
1

We thank the Referee for the detailed report that helped us to considerably improve our manuscript.

Below please find our response (in black) to all comments, questions, or suggestions raised by the

Referee (in blue).

We note that in the revised version of our manuscript, we have adopted the latex template for

Scipost Physics, as suggested by the journal instructions. This implies that the numbering of the

sections changed from Roman to Arabic (i.e., II.C -> 2.3 and so on). In our response, we will

consistently use Arabic numbering of sections.

————————————————————————————————————-

The manuscript titled "Boson-fermion pairing and condensation in two-dimensional Bose-Fermi

mixtures" investigates the phase diagram of a two-dimensional mixture of a Bose gas and a Fermi

gas which are coupled via a strong interaction that can feature bound states even in the two-body

limit. The work builds on previous analyses conducted in three dimensions which utilized the same

type of diagrams. Due to the presence of condensed bosons, the fermionic and the molecular sector

are hybridized into a joint excitation and thus the relevant quasiparticles are superpositions of these

two sectors. To illuminate this mechanism, the authors derive analytic expressions –valid in the

strong-coupling regime– which showcase the different quasiparticles at play. In the relevant regimes,

their fully numerical treatment shows good overlap with their analytic expressions, and they find

subtle physical differences (and also similarities) compared to the corresponding physical system in

three dimensions. While, as in 3D, they find that increasing the Bose-Fermi interaction strength

progressively depletes the condensate, they do not find the condensate fraction to vanish beyond

a critical interaction strength (unlike in 3D). As a result, the emerging quasiparticle show some

unusual features. Like in 3D, a universal behavior with respect to the ratio between bosonic and

fermionic density is found for quantities like the condensate fraction.

The present manuscript is timely, and the physics covered is certainly interesting. I am not aware

of previous works that have addressed this phase diagram along with the interplay of pairing and

condensation in two dimensions. As mentioned in the main text, an experimental implementation

of an analogous system in three dimensions was demonstrated recently and thus two-dimensional
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implementations are certainly within reach (and have already been studied in the polaron limits).

Insights into the qualitative physics in two dimensions along with the differences to analogous

systems in three dimensions are thus welcome and provide great progress to the field.

While this manuscript is certainly worthy of publication, there are a few issues/comments/

questions I would like to see addressed before recommending publication. I provide the comments

below.

We thank the Referee for the above appreciation of our work and for judging it certainly worthy of

publication.

Before getting into content feedback, I would like to encourage the authors to proofread

the manuscript thoroughly. While reading through the manuscript, I found several instances

of unnecessarily long/complicated sentences that required several readings before I was able to

understand them. I also found several sentences missing verbs or with singular/plural errors. I invite

the authors to conduct another round of proofreading to facilitate readability for all readers.

We have simplified several long sentences throughout the manuscript and carefully proofread it.

While the technical analysis conducted in this manuscript is sound (though in some instances I

think the presentation may be improved), my main concerns are the diagrammatics used and the

physical conclusions one may draw from it. I am fully aware, that the present analysis is challenging

enough as is and going beyond it, taking into account higher-order effects or higher degrees of

self-consistency is no easy feat. I feel however, that this manuscript lacks transparency in its main

drawback, and I would like to see this discussed more. As I am sure the authors are fully aware, in

the normal phase this type of T-matrix approach has a central drawback: it treats renormalization of

the molecule sector and renormalization of the fermion sector on a different footing. As a result, in

the Fermi-polaron limit of nB=0, nF>0 in three dimensions the molecule’s energy is higher than it

should be, and the polaron-to-molecule transition takes place later than it does in more self-consistent

approaches. Apart from that, the Ansatz gives qualitatively correct results, especially in observables

that do not include the energy (such as the quasiparticle weight). In two dimensions, however, this

Ansatz no longer holds a polaron-to-molecule transition, even though several state-of-the-art methods
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do find one. This of course has implications also for the phase diagram and phase transitions of 2D

B-F mixtures, as the present approach cannot reproduce known physics for x->0 at large g. This does

not mean that at larger values of x it must produce incorrect results, but it is at least a possibility.

The authors mention this point in the conclusion, but I feel that in the interest of transparency it

must be stated also in other places in the main text, especially when the diagrammatic is motivated

due to its success in 3D or when results for large g and smaller values of x are discussed. It is also

not clear to me how, when having a vanishing condensate fraction for x=0, this is regenerated upon

going to x>0. Of course, I cannot discount the possibility that in 2D no phase transition exists, and

one may rather see somewhat of a crossover, but this cannot be inferred from the analysis conducted

here and I feel that the reader should be made aware of this potential shortfall BEFORE they get to

the conclusion. I strongly encourage the authors to make mention of this, especially when pointing

out differences between two and three dimensions, which may possibly only be due to this simple

shortfall. I don’t think mentioning it lessens the great value of their work.

