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Abstract

Extending many-body numerical techniques which are powerful in the context
of simple model calculations to the realm of realistic material simulations can
be a challenging task. Realistic systems often involve multiple active orbitals,
which increases the complexity and numerical cost because of the large local
Hilbert space and the large number of interaction terms or sign-changing off-
diagonal Green’s functions. The two-particle self-consistent approach (TPSC)
is one such many-body numerical technique, for which multi-orbital extensions
have proven to be involved due to the substantially more complex structure
of the local interaction tensor. In this paper we extend earlier multi-orbital
generalizations of TPSC by setting up two different variants of a fully self-
consistent theory for TPSC in multi-orbital systems. We first investigate the
strengths and limitations of the approach analytically and then benchmark
both variants against dynamical mean-field theory (DMFT) and D-TRILEX
results. We find that the exact behavior of the system can be faithfully re-
produced in the weak-coupling regime, while at stronger couplings the perfor-
mance of the two TPSC variants strongly depends on details of the system.
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1 Introduction

Solving the many-body problem of interacting electrons remains a central challenge in
condensed matter physics. Analytical solutions can only be found in rare cases [1, 2], ne-
cessitating the development of advanced numerical methods such as Density Functional
Theory [3, 4], Quantum Monte Carlo (QMC) [5–10], DMRG and other Tensor network
approaches [11–13], Dynamical Mean-Field Theory and its extensions [14–19], variational
(neural) quantum states [10, 20–25] or various diagrammatic methods [26–31]. With the
use of these approaches the community gained insights into correlated electron physics,
e.g. by developing an understanding of Mott physics [32–35], (unconventional) supercon-
ductivity [36–40], the pseudogap phase [41, 42], magnetismand

:

,
:

spin liquids [43–45] and
charge ordered states [46–48]. In recent years, a coherent picture has emerged for some
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single-orbital models, with a variety of numerical approaches producing consistent results
for ground state energies, mass renormalizations, etc. [49–51], which shifts the frontiers of
method development to more complex models and setups.

Going beyond single orbital models, it is natural to consider multi-orbital extensions
which are relevant for real materials. In such multi-orbital models, the complexity of the
orbital structure introduces new competing energy scales, as exemplified by the Hund’s
metals [52–56] which turn out to be relevant for a large variety of materials including iron-
based superconductors [54, 57–60], ruthenates [61, 62] and molybdates [63], to mention
a few. This more intricate local structure of the interaction tensor has profound conse-
quences for a number of numerical approaches, e.g. leading to a sign problem in some
QMC variants [64] and, in general, to a larger numerical cost. Thus, extending numerical
techniques to multi-orbital systems poses often not only an analytical but also a computa-
tional challenge which has to be overcome. Furthermore, approximations known to work
well in the single orbital case are not guaranteed to be equally adequate for multi-orbital
systems.

Numerical studies can provide guiding principles and insights into the microscopic
mechanisms behind emergent phenomena. However, in cases where the employed nu-
merical approach fails qualitatively or quantitatively, as for example in the case of some
iron-based superconductors where neither DFT nor DFT+DMFT predict correct Fermi
surfaces [65–67], it is important to extend the techniques and improve their accuracy. A
promising route for the study of correlated materials is to extend the formalism beyond
DMFT, which is a dynamical but local approach, by combining it with another numerical
approach which captures the effects of spatial and temporal fluctuations [14]. For this, two
different strategies have been considered in recent years. One idea is to include finite dis-
tance correlations in the DMFT itself, at the cost of a more complicated impurity problem,
as in the case of cellular DMFT [68–70] and the dynamical cluster approximation [71,72].
Alternatively, one can extend the locality-approximation of DMFT from the self-energy
to some vertex-functions, as done for example in TRILEX [18] and D-TRILEX [73, 74],
the dynamical-vertex approximation [17, 75] and other schemes [14, 76–78]. These ap-
proaches however typically require the calculation of local vertex functions, which is a
time consuming and challenging task for complicated models [79].

One very successful numerical method for systems with weak to intermediate cor-
relations is the two particle self-consistent (TPSC) approach [80–82], which was first
formulated for the single-band Hubbard model [83, 84], and subsequently extended to
multi-site [85,86], non-SU(2) [87,88], multi-orbital [66,89–91] and non-equilibrium [92,93]
problems. Furthermore, it has been combined with DMFT to extend its range of va-
lidity [94–96]. TPSC has been applied extensively to single orbital models [80, 97–104],
for which it yields remarkably accurate results [50] at a comparably low numerical cost.
Its combination with DMFT does not require the calculation of a vertex, but only the
two-particle density matrix, which can be evaluated at much lower numerical cost. If
this methodology works reliably in multi-orbital systems, TPSC and TPSC+DMFT will
become prime contenders for the study of complex correlated materials.

Motivated by these prospects, we present and benchmark in this paper two different
variants of a fully self-consistent multi-orbital TPSC approach by establishing sum rules
taking into account the SU(2) symmetry of the system. This allows us to determine
all required two-particle expectation values (TPEV) from exact sum rules, overcoming
approximations that had to be applied in earlier formulations [89, 90].

The paper is structured as follows: In Section 2, we derive the central equations of

::::::::::::

multi-orbital
:

TPSC from scratchand analytically discuss potential shortcomings. In Sec-
tion 3.1, we analyze a density-density interaction-only model analytically within TPSC,
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and point out potential pitfalls. In Section 3.2 we analyze the effects of a strong Hunds-coupling
::::::

Hunds

::::::::

coupling. Next, in Section 3.3, we benchmark the accuracy of the self-consistently deter-
mined two-particle expectation values, by comparing the TPSC results to exact diagonalization
(ED) and DMFT calculations. In addition, we compare the

::::::::::

self-energy,
:

spin and charge
susceptibilities to D-TRILEX [19] and discuss the implications of these results for the
applicability of our TPSC formulations to realistic multi-orbitals models.

2 Multi-orbital TPSC

In this chapter we present two variants of the multi-orbital TPSC formalism. The deriva-
tion follows closely analogous derivations for the single orbital case [80,82]. In the following
we will consider a general tight-binding Hamiltonian with local and instantaneous inter-
actions

H = to1′ ,o3′ (r
′
1 − r′3)c

†
o3′ ,s

′(r
′
3)co1′ ,s′(r

′
1) (1)

+
1

2
Ṽ

s1′s2′s3′s4′
o1′o2′o3′o4′ c

†
o3′ ,s3′

(r′)c†o4′ ,s4′ (r
′)co2′ ,s2′ (r

′)co1′ ,s1′ (r
′),

where c
(†)
o1,s1(τ1, r1):::::::::

c
(†)
o1,s1(r1):annihilates (creates) an electron at orbital o1 with spin s1 at

the lattice position r1.
::::::::::::::

to1,o3(r1 − r3)
::

is
::::

the
::::::::

hopping
:::::::

matrix
::::::::

element
::::::::

between
::::

two
::::::::

orbitals

::

at
::::::::

distance
::::::::

r1 − r3
::::

and
:::::::::

Ṽ s1s2s3s4
o1o2o3o4:::

is
:::

the
:::::

local
:::::::::::

interaction
:::::::

matrix
:::::::::

element.
:

All primed vari-
ables are summed over. As

:::

For
::::

the
::::

rest
:::

of
:::

the
::::::

paper
::::

we
::::

will
:::::

work
:::

in
::::

the
:::::::::::::::

Baym-Kadanoff

::::::::::

formalism,
:::::

thus
:::::

the
::::::::::

operators
:::::::::

co1,s1(r) ::::::::

acquire
::

a
::::::::::::

dependence
:::

on
:::::

the
:::::::::::

imaginairy
:::::

time

::::::::::

co1,s1(r, τ):.::::

We
::::::::::

introduce
::::

the
::::

four
:::::::

vector
::::::::::

τ ≡ (r, τ)
:::

as a short hand for all non explicitly
stated quantum numbers of an object we will use plain numbers as indices

::

to
:::::::::::

compactify

:::

our
::::::::::

notation.
:::::::::::::

Furthermore,
:::

we
:::::::

define
:::

the
::::::::::::::::::

anti-symmetrized
:::::::::::

interaction
::::::

tensor
:

V s1s2s3s4
o1o2o3o4 =

1

2
P(Ṽ s1s2s3s4

o1o2o3o4 ) , (2)

::::::

where
::

P
:::

is
::::

the
:::::::::::::::::::::

anti-symmetrization
:::::::::

operator.
::::::::

From
:::::

now
::::

on,
:::

we
:::::

will
::::::

work
:::::

with
::::

the

::::::::::::::::

antisymmetrized
:::::::::::

interation.
::::

In
:::::

App.
:::

B
:::

we
:::::::::

perform
::::

the
::::::::::

analogous
::::::::::::

derivations
::::::::

starting

::::

from
::

a
::::::::::::::::::::

Hubbard-Kanamori
:::::

type
:::::::

instead
:::

of
::

a
:::::::

general
:::::::::::::::::

anti-symmetrical
:::::::::::

interaction
:::::::

tensor,

::::::

which
:::::

leads
:::

to
::

an
:::::::::::

equivalent
:::

set
::

of
::::::::::::::::

self-consistency
:::::::::

equations. We will restrict ourselves to
the case of an SU(2) symmetric model. To reduce the complexity, we rewrite the Hubbard
interaction tensor

::::::::::

interaction
:::::::::

operator
:

in terms of its even and odd SU(2)-transforming
components [105]

V s1s2s3s4
o1o2o3o4 = Uo1o2o3o4δs1,s3δs2,s4 − Uo1o2o4o3δs1,s4δs2,s3 . (3)

Lastly, we restrict ourselves to inter-orbital-bilinear type interactions [106] (still allowing
for intra-orbital interactions within this bilinear form), thus the spin independent interac-
tion tensor is simplified to

:::::::::

simplifies
::

to
:

Uo1o2o3o4 = Do1,o4δo1,o3δo2,o4 + Co1,o3δo1,o4δo2,o3 + Po1,o3δo1,o2δo3,o4 , (4)

where each of the contributions can be identified with a specific physical process: density-density
typeinteractions are given by

:

is
::::::

native
:::

to
::

a
::::::::

different
::::::::

diagram
::::::

type: D , spin-flip interactions
by

:::

has
::::

the
:::::

form
:::

of
:

a
:::::::::::::

resummation
:::

in
::::

the
::::::

direct
::::::::::::

particle-hole
:::::::::

channel,
:

C and pair-hopping
processes by

:::

has
::::

the
:::::

form
::

of
::

a
:::::::

crossed
::::::::::::

particle-hole
::::

one
::::

and
::

a
:::::::::::::::

particle-particle
:::::::::::::

resummation

:::::

leads
:::

to
::::::

terms
::

of
::::

the
::::::

form
::

of
:

P . TPSC can also be formulated without this restriction,
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however restricting the interaction allows for an easier understanding of the equations and
processes involved. Thus we focus on this simplified form.

The central equation on which TPSC is built upon is the equation of motion [80],
linking the product of the single particle self-energy and the Green’s function to the tensor
contraction of the two-particle interaction with a two-particle expectation value (TPEV),
which can

:

.
:::::

The
:::::::

TPEV
::::

can
:::::

then
:

be re-expressed in terms of a generalized susceptibility.
For a derivation of the equation of motion, see Appendix A

::

up
:::

to
::::

Eq.
:::::

(79). With the
assumption of an SU(2)-symmetric inter-orbital bilinear-type interaction, the equation of
motion simplifies to

Σ
s1,s1′
o1,o1′ (τ 1, τ

′
1)G

s1′ ,s3
o1′ ,o3(τ

′
1, τ 3) = (5)

1

2
V

s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1 ⟨Tτ c†o3′ ,s3′ (τ 1)co2′s2′ (τ 1)co4′ ,s4′ (τ 1)c

†
o3,s3(τ 3)⟩

=
1

2
Uo4′ ,o2′ ,o3′ ,o1 ⟨Tτ c

†
o3′ ,s4′

(τ 1)co2′s1(τ 1)co4′ ,s4′ (τ 1)c
†
o3,s3(τ 3)⟩ (6)

− 1

2
Uo4′ ,o2′ ,o1,o3′ ⟨Tτ c

†
o3′ ,s4′

(τ 1)co2′s4′ (τ 1)co4′ ,s1(τ 1)c
†
o3,s3(τ 3)⟩

= Uo4′ ,o2′ ,o3′ ,o1 ⟨Tτ c
†
o3′ ,s4′

(τ 1)co2′s1(τ 1)co4′ ,s4′ (τ 1)c
†
o3,s3(τ 3)⟩ (7)

=
(

Do4′ ,o1

∑

s4′

⟨Tτ c†o4′ ,s4′ (τ 1)co1,s1(τ 1)co4′ ,s4′ (τ 1)c
†
o3,s3(τ 3)⟩ (8)

+ Co1,o3′

∑

s4′

⟨Tτ c†o3′ ,s4′ (τ 1)co3′s1(τ 1)co1,s4′ (τ 1)c
†
o3,s3(τ 3)⟩

+ Po2′ ,o1

∑

s4′

⟨Tτ c†o1,s4′ (τ 1)co2′s1(τ 1)co2′ ,s4′ (τ 1)c
†
o3,s3(τ 3)⟩

)

.

where we introduced δ̄ as a short hand for 1− δ. The factor of 2 cancelling
:::::::::

canceling the
1/2 stems from applying the remaining crossing symmetry (exchanging in-going and out-
going indices at the same time), then swapping two operators and renaming summation
indices. The operator swap results in the 1− δ.

:::::::::::::

Furthermore,
::

in
::::

the
:::

P
::::::::

channel
::::

the
::::

only

::::::::::::

contribution
::

to
::::

the
:::::

spin
::::

sum
:::::::

which
::

is
:::::::::

non-zero
::

is
::::::::

s1 ̸= s′4 ::::

due
::

to
::::

the
::::::::::::::::

Pauli-principle.
The equation of motion relates single particle to two particle

:::::::::::::

single-particle
:::

to
::::::::::::

two-particle
properties, which in turn are linked to three particle

:::::::::::::

three-particle properties. Therefore,
the set of equations is not amenable to an exact solution due to this hierarchical structure
of the equations.

Instead, we proceed by approximating the two-particle expectation values on the right-
hand side by their Hartree-Fock decoupling. However, to improve over Hartree-Fock, in
TPSC one introduces parameters for the prefactors which are chosen such that the local
and static limit of the two-particle expectation values are exactly recovered

:::::

fulfill
::::::

exact

::::

local
::::::::::::::

susceptibility
:::::::::

sumrules [80].
::

In
::::

the
:::::::::::::

multi-orbital
:::::

case
:::::

this
::::::

means
:::::

that
::::

we
::::::::

consider

:::

the
:::::

limit
:::::::::

τ 1 = τ 3,
:::::::

o1 = o3
::::

and
::::::::

s1 = s3.
:::::::::::::

Technically,
:::

the
:::::::

choice
::

of
:::

the
:::::::::

Ansätze
::

is
::::::::::

completely

:::::::::

arbitrary,
:::::

here
:::

we
::::::::

restrict
:::::::::

ourselves
:::

to
::::

the
:::::

cases
:::

in
::::::

which
::::

the
:::::::::

different
:::::::::::

interaction
::::::

terms

::

do
::::

not
:::::

mix.
:

The Hartree-Fock decoupling reads
:::::

with
::::

the
::::::::

Ansätze
:::::::::::

introduced
:::::

then
::::::

reads

Σ
s1,s1′
o1,o1′ (τ 1; τ

′
1)G

s1′ ,s3
o1′ ,o3(τ

′
1; τ 3) (9)

≈
(

D̃
s4′ ,s1
o4′ ,o1(G

s4′ ,s4′
o4′ ,o4′ (τ 1; τ 1)G

s1,s3
o1,o3(τ 1; τ 3)−G

s1,s4′
o1,o4′ (τ 1; τ 1)G

s4′ ,s3
o4′ ,o3(τ 1; τ 3))

+ C̃
s1,s3′
o1,o3′ (G

s4′ ,s4′
o1,o3′ (τ 1; τ 1)G

s1,s3
o3′ ,o3

(τ 1; τ 3)−G
s1,s4′
o3′ ,o3′ (τ 1; τ 1)G

s4′ ,s3
o1,o3 (τ 1; τ 3))

+ P̃ s1,s̄1
o2′ ,o1

(Gs̄1,s̄1
o2′ ,o1

(τ 1; τ 1)G
s1,s3
o2′ ,o3

(τ 1; τ 3)−Gs1,s̄1
o2′ ,o1

(τ 1; τ 1)G
s̄1,s3
o2′ ,o3

(τ 1; τ 3))
)

,

where s̄ = −s.
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::::

One
:::::::::::

important
:::::

thing
:::

to
:::::

keep
::

in
::::::

mind
::

is
:::::

that
::::::

TPSC
::::

will
:::::::::

partially
:::::::

inherit
:::::::::::::

shortcomings

::

of
::::

this
:::::::::::

underlying
:::::::::::::

Hartree-Fock
:::::::::::

decoupling
::::

(we
::::

will
:::::::

discuss
::::

this
:::

in
:::::

more
::::::

detail
:::

in
:::

Sec
:::::

3.1).

