addressing a driven case rather than a Hamiltonian case, given the presence
of loudspeakers at both ends of the structure. In this context, the edge pro-
files reflects the driven response of the system rather than the eigenmodes
derived from the Hamiltonian’s eigenvalues. This distinction may confuse
the readers, especially since the first “general” section is based on the Hamil-
tonian framework. I recommend that the authors clarify these points in the
text,

We thank the reviewer for identifying this confusion. To be clearer,

(1), We state that ”the whole system starts and ends with the controlled loud-
speakers”, this is necessary to derive the Schrodinger equations t1bn−1+t0bn =
0 and t1an+1 + t0an = 0 we show in Eq.(4), which is not related to whether
the system is driven or non-driven. The driving source is actually included
in the boundary b0 (left end) of the lumped-element system.

(2), We do consider a driven configuration in the theoretical investigation
in Section 4, which is necessary for the experimental realizations of edge
states. Indeed, after the first ’general’ section, we aim to directly explore a
realizable case (a realizable system in a practically feasible configuration),
rather than a “purely” theoretical derivation with eigenmodes of the Hamil-
tonian. Meanwhile, we would like to stress that, the excitation we define,
combined with the non-reflecting boundary conditions we employ, play the
same role as the theoretically required b0 = ae = 0 in the Hamiltonian (non-
driven) case, as demonstrated in Fig.7 in Appendix B.1. Therefore, the edge
states profiles we show reflect indeed the non-driven responses that are ob-
tained in an equivalent realizable driven manner.

We agree with the reviewer that the above points were not clearly stated
in the manuscript. To remove ambiguities, we corrected Fig.2a and added
one paragraph in Section 4 (the first paragraph after Fig.2) to describe the
overall boundary conditions under consideration, including the driven situa-
tion, the details of which are completed in Appendix A.2.
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4. Lines 217-223 lack clarity, particularly regarding the authors’ discussion
of instability. While they reference several points related to instabilities,
there are no results demonstrating how these instabilities are involved. For
example, they state, “The limit of only a1 being dynamic cannot be ob-
served, as instability arises first, which is in accordance with time-domain
analysis (Appendix B.2, Fig. 9).” However, I do not see any evidence of
instability dynamics in this figure. Identifying nonlinear unstable solutions
is crucial, particularly in terms of how these instabilities manifest. Are the
authors referring to wave instabilities or those arising from the active ele-
ments? Clarifying these points would enhance the reader’s understanding.

We thank the reviewer for pointing out the unclarity. The stability we are
discussing therein refers to a physical instability that manifests itself in wave
amplitude irregularities and tends to infinity. It is caused by a time delay
unavoidable in real-time feedback active control on the loudspeakers, which
inject energy into the closed system. We clarify this point in the correspond-
ing paragraph.

5. In line 302, the authors state, “If ∆t = 0 is possible.” It is crucial for
the validity of the results that ∆t be zero, yet it is not clear under what
conditions this occurs or if it is always the case. Please clarify this point
clearly to ensure a better understanding of its implications for the results.

We thank the reviewer for indicating the deficiency. We added more deriva-
tions and explanations in corresponding Appendix A.1. Indeed, ∆t = 0 can
be transformed in the frequency domain at the fundamental frequency where
d
dt

= iω. This leads to a fourth-order differential equation on ω, in which
two solutions exist, see Appendix A.1 in the new version of the manuscript
for details. We additionally state that the higher harmonic generations are
consistently lower than 1% in generating the edge state, thus d

dt
= iω holds

directly, i.e., the corresponding results are always true.

6. A final and significant comment: From Eq. A5, it appears that the non-
linearity results in non-reciprocal hopping. If this is indeed the case, the
authors should address this explicitly. Please explain the constraints that
led to this outcome. Additionally, could a reciprocal nonlinear chiral system
be proposed along the lines of the electronic setup described in Nat Elec-
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tronics 178, 2018, “Self-induced topological protection”? Addressing these
points would enhance the comprehensiveness of the discussion.

We thank the reviewer for the observations that we had not addressed. We
confirm by double-checking that we have t0a ̸= t0b in the nonlinear regime,
i.e., the hopping in our system is non-reciprocal. We added discussions about
such non-reciprocity in Section 4 (in the second paragraph after Fig.2).

We would like to point out,
(1), In our system, the nonlinear part of the hopping terms for bn (an) arise

from the difference in the nonlinearities of V
(NL)
2k−1 (V

(NL)
2k+1) and V

(NL)
2k , as can be

seen from the dynamic equations in Eq.(A.4) in Appendix A.1. In this case,
if one would like to derive a reciprocal hopping, the above nonlinearity differ-
ences should depend on an and bn in the same manner respectively. However,
knowing that due to the periodicity of the system, V

(NL)
2k−1 and V

(NL)
2k+1 present

the same nonlinear law while depending sequentially on different sites, such
a requirement is eventually not trivial to satisfy. By contrast, introducing
nonlinearities leads to breaking reciprocity in the hopping, this is intuitively
more like what could happen.

(2), The system studied in Nat. Electron. 178, 2018 presents alternatively
mounted linear and nonlinear capacitors, corresponding to HF2k−1 linear and
HF2k nonlinear in our system. In that work, the authors have made several
approximations in deriving Eq.(1) in the manuscript, as detailed in their Sup-
plementary Information (Eqs.S5-S8). If removing all these assumptions while
using only the basic circuit principles for their system shown in Fig.1, one
will eventually arrive at Eq.(1) plus additional nonlinear terms depending
both on an and bn. Therefore, their achievements of nonlinear Schrodinger
equations with reciprocal hopping relations involve approximate results, the
nonlinear topological edge states are not produced precisely.

In contrast to it, our derivations haven’t introduced any assumptions or ap-
proximations, the proposed nonlinear system allows the exact generations of
nonlinear edge states (exact derivations of nonlinear Schrodinger equations),
it also rigorously satisfies chiral symmetry regardless of the nonlinear magni-
tudes, and the non-reciprocal hopping relations are consistently present. To
stress this point, we added the corresponding comments in Section 4.
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