As suggested by the Referee, we now discuss the absence of the polaron-to-molecule transition in

2D within the present 𝑇-matrix approach already in Sec 2.2, when we motivate it due to its success

in three dimensions, as well as in Sec. 4.4, when pointing out differences between two and three

dimensions.

See, in particular, the second paragraph of Sec. 2.2 and the last paragraph of Sec. 4.4.

In Figure 14, no correspondence between the condensate fraction and the Z factor is found. This

is highly surprising to me as from a simple Chevy Ansatz one can see a close correspondence

between the two. Is this difference because the chosen values of x were not small enough? If true,

this is a major difference between 2D and 3D. Certainly one which has nothing to do with the absence

of a polaron-molecule transition. Could the authors illuminate/investigate this further? For x->0 or

at least for x=0, these two observables should be the same, so I am very surprised they are different.

In Figure 14(a) we have now added data for the condensate fraction at a smaller value of 𝑥 (𝑥 = 0.01)

that confirms the absence of the correspondence between the condensate fraction and 𝑍 in 2D.

Furthermore, we have added the result for 𝑍 from the derivative of the bosonic self-energy with
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respect to the frequency by using the same code used at finite 𝑥, adapted to the single-impurity

limit. Our results (diamonds) fully agree with the corresponding results for 𝑍 previously obtained

within the same non-self-consistent 𝑇-matrix approach for a single impurity in a Fermi sea (circles),

thus showing that the discrepancy between 𝑍 and the condensate fraction cannot be ascribed to

possible numerical errors. As a matter of fact, and contrary to what we argued some time ago in

Ref. 91, we now believe that there is no reason why the limit for 𝑥 → 0 of the condensate fraction

and the polaron residue 𝑍 should coincide. The first quantity is defined by the ratio between the

number of condensed bosons 𝑁0 and the total number of bosons 𝑁B in the thermodynamic limit

(𝑁B → ∞, 𝑉 → ∞, at fixed 𝑛B and 𝑥). It is only in this limit that a condensate fraction is well

defined. So, no matter how small 𝑥 is, the number of bosons 𝑁B will always scale to infinity in the

thermodynamic limit, while in the polaron limit one has instead 𝑁B = 1. Therefore, the occupancy

of the zero-momentum state for a single impurity cannot be in general related to the ratio 𝑁0/𝑁B in

the limit 𝑥 → 0. It is a matter of order of limits. In the first case (condensate fraction), one first fixes

𝑥, takes the thermodynamic limit 𝑉 →∞, and finally let 𝑥 → 0. In the second case (polaron 𝑍), one

first fixes 𝑁B = 1 and then takes the limit 𝑉 →∞ in such a way that 𝑥 = 1/(𝑛F𝑉) → 0. It is thus

clear that in this second case, the thermodynamic limit and the limit 𝑥 → 0 are taken simultaneously,

while in the first case the thermodynamic limit is taken first, followed by the limit 𝑥 → 0.

In the 3rd and 4th paragraph of Sec. 4.4 we now clarify this subtle point.

Other feedback (in no particular order):

1. While I am familiar with the diagrammatics used, I am afraid many readers might not find

them easily accessible. I feel that confusion might originate from the differences between the Gamma

and T vertex in Figure 1 and how these diagrams are obtained. I suggest to either a) expand on

an explanation of how the diagrammatics can be obtained (possibly in an appendix), b) provide a

reference where this is done, or c) conduct parts of the explanation in a two-channel language (done

recently in Ref. 53), where their different roles are more clear. I am not aware of Ref 73 or Ref 88

providing a more accessible explanation. In section 2B the Gamma vertex is referred to as a T-matrix;

while I am aware that for n0=0 they are the same thing, this can easily add to confusion. I suggest to
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use distinct wording when referring to these vertices. Furthermore, I think a few references to T

matrices in the normal phase might be helpful where the T-matrix is first introduced.

We now consistently use throughout the manuscript different wording when referring to Γ(P,Ω)

and 𝑇 (P,Ω), as suggested by the Referee. Specifically, we now refer to Γ(P,Ω) as “particle-particle

ladder” and to 𝑇 (P,Ω) as “many-body 𝑇-matrix in the condensed phase”.

