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We thank the Referee for their second report that helped us to further improve our manuscript.

Below, please find our response (in black) to all comments, questions, or suggestions raised by the

Referee (in blue).

The authors have responded to my points in a satisfactory manner and they have made corre-

sponding changes, that -in my eyes- greatly improve the quality of the manuscript as well as its

accessibility.

The physics is interesting and with experimental realizations of such systems within reach

this work is certainly timely. The present manuscript sets a foundation for the exploration of

two-dimensional strongly-coupled Bose-Fermi mixtures, that future works will be able to draw from.

As a result, I can recommend publication of the manuscript in its present from.

Below, I provide additional feedback that I encourage the authors to consider/incorporate if it

is feasible and applicable. These points, I think, could enhance the insights obtained from this

manuscript, but, if the authors deem these points not applicable or feasible, then my points should

not delay publication. The manuscript in present form is already suitable for publication.

Thank you!

My feedback:

I still believe that one of the key results of this work, the condensate fraction differing from the

quasiparticle weight, could be illuminated more.

The correspondence in 3D is fairly strong, which suggest that it isn’t a coincidence and also begs

the question what changes in 2D.

We agree with the Referee that the correspondence in 3D is fairly strong. Still, it is not exact.

Focusing on unitarity, Table I reports a comparison between 𝑛0/𝑛B [data from Guidini et al., PRA

91, 023603 (2015)] and the polaron residue 𝑍pol, as calculated either with the non-self-consistent

TMA or with the Diagrammatic Monte-Carlo method [data from Kross and Pollet, PRB 91, 144507

(2015) for both TMA and diagMC]. Data for the condensate fraction are at the lowest concentration

(𝑥 = 0.175) considered in (Guidini, 2015) which, given the nearly exact universality of 𝑛0/𝑛B at

unitarity, can be considered equivalent to 𝑥 → 0 [see Fig. 3(b) of (Guidini, 2015)].
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𝑚B/𝑚F 𝑛0/𝑛B 𝑍TMA
pol 𝑍

diagMC
pol

23/40 0.74 0.80 0.76
1 0.73 0.78 0.76
5 0.60 0.67 0.65

Table I. Condensate fraction and polaron residue in 3D at unitarity for three different mass ratios. The
condensate fraction is calculated at 𝑛B/𝑛F = 0.175.

One sees a difference between 𝑛0/𝑛B and 𝑍TMA
pol that amounts to about 6% for equal masses,

and that increases by changing the mass ratio, exceeding 10% for 𝑚B/𝑚F = 5. (The difference

between 𝑛0/𝑛B and 𝑍
diagMC
pol is slightly smaller, but it is the comparison with 𝑍TMA

pol that is more

meaningful, since 𝑍TMA
pol and 𝑛0/𝑛B are calculated within the same approximation.) This indicates

that the supposed equivalence between 𝑍pol and 𝑛0/𝑛B is only approximate in 3D. It is therefore

fully acceptable that such an approximate degeneracy between these two quantities is lifted in 2D.

We have added these considerations in version 3 of our manuscript. See new paragraph "In this

respect, reconsidering the 3D case ..." (4th paragraph of Sec. 4.4).

I do not find the argument given by the authors on how „there is no reason why the limit for x->0

of the condensate fraction and the polaron residue Z should coincide“ particularly convincing. Both

quantities are well defined in the thermodynamic limit. The field theory does not know about a

particle number, it only knows about particle densities. The condensate fraction is obtained at nB>0,

while the polaron quasiparticle weight is obtained from the weight of the quasiparticle pole in the

bosonic Green’s/spectral function at nB=0 (which is also well defined at nB>0). Importantly the

quasiparticle weight obtained from the spectral function has the same physical interpretation as the

quasiparticle weight in the polaron wave function (Chevy) Ansatz.

In both cases one has taken V->infinity before specifying the chemical potentials (and condensate

densities) which eventually yield the corresponding densities nB and nF.

We fully agree with the Referee that both 𝑍pol at 𝑥 = 0 and 𝑛0/𝑛B at 𝑥 > 0 are calculated and well

defined in the thermodynamic limit 𝑉 →∞. However, this does not imply that 𝑍pol should coincide
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with lim𝑥→0 𝑛0/𝑛B. In particular, for a given BF interaction

𝑍pol = lim
𝑉→∞

𝑛B(𝑘 = 0;𝑁B = 1;𝑁F/𝑉 = const)
1

,

which is a different limit from

lim
𝑥→0

𝑛0
𝑛B

= lim
𝑥→0

lim
𝑉→∞

𝑛B(𝑘 = 0;𝑁B = 𝑥𝑁F;𝑁F/𝑉 = const)
𝑁B

.

This is what we stated in the previous version of our manuscript. To further clarify it, we have

now added Eq. (56) in Sec. 4.4, which summarizes in mathematical symbols why the two quantities

are obtained by different limits.

Furthermore, it was my understanding that the universality came from, as the authors note also in

this work, the bosons being nearly independent of each other, while interacting with the medium.

Thus, it would at least be physically intuitive that the probabilities for a boson to be in a p=0 mode

are related in these cases. My understanding was that the correspondence between the quasiparticle

weight and the condensate fraction was a reflection of that. So if a universality is observed here,

then I would still expect some sort of correspondence between probabilities to be in effect. Thus it

would be insightful to illuminate where the „remaining probability“ goes.