:::

On
::::

the
:::::

other
::::::

hand,
::::::

from
::::

Eq.
:::

(8)
:::

we
:::::

find
::

in
::::

the
:::::

local
:::::

and
::::::

static
:::::

limit

Σ
s1,s1′
o1,o1′ (τ 1, τ

′
1)G

s1′ ,s1
o1′ ,o1(τ

′
1, τ 1) = (10)

(

Do4′ ,o1

∑

s4′

⟨Tτ c†o4′ ,s4′ (τ 1)co4′ ,s4′ (τ 1)c
†
o1,s1(τ 1)co1,s1(τ 1)⟩

− Co1,o3′

∑

s4′

⟨Tτ c†o3′ ,s4′ (τ 1)co3′s1(τ 1)c
†
o1,s1(τ 1)co1,s4′ (τ 1)⟩

− Po2′ ,o1 ⟨Tτ c
†
o1,s̄1(τ 1)co2′s1(τ 1)c

†
o1,s1(τ 1)co2′ ,s̄1(τ 1)⟩

)

.

:::

By
::::::::::

combining
::::

Eq.
:::

(9)
::::

and
::::

Eq.
:::::

(10)
:::

we
::::::

obtain
::::

the
:::::::

explicit
:::::

form
:::

of
:::

the
:::::::::

Ansätze.
:

It should be
noted that there is an ambiguity in the way we define the prefactors: we can either define
them as spin dependent or spin independent quantities – in the latter

:::::::

objects
::::::::::

depending

::

on
:::::

one
::

or
::::

on
::::

two
:::::

spin
::::::::

indices.
::::

In
::::

the
:::::::

former
:

case, we end up with three independent
vertices, while in the former

:::::

latter
:

case, we end up with five. In the following we will refer
to these two variants as

:::::

(The
::::::

ansatz
:::::::::::::

proportional
:::

to
::

P
::::::::

always
::::::::

depends
:::::

only
:::

on
::

a
::::::

single

:::::

spin.)
::::::

The
::::::

origin
:::

of
::::

this
:::::::::::

ambiguity
::

is
::::

the
::::::::

freedom
:::

of
::::::::

pulling
:::

the
:::::

sum
:::::

over
::::

the
::::::::

internal

::::

spin
:::

in
::::

Eq.
:::

(8)
:::::

into
:::

the
::::::::

Ansatz
::::::::

(leading
:::

to
:

TPSC3and
:

)
:::

or
:::::::::::

performing
::::

the
:::::::

Ansatz
::::::

inside

:::

the
:::::

sum
:::::::::

(leading
::

to
:

TPSC5, respectively
::

).
::::::::::

Whether
:::::

both
:::

of
::::::

these
:::::::

choices
::::

are
::::::

valid
::

in

:::

the
::::::

sense
::::

that
::::

no
::::::::

artificial
:::::::

SU(2)
::::::::::

symmetry
:::::::::

breaking
:::

is
:::::::::::

introduced
:::

has
:::

to
:::

be
::::::::

checked
:::

by

::::::::

deriving
:::

the
:::::::::::

interaction
:::::::

vertex
::::::::

induced
:::

by
::::::

them.
:::::::

Again
:::

we
::::::

stress
:::::

that
:::::

there
::

is
:::::::::::

technically

:

a
::::::

much
::::::

larger
:::::::

group
::

of
:::::::::

possible
::::::::

Ansätze
::::

due
:::

to
::::

the
:::::::::

freedom
::

of
::::::::

shifting
::::::::::::::

contributions
::

to

::::::::

different
:::::::::::

interaction
::::::

terms.
The spin independent

:::::

single
:::::

spin
::::::::::

dependent
:

TPSC3 Ansätze are defined as (fixing the
external spin to s1 =↑)

::::::

s1 = ↑)
:

D̃o4,o1 = Do4,o1

⟨n↑o4n↑o1⟩+ ⟨n↑o1n↓o4⟩
∑

s4
⟨ns4o4⟩ ⟨n↑o1⟩ − ⟨n↑,s4o1,o4⟩ ⟨ns4,↑o4,o1⟩

, (11)

C̃o1,o3 = Co1,o3

⟨n↑o3n↑o1⟩+ ⟨n↑↓o3n↓↑o1⟩
∑

s4
⟨n↑,s4o3 ⟩ ⟨ns4,↑o1 ⟩ − ⟨ns4o1,o3⟩ ⟨n↑o3,o1⟩

, (12)

P̃o1,o2 = Po1,o2

⟨n↑↓o2o1n↓↑o2,o1⟩
⟨n↑,↓o2,o1⟩ ⟨n↓,↑o2,o1⟩ − ⟨n↓o2,o1⟩ ⟨n↑o2,o1⟩

, (13)

while in
::::::

where
:::

we
:::::::::

dropped
::::

the
:::::::::::

dependence
::::

on
:::

the
:::::::

single
::::

spin
:::

as
::::

the
:::::::

SU(2)
::::::::::

symmetry
::

of

::

all
:::::::::::

quantities
:::

on
::::

the
:::::

right
::::::

hand
::::

side
::::::::

implies
:::::::::

X↑ = X↓
::::::::

(where
::

X
:::::::

stands
::::

for
:::

an
:::::::::

arbitrary

::::::::

ansatz).
:::

In the TPSC5 case the explicitly spin
::::::::

two-spin
:

dependent Ansätze read

D̃s4,s1
o4,o1 = Do4,o1

⟨ns4o4ns1o1⟩
⟨ns4o4⟩ ⟨ns1o1⟩ − ⟨ns1,s4o1,o4⟩ ⟨ns4,s1o4,o1⟩

, (14)

C̃s1,s3
o1,o3 = Co1,o3

⟨ns1,s3o3 ns3,s1o1 ⟩
⟨ns1,s3o3 ⟩ ⟨ns3,s1o1 ⟩ − ⟨ns3o1,o3⟩ ⟨ns1o3,o1⟩

, (15)

P̃ s1
o2,o1 = Po2,o1

⟨ns1,s̄1o2o1 n
s̄1,s1
o2,o1⟩

⟨ns1,s̄1o2,o1⟩ ⟨ns̄1,s1o2,o1⟩ − ⟨ns̄1o2,o1⟩ ⟨ns1o2,o1⟩
. (16)

where we introduced the
::

In
::::::

these
::::::::::

equations,
:::

we
:::::::::::

introduced
:

a
:

short hand notation ns1,s2o1,o2 = c†o2,s2(τ, r)co1,s1(τ, r
the second index is dropped whenever two indices are identical

:::::

which
:::::::

allows
:::

us
:::

to
:::::

drop

::::::::::

redundant
:::::::::::

arguments,
::::

i.e.
::::::::::::::::::::::::::::

ns1,s2o1,o2 = c†o2,s2(τ, r)co1,s1(τ, r)::::

and
:

5
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::::::::::::::::::::::::::::::::::

ns1o1 = ns1,s1o1,o1 = c†o1,s1(τ, r)co1,s1(τ, r). In principle, the two approaches should yield compat-
ible results as long as the underlying assumptions of the approach are valid. Furthermore,
it should be noted that if the initial model contains no inter-orbial hopping between or-
bitals which are interacting, the renormalizations of P̃ for both TPSC3 and TPSC5 as well
as C̃↑,↓ in TPSC5 are singular and thus the local and static limits cannot be captured in the
standard fashion. Therefore, the question arises on how to renormalize these components
in such a case. The first option is to stay at the level of plain Hartree-Fock (which does
not renormalize these couplings leading to an overestimation of their contribution). The
second option is to use the freedom of the Ansatz and to use

:::::::

employ the same rescaling as
we use for the other components. In principle, as long as the trace consistency check (the
local and static limit of

:::::::::::

equivalence
:::

of
:::

left
:::::

and
:::::

right
:::::

hand
:::::

side
::

in
:

Eq. (8)
::::

(10)) is fulfilled,
both variants are reasonable, however .

::::::::::

However
:

the former is expected to break down
rapidly at stronger coupling, while the latter maintains the Kanamori-Brückner-like scal-
ingof TPSC [80].

:::

We
:::::

will
:::::::::

maintain
::::

the
::::

first
::::::::

variant
:::

for
:::::::

easier
:::::::::::::

comparability
::::::

with
::::::

earlier

::::::::::::

multi-orbital
:::::::

TPSC
:::::::::::

approaches
::::::::

[86, 89]
:

.
:

As is usual for TPSC
:::::::::::

[80, 82, 86], the unknown local and static TPEVs are determined
self-consistently. Specifically, the TPEVs are calculated from sum rules

::::::::::::

susceptibility

:::::::::

sum-rules, for which one requires the susceptibility,
:

which we determine utilizing
:::::

using
the Bethe-Salpeter equation. The interaction which is put into the Bethe-Salpeter equa-
tion is derived as the functional derivative from the Ansatz equation – thus closing the
self-consistency. In order to obtain the vertex

:::::::::::

two-particle
::::::::::::

interaction, see Eq. (82) in
Appendix A, one reformulates the equation of motion into an explicit equation for the
self-energy, as shown here for the case of TPSC5 (the equations for TPSC3 are obtained
by using the symmetries between the different components ):

::

of
::::

the
::::::::::

Ansätze):
:

Σs1,s3
o1,o3(τ 1; τ 3) = δτ1,τ3

(

D̃
s′4,s1
o′4,o1

G
s′4,s

′
4

o′4,o
′
4

(τ 1; τ 1)δs1,s3δo1,o3 − D̃s3,s1
o3,o1G

s1,s3
o1,o3(τ 1; τ 1) (17)

+ C̃
s1,s′3
o1,o3G

s′3,s
′
3

o1,o3(τ 1; τ 1)δs1,s3 − C̃s1,s3
o1,o′3

Gs1,s3
o′3,o

′
3

(τ 1; τ 1)δo1,o3

+ P̃ s1,s̄1
o3,o1G

s̄1,s̄1
o3,o1(τ 1; τ 1)δs1,s3 − P̃ s1,s̄1

o3,o1G
s1,s̄1
o3,o1(τ 1; τ 1)δs̄1,s3

)

.

::

It
:::::::

should
:::

be
::::::

noted
:::::

that
::::

the
:::::::::::

self-energy
:::

we
:::::::

arrive
:::

at
::

is
:::::::

purely
:::::::::::::

spin-diagonal
::::::

(due
::

to
::::

the

:::::::

Green’s
:::::::::

function
::::::

being
:::::

spin
:::::::::

diagonal)
:::::

and
:::::::::::

Σ↑,↑ = Σ↓,↓
::::::

holds
::::

due
:::

to
::::

the
::::::::::

symmetry
:::

of
:::

the

::::::::::::

Hamiltonian
::::::

which
::

is
::::::::::

inherited
:::

by
:::

the
::::::::

Ansatz.
:

The irreducible vertex
:

in
::::

the
:::::::

direct
::::::::::::

particle-hole
::::::::

channel
:

is defined as the functional
derivative of the self-energy w.r.t the Green’s function

Γs1s2s3s4
o1o2o3o4(τ 1, τ 2, τ 3, τ 4) =

δΣs1,s4
o1,o4(τ 1, τ 4)

δGs3,s2
o3;o2(τ 3, τ 2)

. (18)

Therefore, the vertex contains functional derivatives of the Ansätze themselves which are
a priori unknown. The way to circumvent this

:::::

their
:::::::::::

appearance
:

is to calculate the vertex
in the Pauli matrix basis [80], transforming spin into n = S0, Sx = S1, Sy = S2 and

Sz = S3. The transformation between the Pauli (ΓSi′Sj′

) and diagrammatic (Γs1,s2,s3,s4)
spin space is defined by the Pauli matrices,

ΓSiSj

o1o2o3o4(τ 1, τ 2, τ 3, τ 4) =
1

2

∑

s1,s2,s3,s4

σis1,s4Γ
s1,s2,s3,s4
o1o2o3o4 (τ 1, τ 2, τ 3, τ 4)σ

j
s̄2,s̄3 . (19)

Thus the irreducible vertex in physical spin space in the crossed particle-hole channel
is First, let us consider In an SU(2) symmetric system, the Ansätze have the symmetry
Xs1,s2 = X s̄1,s̄2 such that in each expression we can simultaneously flip all spins. Furthermore,

6
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there are two different classes of contributions, the ones where the functional derivative
acts on an Ansatz and the ones in which it acts on a propagator.The former class occurs
either as which is zero due to the symmetry of the vertex and the SU(2) symmetry of the
occupation number, or as

::

is

ΓSiSj

o1o2o3o4(τ 1, τ 2, τ 3, τ 4) =
1

2

∑

s1,s2,s3,s4

σis1,s4
δΣs1,s4

o1,o4(τ 1, τ 4)

δGs3,s2
o3;o2(τ 3, τ 2)

σjs̄2,s̄3 . (20)

which cancels due to the spin symmetry of
::

A
::::::::

detailed
::::::::::

derivation
:::

of
:

the Ansätze. Thus
the only contributions we are left with are the ones where the derivative acts on the
propagator, leaving us with

:::::::::::

interaction
:::::

from
::::

the
:::::::::::

self-energy
::

is
::::::

given
:::

in
:::::

App.
:::

C,
:::::

here
:::

we

::::

only
::::::

show
:::

the
:::::

final
:::::::

results
:::

of
::::

this
::::::::::::

calculation.
::::

For
::::::::

TPSC5
:::

we
::::

find
:::::

that
::::

the
:::::::::::

interaction
::

is

:::::::::::

determined
:::

by

ΓS3S3

o1o2o3o4(τ 1, τ 1, τ 1, τ 1) = δo1,o4δo2,o3

(

D̃↑,↓
o3,o1 − D̃↑,↑

o3,o1

)

+ δo1,o3δo2,o4D̃
↑,↑
o4,o1 (21)

+ δo1,o3δo2,o4(C̃
↓,↑
o1,o4 − C̃↑,↑

o1,o4) + δo1,o4δo2,o3C̃
↑,↑
o1,o3

+ δo1,o2δo3,o4P
↑,↓
o3,o1 .

In the case of TPSC3 this equation is further simplified to

ΓS3S3

o1o2o3o4(τ 1, τ 1, τ 1, τ 1) = P̃o3,o1δo1,o2δo3,o4 + C̃o1,o3δo2,o3δo1,o4 + D̃o4,o1δo4,o2δo1,o3 , (22)

which is again the standard form of the inter-orbital bilinear vertex. Notably, in
:::

for TPSC5
we can defineX = D̃↑↑ − C̃↑↑

:::::::

observe
::::

that
:::::

D̃↑↑
::::

and
::::

C̃↑↑
::

do
::::

not
:::::::

appear
::::::::::::::

independently
::

in
::::

any

::

of
::::

the
:::::::::

equations, meaning that we technically do not have five but only four independent
vertex components.

:::

We
::::::::

observe
:::::

that
:::::

both
::::::::

Ansätze
::::

fall
::::

into
::::

the
::::::::

required
:::::

form
:::

of
:::

an
::::::

SU(2)

::::::::::

symmetric
::::::::::::

interaction,
::::::::::

justifying
::

a
::::::::::

posteriori
::::

that
::::

we
:::::

kept
:::::

both
:::::::::::::

possibilities.
:

While for
the other diagonal spin components, the identical result is found, in the charge channel,
no cancellation of the functional derivatives of the Ansätze exists, and hence .

:::::::

Hence
:

this
vertex cannot be calculated from these and

::::::::

directly.
::::::::::::

Therefore, we have to resort to a
two-step procedure [80]. The procedure is as follows: first one obtains the TPEV from
the self-consistent solution of the spin channel, while in a next step one fits the charge
channel vertex such that the sum rules derived below are fulfilled.

For the next step we need the susceptibilities. In an SU(2) symmetric system, the
Bethe-Salpeter equations decouple, enabling a separate evaluation of charge and spin sus-
ceptibilities, which substantially reduces the numerical effort [107]. We obtain the spin
susceptibility as

χS3S3

o1,o3,o2,o4(q) = χ0;S3S3

o1,o3,o2′ ,o4′
(q)

(
1

1− ΓS3S3χ0;S3S3

)

o2′o4′ ,o2,o4

(q) , (23)

where we shuffeled index 2, 3 and 4
:::::::::

compared
:::

to
::::

the
::::::::::

Appendix
::

C to obtain an equation in
the form of a matrix-matrix product. The susceptibilities are then used to calculate the
required TPEVs, which read

⟨n↑o4n
↑
o1⟩ , ⟨n↓o4n

↑
o1⟩ , ⟨n↑↓o4n

↓↑
o1⟩ = −⟨n↑o4,o1n

↓
o1,o4⟩ , ⟨n↑↓o2,o1n

↓↑
o2,o1⟩ . (24)

These are then calculated by utilizing the orbitally-resolved sum rules of the susceptibility
given by [95]

∑

q

χα,β
o1o3o2o4(q) = χα,β

o1o3o2o4 = ⟨Tτα13β24⟩ − ⟨α13⟩ ⟨β24⟩ . (25)

7
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Here, α and β are either spin operators or density operators. For spin operators in a
::

an
SU(2) symmetric system ⟨α13⟩ has to be zero, so that we can drop the single particle
contribution in the following.