Concerning the point on “an explanation on how the diagrammatics is obtained”, our strategy

in constructing the diagrammatics is as follows. Out of all possible Feynman diagrams, we have

selected a particular class of diagrams (ladder diagrams) that, since the pioneering work by Nozieres

and Schmitt-Rink (Ref. 100) on the related problem of the BCS-BEC crossover in two-component

Fermi gases, is well known to capture pairing (molecular) correlations in the normal phase (see also

Ref. 101 for a review). It is only after the inclusion of this class of diagrams that the superfluid

critical temperature recovers the Bose-Einstein condensation temperature in the strong-coupling

limit of the BCS-BEC crossover. In addition, for the same contact potential we are considering,

ladder diagrams also provide the leading self-energy (established many years ago in Ref. 102) in the

weak-coupling limit. They thus provide a sensible scheme to describe the whole BCS-BEC crossover,

even in the intermediate coupling region in which fully controlled approximations are not available.

The same strategy is then adopted for the present problem, in which we are interested in setting up

a theory that is able to describe the progressive formation of pairing (molecular) correlations in a

Bose-Fermi mixture, when the BF interaction is varied from weak to strong.

When switching to this problem, the required modification is straightforward in the normal

phase: the particle-particle ladder made of the repeated interaction of spin-up and spin-down

fermions is replaced by a particle-particle ladder made of the repeated interaction of bosons with

(one-component) fermions. When extending the theory to the condensed phase, one has to take

into account the possibility that fermions repeatedly interact also with condensed bosons, besides

non-condensed bosons. By summing all possible combinations of the repeated scattering of fermions

with condensed or non-condensed bosons one obtains the many-body 𝑇-matrix in the condensed

phase described by the Feynman diagram of Fig. 1. Finally, like in the corresponding problem for the
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BCS-BEC crossover, when constructing the 𝑇-matrix self-energy of one species, the 𝑇-matrix needs

to be closed by a propagator of the other species. For the fermionic self-energy in the condensed

phase, the bosonic line might be either a condensed line or a non-condensed line. In the first case,

however, the many-body 𝑇-matrix in the condensed phase 𝑇 (P,Ω) needs to be replaced by Γ(P,Ω)

in order for the self-energy to be irreducible (and thus avoiding a double-counting of diagrams when

inserting the self-energy in the Dyson equation).

We wish, finally, to emphasize that, similarly to the corresponding theoretical approach for the

BCS-BEC crossover, our choice of diagrams, besides capturing boson-fermion pairing for strong BF

coupling, also reproduces the perturbative results of Ref. 104 in the opposite weak-coupling limit, as

explicitly shown in Sec. 4.3. It is thus expected to provide a sensible first approximation to describe

the whole evolution from weak to strong coupling.

We have now added the above comments justifying our choice of diagrams in the revised version

of the manuscript. See in particular, the third and fourth paragraphs of Sec. 2.2, the paragraph just

above Eq. 7, the paragraph just above Eq. 9, the paragraph just below Eq. 11, the first sentence after

Eq. 55, and the last sentence of section 4.3.

2. I appreciate the analysis conducted in section 3 to illuminate the nature of the quasiparticles

resulting from hybridization, however in part I find it very hard to follow due to its very technical

nature and the non-trivial effects of hybridization. The analysis in 3A is easy to follow, I would

possibly ask that the E+ and E- excitations are related also to the undressed states they correspond to

for vanishing condensate density.

The relation between the hybridized dispersions 𝐸+, 𝐸− and the unhybridized ones 𝜉CF
P , 𝜉F

P depends

on the sign of 𝜉CF
P − 𝜉F

P. We have added this remark in section 3.1, in the new paragraph starting with

"One sees from Eq. 29 ..." shortly after Eq. 29. The sign of 𝜉CF
P − 𝜉F

P, on the other hand, depends on

the value of the chemical potentials 𝜇̃CF, 𝜇F, and on P, in general. Since the chemical potentials are

calculated later on in section 3.4, a more explicit discussion of the limiting values of 𝐸+, 𝐸− for

vanishing hybridization is done in that section (see paragraph in sec. 3.4 starting with "Let us now

analyze in detail the effect of the hybridization scale" and the paragraph following it).
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In addition, this remark by the Referee, together with the remark 24 below, prompted us to clarify

already in section 3.1 that 𝑛0 → 0 does not necessarily imply Δ0 → 0. This is done at the end of the

paragraph starting with "One sees from Eq. 29 ..." shortly after Eq. 29.

3. The analysis in section 3B I found very hard to follow and I wonder whether it is necessary in

the place it occurs now. It is my understanding that section 3 serves to illuminate the underlying

quasiparticle qualitatively, mainly to shine light on the effects of hybridization:

In section 3A the 𝑇-matrix is analyzed, and one finds that it mixes unpaired atoms with molecules.