-The curves shown in Figure 14 are for eta=0, however for eta=0 we have that nB(0) is finite. For

eta≠0, nB(0) diverges. Could it be that there is some sort of delta function for p=0 that contributes to

the fraction of p=0 bosons? Perhaps because in 2D one only has a single factor of p in the measure

instead of 𝑝2 in 3D? Do plots like Figure 14a also exist for eta>0? Could it be that there is stronger

correspondence for eta≠ 0?

Actually, one expects that a finite repulsion 𝜂 > 0 will further deplete the condensate fraction and

make the difference between 𝑍 and 𝑛0/𝑛B even larger.

To show it explicitly, we have added panel (c) to previous Fig. 14 (now Fig. 15), reporting the

condensate fraction vs BF coupling at 𝜂 = 0.1 for three different concentrations.

For completeness and reproducibility of our data, we have then also added a new figure (present



4

Fig. 14) reporting the corresponding bosonic and fermionic chemical potentials vs BF coupling at

𝜂 = 0.1.

-How does the bosonic quasiparticle weight at x>0 (not just at x=0) compare to the condensate

fraction?

Actually, the results of Sec. 4.2 (see in particular the discussion of Fig. 9), show already that,

around 𝑔 = −0.7, the bosonic quasiparticle weight 𝑍 (𝑥) at 𝑥 > 0 is ≫ 1. It is thus completely

unrelated to the condensate fraction, as well as to the polaron residue 𝑍 . In order to clarify the latter

point, we now discuss in detail how this difference between lim𝑥→0 𝑍 (𝑥) and 𝑍 originates from the

behavior of the boson self-energy in this limit.

See in version 3 of our manuscript the two new paragraphs following Eq. (56), with three new

equations (57-59), a new reference (Ref. 125), and a new figure (Fig. 16).

-I may be mistaken about this: Have the authors considered reconstructing the quantum effective

action from the renormalizations employed here? In particular the effective potential? After a

short, (not very careful) analysis I obtain that 𝛿Γ[𝜙[𝐽 ] ]
𝛿𝜙[𝐽 ] |𝐽=0 = 𝜙[0]𝐺−1

𝐵
[𝜙[0]]. Where J is the source

field, 𝜙[𝐽] is the source-dependent boson field and 𝜙[0] is the stationary field at vanishing source,

which here is proportional to 𝜙[0] ∝ √
𝜌𝛿(. . . ). It would seem that the Hugenholtz-Pines condition

employed here is a necessary condition for the field to be stationary. However, I don’t think it

necessarily implies that 𝜙[0] minimizes the effective potential? This could either mean that the value

obtained for rho is not unique and there is a second value of rho that fulfills the Hugenholtz-Pines

condition, along with the other fixing conditions AND additionally yields a lower value of the

effective potential. Alternatively, it could also mean that the field additionally condenses in a different

mode, for example p>0 (though I don’t think this is the case here). Have the authors considered

checking if there is a larger value of 𝜌 that fulfills the Hugenholtz-Pines condition? I would guess

that actually computing the effective potential and comparing values is quite cumbersome, but

checking whether there is a second solution to the Hugenholtz-Pines condition should be feasible.

Given the non-linearity of the coupled equations for 𝑛0, 𝜇B, 𝜇F, the possible existence of multiple

solutions cannot be excluded rigorously. However, by varying the initial guesses in our root-finding
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algorithm, we found no evidence of a second solution for 𝑛0 (and 𝜇B, 𝜇F) for the concentrations and

couplings considered in the present work.

-I believe a formal consideration of the effective potential/ effective action might also yield more

insights into the possible correspondence between quasiparticle weight and condensate fraction

Concerning the reconstruction of an effective action and an effective potential from the diagram-

matic theory of the present work, we are not convinced that it would really shed light on the problem

of the correspondence between the condensate fraction and the polaron residue. Furthermore, it is

non-trivial work. It would require reformulating the problem in a functional-integral framework

and reverse-engineering an appropriate Hubbard-Stratonovich transformation plus saddle-point

approximation with inclusion of fluctuations leading to the same set of diagrams considered here.

This could be an interesting separate work, but we deem it beyond the scope of the present work.

-I may be mistaken, but is there a possibility that the used Hugenholtz-Pines condition is only

a low-order approximation of a „more“ accurate condition? Eq. 4.10 in Ref. 107 and the text

below seem to indicate that Eq. 6.2 of Ref. 107 is only an approximation. Though it seems to be

increasingly valid at low density, which however begs the question of whether this would refer to

boson or fermion density in this case? I am not sure how this point fits with my previous points, but

I thought it might be better to include it regardless.

The Hugenholtz-Pines condition guarantees that the spectrum of bosonic excitations in the

condensed phase is gapless (as is also required by the Goldstone theorem). It is held to be exact and

has been proven in different ways in the literature. The proof reported in Sec. 9.4 of the book by G.

Rickayzen (Green’s functions and condensed matter, Academic Press, 1980) is particularly clear and

convincing. It is based on a similar proof by Hoehenberg and Martin [Ann. Phys. 34, 291 (1965)]

(see their Sec. VI.D).

We have added these two new references (Refs. 108, 109) in version 3 of our manuscript when

introducing the Hugenholtz-Pines condition at the end of Sec. 2.4.