First, we rewrite the sum rule for the spin-z susceptibility

χS3S3

o1,o3,o2,o4 =
∑

σ

⟨nσo1o3n
σ
o2o4 − nσo1o3n

σ̄
o2o4⟩ (26)

= 2 ⟨n↑o1o3n
↑
o2o4 − n↑o1o3n

↓
o2o4⟩ . (27)

by
:::

By
:

differentiating cases with pairwise identical indices :
:::

we
::::::

arrive
:::

at
::::

the
:::::::::

following
:::

set

::

of
::::::::::

equations

1 = 3 = 2 = 4 =⇒ χS3S3

o1,o1,o1,o1 = 2 ⟨n↑o1⟩ − 2 ⟨n↑o1n
↓
o1⟩ , (28)

1 = 3 ̸= 2 = 4 =⇒ χS3S3

o1,o1,o2,o2 = 2 ⟨n↑o1n
↑
o2 − n↑o1n

↓
o2⟩ , (29)

1 = 4 ̸= 3 = 2 =⇒ χS3S3

o1,o2,o2,o1 = 2 ⟨n↑o2(1− n↑o1)⟩ − 2 ⟨n↑o1o2n
↓
o2o1⟩ , (30)

1 = 2 ̸= 3 = 4 =⇒ χS3S3

o1,o2,o1,o2 = 2 ⟨n↑↓o1o2n
↓↑
o1o2⟩ , (31)

where we utilized the Pauli principle in the special case where all indices are identical.
However, these equations are not sufficient to fix all unknowns. To do so, we use the fact
that the susceptibility is SU(2) symmetric, i.e. χS1S1

= χS2S2

= χS3S3

. This allows us to
obtain more sum rules by evaluating

:::

the
:::::::::::

expression
:::

for
::::

the
::::::

other
::::::::::::

components
::::::

(note
::::

that

::::

S1/2
:::::::

means
:::

S1
:::

for
::::

the
::::::

upper
:::::

sign
::::

and
:::

S2
::::

for
:::

the
::::::

lower
::::::

sign):
:

χS1/2S1/2

o1,o3,o2,o4 = ±⟨(c†o3↓co1↑ ± c†o3↑co1↓)(c
†
o4↓
co2↑ ± c†o4↑co2↓)⟩ (32)

= ±
(

⟨c†o3↓co1↑c
†
o4↓
co2↑⟩+ ⟨c†o3↑co1↓c

†
o4↑
co2↓⟩ (33)

± ⟨c†o3↓co1↑c
†
o4↑
co2↓⟩ ± ⟨c†o3↑co1↓c

†
o4↓
co2↑⟩

)

,

which, analogously to the spin-z susceptibility, are inspected for pair-wise identical indices:

1 = 3 ̸= 2 = 4 =⇒ χS1/2S1/2

o1,o1,o2,o2 = 2
(

±⟨n↓↑o1n
↓↑
o2⟩ − ⟨n↓o2o1n

↑
o1o2⟩

)

, (34)

1 = 4 ̸= 3 = 2 =⇒ χS1/2S1/2

o1,o2,o2,o1 = ⟨no2⟩+ 2
(

∓⟨n↓↑o1n
↓↑
o2⟩ − ⟨n↓o2n

↑
o1⟩
)

, (35)

1 = 2 ̸= 3 = 4 =⇒ χS1/2S1/2

o1,o2,o1,o2 = 2 ⟨n↑↓o1,o2n
↓↑
o1,o2⟩ . (36)

Due to SU(2) symmetry, all expectation values with a ± in front have to be zero. Thereby,
we have a system with four unknowns and six equations, which at first glance seems to
be overdetermined. However, one realizes that the limit 1 = 2 ̸= 3 = 4 gives the same
sum rule irrespective of the spin-channel, thus leaving us with four equations for three
unknowns:

1 = 3 ̸= 2 = 4 =⇒ χS3S3

o1,o1,o2,o2 = 2 ⟨n↑o1n
↑
o2 − n↑o1n

↓
o2⟩ = −2 ⟨n↓o2o1n

↑
o1o2⟩ , (37)

1 = 4 ̸= 3 = 2 =⇒ χS3S3

o1,o2,o2,o1 = 2 ⟨n↑o2(1− n↑o1)⟩ − 2 ⟨n↑o1o2n
↓
o2o1⟩ (38)

= ⟨no2⟩ − 2 ⟨n↓o2n
↑
o1⟩ .

These equations are not independent – as long as we fulfill three of the equations, the
fourth one is automatically fulfilled. Hence, the system is not over-determined and the

8
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TPEVs can be calculated as

⟨n↓o2n
↑
o1⟩ =

⟨no2⟩ − χS3S3

o1,o2,o2,o1

2
, (39)

⟨n↑o2n
↑
o1⟩ = ⟨n↓o2n

↑
o1⟩+

χS3S3

o1,o1,o2,o2

2
, (40)

⟨n↑o1o2n
↓
o2o1⟩ = −

χS3S3

o1,o1,o2,o2

2
, (41)

⟨n↑↓o1,o2n
↓↑
o1,o2⟩ =

χS3S3

o1,o2,o1,o2

2
. (42)

In summary, the self-consistency loop consists of the Ansatz equations for TPSC3 (Eq. (11,12,13))
or TPSC5 (Eq. (14,15,16)), from which the vertex follows in the form of Eq. (22) or
Eq. (21). The vertex in turn determines the susceptibility, calculated according to Eq. (23),
from which the TPEVs can be extracted utilizing the sum rules (Eq. (39,40,41,42)). This
loop can be solved in various ways – in its core it is a minimization or multidimensional root
finding problem. Once a minimum is found, the TPEVs are used to determine the charge
vertex by fitting to the sum rules in the charge sector. These are derived analogously to
the spin sum rules and read for pair-wise identical indices:

1 = 3 ̸= 2 = 4 =⇒ χno1o1no2o2
= 2 ⟨n↑o1n

↑
o2 + n↑o1n

↓
o2⟩ − ⟨no1⟩ ⟨no2⟩ , (43)

1 = 4 ̸= 3 = 2 =⇒ χno1o2no2o1
= 2 ⟨n↑o2(1− n↑o1)⟩+ 2 ⟨n↑o1o2n

↓
o2o1⟩ (44)

− ⟨no1o2⟩ ⟨no2o1⟩ ,
1 = 2 ̸= 3 = 4 =⇒ χno1o2no1o2

= −2 ⟨n↑↓o1o2n
↓↑
o1o2⟩ − ⟨no1o2⟩ ⟨no1o2⟩ . (45)

Since we have only three equations irrespective of the type of Ansatz we picked, this part
of the calculation is identical for both TPSC3 and TPSC5, as long as we fit a charge vertex
parameterized in the inter-orbital bilinear form.

In the following we analyze this approach both numerically and analytically and discuss
its strengths and shortcomings.

2.1 Differences to earlier approaches

Multi-orbital TPSC formalisms were already presented in Ref. [89] and Ref. [90]. Here, we
briefly discuss the differences between the proposed approach and these earlier attempts of
generalizing TPSC to a multi-orbital setting. First and foremost, the proposed procedure
here is fully self-consistent, i.e. no additional symmetry constraints have to be enforced
beyond the structure of the bare vertex. The self-consistent double occupancies seem to
cure the issue of negative components of the charge vertex - thus the internal consistency
check is fulfilled as long as both minimizations converge to a solution. However, utilizing
more sum rules complicates the numerical root search, so that the computational cost
of the present approach is higher. We include both the particle-hole symmetrized

:::

(see

:::::

App.
:::

D)
:

and the usual version of the Ansätze in our implementation. However, in this
paper, we only consider half-filled systems, so that the results between the particle-hole
symmetry enforcing and the usual Ansatz do not differ. Apart from these differences,
the sum rules utilized in Ref. [89] and Ref. [90] are a subset of the sum rules

:::::::::

sum-rules
employed here,

:::

see
:::::

App.
:::::

B.1,
:

and we checked that by constraining the equations we can
reproduce the previous results.
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Figure 1: Pictorial view of the prototypical two-orbital Hubbard model considered
in this work.

3 Benchmarking

Before benchmarking the approaches
::::::::

variants numerically, we will try to provide an ana-
lytical understanding of when the approach is suitable and when it it

:

is
:

not. The model

:::::::

models
:

utilized in these benchmarks are variations of a multi-orbital Hubbard model,
where each site contains two orbitals, see Fig. 1.

::::

The
:::::::::::::

Hamiltonian
::

of
::::

this
:::::::

model
::::::

reads

Ĥ =
∑

s,⟨i,j⟩,o

tc†o,s,ico,s,j + ĤHK , (46)

::::::

where
:::

i, j
::::

are
:::::::

lattice
:::::

sites
:::::

and
::

o
::::::

labels
::::

the
::::::::

orbitals
:::

at
:::::

each
:::::

site.
::::::

Here
:::

we
:::::::::::

introduced
::

a

:::::::::::::::::::

Hubbard-Kanamori
:::::::::::

interaction,
:::::::

which
:::

has
::::

the
::::::::::

following
:::::

form

HHK = Un̂↑o1′ n̂
↓
o1′

+
∑

o1′ ̸=o2′

(

(U − 2J)n̂↑o1′ n̂
↓
o2′

+ (U − 3J)n̂s
′

o1′
n̂s

′

o2′
(47)

−Jĉ†o1′ ,↑ĉo1′ ,↓ĉ
†
o2′ ,↓

ĉo2′ ,↑ + Jĉ†o1′ ,↑
ĉ†o1′ ,↓

ĉo2′ ,↓ĉo2′ ,↑

)

.

:::

We
::::::

again
::::::

stress
:::::

that
:::::::

primed
::::::::::

variables
:::

are
::::::::::

implicitly
:::::::::

summed
:::::

over,
:::::

here
::::

we
::::::

made
::::

one
::

of

:::::

these
:::::

sum
:::::::

explicit
:::

to
::::::

catch
::::

the
:::::::

special
:::::

case
::

of
::::::

equal
:::::::::

orbitals.
:::

To
::::::::

extract
::::

the
:::::

form
:::

of
:::

the

::::::

vertex
::::::::::::

components
:::

P ,
:::

C
::::

and
:::

D,
:::::

one
::::

first
:::::::::::

determines
:::::::::::

Uo1,o2,o3,o4 :::

by
::::::

fixing
::

a
::::::::

specific
::::

spin

:::::::::::::

configuration,
::::

e.g.
::::::

↑↓↑↓,
:::

in
::::

the
::::

full
::::::::::::

interaction
:::::::

tensor
:::::::::::

V s1,s2,s3,s4
o1,o2,o3,o4 .::::

In
::

a
:::::::

second
:::::

step
:::

we

::::::

utilize
::::

the
::::::::::

Kronecker
::::::

deltas
:::

in
::::

Eq.
:::

(4)
:::

to
:::::::::::

decompose
:::

U
::::

into
::::

the
:::::::::::::

components.
::::

The
:::::::

on-site

::::::::::

interaction
::

is
:::::

put
::::

into
:::

D.
:::::

The
::::::

three
::::::::::::

components
::::

read
:

Do1,o4 = U − (1− δo1,o4)2J , (48)

Co1,o3 = (1− δo1,o3)J , (49)

Po1,o3 = (1− δo1,o3)J . (50)

If not mentioned otherwise, the two orbitals are not kinetically coupledand ,
:

we set
t = 1 and give all other quantities relative to t. Furthermore, the

::::

The
:

orbitals have
a coupling on the two-particle level due to the Hubbard-Kanamori interaction, which is
parameterized by the on-site interaction U and the Hunds coupling J . Such a model
and its variations have been studied extensively in former works [19, 90, 95], to which we
will compare our results. To analyze this model analytically, we consider two extreme

:::::::

limiting
:

cases, the one in which no Hunds coupling is present and the case in which the
Hunds-coupling is U/3.

3.1 Model with pure density-density interactions

First, let us consider the case of a multi-orbital model
:::::::::

described
::::::

above
:

with density-
density interactions only. For the kinetic part of the Hamiltonian we consider a two-orbital

10
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square-lattice model without hopping between the orbitals, where i, j label the lattice sites.
We furthermore

:::::::::::::

Furthermore,
:::

we
:

assume half-filling
:

,
:::

i.e.
:::::::::::::

⟨no1,s⟩ = 0.5,
:::::

such
:::::

that
:::

we
:::::

have

:::

one
::::::::

particle
::::

per
:::::::

orbital. Due to the absence of inter-orbital hoppings the non-interacting
susceptibility has a block diagonal form:

χ0
o1,o2,o3,o4(q, ω) = Go1o4(k, ν)Go2o3(k − q, ν − ω) = δo1,o4δo2,o3χ

0(q, ω) , (51)

where χ0(q, ω)
::::::::

χ0(q, ω) is the susceptibility of the single band model. In this model we
assume

::::::::::

respective
:::::::::::

single-band
:::::::

model,
::

q
::

is
::::

the
:::::::::::

momentum
:::::

and
::

ω
:::

the
:::::::::::

Matsubara
::::::::::

frequency.

:::::::::::::

Furthermore,
:::

we
:::::::::

consider
:

a pure density-density type interaction
::::

with
:::::::::

identical
::::::

intra-
(meaning

::

U)
::::

and
:::::::::::::

inter-orbital
::::

(U ′)
::::::::::

Hubbard
:::::::::::

interaction
:

(zero Hund’s coupling J)
:

:
:

Hint =
∑

i,o1,o2,s

Uni,o1,sni,o2,s̄ + (1− δo1o2)Uni,o1,sni,o2,s . (52)

This interaction in combination with the kinetic term leads to a vanishing Σ0 , so that we
do not have to consider it in the following

::::

(see
:::::

App.
::::::

(A.2)
:::

Eq.
:::

99
:::

or
::::

Ref.
:::::

[91]
:

). Since J = 0

there is no spin selectivity and we thus expect ⟨n↑0n
↑
1⟩ = ⟨n↑0n

↓
1⟩. Further ::::::::::::

Furthermore, since
U = U ′

:

, there is no energy difference in
:::

for
:

double occupying the same or different orbitals,

and hence ⟨n↑0n
↓
1⟩ = ⟨n↑0n

↓
0⟩. This also implies that the double occupancy ⟨n↑0n

↓
0⟩ should

decrease less rapidly with U than for
::

in
::::

the
::::

case
:::::

with
:

U ′ = 0
::::::

(which
:::::

then
::

is
:::::::::::

equivalent
::

to

:::

the
::::::

single
:::::::

orbital
:::::::::

Hubbard
::::::::

model). With this in mind we now turn to TPSC.
For a pure density-density interaction, the only non-zero Ansatz (TPSC3 and TPSC5

are giving identical results in this specific case, so we discuss TPSC3 here) is the one for
D̃:

D̃o4,o1 = Do4,o1

∑

s4
⟨ns4o4ns1o1⟩

∑

s4
ns4o4n

s1
o1 − ns1s4o1o4n

s4s1
o4o1

. (53)

As we are at half-filling and have no inter-orbital coupling
:

,
::::

the
::::::::::::

Hamiltonian
::

is
:::::::::

diagonal
::

in

::::::

orbital
:::::::

space,
:::

i.e.
::::::::::::::::::::::::::::

⟨c†o1,s1co2,s2⟩ = 0.5δo1,o2δs1,s2 .::::::::::

Therefore
:

the denominator simplifies to
∑

s4

ns4o4n
s1
o1 − ns1s4o1o4n

s4s1
o4o1 = 0.5− 0.25δo1,o4 . (54)

The numerator is obtained via the Ansatz equations and thereby via the interacting sus-
ceptibility. Inserting the explicit form of the vertex derived from the Ansatz, as well as
the non-interacting susceptibility, we arrive at

χo1,o2,o3,o4(q, ω) =
∑

o1′ ,o3′

δo1,o3′ δo1′ ,o3χ
0(q, ω)

(

1

1̂− ˆ̃Dχ̂0(q, ω)

)

o1′ ,o2,o3′ ,o4

, (55)

where the fraction in the first line denotes a matrix inversion.
Comparison between TPSC3 (blue), TPSC5 (yellow) and ED (red) for the model

defined in Eq. (144) at β = 0.5, for different U and J combinations. We include the zeroth
order self-energy in both TPSC variants.