The quantum fluctuations taken into account are a self-energy renormalization of the molecule

(contained within Gamma). As a result, the two excitations found within T are a result of the mixing

of a non-renormalized atom with a renormalized molecule. These two excitations would also show

up in the same way if one considered a corresponding fermionic Green’s function (of course the

distribution of quasiparticle weight between them would be different). However, the fermionic

Green’s function in this work is considered on different footing and mixes a renormalized molecule

with a renormalized fermion, resulting in two (slightly) different excitations. I am however not

sure that this different, second set of excitations, introduced in 3B and analyzed after Eq. 32 for

Delta0/EF small is actually needed in this detail. Maybe the part with Delta0/EF small is better

suited for an appendix? When references to the analytical expressions were made later in the text, I

could only really find references to 3A and parts up to Eq. 32. The reason I bring this up, is that I

found this part (after Eq. 32 until before Eq. 47) extremely challenging to follow, due to its technical

nature and I am not sure which physical insights are conveyed in it. Furthermore, it had the effect

that in section 3D and onwards I found it challenging to follow which analytical results were being

referred to, those mainly from 3A or those from 3B.

We have implemented the suggestion by the Referee and moved the details of the expansion for small

Δ0/𝐸F to Appendix D.2. We now keep in section 3.2 only the final equations describing the fermion

momentum distribution for small Δ0 ( Eqs. 41-43). We decided to keep these equations because

they are referred to in sec 3.4 when discussing the fermionic momentum distribution in the strong

coupling limit (see comments to Fig. 6). In addition, in this section, we have completely rewritten
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the paragraphs discussing Fig. 6 (see last three paragraphs of Sec. 3.4). It should now be clear when

we refer to the small Δ0/𝐸𝐹 expansion.

4. Are there cheap ways to enforce a polaron-to-molecule transition, along with the corresponding

physics? For example, in the analytical results obtained in Section 3. If yes, how do the results

obtained from that look like?

Actually, even before the first submission, we endeavored to find a simple way to enforce a polaron-to-

molecule transition but did not succeed. We tried again, but we did not reach any definite conclusion

so far.

5. Using the same diagrammatics in 3D, in Figure 7 of Ref. 77 a peculiar bosonic distribution

function was observed, which vanished identically below a certain momentum. This was due to

the bosons participating in fermionic molecule formation and as a result, the bosonic distribution

function showed remnants of a fermionic effect. Can something analogous be observed here in 2D?

The peculiar distribution function of former Ref. 77 (now Ref. 80) was found in the normal phase, i.e.,

when the molecular correlations are so strong to suppress completely the condensate. In the present

2D case, as already mentioned, even when 𝑛0 → 0 in the strong-coupling limit, the hybridization

energy scale Δ0 does not vanish in general. The presence of this hybridization essentially removes

this effect. Possibly, a small remnant of this effect is visible in the data of Fig. 7 for 𝑔 = 1.2 and

𝑥 = 0.175 and 𝑥 = 0.5. One may see a kind of bimodal distribution for 𝑛B(𝑘). The feature at small 𝑘

is attributed to the presence of hybridization caused by a non-zero condensate. The second feature

at larger 𝑘 instead resembles the one found in 3D with remnants of a fermionic effect. The same

behavior occurs in the data for 𝑔 = 2, but it is not visible in Fig. 7 due to the scale used for the y-axis.

Data are however available in the data repository quoted in the revised version of the manuscript

(Ref. 133).

6. I find the used terminology of dressed/undressed dangerous. As is, "dressed" refers to

the effects of hybridization (which one may see as resulting from a Green’s matrix inversion in

a two-channel language) and "undressed" refers to effects without hybridization. However, the

undressed propagator still contains quantum fluctuations. In section 3A the adjective "bare" is used
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below equation 25. However, that molecule still contains quantum fluctuations, albeit in a mean-field

fashion through SigmaCF. Maybe the authors mean undressed? In any case, I feel these ambiguities

can be a source of confusion for many readers and I would ask that the authors explain exactly what

they mean when they use adjectives like dressed/undressed/bare.

The Referee correctly interpreted our use of "dressed" and "undressed" with respect to the effects of

hybridization and we agree with the Referee that the use of "bare" below former Eqs. 21,25 was

misleading. We now clarify, in the text around current Eq. 24, that 𝑃2/2𝑀 − 𝜇CF is the dispersion of

a bare molecule and that 𝑃2/2𝑀 − 𝜇̃CF is the same dispersion renormalized by the mean-field shift

Σ0
CF (we point out that we have now replaced the old name ΣCF with the new one Σ0

CF in order to

adopt the same convention used for the mean-field shift Σ0
F of the atomic assembly). In addition,

after Eq. 27 we now clarify the use of "dressed" and "undressed" in relation to hybridization. Finally,

we have found that in some other places in the manuscript we used the adjective "dressed" in a

broader sense (i.e., not referring to hybridization but to more generic effects of interactions). In these

cases, we have replaced "dressed" with "renormalized" to avoid any possible misunderstanding.