:::::::

denotes
::::

an
:::::::::

inversion.
::::::

The
:::::::

matrix
:::

we
::::::

need
::

to

::::::

invert
:::::

reads
:::

in
::::::

index
::::::::

notation
:

(

1̂− ˆ̃Dχ̂0(q, ω)
)

o1,o2,o3,o4
= δo1,o3δo2,o4 − δo1,o3δo2′ ,o4′Do1,o2′χ

0(q, ω)δo2′ ,o4δo2,o4′ , (56)

::::::

which
:::

has
::

a
::::::

block
::::::::

diagonal
::::::::::

structure.
:::::::::

Utilizing
:::::

that
::::

the
:::::::

inverse
:::::::

matrix
::

of
::

a
::::::

block
::::::::

diagonal

::::::

matrix
:::

is
:::::

again
::::::

block
::::::::::

diagonal,
:::

we
::::::

arrive
:::

at

χo1,o3,o2,o4(q, ω) = δo1,o4δo2,o3χ
0(q, ω)

1

1− χ0(q, ω)D̃
. (57)

11
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We note that the interacting susceptibility is identical to the one of a single orbital
model with the same

:::::::::::::

renormalized
:

interaction value. The only non-zero components of
the susceptibility are χ1111 and χ1221. Thus, from Eq. (39) and Eq. (40) it immediately

follows that ⟨n↑0n
↑
1⟩ = ⟨n↑0n

↓
1⟩ = ⟨n↑0n

↓
0⟩, as we expected from the arguments above. In

::::::::

Inserting
::::::

these
::::::::

findings
:::::

into
:::

the
::::::::

Ansatz
::::::::::

equations
::::::

yields
:

D̃o4,o1 = U
⟨n↑o1n↑o4⟩ (1− δo1,o4) + ⟨n↑o1n↓o4⟩

0.5− 0.25δo1,o4
= 4U ⟨n↑o1n

↓
o4⟩ . (58)

::::

Due
::

to
::::

the
:::::::::::

symmetries
:::

we
:::::::

found,
::::

the
:::::

right
:::::

hand
::::

side
::

is
:::::::::

orbitally
::::::::::::

independent
:::::

and
:::::

gives
:::

the

:::::

same
:::::::::

equation
:::

for
::::

the
:::::::::::::

renormalized
::::::::::::

interactions
:::

as
::::

the
::::::

single
:::::::

orbital
:::::

case
::::::::

[80, 82]
:

.
:::::

This

:::::

result
:::

is
::::

also
::::::::::::

independent
:::

of
:::::

what
:::::::

filling
:::

we
::::::::

initially
::::::

chose
::::

and
::

is
::

a
::::::::

general
:::::::

feature
:::

of
:::

the

::::::::::

considered
:::::::

model.
:

::::::::::

Therefore,
:::

in contrast to our expectations, the specific form of the susceptibility implies
that the converged TPSC loop will result in the same double occupancy as the one for
the one-orbital model. In other words, adding an inter-orbital interaction of the same
strength as the bare interaction does not make a difference for the double occupation
predicted by the method. This is in contrast to the physically expected result discussed
above – in the single orbital model in the strong coupling limit, we would expect zero
double occupancy. However in this

:::::::::::

two-orbital model, different states in which no orbital
is doubly occupied and states in which all orbitals are

:::

one
::::::::

orbitals
::

is
:

doubly occupied are
degenerate in energy,

:

so the double occupancy should decay much slower (as it is seen in
ED, see Fig. 2a)

::::

more
:::::::

slowly.
To pinpoint what TPSC is missing in this case , we consider

::

we
:::

go
:::::

back
::::

one
:::::

step
::::

and

::::::::

consider
::

a
:::::::::

molecular
::::::::

system.
::::::

Here,
:::::::::::::

multi-orbital
::::::

TPSC
::

is
:::::::::::

essentially
:::::::::::

amounting
::

to
::

a
:::::

small

::::::::::

correction
::::

with
::::::::

respect
:::

to
:::

the
:::::::::::

underlying
:::::::::::::

Hartree-Fock
:::::::::::

treatment,
:::::::::

meaning
:::

we
::::::::::

essentially

:::::::::::

benchmark
:::

the
::::::::

validity
:::

of
:::

the
:::::::::::::

Hartree-Fock
::::::::::::

decoupling.
:::::

The
::::::::

simplest
:::::

such
:::::::

system
:::

we
::::

can

:::::

write
::::::

down
:::

are
:

two coupled dimers(2-site) for which we
:

,
::::::::::

visualized
:::

for
::

a
::::

four
:::::::

dimer
::::

case

::

in
::::

Fig.
:::

1,
::::::::

without
:::::::

Hund’s
:::::::::

coupling
::

J .
:::::

The
:::::::::

hopping
:

t
::::::

again
::

is
:::

set
:::

to
::

1
::::

and
::

U
::

is
:::::::

varied.
::::

We
compare the results between ED and TPSC,

:::

or
:::::::

better
::::

said
::::::::::::::

Hartree-Fock. The behavior
described above is reproducedas expected, see Fig. 2a. Further, since the susceptibility
does not gain any strong τ dependence, implying that the frequency dependence also does
not change drastically, as shown in Fig. 2b

:

.
::::::::::

Therefore, we expect the vertex to be still
reasonably well described by the static limit. The questions therefore are, first, where does
the deviation stem from and second, why does this issue occur here but not in the single
orbital

::::::::::::

single-orbital
:

model?
Let us first answer the second question. In the single-orbital case we fix the local and

static expectation value
::::::

values to be the exact one
::::

ones
:::

as
::::::::::::

determined
:::

by
::::

the
::::

sum
::::::

rules.
Crucially, the single site contains no further internal structure meaning that the exact
local expectation value is always proportional to the non-interacting one. Thus repre-
senting this expectation value locally by a renormalized Hartree-Fock expectation value
works, i.e., we can always get the correct value of the double occupancy by multiplying
the non-interacting double occupancy with a single number. Multi-orbital systems have
additional degrees of freedom, which enter the local and static contribution. We still ap-
proximate the TPEVs in

:::

Eq.
:::

(8)
:::

by
:

a Hartree-Fock fashion, thus as
:::::::::::

decoupling.
:::

In
:::::

other

::::::

words,
:::

we
:::::::::::::

approximate
::::

the
:::::::

ground
:::::

state
:::

by
:

a single Slater-determinantwhich intrinsically
is connected to the non-interacting limit. Importantly

:

.
:::::::::

However, the local Hilbert-space is
now spanned by more than a single wave-function and all of these states contribute to the
expectation value. Thus, introducing interactions can fundamentally alter the structure
of the eigenstates in the local Hamiltonian, so that the expectation value

:::::::

TPEV’s
:::::

such

::::

that
::::::

these can deviate from a behavior
::::::::::::

multiplicably
:

representable by the non-interacting

12
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Figure 2:
:::

(a)
::::::::::::

Comparison
:::::::::

between
:::::::

TPSC
::::

and
:::::

ED
::

at
:::::::

β = 2
:::

for
:::::::::

different
:::

U
:::

at

::::::

J = 0.
:::::

We
::::::::

observe
::::

the
::::::

same
::::::::::::::::

phenomenology
::

as
::::::::::

expected
:::::

from
:::::

our
::::::::::

analytical

::::::::

analysis.
::::

(b)
::::::

Time
:::::::::::

dependence
:::

of
:::

the
::::::::::::::::

density-density
:::::::::

correlator
::::

for
:

a
:::::::

single
:::::

(SO)

::::

and
:

a
::::::::::::

two-orbital
::::::

(MO)
::::::::

two-site
::::::::::

Hubbard
:::::::

model.
::::

No
:::::::::::::

enhancement
:::

of
::::

the
:::::

time

:::::::::::

dependence
::

is
:::::::

visible,
::::

and
::::::

hence
::::

this
:::::::

cannot
:::::::

explain
::::

the
::::::

larger
:::::::::

deviation
:::

to
:::::::

DMFT

::

in
::::

the
::::::::::::

multi-orbital
::::::

case.
:

one
::::::

single
::::::

Slater
::::::::::::

determinant
:::::

from
::::::::::::::

Hartree-Fock,
::::::

which
:::::::::

explains
::::

the
:::::

issue
:::

we
::::::::::

described
::

in

:::

the
:::::

first
:::::::::

question
::::::

posed
::::::

above. As an illustration
::::::::

example
:::

for
:::::

this, let us considering a
dimer

::::::::

consider
::

a
::::::

single
::::::

dimer
:::::

(i.e.
::

a
::::::

single
::::

site
:::

in
::::

Fig.
:::

1)
:

at half-filling with a Hubbard-
Kanamori interaction. At t = 0 all S = 1 states are degenerate producing vastly different
TPEV’s. In TPSC

:::

For
:::::::::::

simplicity,
:::

let
:::

us
::::

call
::::

the
::::

two
::::::::

orbitals
::

a
::::

and
:::

b.
:::::

The
::::::::::::

Hamiltonian

::::

then
:::::::::

contains
:::::

only
:::::::::::

interaction
::::::

terms
::::

and
::::::

reads

H =
∑

i∈{a,b}

Un̂↑oi n̂
↓
oi+

(

(U − 2J)n̂↑an̂
↓
b + (U − 3J)n̂s

′

a n̂
s′

b (59)

−Jĉ†a,↑ĉa,↓ĉ
†
b,↓ĉb,↑ + Jĉ†a,↑ĉ

†
a,↓ĉb,↓ĉb,↑

)

.

::::

This
:::

we
::::

can
::::::::

readily
:::::::::::

diagonalize
::

in
::::

the
:::::::::

subspace
:::::::::::

containing
::::

two
:::::::::

electrons
:::::::::

(|↑a, ↓a⟩,
:::::::

|↑a, ↓b⟩,
:::::::

|↑b, ↓a⟩,
::::::::

|↑a, ↑b⟩,
::::::::

|↓a, ↓b⟩,
::::::::

|↑b, ↓b⟩).
:::::

We
::::

find
::::::

three
::::::::

different
::::::::

groups
::

of
::::::::::::

eigenstates:
:::::

The
::::

first

:::

one
:::

is
::::::::::

three-fold
:::::::::::

degenerate
:::::

with
::::::::::

eigenvalue
::::::::

U − 3J
::::

and
:::::::::

spanned
:::

by
::::::::

|↑a, ↑b⟩,
:::::::

|↓a, ↓b⟩
::::

and

::::::::::::::::::::::

(|↑a, ↓b⟩ − |↑b, ↓a⟩)/
√
2.

:::::::

These
:::::

three
:::::::

states
:::::

form
::::

the
::::::

S = 1
:::::::

sector.
:::::::

Next,
:::

we
:::

do
:::::

have
::::

two

:::::

states
::::::

with
:::::::::::

eigenvalue
:::::::

U − J ,
:::::::::::::::::::::::

(|↑a, ↓b⟩+ |↑b, ↓a⟩)/
√
2

::::

and
:::::::::::::::::::::::

(|↑a, ↓a⟩ − |↑b, ↓b⟩)/
√
2.

::::::

And

::::::

lastly,
:

a
:::::::

single
::::::::::

eigenstate
:::::

with
::::::::::

eigenvalue
:::::::

U + J ,
:::::::::::::::::::::::

(|↑a, ↓a⟩+ |↑b, ↓b⟩)/
√
2.

:

::::::::::

Therefore,
:::

in
:::

the
::::::::

absence
::

of
::

J
:::

all
:::

six
:::::::::::

eigenvalues
::::

are
:::::::::::

degenerate
::

in
::::

the
:::::

local
::::::::

problem.
:::

In

::::::::::::

Hartree-Fock
:::::

(and
:::

by
:::::::::::

inheritance
:::

in
:::::::

TPSC)
:

only one of these three
:::

six states is represented
by the Hartree-Fock decoupling and the others are missed entirely (thus behaving like the
single orbital model in the absence of J). Thereby,

:

the basic idea of TPSC, which relies
on fixing the local and static expectation values

::::::::

starting
:::::

from
:::::::::::::

Hartree-Fock, breaks down
. Further, this immediately suggests that the issue arises due to

:::

due
:::

to
:::

the
:::::::::::::::

inadequateness

::

of
:::::::::::::

Hartree-Fock.
::::::::::::::

Furthermore,
:::::

since
::::

this
:::::

issue
::::::

seems
:::

to
:::

be
:::::::::

inherited
:::::

from the Hartree-Fock
decoupling, which is central to TPSCand thus

:

, there is no fix to
::::::

simple
::::::

repair
::::

for
:

this
problem without

:::::::::::::

fundamentally
:

altering the structure of the method.

3.2 Analysis of the model with J = U/3

If J = U/3, the same-spin density-density interaction becomes exactly zero. This choice
is interesting, as it is the limiting case where the approach in Ref. [90] and TPSC resulted
in

:::::::

TPSC5
:::::

show
:

the best agreement compared to DMFT, as is shown in
:::

see
:

Fig. 3. What
is the origin of this apparent improvement?
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First, we should note that this is not a magic value at which the approach suddenly
works

:::::::

results
:::::::::

suddenly
:::::

agree, but there appears to be a steady improvement with increasing
J . Second, we observe that for J = U/3 the same-spin interaction is exactly 0 and stays
at that value throughout the calculation in TPSC5. In TPSC3 this interaction will gain a
nonzero value, leading to the instability we observe in Fig. 3.

Since we are again mainly interested in the quality of the TPEV’s predicted from the
spin sum rules, for now let us consider the half-filled dimer, a single unit cell of the form
sketched in Fig. 1. In thistoy model,

::::::

found
:::

in
:::

the
:::::

last
:::::::

section
:::::

that
::::

the
:::::::::

problems
:::::::

arising

:::

can
:::

be
:::::::

traced
:::::

back
::

to
::::

the
:::::::::::::

Hartree-Fock
:::::::

ansatz,
:

the spectrum consists of three groups ; the
S = 1 group with eigenvalue U − 3J and the S = 0 group which is split into a two-fold
degenerate pair at U − J and a single eigenvalue with U + J

::::::::

question
::::::

arises
::::::::

whether
::::

we
:::

can

:::::

again
::::::::::::

understand
:::

the
::::::::::::::

improvement
::

as
:::

an
::::::::::

inherited
::::::

effect.
::::

To
::::

test
:::::

this,
:::

we
::::::

again
::::::::

consider

:::

the
::::::::::

half-filled
::::::

dimer
:::::::::

described
:::::::

above.
:::::

The
:::::

three
:::::::

groups
::

of
:::::::::::

eigenvalues
::::

we
::::::

found
::::::

above
::::

split

::::

with
::::::::::

increasing
::

J . Thus, while the point U = 3J is not special, the separation between the
excited state and the ground state

::::::

sectors
:

grows linearly with J . Furthermore, the S = 1

subspace is kind of special, as two states only contribute to a single TPEV (⟨n↑0n
↑
1⟩) and

the other state essentially behaves like in the single orbital model. Therefore, one should
be able to approximate the TPEV’s by a scaling in all components but the ⟨n↑0n

↑
1⟩ one,

which is incorrectly estimated because of the missing degenerate states. This is exactly
what is observed for both TPSC5 and in Ref. [90]. Thus we conclude that in the end this
improvement is related to the structure and number of states determining the local and
static expectation values.

:::::::::::::

Furthermore,
::::

the
:::::::::

improved
:::::::::::::

performance
::

is
::::::::

entirely
::::::::::

explained

::

by
::::

the
::::::::::

improved
::::::::::::

performance
:::

of
:::

the
::::::::::::::

Hartree-Fock
:::::::

ansatz.
:

From these observations, we can extract a guiding principle of when to expect TPSC
to work

:::::::

reliably
:

in a multi-orbital setting and when not.
:

:
:

If there is a gap in the local
spectrum between the ground state and the excited states, TPSC should perform better
than when

::

if the states are close in energy. Further
::::::::::::

Furthermore, when analyzing the nature
of the states, we can extract which TPEV is expected to deviate strongly and which not.
This also indicates that this specific part of TPSC performs better at lower temperatures
(since it is basically

:

is
::::::::::::

intrinsically
:::::

tied
:::

to
:::::::::::::

Hartree-Fock
::::::

being
::::::::::

essentially
:

a ground state
targeting approach ) - however

::::::

which
:::::::::

performs
:::::::

better
:::

at
::::::

lower
::::::::::::::

temperatures.
::::::::::

However,
the local and static approximation of the vertex becomes more and more inappropriate at
lower temperatures which is why TPSC typically fails at low temperatures.

In summary, the regimes in which multi-orbital TPSC is guaranteed to work well are
the weak coupling limit and a small region in which excited states do not contribute
to the local TPEVs (controlled by temperature and the gap), while the vertex still is

::::::::::::::

approximately
:

local and static. The former
::::::::

criterion
:

is accessible by inspection, while
the latter one is not clear a priori and requires other numerical simulations to be fully
gauged. Notably, the issue described above is partially resolved when starting from DMFT
TPEVs [91, 95]

:

,
::::::

since
::::::

fixing
:::

the
::::::::

double
::::::::::::

occupancies
::::::::

through
:::

an
:::::::::

external
:::::::

source
::::::::

prevents

:::

the
:::::::::

negative
:::::::::

feedback
:::::

from
::

a
::::::

wrong
::::::::

starting
::::::

point.

3.3 Numerical benchmarks

(a) Comparison between TPSC and ED at β = 2 for different U at J = 0. We observe the
same phenomenology as expected from our analytical analysis. (b) Time dependence of
the density-density correlator for a single (SO) and a two-orbital (MO) two-site Hubbard
model. No enhancement of the time dependence is visible, and hence this cannot explain
the larger deviation to DMFT in the multi-orbital case.

Keeping the above described shortcomings in mind, we are now exploring the range of
applicability of multi-orbital TPSC by testing the reliability of TPSC3 and TPSC5 through
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comparison to more accurate numerical approaches. In a first step, we exclusively aim at
validating the quality of the predicted TPEVs, as these form the basis for the TPSC
approach. For this we compare to both ED and DMFT .

3.3.1 Comparison to ED

First, we compare the predicted TPEV between ED an TPSC, for a two-orbital dimer
with Hubbard-Kanamori interactions where we introduced a Hubbard-Kanamori type
interaction given as Here U and J are measured in units of t which is set to 1. We
consider weak coupling where the TPSC formalism should give the correct leading order
behavior. For the ED calculations, we use pyED [108] from the TRIQS framework [109]
. The results for all three methods as a function of U and J are plotted in Fig. 6.

Both TPSC3 and TPSC5 show indeed the correct leading order behavior for all TPEVs,
irrespective of the ratio of U

:::::::

DMFT and J . Further, we observe that TPSC5 performs
significantly worse when J becomes unphysically large, while TPSC3 stays much closer to
the ED result. This trend also persists at lower temperatures, see Fig. ?? in Appendix
B. The TPEV do match well between TPSC3 and ED throughout the whole range of
examined parameters. In general, the deviation is strongest in the pair-hopping component,
in which the error monotonously increases with J . We stress again that since we stay in
the weak-coupling regime, these benchmarks have no direct implications for applications
in the strongly correlated regime

::::::::

D-Trilex.
::::

It
:::::::

should
:::

be
:::::::::

stressed
:::::

that
::::::

while
::::::::

neither
::

of

:::

the
::::::::::::

approaches
:::

are
:::::::

exact,
::::::

both
:::::::::

methods
:::::

have
:::::::

proven
:::

to
:::

be
:::::::::

suitable
:::

for
::::

the
:::::::::::

considered

::::::::::

parameter
:::::::

regime
::::::::

[19, 50].

3.3.1 Comparison to DMFT
:

-
::::::::::

TPEV’s

As a next step
:::::

First, we compare the results from TPSC to DMFT. For this, we consider
the same model as Ref. [90]where t = 1 is fixed and the ,

:::::::

which
:::

we
::::::::

already
:::::::::::

introduced

::::::

above,
::::

see
::::

Eq.
::::::

(46).
:::::

The
:

inverse temperature is
:::

set
::

to
:

β = 2,
:::::

thus
::::

no
::::::

sharp
::::::::

features

::

in
::::::::::::

momentum
::::::

space
::::::::

appear.
:::::

We
:::::

run
::::

the
::::::::::::

simulations
:::

on
::

a
:::::::::

24× 24
:::::::::::

momentum
::::::

mesh

::::

and
::::::

utilize
::::

the
:::::::::

sparse-ir
:::::::::::

[110–112]
::

to
::::::::::

compress
:::

the
:::::::

single
::::::::

particle
::::::::

Green’s
::::::::

function
:::::

with

::::::::::

ωmax = 30
::::

and
::

a
::::::::::

tolerance
:::

of
::::::

10−12
:::

for
::::

the
:::::::::

singular
:::::::

values. For completeness, we
:::

also
include the results from the implementation proposed in Ref. [90] (here named TPSC).
The DMFT calculations are performed using w2dynamics [64].

This
::::

The
:::::::::::

considered
:

model can be seen as a worst-case scenario as in the absence of
inter-orbital hopping the off-diagonal occupations are guaranteed to be zero. Hence, the P -
channel as well as

:::

the
:

opposite spin C-channel (in the case of TPSC5) Ansatz equations
are ill-defined, making a renormalization of the corresponding vertices impossible. In
other words, the corresponding Hartree-Fock decouplings always result

::::::

results
:

in a net-
zero contribution of these terms to the self-energy. Interestingly, even though the Ansatz
equations might break down, the derivation remains valid – we can still renormalize these
components, albeit in a less controlled fashion. We found that fixing the renormalization
of the channels to that of the one channel in which the Ansatz is not ill-defined works for
a wide range of parameters.

Both proposed TPSC approaches show promising results in the weak-coupling regime,
but the deviation from DMFT rapidly increases with stronger interactions. Assuming that
the DMFT results are accurate, the

:::

The
:

error is largest in the absence of Hund’s coupling
and becomes smaller for larger J , as expected from our discussion above. In general TPSC5
seems to outperform TPSC3, even though both fulfill the internal consistency check in the
small to intermediate coupling region. Notably, there is no significant improvement in the
case of large Hund’s couplings when compared to the approach put forward in Ref. [90].
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Figure 3: Comparison between density-density correlations obtained with TPSC3
(green), TPSC5 (red), TPSC from Ref. [90] (blue) and DMFT (pink dots) for
the two-orbital Hubbard model defined in Eq. (46) at β = 2, for different U and
J values.

3.4 Comparison of interacting susceptibilities

U=1 U=2

Figure 4:
:::::::::::

Comparison
::

of
:::::::::

different
:::::::::::

self-energy
::::::::::::

components
:::

at
:::

the
:::::

first
:::::::::::

Matsubara

:::::::::

frequency
::::::::

between
::::::::

TPSC3
:::::::

(blue),
:::::::

TPSC5
::::::::::

(orange),
::::::

TPSC
:::::

from
:::::

Ref.
:::::

[90]
:::::::

(green)

::::

and
:::::::::::

D-TRILEX
:::::::::

(purple)
::

at
:::::::::

different
:::

U
:::::::::

indicated
:::

by
:::::::::

different
::::::::::::

background
::::::

colors

::::

and
:::::::::::

J = 0.25U .
:::::

The
:::::::

inverse
::::::::::::

temperature
:::

is
:::::

fixed
::

to
:::::::

β = 2.
:
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Figure 5:
::::::::::::

Comparison
:::

of
::::

the
::::::::

charge
::::::::

(upper
::::::

row)
:::::

and
::::::

spin
:::::::

(lower
::::::

row)

:::::::::::::

susceptibility
::::::::

between
::::::::

TPSC3
:::::::

(blue),
::::::::

TPSC5
::::::::::

(orange),
:::::::

TPSC
:::::

from
:::::

Ref.
::::::

[90]

:::::::

(green)
::::

and
::::::::::::

D-TRILEX
::::::::

(purple)
:::

at
:::::::::

different
::

U
::::

and
:::::::::::

J = 0.25U
:::

at
::::::

β = 2.
:

3.3.1
:::::::::::::

Comparison
:::

to
:::::::::::::

D-TRILEX
::

-
:::::::::::::

self-energy
::::

and
:::::::::::::::::

susceptibilities

In addition to the quality of the TPEV’s we can also test the
:::::

asses
:::

the
:::::::

quality
:::

of interacting
charge and spin susceptibilities

::

as
::::

well
:::

as
:::

the
:::::::::::

self-energy. In the following we will compare
our results to D-TRILEX [19], again for

::::::

results
:::::::::

provided
:::

by
:::

the
::::::::

authors
::

of
:::::

Ref.
:::::

[19].
::::

For

::::

this,
:::

we
:::::::::

consider a model of the form of Fig. 1 , however introducing a hopping imbalance

::::::

where
:::

an
::::::::::

additional
::::::::

hopping
:::::::::::

imbalance
::

is
:::::::::::

introduced
:

between the red and blue orbitals

H = −
∑

α,⟨i,j⟩,s

tαc
†
α,s,icα,s,j +HHK , (60)

with tred = 1 and tblue = 0.75. U and J are
:

is
:

in the following given in units of tred
:

,
:::::

while

:

J
:::

is
:::::

fixed
::

to
:::::::

0.25U .
::::

To
:::::::

obtain
:::::::

smooth
:::::::

curves
::::::

along
::::

the
::::::::::

irreducible
:::::

path
:::::::::

without
:::

the
:::::

need

:::

for
:::::::::::::

interpolation
:::

we
:::::::

enlarge
::::

the
:::::::::::

momentum
::::::

mesh
::

to
:::::::::::

120× 120.
::::::::::::::

Furthermore,
:::

we
::::::::

compare

:::::::::

quantities
:::::::::

obtained
:::::::::

without
::::::::::

analytical
::::::::::::

continuation
:::

to
::::

rule
::

it
::::

out
:::

as
::

a
:::::::

source
::

of
:::::

error.
Comparison of the charge (upper row) and spin (lower row) susceptibility between

TPSC3 (blue), TPSC5 (orange), TPSC from Ref. [66] (green) and D-TRILEX (purple)
at different U and J = 0.2U at β = 2.

We find that both TPSC algorithms over/underestimate the spin/charge
:::::

First,
:::

let
:::

us

::::::::

consider
::::

the
:::::::::::

self-energy
:::

at
::::

the
:::::::

lowest
:::::::::::

Matsubara
::::::::::

frequency
::::::

(Fig.
:::

4).
:::::::::::::::

Qualitatively,
:::

all

::::::

TPSC
::::::::

variants
:::::

agree
:::::

with
::::::::::::

D-TRILEX
::

at
:::::

both
::::::::::::

interactions
::::::

values
:::::::::::

considered.
:::::::::::::::

Quantitatively,

:::

the
:::::::

TPSC
::::::

results
::::

are
::::

not
:::::

fully
::::::::

agreeing
:::::

with
:::::

each
:::::

other
::::::

which
:::

is
:::::

some
:::::

what
:::::::::

expected
:::::

from

:::

the
:::::::::

different
:::::::::::::

formulations.
:::::

We
:::::

note
:::::

that
::::::::

TPSC3
::::::::

appears
:::

to
:::

be
::::::::

furthest
::::::

away
:::::

from
::::

the

:::::::::::

D-TRILEX
:::::::::::

self-energy
:::

for
:::::

this
:::::::

specific
::::::::

model,
:::::

while
::::::::

TPSC5
:::::

and
::::

Ref.
::::::

[66]
:::::::

appear
::

to
:::

be

::::::

better
:::::::::

agreeing.
:

::

A
:::::::

similar
:::::::

picture
::::::::

emerges
:::

for
::::

the
::::::::::::::

susceptibility:
:::

all
::::::

TPSC
::::::::

variants
::::::::::::::::::::

over(under)-estimate

:::

the
::::::::::::

spin(charge)
:

susceptibility in comparison to D-TRILEX, which was also found in Ref
:

in

::::::::::

agreement
:::::

with
:::::

what
::::

was
:::::::::

reported
:::

in
::::

Ref. [95]. However, the overestimation is weaker for
TPSC5 and stronger for TPSC3. Most notably, the charge susceptibility is even stronger

:::::

more
::::::::

strongly
:

suppressed than in prior TPSC formulations.
::::

This
::::::::::::::

disagreement
::::::::

between

:::

the
:::::::

TPSC
::::::::

variants
::

is
::

a
:::::::::::::

consequence
::

of
::::

the
:::::::

vertex
:::::::

having
::

a
:::::::::

different
::::::

from,
:::

see
::::::

App.
::::

B.1,
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::::::

which
:::::

leads
:::

to
::::::::::

problems
::

in
::::

the
::::::::

absence
:::

of
:::

J ,
::::

see
::::

Ref.
::::::

[90]
:::

but
:::::::

better
:::::::::::

agreement
::

to
::::

the

::::::::

reference
:::::

data
:::

at
:::::

large
:::

J ,
::::

see
::::

Fig.
:::

3.
:

4 Conclusion
:::::::::::::::::

Conclusions
:

and Outlook

In this paper we introduced two variants of a fully self-consistent multi-orbital TPSC ap-
proach dubbed TPSC3 and TPSC5. We analyzed the structure of the equations and
showed analytically that in the limit of vanishing Hund’s coupling the Ansatz equa-
tions result in the same TPEVs as for the single orbital model, which is unphysical.
Further

:::::::::::

unphysical.
:::::::::::::

Furthermore, we provided an explanation for this behavior in terms
of the equivalence between the Hatree-Fock decomposition and a minimization in terms
of single Slater determinants, highlighting that representing

:::

the influences from many low
energy

::::::::::

low-energy
:

states onto the TPEVs are not fully reproducible
::::

local
::::::::

TPEVs
:::::::

cannot

::

be
:::::

fully
::::::::::::

reproduced
:

by a single state with modified prefactors. Furthermore, by
:::

By con-
sidering the local Hilbert space we

::::

also
:

provided an understanding of why the approach
performs better at larger J/U . Notably, this understanding allows to assess the expected
quality of the results from TPSC by inspecting the local spectrum. On a qualitative level,
we found that the TPEVs from TPSC5 outperform the ones from TPSC3 when compared
to DMFT. Furthermore, in

::

In
:

the limiting case of J = U/3 the new variants do not
outperform the conceptually simpler but approximate approach suggested in Ref. [90].

While TPSC itself cannot be improved much without fundamentally modifying the
basic approach, the recently proposed combination of TPSC and DMFT [91, 95] resolves
partially

:::

not
:::::

only
:::::::::

partially
::::::::

resolves
:

the issue of wrong TPEVs due to the Hartree-Fock
decoupling but also ensures the correct handling of correlations at the zeroth-order level.
Thus, in multi-orbital systems, the application of TPSC in combination

:::::

with
:

DMFT
appears as the most promising route to correct for the flaws uncovered in the present work
and in Ref. [91]. A major advantage of TPSC in this formulation is that no vertex needs
to be extracted from the DMFT simulation, which offers a numerically much cheaper
alternative to D-TRILEX and related approaches [14, 19].
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A Kadanoff-Baym Formalism

In the following we derive the central equations for the multi-orbital TPSC approach,
following Ref. [80, 90].

:::

We
::::

will
:::::

only
:::::::::

consider
::::::::

objects
:::::

with
::::

the
::::::

same
::::::::

number
::

of
::::

in-
::::

and

:::::::::

out-going
:::::

legs.
:::::::::::

Therefore,
:::

we
::::

will
::::::
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::

to
::::

the
::::::::::

definition
:::::

that
::::
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::::
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:::::

half
::

of
::::

the
:::::::

indices

:::

are
:::::::

always
::::::::

in-going
:::::

legs,
::::::

while
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second
::::
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::::

are
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:::::::::::::

Furthermore,
:::

to
:::::

keep
:::

the

:::::::::

equations
:::::

more
:::::::::::

managable
:::

we
::::

will
::::

use
:::::::::

numbers
::

as
::

a
:::::

short
::::::

hand
:::

for
:

a
::::::::::

collection
::

of
:::::::::

quantum

::::::::

numbers
::::::::::::::::::

1 ≡ (o1, s1, r1, τ1).
:::

A
:::::::::::::::

kronecker-delta
::

in
:::::::::

numbers
::

is
::::::::

defined
::

as
::::

the
::::::::

product
:::

of
:::

the

::::::::::

Kronecker
:::::::::::::::::::::::::

deltas/Delta-distributions
:::

of
:::

the
:::::::::::

individual
:::::::::

quantum
:::::::::

numbers.
:

Our starting point is the Green’s function generating functional [113]

G[ϕ] = − ln
(〈

Tτe
−c†o

3′
s
3′
(τ3′ )co1′s1′ (τ1′ )ϕo

1′
s
1′

,o
3′

s
3′
(τ1′ ,τ3′ )

〉

S

)

= − ln (⟨TτS[ϕ]⟩S) = ln(Z[ϕ]) ,

(61)
We use numbers as a short hand for a collection of spin, orbital, position and time
indices

::::::

where
::::

the
:::::::::::

expectation
::::::

value
:::::

over
:::

the
::::::::

sources
::

is
::::::::::

calculated
:::::

with
:::::::

regard
::

to
::::

the
::::::

action

::

of
::::

the
:::

full
::::::::

system
::

S. Primed variables are summed over. The external source field ϕ has
been introduced as a mathematical trick and at the end of the calulation it can

::::::::::

calculation

:

it
::::::::

should be set to 0. The single particle
:::::::::::::

single-particle
:

Green’s function is obtained as

26

https://doi.org/10.1103/PhysRevB.109.075143
https://github.com/HugoStrand/pyed
https://github.com/HugoStrand/pyed
https://doi.org/10.1016/j.cpc.2015.04.023
1504.01952
https://doi.org/10.1103/PhysRevB.101.035144
https://doi.org/10.1103/PhysRevB.96.035147
https://doi.org/10.1016/j.softx.2022.101266


SciPost Physics Submission

the functional derivative of G with respect to ϕ
:

,
:

Gs1,s3
o1,o3;ϕ

(τ 1, τ 3) =
δG[ϕ]

δϕs1,s3o1,o3(τ 3, τ 1)
= −⟨TτS[ϕ]co1,s1(τ 1)c

†
o3,s3(τ 3)⟩S

Z[ϕ]
(62)

= −⟨Tτ co1,s1(τ 1)c
†
o3,s3(τ 3)⟩ϕ .

::::

The
:::::::::

subscript
::

ϕ
::::::::::

indicates
::::

that
::::

the
::::::::::::

expectation
::::::

value
::

is
:::

to
:::

be
:::::::::::

calculated
:::::

with
::::

the
::::::

source

:::::

fields
:::::::

added.
:

With this, we perform a Legendre transformation giving us
::::::::

resulting
:::

in the
vertex generating functional or Luttinger-Ward functional Φ[G]whose first derivative is
the self-energy From the Legendre transform relation between the generating functionals
the Dyson-equation follows as The second .

::::::

The
:::::

first
:

functional derivative of G[ϕ] is
the generalized susceptibility given as while the vertex can be expressed as With these
we obtain a Dyson-equation like connection between the interacting and non-interacting
susceptibility:

:::::

Φ[G]
::

is
::::

the
::::::::::

self-energy
:

Σs1,s3
o1,o3;ϕ

(τ 1, τ 3) = − δΦ[G]

δGs3,s1
o3,o1;ϕ

(τ 3, τ 1)
. (63)

which is the general form of
::

In
:::::

the
:::::

next
:::::

step,
::::

we
:::::::

derive
::::

the
:::::::::

equation
:::

of
::::::::

motion
::::

and

::::::::

through
:::::

that
:::::::

obtain
::::

the
:::::::

Dyson
:::::::::

equation
::::::::

relating
::::

the
::::::::

dressed
::::::::

Green’s
:::::::::

function
::::

and
:

the
Bethe-Salpeter equation . In a SU(2) symmetric system, we can further use that all
occuring quantities are diagonal in physical spin-space, thus resulting in spin-channel-specific
equations which read (pulling out spin indices from the numbers) where SxSx, SySy and
SzSz are related by SU(2) symmetry.