7. I believe an analytical expression for Eq. 5 was provided in Ref. 106

We thank the Referee for this remark. We missed that an analytical expression for Γ(P,Ω) was

already reported in former Ref. 106 (now Ref. 121). We note, however, that the equation of Ref. 121

is valid for the case of equal masses and frequencies on the real axis, while our expression is valid

for generic masses and imaginary frequencies. Stimulated by the compactness of the expression

reported in Ref. 121, we have recast our analytical expression for Γ(P,Ω) in an analogous way. From

this expression one can easily see that, for equal masses, our expression recovers the corresponding

equation of Ref. 121 after the analytic continuation 𝑖Ω→ 𝜔+ 𝑖0+ is performed. In Appendix A, we

have added a comment on this correspondence.

8. Where is the condensate factor introduced? It briefly appears in the caption to Figure 1 and in

the main text it starts appearing in Eq. 6, but there is no proper mention of what it actually is there.

We now explicitly mention what 𝑛0 is the first time it is introduced (see last paragraph of Sec. 2.1).

9. In Eq. 8 the convergence factor appears but there is no mention of it.
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We have added a brief comment on the convergence factor 𝑒𝑖Ω0+ below Eq. 9.

10. In Eq. 2, it is v0 while other times it is nu0.

We thank the Referee for pointing out this inconsistency. We have fixed it.

11. I believe the renormalization/regularization in Eq.2 would benefit from a reference.

We have added two references discussing the regularization in Eq. 2 for the analogous case of a 2D

Fermi gas (Refs. 95-96).

12. Is Omega a real or an imaginary frequency?

In the first version of the manuscript (after former Eq. 5, now Eq. 6), we actually already specified

that we work with imaginary frequencies. However, to make it even clearer, we now report Eq. 5

for Γ(P,Ω), where the explicit dependence on Ω is apparent. This equation (previously reported in

Appendix A) should clarify this point with no ambiguities.

13. Are there things one can say about T>0?

At T > 0, long-range order is prohibited by Mermin-Wagner theorem. At finite temperature, the T=0

condensed phase will become a BKT superfluid phase with quasi-long-range order for the bosonic

component. Similarly to T=0, we expect Bose-Fermi pairing to compete with the bosonic superfluid

phase. A quantitative description of this competition at finite temperature would be extremely

interesting, but it is clearly out of the scope of the present work. In addition, it is not clear to us how

the BKT physics of the bosonic component could be effectively introduced in our diagrammatic

scheme. A comment on T > 0 has been added at the end of the conclusions.

14. The authors set mB=mF, what is the role of mass ratio in this phase diagram?

We believe that changing the mass ratio 𝑚B/𝑚F would introduce only quantitative changes to the

results of the present manuscript without changing the overall physical picture. Our belief is based

on previous studies that considered generic mass ratios within the same formalism in 3D (Refs.

80 and 91, in particular). A more quantitative analysis supporting this statement would require

performing the numerical calculations in 2D for generic masses. We stress that these numerical

calculations are quite demanding. For this reason, as well as to avoid overloading the present work,

we decided to focus here on equal masses. However, in view of possible future studies (by us or
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other authors), we have developed the theoretical formalism and written all equations for generic

masses. We have inserted a brief comment about this in the introduction (the last two sentences of

the paragraph starting with "In this work, we study a 2D BF mixture in homogeneous space...").

15. At the end of section 2A where the quantum depletion is mentioned, I think a reference to

condensation in a repulsive Bose gas would be helpful, or alternatively an explanation of what is

meant by "quantum depletion determined by etaB"

We have reformulated the sentence mentioned by the Referee and quoted the paper by Schick

(Ref. 94) that explicitly calculates the condensate depletion for a weakly repulsive 2D Bose gas.

16. Is the self-energy integral in Eq. 10 the same as the one introduced in Eq. 8? If yes, why not

write SigmaB=Sigma11+ SigmaBF?

We have modified former Eq. 10 (now Eq. 11) as suggested by the Referee.

17. "The direct boson-boson repulsion is neglected in the present regime, since it is expected to

produce negligible effect", I am guessing this is for realistic experimental values?