The equation of motion is a central building block for TPSC, and for completeness we
derive it here for a

:::::::::::

self-energy.
:::::

Our
::::::::

starting
:::::

point
::

is
::

a
::::::::

general Hamiltonian with local and
static two-electron interactions ,

:::::::::::

interactions

H = ts1,s3o1,o3(r1, r3)c
†
o3,s3(r3)co1,s1(r1)+

1

2
U s1,s2,s3,s4
o1,o2,o3,o4 c

†
o3,s3(r)c

†
o4,s4(r)co2,s2(r)co1,s1(r) . (64)

In this case, the Heisenberg equation of motion reads
::

(in
:::::::::::

imaginary
::::::

time)
:::::

reads
:

∂τ5co5,s5(r5, τ5) = [H, co5,s5(r5, τ5)] (65)

= t
s1′ ,s3′
o1′ ,o3′ (r

′
1, r

′
3)
[

c†o3′ ,s3′ (r
′
3)co1′ ,s1′ (r

′
1), co5,s5(r5)

]

H
(66)

+
1

2
U

s1′ ,s2′ ,s3′ ,s4′
o1′ ,o2′ ,o3′ ,o4′

[

c†o3,s3(r
′)c†o4,s4(r

′)co2,s2(r
′)co1,s1(r

′), co5,s5(r5)
]

H

= −ts1′ ,s3′o1′ ,o3′ (r
′
1, r

′
3)
(

{c†o3′ ,s3′ (r
′
3), co5,s5(r5)}co1′ ,s1′ (r

′
1)
)

H
(67)

+
1

2
U

s1′ ,s2′ ,s3′ ,s4′
o1′ ,o2′ ,o3′ ,o4′

(

[c†o3′ ,s3′ (r
′)c†o4′ ,s4′ (r

′), co5,s5(r5)]co2′ ,s2′ (r
′)co1′ ,s1′ (r

′)
)

H

= −ts1′ ,s3′o1′ ,o3′ (r
′
1, r

′
3)co1′ ,s1′ (r

′
1, τ5)δo3′ ,o5δs3′ ,s5δr′

3,r5
(68)

− 1

2
U

s1′ ,s2′ ,s3′ ,s4′
o1′ ,o2′ ,o3′ ,o4′

((

c†o3′ ,s3′ (r
′)δo4′ ,o5δs4′ ,s5δr′,r5

− δo3′ ,o5δs3′ ,s5δr′,r5
c†o4′ ,s4′ (r

′)
)

co2′ ,s2′ (r
′)co1′ ,s1′ (r

′)
)

H

= −ts1′ ,s5o1′ ,o5(r
′
1, r5)co1′ ,s1′ (r

′
1, τ5) (69)

+
1

2

(
U

s1′ ,s2′ ,s3′ ,s5
o1′ ,o2′ ,o3′ ,o5 − U

s1′ ,s2′ ,s5,s3′
o1′ ,o2′ ,o5,o3′

)

︸ ︷︷ ︸

=Γ
s
1′

,s
2′

,s
3′

,s5
o
1′

,o
2′

,o
3′

,o5

c†o3′ ,s3′ (r5, τ5)co2′s2′ (r5, τ5)co1′ ,s1′ (r5, τ5) ,

where we exploited the crossing symmetry of
:::::

used
::::

that
::::

the
:::::::::::::

Hamiltonian
::::::::::

commutes
:::::

with

:::::

itself
:::

at
::::

any
::::::

time
:::

to
:::::

pull
::::

the
:::::

time
::::::::::

evolution
:::::::::

operator
:::::

out
:::

of
::::

the
:::::::::::::

commutator.
::::::

The
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::::

time
::::::::::

evolution
::::::::::

operators
::::

are
:::::::::

indicated
::::

by
::::

the
:::::::::

subscript
:::

H
:::

on
::::

the
:::::::::::

respective
::::::::::

outermost

::::::::::::

commutator
::

or
:::::::::

bracket.
:::::::::::::

Furthermore,
:::

we
::::::::

remark
:::::

that
::

in
::::

the
:::::

case
::

of
:::

an
:::::::::::::::::

anti-symmetrized

::::::::::

interaction
:

U and relabeled the summation indices in the last line. From this we find
::

we

::::

have
:::::::::

Γ = αU ,
::::::

where
::::

the
:::::::::

prefactor
:

α
:::::::::

depends
:::

on
:::

the
::::::

exact
:::::::::

definition
::

of
::::

the
::::::::::::::::::::

anti-symmetrization.

::

In
::::

the
:::::

next
::::::

step,
:::

we
:::::::

derive
:

the equation of motion for
::

of
:

the Green’s functionas By
comparing with the Schwinger Dyson equation we extract

:

,
::::::

where
:::

we
:::::

first
:::::

have
::

to
::::::::

perform

:

a
:::::::

partial
:::::

time
::::::::

ordering
:::::

such
:::::

that
::::

the
::::::::::

derivative
::::::::::

commutes
:::::

with
:::

the
:::::

time
:::::::::

ordering
::::::::

operator

:::

(for
::::::::

brevity,
::::

we
::::

will
::::

use
::::::::

numbers
:::

as
::

a
::::::::::

shorthand
::::

for
:

a
::::::::::

collection
:::

of
:::

all
:::::::::

quantum
:::::::::

numbers,

:::::::::

whenever
:::::

they
:::

all
:::

do
::::::

share
:::

the
::::::

same
::::::

index,
::::

i.e.
:::::::::::::::::::

1 ≡ (o1, s1, r1, τ1)),
:

−Zϕ∂τ1G1,3 = ∂τ1

(

⟨TτS[ϕ]c1c†3⟩Θ(τ1 − τ3)− ⟨TτS[ϕ]c†3c1⟩Θ(τ3 − τ1)
)

(70)

= ⟨∂τ1TτS[ϕ]c1c†3⟩Θ(τ1 − τ3)− ⟨∂τ1TτS[ϕ]c†3c1⟩Θ(τ3 − τ1) (71)

+ ⟨Tτ (c1c†3 + c†3c1)S[ϕ]⟩ δ(τ1 − τ3)
︸ ︷︷ ︸

=δ1,3Z[ϕ]

.

which is the central equation for all following derivations.Note that we could have analogously
taken the initial derivative

::

To
:::::::::

evaluate
::::

the
:::::

time
::::::::::

derivative
:::

we
::::

first
:::::

have
:::

to
:::::

time
::::::

order
:::

the

:::::::::::

exponential
::::

and
::::::::::::::::::::::

creation/annihilation
:::::::::

operators
::::::::::

partially,
:::::::

leaving
::::

out
::::

the
::::::

time
::::::::

ordering
w.r.tτb which would result in

::::

the
::::::::::

argument
::

of
::::

the
::::::::::::

annihilation
::::::::

operator
:::

of
:::

the
::::::::::::

exponential.

:::

We
::::::::

perform
:::::

this
:::

fist
::::

for
:::

the
:::::

first
::::::::::::

contribution
:

〈

∂τ1TτS[ϕ]c1c
†
3

〉

=

〈

Tτ∂τ1e
−

∫ β
τ1

dτ3′c
†
3ϕ1′;3′c1′ c1e

−
∫ τ1
0 dτ3c

†

3′
ϕ1′;3′c1′ c†3

〉

(72)

=

〈

Tτe
−

∫ β
τ1

dτ3′c
†
3ϕ1′;3′c1′ (∂τ1c1) e

−
∫ τ1
0 dτ3c

†

3′
ϕ1′;3′c1′ c†3

〉

(73)

+

〈

Tτe
−

∫ β
τ1

dτ3′c
†

3′
ϕ1′;3′c1′ δτ ′3,τ1

[

c†3′ϕ1′;3′c1′ , c1

]

e−
∫ τ1
0 dτ3c

†

3′
ϕ1′;3′c1′ c†3

〉

=
〈

TτS[ϕ] (∂τ1c1) c
†
3

〉

−
〈

TτS[ϕ]ϕ1′,1c1′c
†
3

〉

. (74)

::::

The
:::::::

second
:::::::::::::

contribution
:::::::

follows
:::::::::::::

analogously
::::

and
::::::

both
:::

of
:::::

them
:::::

can
:::

be
::::::::::::

recombined
:::

by

::::::::

utilizing
::::

the
:::::

time
:::::::::

ordering.
::::::

From
::::

this
:::

we
::::::::

directly
:::::

find

∂τ1G1,3 = − 1

Zϕ
⟨TτS[ϕ] (∂τ1c1) c†3⟩ − ϕ1′,1G1′,3 − δ1,3. (75)

:::::

Now,
:::

let
:::

us
::::::

insert
::::

the
:::::::::

equation
::

of
::::::::

motion
:::

for
::::

the
::::::::::::

annihilation
:::::::::

operator,
:

∂τ1G1,3 = −Γ
s1′ ,s2′ ,s3′ ,s1
o1′ ,o2′ ,o3′ ,o1 ⟨Tτ c

†
o3′ ,s3′

(τ 1)co2′s2′ (τ 1)co1′ ,s1′ (τ 1)c
†
o3,s3(τ 3)⟩ϕ (76)

− t1′,1δτ ′1,τ1G1′,3 − ϕ1′,1G1′,3 − δ1,3. (77)

:::

By
:::::::

setting
::::

the
::::::::::

interaction
:::::

and
:::

the
::::::::

sources
::

to
::::::

zero,
:::

we
::::::::

identify
:::

the
:::::::::::::::

non-interacting
::::::::

Green’s

::::::::

function
:::

as

(G(0))−1
1,3 = (−∂τ1δ1,3 − t1,3δτ1,τ3). (78)

:::::::::::::

Furthermore,
:::

we
::::::::

identify
::::

the
::::::::::

self-energy
:::

as
:

Σ
s1,s1′
o1,o1′ (τ 1, τ

′
1)G

s1′ ,s3
o1′ ,o3(τ

′
1, τ 3) (79)

= Γ
s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1 ⟨Tτ c

†
o3′ ,s3′

(τ 1)co2′s2′ (τ 1)co4′ ,s4′ (τ 1)c
†
o3,s3(τ 3)⟩ϕ ,
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::::

such
:::::

that
:::

we
::::::

arrive
:::

at
::::

the
:::::::::

following
::::::

Dyson
:::::::::

equation
::::

for
:::

the
:::::::::::

interacting
::::::::

Green’s
:::::::::

function:
:

G−1
1,3 = (G(0))−1

1,3 − ϕ3,1 − Σ1,3 . (80)

:::::

Note
:::::

that
::::

due
:::

to
::::

the
::::::::::

definition
::

of
::::

the
::::::::::::

source-field
::::::

term,
::::::

there
::

is
:::

an
:::::::

index
:::::

swap
:::

in
::::

this

::::::::

equation
::::::::::

compared
:::

to
::

all
::::::

other
::::::::::

quantities
::::::::::

appearing
:::

on
:::

the
::::::

right
:::::

hand
::::

side
::

of
::::

the
:::::::::

equation.

A.1 Self-energy

We can re-express the implicit equation for the self-energy as an explicit one, the Schwinger-Dyson
equation

::::

The
::::::::::::

two-particle
::::::::::::

expectation
::::::

values
::::

on
:::

the
::::::

RHS
::

of
::::

Eq.
:::::

(79)
::::

are
::::::::

directly
::::::

linked

::

to
::::

the
::::::::::::

generalized
::::::::::::

two-particle
::::::::::::::

susceptibility,
::::::

which
:::

is
::::::::

defined
:::

as
::::

the
:::::::

second
::::::::::

functional

:::::::::

derivative
:::

of
::::

G[ϕ]:

χs1..s4
o1..o4(τ 1..τ 4) =

δGs1,s3
o1,o3;ϕ

(τ 1τ 3)

δϕs2,s4o2,o4;ϕ
(τ 2τ 4)

(81)

= ⟨Tτ c†o3,s3(τ 3)c
†
o4,s4(τ 4)co2,s2(τ 2)co1,s1(τ 1)⟩ϕ

− ⟨Tτ co1,s1(τ 1)c
†
o3,s3(τ 3)⟩ϕ ⟨Tτ co2,s2(τ 2)c

†
o4,s4(τ 4)⟩ϕ ,

:::::

while
::::

the
::::::::::::

two-particle
::::::

vertex
:::

is
:::::

given
:::

by
:

Γs1..s4
o1..o4(τ 1..τ 4) =

δΣs1,s4
o1,s4(τ 1, τ 4)

δGs3,s2
o3,s2(τ 3, τ 2)

. (82)

Here, the latter termcorresponds to the Hartree-Fock selfenergy, while the former is the
Schwinger-Dyson equation . At this point, we are working in diagrammatic spin-space.
However, the susceptibility and the vertex are only known in the physical spin-space.
Furthermore

:::::

With
:::::

these
:::::::::::

definitions
:::

we
:::::::

obtain
::::

the
:::::::::::::::

Bethe-Salpeter
:::::::::

equation
:::::::::::

connecting
:::

the

::::::::::

interacting
:::::

and
:::::::::::::::

non-interacting
:::::::::::::::

susceptibilities:
:

0 =
δ(G−1

1,3′G3′,3)

δϕ2,4
(83)

= G−1
1,3′

δ(G3′,3)

δϕ2,4
+
δ(G−1;0

1,3′ − ϕ3′,1 − Σ1,3′)

δϕ2,4
G3′,3 (84)

⇔ χ1,2,3,4 = G1,1′
δ(ϕ3′,1′ +Σ1′,3′)

δϕ2,4
G3′,3 (85)

= G1,4G2,3 +G1,1′
δΣ1′,3′

δϕ2,4
G3′,3 (86)

= G1,4G2,3 +G1,1′
δΣ1′,3′

δG2′,4′

δG2′,4′

δϕ2,4
G3′,3 (87)

= G1,4G2,3 +G1,1′G3′,3Γ1′,3′,4′,2′χ2′,2,4′,4 (88)

= χ0
1,2,3,4 + χ0

1,3′,3,1′Γ1′,3′,4′,2′χ2′,2,4′,4 (89)

= χ0
1,2,3,4 + χ1,3′,3,1′Γ1′,3′,4′,2′χ

0
2′,2,4′,4 . (90)

:::

For
::::::::::

numerical
:::::::::

purposes
::

it
::

is
::::::

often
:::::::::

beneficial
:::

to
::::::::

reorder
:::

the
:::::::

indices
:::::

such
:::::

that
::::

the
:::::::::

equations

:::

can
:::

be
::::::::

written
:::

as
:

a
:::::::::::::::

matrix-matrix
:::::::::

product.

::

In
::::

an
:::::::

SU(2)
:::::::::::

symmetric
::::::::

system, we can utilize that the
::::::::::::

furthermore
::::

use
:::::

that
:::

all

:::::::::

occurring
::::::::::

quantities
:::

are
:::::::::

diagonal
::

in
::::::::

physical
:::::::::::

spin-space,
:::::

thus
::::::::

resulting
:::

in
::::::::::::::::::::

spin-channel-specific
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:::::::::

equations
::::::

which
:::::

read
::::::::

(pulling
::::

out
:::::

spin
:::::::

indices
:::::

from
::::

the
::::::::::

numbers)

χSi′ ,Sj′

1,2,3,4 = (χ0
1,2,3,4 + χ0

1,3′,3,1′Γ1′,3′,4′,2′χ2′,2,4′,4)σ
i
s1,s3σ

j
s2,s4 (91)

⇔ χSz ,Sz

1,2,3,4 = χ0;Sz ,Sz

1,2,3,4 + χ0;Sz ,Sz

1,3′,3,1′Γ
Sz ,Sz

1′,3′,4′,2′χ
Sz ,Sz

2′,2,4′,4 (92)

⇔ χS0,S0

1,2,3,4 = χ0;S0,S0

1,2,3,4 − χ0;S0,S0

1,3′,3,1′Γ
S0,S0

1′,3′,4′,2′χ
S0,S0

2′,2,4′,4 , (93)

::::::

where
::::::

SxSx,
:::::

SySy
::::

and
::::::

SzSz
:::

are
::::::::

related
:::

by
:::::::

SU(2)
::::::::::

symmetry
::::

and
:::

S0
:::::::::

indicates
::::

the
:::::

case
::

in

::::::

which
:::::::::::::::::::

σi = σ0s1,s2 = δs1,s2 . :

A.1
:::::::::::::

Self-energy

::

In
::::

the
:::::::::

following
:::

we
::::

will
::::::

derive
:::

the
::::::::::

equations
:::::::::

required
:::

for
:::

the
:::::::

level-1 self-energy and Green’s
function are spin diagonal . Hence, we pull the spin-dependence out of the combined index

::::::::::

evaluation.
:::::

For
::::

the
::::::::::

following
:::::::::::::

calculations,
:::

we
::::::::

assume
::::

an
:::::::::::::::::

anti-symmetrized
:::::::::::

interaction

::::::

tensor
:

Σs1,s3
o1,o3(τ 1, τ 3) = U

s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1 ⟨Tτ c

†
o3′ ,s3′

(τ 1)c
†
o′5,s

′
5

(τ ′
5)co2′s2′ (τ 1)co4′ ,s4′ (τ 1)⟩

ϕ
(94)

× (G−1)
s′5,s3
o′5,o3

(τ ′
5, τ 3)

= U
s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1

(
χ
s4′ ,s2′ ,s3′ ,s5′
o4′ ,o2′ ,o3′ ,o5′ (τ 1, τ 1, τ 1, τ 5′) (95)

−Gs4′ ,s3′
o4′ ,o3′ (τ 1, τ 1)G

s2′ ,s5′
o2′ ,o5′ (τ 1, τ

′
5)
)
(G−1)

s′5,s3
o′5,o3

(τ ′
5, τ 3)

= U
s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1

(

χ
s4′ ,sc′ ,s3′ ,sa′
o4′ ,oc′ ,o3′ ,oa′ (τ 1, τ c′ , τ 1, τ a′) (96)

Γ
sa′ ,sc′ ,sd′ ,sb′
oa′ ,oc′ ,od′ ,ob′ (τ a′ , τ c′ , τ d′ , τ b′)G

s2′ ,sd′
o2′ ,od′ (τ 1, τ d′)δob′ ,o3δsb′ ,s3δτ b′ ,τ3

+ δo4′ ,o3δs4′ ,s3δτ1,τ3
G

s2′ ,s3′
o2′ ,o3′ (τ 1, τ 1)−G

s4′ ,s3′
o4′ ,o3′ (τ 1, τ 1)δo2′ ,o3δs2′ ,s3δτ1,τ3

)

= U
s4′ ,s2′ ,s3′ ,s1
o4′ ,o2′ ,o3′ ,o1 (97)
(

χ
s4′ ,sc′ ,s3′ ,sa′
o4′ ,oc′ ,o3′ ,oa′ (τ 1, τ c′ , τ 1, τ a′)Γ

sa′ ,sc′ ,sd′ ,s3
oa′ ,oc′ ,od′ ,o3(τ a′ , τ c′ , τ d′ , τ 3)G

s2′ ,sd′
o2′ ,od′ (τ 1, τ d′)

+ 2δo4′ ,o3δs4′ ,s3δτ1,τ3
G

s2′ ,s3′
o2′ ,o3′ (τ 1, τ 1)

)

.