We actually meant that in the strong-coupling regime discussed in section 3, the (non-resonant) BB

repulsion is expected to produce only minor effects. Physics is dominated by BF pairing and the

corresponding large binding energy. We have slightly reformulated the sentence pointed out by the

Referee in the revised version of our manuscript (see the two last sentences in the first paragraph of

Sec. 3).

18. I could not find any detail as to how Eq. 19 and 20 were obtained exactly

We have provided details for the derivation of Eqs. 20-21 (former Eqs. 19-20) at the end of Appendix

A, and referred to this derivation when introducing the above equations in Sec. 3.1.

19. Is there a simple expression for n0muF below Eq. 20?

We have added an explicit expression for 𝑛0
𝜇𝐹

below Eq. 21 (former Eq. 20).

20. When G0CF is introduced, should the reader know already what it is or is it simply a

Green’s function of the form in Eq. 21 which is rescaled to fulfill the frequency sum rule of Green’s

functions?

The paragraph containing former Eq. 21 (now Eq. 22) has been modified, together with the



12

subsequent paragraphs, also because of point 6 by the Referee. The quantity 𝐺0
CF (which we now

call 𝐺̃0
CF because it contains a renormalized chemical potential 𝜇̃CF ) is now defined explicitly by

Eq. 24. So, there should be no ambiguities about its meaning.

21. Above Eq. 29 it is stated that the pole from G0B does not contribute. I am guessing this

is due to the sign of the bosonic chemical potential. Was the sign of the bosonic potential already

mentioned at this point? Does it ever change?

The Referee is right. We have added a comment above Eq. 35 (former Eq. 29) clarifying that the

pole of 𝐺0
𝐵

does not contribute because 𝜇𝐵 < 0.

Concerning the question if the sign of 𝜇𝐵 can ever change, for BB repulsion 𝜂𝐵 = 0 (considered

in most of our calculations), 𝜇B is always negative due to the BF attractive interaction. For the

alternative value 𝜂𝐵 = 0.1, considered in some of our calculations, and 𝑥 ≤ 1, 𝜇B could become

positive in the weak coupling limit 𝑔 ≪ −1 of the BF attraction. However, for the coupling strengths

𝑔 ≥ −4 considered in our calculations 𝜇Bis always negative.

In the revised version of the paper, we have added information about the sign of 𝜇𝐵 after Eq. 5.

22. What does the sentence below Eq. 30 about neglecting Epm altogether with respect to muB

mean?

Since in the strong coupling limit −𝜇𝐵 ≃ 𝜖0 ≫ 𝐸𝐹 , it dominates over 𝐸±
𝑃=0, which is instead of order

𝐸𝐹 . We have added a comment about it after Eq. 35 (former Eq. 30).

23. Section 3B, I feel it could be made clearer where small Delta0/EF is presumed and where

one goes back to considering Eq. 32.

We think that the reorganization of section 3.2, following the advice at point 2 by the Referee,

overcomes also this remark. Specifically, the details of the small Δ0/𝐸𝐹 expansion have been moved

to Appendix D.2, and the main equations resulting from this expansion are now reported at the end

of section 3.2. In this way, we do not need now to go back to former Eq. 32 (now 38) afterward.

24. "Before passing to the exact evaluation of Eq. (32) in closed form, it is instructive for its

physical interpretation to analyze the limit of small Delta0/EF, which is expected to occur either

when x -> 1 (depletion of the condensate density due to increase of molecule number) or x-> 0
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(reduction of the condensate density due to decrease of boson number)." How can this be understood

intuitively? I understand that for x->0 we have nB->0 and since n0<nB we also have n0->0. But

how can this be intuitively understood for x->1? If I understand correctly, then for all nB<nF, all

bosons could potentially bind into molecules, leaving n0=0. Why is this only expected for x->1?

As already mentioned in our answer to point 2 by the Referee, even when 𝑛0 exponentially vanishes

for strong BF coupling, the hybridization energy Δ0 ∼
√
𝜀0𝑛0 may remain finite due to the large

energy scale 𝜀0 (see new paragraph in sec 3.1 starting with "One sees from Eq. 29 ..." shortly after

Eq. 29). As a matter of fact, only for 𝑥 → 0 or 𝑥 → 1, Δ0 → 0 in the strong coupling limit, as can

be seen from Fig. 3(b) and 14(b). We do not exclude that this picture could change in possible

refinements of the present theory, but this is what one gets with the present approach.

25. I believe Eqs. 41,43 and 44 were never formally related to nF(k).

Former Eqs. 41,43, 44 have now been moved to appendix D.2, as suggested in point 3 by the Referee.

They correspond now to Eqs. D.16, D.18, D.19, and are formally related to 𝑛𝐹 (𝑘) immediately after

Eq. D.19.

26. Why does the part in Eq. 45 that regards the population of composite fermions not have a

corresponding theta function? Is there a way to understand Eqs. 45 and 46 in terms of two Fermi

seas filling up? Or possible in terms of particle branches that are present in the two-body limit/

the non-interacting limit/ the Fermi polaron limit, which are then populated (albeit with modified

quasiparticle properties)?

Former Eq. 45 (now Eq. 41) reports the momentum distribution of the fermionic atoms. These

fermionic atoms can be unpaired or belong to composite fermions (paired states with bosons). The

density of the fermionic atoms belonging to composite fermions is 𝑛CF (since there is one atomic

fermion for each composite fermion) and their momentum distribution is proportional (by the factor

𝑛CF) to the square modulus of the molecular wave-function |𝜙(k) |2. We stress that the momentum

k appearing in this term is the momentum of the fermion belonging to a composite fermion. It is

not the center of mass momentum of the pair. For this reason, there is no theta function associated

with the Fermi sphere of the composite fermion in front of this term in Eq. 41. The momentum
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distribution function 𝑛CF(P) for the center of mass momentum of the composite fermion is instead

presented in sec. 3.1, and it is defined by Eq. 34 in the new version of the manuscript (see also

Fig. 5). Therefore a representation in terms of atomic and molecular Fermi seas emerges via the

quantities 𝑛UF(k) and 𝑛CF(P) presented in Secs. 3.2 and 3.1, respectively.

This point clearly emphasizes the importance of analyzing both two-particle and one-particle Green’s

functions for describing composite fermions and atomic fermions.

27. What is on the x-axis in the inset of Figure 3B? I presume x? I think Figure 3 would benefit

from showing the condensate fraction.

We have added the missing label to the x-axis of the inset in Figure 3B. Additionally, we agree with

the Referee that showing also the condensate fraction could be useful. We have added another inset

reporting it in the same plot.

28. In the paragraph before the one starting with "In the crossover region, all chemical potentials

are comparable in size", how can one understand the characterizations of the particle in terms of

their chemical potentials? Is there an intuitive way to understand why for example 𝜇̃CF > 0 means

degenerate molecules.

We have completely reformulated that paragraph, see two new paragraphs below Fig. 3 starting with

"Two clearly different regimes can be distinguished in the opposite limits". Basically, the change in

sign of the chemical potentials 𝜇̃CF and 𝜇F is identified as a proxy for the crossover region between

two clearly distinct limits, in which the above chemical potentials have opposite sign, and nearly-free

molecules or atomic fermions dominate the mixture, respectively.

29. I could not find it explicitly: Which method was used to obtain the results shown in Figure

3,4,5,6? Is it Eqs. 50-52 to obtain chemical potentials and condensate density or are additional Eqs.

involved?

The Referee is correct: Figures 3,4,5,6 of Section 3.4 are obtained by solving the system of Equations

45-47 (former 50-52). We have now mentioned it explicitly at the end of the paragraph following

Eq. 47. In addition, we already mentioned in the same paragraph that a standard root finder can

easily solve the above system of equations. In particular, we used Mathematica’s FindRoot function,
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starting from reasonable values for the parameters.

30. "In Fig. 5 the quasi-particle weight nu2p of the occupied states Theta-E- is displayed for a

number of concentrations corresponding to...". What does this mean? If I understand correctly then

nu2p*Theta-E- is shown. In Figure 5, the qp-weight is also shown for unoccupied states, however

for unoccupied states it is set to 0. That is not precisely the same thing. Similarly, in the caption of

Figure 5 only nu2p is mentioned, but from Eq. 27 it is not clear to me that the function has a step-like

drop (that only occurs after multiplying with Theta). Can this be formulated more precisely?

We thank the Referee for pointing out that the description of Fig. 5 was unclear. We have now

introduced a formal definition for the momentum distribution of the composite fermions 𝑛CF(P) in

Eq. 34 of the revised manuscript, and have amended the caption of Fig. 5 and the text accordingly.

31. I think the paragraph below Figure 5 would benefit from explicitly stating what the Luttinger

theorem is, how it breaks down, and how it is compensated in nCF. I am guessing Theta has larger

support and in return nu2p is smaller, such that nCF remains constant?

We have now completely rewritten that paragraph and greatly expanded the discussion of the

Luttinger theorem, quoting also several new references. We now state what the Luttinger theorem is,

and discuss its extension to imbalanced Fermi systems and BF mixtures. We also discuss how it

breaks down in our theory and provide an explanation for this breakdown.