There are two internal consistency checks - one for each flavor of TPSC, which is the usual
internal consistency check between single and two-particle objects in

:::::

Here,
:

the pairwise
equal position, time and orbital limit: Both TPSC3 and TPSC5 fulfill this up to numerical
precision, as long as the self consistency loop for the spin channel TPEV’s and the
subsequent TPEV fitting in the charge channel have a solution which is physical. A second
consistency check is the equivalence between TPSC3 and TPSC5

:::::

latter
:::::

term
::::::::::::

corresponds

::

to
::::

the
::::::::::::::

Hartree-Fock
:::::::::::

selfenergy,
::::::

while
::::

the
:::::::

former
:::::::::::::

corresponds
:::

to
::::

the
:::::::::::::::::

Schwinger-Dyson

::::::::

equation.

A.2 Zeroth order Self-energy

Within TPSC the Luttinger Ward functional for an SU(2) symmetric model with local
initial interactions is approximated as

Φ[G] =
1

2
Go3′ ,o1′ (τ

′
1, τ

′
1)(2Γo1′o2′o3′o4′ − Γo1′o2′o4′o3′ )Go4′ ,o2′ (τ

′
1, τ

′
1) . (98)

:::

For
::

a
::::::::::::::

diagrammatic
:::::::::::::::

representation
:::

of
::::

the
::::::::::::::::

Luttinger-Ward
::::::::::

functional
:::::::

within
::::

the
:::::::

TPSC

::::::::::::::

approximation
:::

we
:::::

refer
:::

the
:::::::

reader
::

to
:::::

Ref.
:::::

[80]
::

as
:::::

such
:

a
::::::::::::::

representation
::

is
:::::::::

identical
::::::::

between

30



SciPost Physics Submission

:::::

single
:::::

and
:::::::::::::

multi-orbital.
::

As discussed elsewhere [80, 90]
:::::::::::

[80, 90, 91] such a form of the
Luttinger-Ward functional induces a local and static self-energy, which has to be accounted
for in our calculations. We recall the definition of the self energy

Σo1,o3(τ 1, τ 3) =
δΦ[G]

δGo3,o1(τ 3, τ 1)
= (2Γo1,o2′ ,o3,o4′ − Γo1,o2′ ,o4′ ,o3)Go4′ ,o2′ (τ

′
1, τ

′
1)δτ1,τ3

.

(99)

where Γ is given by the usual inter-orbital bilinear form. Notably, for general Hubbard-
Kanamori parameters, the shifts induced by such a self-energy term are nontrivial and
cannot be absorbed into the chemical potential, in contrast to the single band case. This

:::::

Thus,
::::

the
:::::::

zeroth
::::::

order
:::::::::::

self-energy
:

corrects the non-interacting Greens-function
:::::::

Green’s

::::::::

function
:

and needs to be included for the correct behavior in comparison to ED.
:

in
::::

our

::::::::::::

calculations.
:

B Comparision to ED

B
::::::::::::::::

Alternative
:::::::::::::::

derivation
::::::::::::

starting
::::::::

from
::::::::::::::::::::::::::::

Hubbard-Kanamori

::

In
:::::

this
:::::::::::

Appendix,
:::

we
:::::::

derive
::::

the
::::::::

central
::::::::::

equations
::::

for
:::::::

TPSC
::::::::::

assuming
:::::

that
::::

the
:::::

bare

::::::::::::

Hamiltonian
:::::::::

contains
::

a
:::::::::::::::::::

Hubbard-Kanamori
::::::::::::

interaction
::::

and
::

is
:::::::

SU(2)
::::::::::

invariant.
::::

In
::::

this

::::::

special
::::::

case,
:::

we
:::::

start
:::::

from
::

a
:::::::::

simplified
:::::::::

equation
::

of
::::::::

motion
:::::::

derived
:::

by
::::::::

Zantout
:::

et
:::

al.
::::::

[114]

::::

(see
::::

Eq.
::::::::

(5.323))
:

Σs,s
o1,o1′

(τ 1, τ
′
3)G

s,s
o1′ ,o3

(τ ′
3, τ 3) =−

∑

o4

Uo4,o1 ⟨no4,s̄(τ 1)co1,s(τ 1)c
†
o3,s(τ 3)⟩ (100)

−
∑

o4 ̸=o1

(Uo4,o1 − Jo4,o1) ⟨no4,s(τ 1)co1,s(τ 1)c
†
o3,s(τ 3)⟩

+
∑

o4 ̸=o1

Jo4,o1

(

⟨c†o4,s̄(τ 1)co4,s(τ 1)co1,s̄(τ 1)c
†
o3,s(τ 3)⟩

)

+
∑

o4 ̸=o1

Jo4,o1

(

⟨c†o1,s̄(τ 1)co4,s(τ 1)co4,s̄(τ 1)c
†
o3,s(τ 3)⟩

)

.

::

In
::::

the
::::::::::

derivation
:::

in
::::

the
:::::

main
::::::

text,
::::

the
::::

first
:::::

two
::::::

terms
::::

are
:::::::::::::

encompassed
::

in
::::

D,
::::

the
:::::

third

:::

one
:::

in
:::

C
:::::

and
::::

the
:::::::

fourth
::::

one
:::

in
:::

P .
:::::

We
:::::::::

proceed
::::::

again
:::

by
::::::::::::

performing
::

a
:::::::::::::

Hartree-Fock

:::::::::::::

decompsition:
:

Σs,s
o1,o1′

(τ 1, τ
′
3)G

s,s
o1′ ,o3

(τ ′
3, τ 3) ≈ (101)

+
∑

o4

Uo4,o1G
s̄,s̄
o4,o4(τ 1, τ 1)G

s,s
o1,o3(τ 1, τ 3)

+
∑

o4 ̸=o1

(Uo4,o1 − Jo4,o1)
(
Gs,s

o4,o4(τ 1, τ 1)G
s,s
o1,o3(τ 1, τ 3)−Gs,s

o1,o4(τ 1, τ 1)G
s,s
o4,o3(τ 1, τ 3)

)

+
∑

o4 ̸=o1

Jo4,o1G
s̄,s̄
o1,o4(τ 1, τ 1)G

s,s
o4,o3(τ 1, τ 3)

+
∑

o4 ̸=o1

Jo4,o1G
s̄,s̄
o4,o1(τ 1, τ 1)G

s,s
o4,o3(τ 1, τ 3),

::::::

where
:::

we
:::::::::::

introduced
::::

the
::::::::

Green’s
:::::::::

function
:::

as
::::::::::::::::::::::::::::::::::::

Gs,s′
o1,o3(τ 1, τ 3) = ⟨c†o3,s′(τ 3)co1,s(τ 1)⟩.

:::::

The

::::

next
:::::

step
::

is
:::

to
:::::::::

introduce
:::::::::

Ansätze
:::::

such
::::

that
::::

the
:::::::::::

equal-time,
::::::::::::::

equal-position
::::::

limit
::

is
:::::::

exactly
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:::::::::

recovered
:::::::::

(o1 = o2
::::

and
::::::::::

τ 1 = τ 2).
:::::::

Here
:::

we
:::::

have
::::

the
:::::::::

freedom
:::

to
::::::::

regroup
:::::::

terms
:::

for
::::

the

::::::::

Ansätze
::::::

either
::::::

such
:::::

that
::::

the
::::::::::::::::::

Green’s-functions
:::

do
:::::::

match
::::::::

(which
::

is
:::::

the
:::::

form
::::::::

written

:::::::

above),
:::

or
:::::

such
:::::

that
::::

the
::::::::::

prefactors
::::

do
:::::::

match.
:::::

The
::::::::

former
::::::::::::

corresponds
:::

to
::::::::

TPSC5,
::::

the

:::::

latter
::::::::::::

corresponds
:::

to
:::::::::

TPSC3.
::::

As
::

a
::::::::::

reminder,
:::

we
::::

use
::::

the
::::::

same
:::::

short
::::::

hand
:::::::::

notation
:::

for

::::::::::

redundant
:::::::

indices
:::

we
:::::::::::

introduced
:::

in
::::

the
::::::

main
:::::

text,
:::

i.e.
:::::::::::::::::::::::::::::

ns1,s2o1,o2 = c†o2,s2(τ, r)co1,s1(τ, r)::::

and

::::::::::::::::::::::::::::::::::

ns1o1 = ns1,s1o1,o1 = c†o1,s1(τ, r)co1,s1(τ, r)
In this appendix, we present further comparisons to ED.On the one hand

::

In
::::

the
::::

first

:::::

case,
:::

we
:::::::::

introduce
:

Σs,s
o1,o1′

(τ 1, τ
′
3)G

s,s
o1′ ,o2

(τ ′
3, τ 2) ≈ (102)

−
∑

o4

α̃o4,o1G
s̄,s̄
o4,o4(τ 1, τ 1)G

s,s
o1,o2(τ 1, τ 2)

−
∑

o4 ̸=o1

β̃o4,o1
(
Gs,s

o4,o4(τ 1, τ 1)G
s,s
o1,o2(τ 1, τ 2)−Gs,s

o1,o4(τ 1, τ 1)G
s,s
o4,o2(τ 1, τ 2)

)

+
∑

o4 ̸=o1

γ̃o4,o1G
s̄,s̄
o1,o4(τ 1, τ 1)G

s,s
o4,o2(τ 1, τ 2)

+
∑

o4 ̸=o1

δ̃o4,o1G
s̄,s̄
o4,o1(τ 1, τ 1)G

s,s
o4,o2(τ 1, τ 2),

::::::

where
:::

the
:::::::::

Ansätze
:::

are
::::::::

defined
:::

as

α̃o4,o1 = Uo4,o1

⟨no4,s̄(τ 1)no1,s(τ 1)⟩
ns̄,s̄o4,o4n

s,s
o1,o1

, (103)

β̃o4,o1 = (Uo4,o1 − Jo4,o1)
⟨no4,s(τ 1)no1,s(τ 1)⟩

ns,so4,o4n
s,s
o1,o1 − ns,so1,o4n

s,s
o4,o1

, (104)

γ̃o4,o1 = Jo4,o1
⟨c†o4,s̄(τ 1)co4,s(τ 1)co1,s̄(τ 1)c

†
o1,s(τ 1)⟩

ns̄,s̄o1,o4n
s,s
o4,o1

, (105)

δ̃o4,o1 = Jo4,o1
⟨c†o1,s̄(τ 1)co4,s(τ 1)co4,s̄(τ 1)c

†
o2,s(τ 2)⟩

ns̄,s̄o4,o1n
s,s
o4,o1

. (106)

:::::

Here,
::::

we
::::::::

identify
::::

the
::::::::

Ansätze
::::::

from
::::::::

TPSC5
:::

by
:::::::::::

comparing
::::

the
:::::::::::

equations,
:::

i.e.
::::::::::

D̃↑,↑ = α̃,

::::::::::::::::

D̃↑,↓ − C̃↑,↓ = β̃,
:::::::::

C̃↑,↑ = γ̃
::::

and
:::::::

P̃ = δ̃.
:

::::

For
:::

the
:::::::

second
:::::

type
::

of
:::::::::

Ansätze,
:::

we
:::::

first
::::::::

regroup
:::

all
::::::

terms
:::::

with
::

U
:::

as
:::::::::

prefactor
::::::::

together

::::

and
::::

two
::

of
::::

the
::

J
::::::

terms
:::::

such
:::::

that
:::

we
::::::

arrive
:::

at
:

Σs,s
o1,o1′

(τ 1, τ
′
3)G

s,s
o1′ ,o2

(τ ′
3, τ 2) ≈ (107)

−
∑

o4

ϵ̃o4,o1

(
∑

s′

(1− δo1,o4δs′,s)G
s′,s′

o4,o4G
s,s
o1,o2(τ 1, τ 2)− (1− δo1,o4)G

s,s
o1,o4G

s,s
o4,o2(τ 1, τ 2)

)

+
∑

o4 ̸=o1

χ̃o4,o1

(
∑

s′

Gs′,s′

o1,o4(τ 1, τ 1)G
s,s
o4,o2(τ 1, τ 2)−Gs,s

o4,o4(τ 1, τ 1)G
s,s
o1,o2(τ 1, τ 2)

)

+
∑

o4 ̸=o1

ψ̃o4,o1G
s̄,s̄
o4,o1(τ 1, τ 1)G

s,s
o4,o2(τ 1, τ 2),
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::::::

where
:::

the
:::::::::

Ansätze
:::

are
::::::::

defined
:::

as

ϵ̃o4,o1 = Uo4,o1

(1− δo1,o4) ⟨no4,s(τ 1)no1,s(τ 1)⟩+ ⟨no4,s̄(τ 1)no1,s(τ 1)⟩
∑

s′ n
s′,s′
o4,o4n

s,s
o1,o1 − ns,so1,o4n

s,s
o4,o1

, (108)

χ̃o4,o1 = (1− δo1,o4)Jo4,o1
⟨no4,s̄(τ 1)no1,s(τ 1)⟩+ ⟨c†o4,s̄(τ 1)co4,s(τ 1)co1,s̄(τ 1)c

†
o1,s(τ 1)⟩

∑

s′ n
s′,s′
o1,o4n

s,s
o4,o1 − ns,so4,o4n

s,s
o1,o1

,

(109)

ψ̃o4,o1 = Jo4,o1
⟨c†o1,s̄(τ 1)co4,s(τ 1)co4,s̄(τ 1)c

†
o2,s(τ 2)⟩

ns̄,s̄o4,o1n
s,s
o4,o1

. (110)

::::

Here
::::

we
::::

can
::::::::

identify
:::

the
:::::::::

Ansätze
:::::

from
::::::::

TPSC3
:::

by
:::::::

ϵ̃ = D̃,
::::::

χ̃ = C̃
:::::

and
:::::::

ψ̃ = C̃.
:

B.1
:::::::::::::::

Reproducing
::::::::

results
:::::::

from
::::::

Ref.
:::::::

[90]
::::

and
::::::

Ref.
::::::

[89]

:::::

With
::::

the
::::::::

explicit
:::::::::::::

re-derivation
:::::::

along
::::

the
::::::

same
:::::

lines
:::

as
:::

in
:::::

Ref.
:::::

[90]
:

,
:::

we
:::::

find
:::::

that
:::

to

:::::::::

reproduce
::::::

their
:::::::

Ansatz
::::::::::

equations,
:::

we
:::::

have
::

to
:::::

take
::::

the
:::::::::

equations
::::::::

derived
:::

for
:::::::

TPSC5
::::

and
:::

fix

::::

both
:::::

C̃↑,↓
:::::

and
::

P̃
:::

to
::::

the
:::::::::::::::::

non-renormalized
:::::::

Hund’s
::::::::::

coupling.
:::::::::::::

Furthermore,
::::

the
:::::::::::

interaction

:::

has
:::

to
:::

be
::::::::::::

constrained
::

to
:

ΓS3S3

o1o2o3o4 = δo1,o3δo2,o4

(

D̃↓↑
o4,o1 − D̃↑↑

o4,o1 + C̃↑↑
o4,o1

)

(111)

+ C̃↑↓
o1,o3δo3,o2δo1,o4 + P̃o3,o1δo1,o2δo3,o4 ,

:::

i.e.,
::::

we
:::::

need
::

to
::::::::

neglect
:::

the
:::::::::::::

contribution
::

of
::::

the
:::::

same
:::::

spin
::::::

terms
::

to
::::

the
:::::::

orbital
::::::::::::

combination

::::::::::

δo3,o2δo1,o4 .:
:::::::::::

Comparing
::::

our
:::::::::

approach
:::

to
:::::

Ref.
::::

[89]
:

,
:::::

The
::::::

vertex
:::::::

differs
::

in
::::

the
:::::::

charge
::::::::

channel
:::

as
:::

the

:::::::

Hund’s
:::::::::

coupling
::

is
:::::::::::

neglected.
::::::::::::::

Additionally,
:::

as
:::

in
:::::

Ref.
:::::

[90]
:::

no
::::::::::::::::

renormalization
:::

for
::::

the

:::::::