For these changes, see in Sec. 3.4 the paragraph starting with "In Fig. 5 the momentum

distribution", from the third sentence to the end of the paragraph, and the two new paragraphs that

immediately follow it, which start with "The Luttinger theorem states" and "In a BF mixture with a

condensate", respectively. Concerning the compensation of the breakdown of the Luttinger theorem

in 𝑛CF through the mechanism described by the Referee, it is commented in the paragraph starting

with "Nevertheless, the breakdown of the Luttinger theorem". This paragraph was actually already

present in the old version of our manuscript; we have only slightly modified it.

Finally, we now further discuss the breakdown of the Luttinger theorem in the same section when

discussing Fig. 6, see the sentence starting with "We notice that this behavior, together with the one

just discussed" and the paragraph that follows it.
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32. Eq. 61 is first referenced below Figure 8, a long time before it is first introduced.

We now have moved former Eq. 61 (for the case 𝜂𝐵 = 0 considered in Fig. 7) to Sec. 4.2 (Eq. 49 in

the revised version of our paper).

33. I think more detail surrounding Eq.57 is needed. How can one see that a=1? What are the

values of a, b as function of g? As is there is no real way to follow the argument made here.

We have added insets to Fig. 9 reporting the parameters 𝑎, 𝑏, and 𝑐 as functions of 𝑔. Additionally,

we now specify after Eq. 51 how the above parameters as a function of 𝑔 have been obtained. Finally,

we have created a data repository (Ref. 133) containing all data necessary to reproduce Figs. 3-15.

The numerical values of the parameters 𝑎, 𝑏, and 𝑐 are available in this repository.

34. "using the same thermodynamic parameters for both sets of curves". What does this mean?

Same chemical potentials/condensate densities? If yes, how is this justified, shouldn’t the different

methods come up with different chemical potentials?

The comparison between the thermodynamic parameters (chemical potentials and condensate

density) resulting from the full numerical calculation and from the strong-coupling expansion

is made extensively in sections 4.3-4.5 (see Fig. 13-15, in particular). Here, in Fig. 11, we do

something different. We focus only on the approximate expression 38 for 𝐺F(k,𝜔), from which

Eq. 39 for 𝑛F(k) immediately results, and check to what extent it provides a good approximation for

𝐺F(k,𝜔), and thus 𝑛F(k). If, in doing this comparison, we would use in Eq. 38 the thermodynamic

parameters resulting from the strong-coupling expansion (Eqs. 45-47) rather than the numerical

ones, we would not check the validity of the approximate expression 38 alone, but also the validity

of the approximations 46 and 47. As a matter of fact, one sees from Fig. 11 that the approximate

expression 38 for 𝐺F(k,𝜔) is valid even for moderate values of the coupling strength (𝑔 ≃ 1). The

comparison made in Sections 4.3-4.5 for the thermodynamic parameters shows instead that good

agreement is found only for 𝑔 ≳ 2.5. This indicates that the approximation 38 is valid in a more

extended coupling range than the approximations 46 and 47, a piece of information that we believe

might have some value.

In the revised version of our manuscript, we now explicitly explain the reason for our choice
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of the thermodynamic parameters used in Fig. 11. See in Sec. 4.2 the paragraph starting with

"Concerning the Fermi momentum distribution, we first discuss", containing the new sentences

"to check to what extent the approximate expression ..." and "The use of the same thermodynamic

parameters allows for ..."

35. "The boundary between them can be roughly estimated by looking at the smallest coupling

at which muF vanishes as a function of x...". Is this a coincidence or is there physical meaning to

muF=0? I guess this goes back to my question of how to characterize particles in terms of their

chemical potentials.

This question is indeed related to point 28 and partly answered therein, as far as the fermionic

chemical potential 𝜇F at 𝑥 ≃ 1 is concerned. We have however decided to reformulate completely the

paragraph containing the above sentence since, for generic concentrations, it is the bosonic chemical

potential that yields more information on the crossover to the molecular limit, since the fermionic

chemical potential is progressively less affected by interaction as the concentration is decreased. We

believe that this new formulation is definitely clearer.

For the corresponding changes to the manuscript, see the new paragraph shortly after Eq. 55 "In

particular, we have verified that for 𝑔 ≃ 1 the relative difference ..,".

36. The notation in Eqs 60,61 can be confusing, I would suggest switching to nFk » kF(k) or

something of that sort.

We have modified the notation in former Eqs. 60-61 (now Eqs. 56-57) as suggested by the Referee.

We have consequently modified the notation also in Fig. 12.

37. I found it hard to follow what happens in Appendix B. I think a Feynman diagram would

help.

We have added a Feynman diagram (Fig. 17), as suggested by the Referee.