Hund’s
:::::::::

coupling
::::::

terms
::

is
::::::::::::

introduced.
:::::::

Thus
::::::

again
:::

we
::::::

have
::

to
::::::::::

constrain
::::

the
:::::::::::

interaction

:::::::::::

accordingly.
:::

In
:::::

both
:::::::

cases,
:::

the
::::::::

utilized
:::::

sum
:::::

rules
::::

are
::

a
::::::

subset
:::

of
:::

the
:::::

ones
::::

we
::::::::

employ.
:

C
::::::::::::::

Derivation
::::

of
::::::

the
::::::::::::::::

interaction
::::::::

from
:::::::::::::::

functional
::::::::::::::::

derivatives

::

In
::::

the
:::::::::

following,
:::

we
::::

will
::::::

derive
::::

the
:::::::::::

interaction
:::::::

vertices
::::::::

directly
:::::

from
:::

the
::::::::::

functional
::::::::::

derivative

::

of
::::

the
:::::::::::

self-energy.
::::::

Since
::::::::

TPSC3
:::

is
::::::::

formally
::

a
::::::::

special
::::

case
:::

of
::::::::

TPSC5,
::::

we
::::

will
:::::

stick
:::::

with

:::

the
:::::

spin
::::::::::

dependent
::::::::

vertices
:::::

and
::::::::

evaluate
::::

the
:::::::

special
:::::

case
::

in
::::

the
:::::

end.
:::::::

Before
:::::::::

starting,
:::

we

::::

note
:::::

that
:::::::::

formally,
:::

we
:::::

can
:::::::

rewrite
::::

the
::::::::

Ansätze
:::

in
::::::::::::

equilibrium
::::::::

utilizing
:::::::::::::::::

SU(2)-invariance

::

as
::::::

[80]

D̃s1,s4
o1,o4 =

2Do1,o4(⟨ns4o4ns1o1⟩+ ⟨ns̄4o4ns̄1o1⟩)
(⟨ns4o4⟩+ ⟨ns̄4o4⟩)(⟨ns1o1⟩+ ⟨ns̄1o1⟩)− (⟨ns1,s4o1,o4⟩+ ⟨ns̄1,s̄4o1,o4⟩)(⟨ns4,s1o4,o1⟩+ ⟨ns̄4,s̄1o4,o1⟩)

,

C̃s1,s4
o1,o4 =

2Co1,o4(⟨ns1,s4o4 ns4,s1o1 ⟩+ ⟨ns̄1,s̄4o4 ns̄4,s̄1o1 ⟩)
(⟨ns1,s4o4 ⟩+ ⟨ns̄1,s̄4o4 ⟩)(⟨ns4,s1o1 ⟩+ ⟨ns̄4,s̄1o1 ⟩)− (⟨ns4o1,o4⟩+ ⟨ns̄4o1,o4⟩)(⟨ns1o4,o1⟩+ ⟨ns̄1o4,o1⟩)

,

P̃ s1
o1,o4 = Po1,o4

⟨ns1,s̄1o4o1 n
s̄1,s1
o4,o1⟩

⟨ns1,s̄1o4o1 ⟩ ⟨ns̄1,s1o4o1 ⟩ − ⟨ns̄1o4,o1⟩ ⟨ns1o4,o1⟩
.

:::

By
:::::::::

rewriting
:::::

the
::::::::

Ansätze
:::::

like
:::::

this,
::::

we
::::::

make
:::

it
::::::::::::

transparent
:::::

that
:::::

they
::::

are
:::::::::::

symmetric

::::::::::

functional
::

of
::::

Gσ
:::::::

under
::::

the
::::::::::

exchange
::

of
::::

G↑
:::::

and
::::

G↓.
::::::::::

Thereby,
::::

we
::::::::::

explicitly
::::

find
:::::

that

δXσ,σ′

δGσ′′ =
δXσ,σ′

δGσ̄′′ (112)
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:::::

holds
:::

in
:::

the
::::::

limit
::

of
:::::

zero
::::::::

external
:::::

field,
:::::::

which
::

is
::::

the
:::::

limit
:::

we
::::

are
::::::::::

ultimately
::::::::::

interested
:::

in.

::::

This
:::

we
:::::

will
:::

use
:::::

later
:::

to
::::::

argue
:::::

that
:::

all
::::::

terms
::::::::::::

proportional
:::

to
::::::::::

functional
:::::::::::

derivatives
:::

of
:::

the

::::::::

Ansätze
:::

do
:::::::

cancel.
:

::::

The
::::::::

starting
::::::

point
:::

for
::::

the
::::::::::

derivation
::

is
::::

the
::::::::::

definition
::

of
::::

the
:::::::::::

self-energy
::

in
::::::

terms
:::

of
:::

the

::::::::

Ansätze

Σs1,s3
o1,o3(τ 1; τ 3) = δτ1,τ3

(

D̃
s′4,s1
o′4,o1

G
s′4,s

′
4

o′4,o
′
4

(τ 1; τ 1)δs1,s3δo1,o3 − D̃s3,s1
o3,o1G

s1,s3
o1,o3(τ 1; τ 1) (113)

+ C̃
s1,s′3
o1,o3G

s′3,s
′
3

o1,o3(τ 1; τ 1)δs1,s3 − C̃s1,s3
o1,o′3

Gs1,s3
o′3,o

′
3

(τ 1; τ 1)δo1,o3

+ P̃ s1,s̄1
o3,o1G

s̄1,s̄1
o3,o1(τ 1; τ 1)δs1,s3 − P̃ s1,s̄1

o3,o1G
s1,s̄1
o3,o1(τ 1; τ 1)δs̄1,s3

)

.

::::

The
::::::

vertex
:::

in
:::::::::::::

Pauli-matrix
::::

spin
::::::

space
::

is
::::::

given
:::

as
:

ΓSiSj

o1o2o3o4(τ 1, τ 2, τ 4, τ 1) =
1

2

∑

s1,s2,s3,s4

σis1,s4
δΣs1,s4

o1,o4(τ 1, τ 1)

δGs3,s2
o3,o2(τ 3, τ 2)

σjs̄2,s̄3 . (114)

::::::

Before
::::

the
:::::::

explicit
::::::::::::

calculation,
:::

we
:::::::::::

recapitulate
:::::

that
:::

all
::::::::

Ansätze
:::::

obey
:::

the
:::::::::

following
::::::::::::

symmetries:

X↑,↑ = X↓,↓ and X↓,↑ = X↑,↓. (115)

:::::::::::::

Furthermore,
::::

they
::::

are
::::::::::

Hermitian
:::::::::::

(X† = X)
::::

and
::::

real.
:::::::

These
::::::::::

properties
::::::::

further
::::::

imply
::::

that

:::

the
:::::::::::

self-energy
::::::

obeys
::::::::::::::::

Σs1,s2 = Σδs1,s2 .:::::::::::

Therefore,
:::

we
:::::

have
:::::

only
::::

two
::::::::

distinct
::::::

cases
:::::::

defined

::

by
:::::::::

different
:::::

spin
:::::::::::

alignments
::

in
::::

the
:::::::::::::

denominator
::::

and
:::::::::::

numerator.
::::::

First,
:::

let
:::

us
::::::

focus
:::

on
:::

the

::::

case
::::::::::::::

Si = Sj = S3,
:::

for
:::::::

which
:::

we
:::::

have
:::

to
::::::::

evaluate
:

ΓSiSj

o1o2o3o4(τ 1, τ 2, τ 4, τ 1) =
δΣ↓,↓

o1,o4(τ 1, τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

− δΣ↑,↑
o1,o4(τ 1, τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

. (116)

::

To
::::::

make
::::

the
:::::::::::

derivation
:::::

more
:::::::::::::

manageable,
:::

we
:::::::::

perform
::

it
::::::

term
:::

by
::::::

term,
:::::

thus
:::::::

leaving
:::

us

::::

with
::::

six
:::::::::::::

contributions
:::::

from
::::

Eq.
::::::

(113).
:::::

The
:::::

first
::::::::::::

contribution
::::::

reads
:

− δo1,o4

δ
(

D̃
s′4,↑

o′4,o1
G

s′4,s
′
4

o′4,o
′
4

(τ 1; τ 1)
)

δG↑,↑
o3,o2(τ 3, τ 2)

+ δo1,o4

δ
(

D̃
s′4,↓

o′4,o1
G

s′4,s
′
4

o′4,o
′
4

(τ 1; τ 1)
)

δG↑,↑
o3,o2(τ 3, τ 2)

(117)

= −δo1,o4

[

G
s′4,s

′
4

o′4,o
′
4

(τ 1; τ 1)

(

δD̃
s4′ ,↑
o4′ ,o1

δG↑,↑
o3,o2(τ 3, τ 2)

− δD̃
s4′ ,↓
o4′ ,o1

δG↑,↑
o3,o2(τ 3, τ 2)

)

(118)

−
(

D̃
s4′ ,↑
o4′ ,o1 − D̃

s4′ ,↓
o4′ ,o1

) δG
s′4,s

′
4

o′4,o
′
4

(τ 1; τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)





= δτ1,τ2
δτ1,τ4

δo1,o4δo2,o3

(

D̃↑,↓
o3,o1 − D̃↑,↑

o3,o1

)

. (119)

::::

Here
::::

the
:::::

first
:::::

term
:::

in
::::

the
:::::::

second
::::

line
:::::::::

vanishes
::::

due
:::

to
:::::::

SU(2)
::::::::::

symmetry.
::::::

Note
:::::

that
::

if
:::

we

::::::

would
::::

have
::::::::::

spin-orbit
:::::::::

coupling
:::

the
:::::::::::::

time-reversal
::::::::::

symmetry
::::::

would
::::

not
::::

lead
:::

to
::

a
:::::::::::

cancellation

::

of
::::

this
:::::::::::::

contribution,
::

in
:::::::::

contrast
::

to
::::

the
:::::::::::

single-band
:::::

case
:::::::::

[87, 107].
:::::

The
:::::::

second
::::::::::::

contribution
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:::::

reads
:

δ
(

D̃↑,↑
o4,o1G

↑,↑
o1,o4(τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

−
δ
(

D̃↓,↓
o4,o1G

↓,↓
o1,o4(τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

(120)

= δo1,o3δo2,o4δτ1,τ2
δτ1,τ4

D̃↑,↑
o4,o1 (121)

+G↑,↑
o1,o4(τ 1; τ 1)

(

δD̃↑,↑
o4,o1

δG↑,↑
o3,o2(τ 3, τ 2)

− δD̃↓,↓
o4,o1

δG↑,↑
o3,o2(τ 3, τ 2)

)

= δτ1,τ2
δτ1,τ4

δo1,o3δo2,o4D̃
↑,↑
o4,o1 . (122)

::::

The
::::

first
::::::

terms
:::::::::::::

proportional
:::

to
::

C
::::::

reads
:

−
δ
(

C̃
↑,s3′
o1,o4G

s3′ ,s3′
o1,o4 (τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

+
δ
(

C̃
↓,s3′
o1,o4G

s3′ ,s3′
o1,o4 (τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

(123)

= −δo1,o3δo2,o4δτ1,τ2
δτ1,τ4

(C̃↑,↑
o1,o4 − C̃↓,↑

o1,o4) (124)

−G
s4′ ,s4′
o1,o4 (τ 1; τ 1)

(

δC̃
↑,s4′
o1,o4

δG↑,↑
o3,o2(τ 3, τ 2)

− δC̃
↓,s4′
o1,o4

δG↑,↑
o3,o2(τ 3, τ 2)

)

.

= δτ1,τ2
δτ1,τ4

δo1,o3δo2,o4(C̃
↓,↑
o1,o4 − C̃↑,↑

o1,o4) , (125)

:::

the
:::::::

second
:::::

term
:

+ δo1,o4

δ
(

C̃↑,↑
o1,o3′G

↑,↑
o3′ ,o3′ (τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

− δo1,o4

δ
(

C̃↓,↓
o1,o3′G

↓,↓
o3′ ,o3′ (τ 1; τ 1)

)

δG↑,↑
o3,o2(τ 3, τ 2)

(126)

= +δo1,o4δo2,o3δτ1,τ2
δτ1,τ4

C̃↑,↑
o1,o3 (127)

+ δo1,o4G
↓,↓
o3′ ,o3′

(τ 1; τ 1)

(

δC̃↑,↑
o1,o3′

δG↑,↑
o3,o2(τ 3, τ 2)

− δC̃↓,↓
o1,o3′

δG↑,↑
o3,o2(τ 3, τ 2)

)

= δτ1,τ2
δτ1,τ4

δo1,o4δo2,o3C̃
↑,↑
o1,o3 , , (128)

:::::

while
:::

for
::::

the
::::::

terms
:::::::::::::

proportional
:::

to
:::

the
:::

P
:::::::

Ansatz
:::

we
:::::

find
::::

(for
::::

this
::::

the
:::::::

second
:::::

term
::::::

drops

:::

out
::::

due
:::

to
::::

the
::::

spin
::::::::::::

off-diagonal
:::::::::::

component
:::

of
::::

the
::::::::

Green’s
::::::::

function
::::::

being
:::

0)
:

−
(

δP̃ ↑,↓
o4,o1

δG↑,↑
o3,o2(τ 3, τ 2)

− δP̃ ↓,↑
o4,o1

δG↑,↑
o3,o2(τ 3, τ 2)

)

(G↓,↓
o4,o1(τ 1; τ 1)−G↑,↑

o4,o1(τ 1; τ 1)) (129)

−
(

δG↓,↓
o4,o1(τ 1; τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

− G↑,↑
o4,o1(τ 1; τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

)

P̃ ↑,↓
o4,o1 (130)

= δτ1,τ2
δτ1,τ4

δo1,o2δo3,o4P
↑,↓
o3,o1 . (131)

::::::::

Putting
:::::::::::

everything
::::::::

together
:::

we
:::::

find

ΓS3S3;5
o1o2o3o4(τ 1, τ 2, τ 1, τ 4) =

δΣ↑,↑
o1,o3(τ 1, τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

− δΣ↓,↓
o1,o3(τ 1, τ 1)

δG↑,↑
o3,o2(τ 3, τ 2)

(132)

= δτ1,τ2
δτ1,τ4

(

δo1,o4δo2,o3

(

D̃↑,↓
o3,o1 − D̃↑,↑

o3,o1

)

+ δo1,o3δo2,o4D̃
↑,↑
o4,o1 (133)

+ δo1,o3δo2,o4(C̃
↓,↑
o1,o4 − C̃↑,↑

o1,o4) + δo1,o4δo2,o3C̃
↑,↑
o1,o3 (134)

+δo1,o2δo3,o4P
↑,↓
o3,o1

)

. (135)
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::

To
::::

get
::::

the
:::::::

vertex
::::

for
::::::::

TPSC3
:::

we
:::::

have
:::

to
::::

set
:::::::::::

D̃↑↑ = D̃↑↓
::::

and
::::::::::::::::

C̃↑↑ = C̃↑↓ = C̃.
:::::::

Here,
:::

we

::::

have
:::

to
:::::

keep
:::

in
:::::

mind
:::::

that
:::::

only
::::

D̃↑↓
:::::::::

contains
:::::::::::::

contributions
:::

for
::::::

equal
:::::::::

orbitals.
:

ΓS3S3;3
o1o2o3o4(τ 1, τ 2, τ 1, τ 4) = δτ1,τ2

δτ1,τ4

(

δo1,o4δo2,o3D̃o3,o1 (136)

+ δo1,o4δo2,o3C̃o1,o3 + δo1,o2δo3,o4Po3,o1

)

. (137)

D
::::::::::::::::::

Particle-hole
:::::::::::::::

symmetric
:::::::::::::

Ansätze

::

In
::::

the
::::::::::

following,
:::

we
::::

will
::::::::::

explicitly
::::::

derive
::::

the
::::::::::::

particle-hole
:::::::::::::

symmetrized
::::::::

Ansatz
:::::::::

equation.

::

To
:::::

this
::::

end
:::

we
::::::::::::

recapitulate
::::

the
:::::::

ansatz
::::::::::

equations
:::::

from
:::::::

TPSC5
:

D̃s1,s4
o1,o4 = Do1,o4

⟨ns4o4ns1o1⟩
⟨ns4o4⟩ ⟨ns1o1⟩ − ⟨ns1,s4o1,o4⟩ ⟨ns4,s1o4,o1⟩

, (138)

C̃s1,s4
o1,o4 = Co1,o4

⟨ns1,s4o4 ns4,s1o1 ⟩
⟨ns1,s4o4 ⟩ ⟨ns4,s1o1 ⟩ − ⟨ns4o1,o4⟩ ⟨ns1o4,o1⟩

, (139)

P̃ s1
o1,o4 = Po1,o4

⟨ns1,s̄1o4o1 n
s̄1,s1
o4,o1⟩

⟨ns1,s̄1o4o1 ⟩ ⟨ns̄1,s1o4o1 ⟩ − ⟨ns̄1o4,o1⟩ ⟨ns1o4,o1⟩
. (140)

::::

The
::::::::::

symmetric
::::::::

version
:::

of
:::

the
::::::::

Ansatz
::::::::::

equations
::

of
::::::::

TPSC3
::

is
:::::::::

obtained
:::

by
::::::::::::

performing
:::

the

::::

sum
:::::

over
::

s4
:::

in
:::::

both
::::

the
:::::::::::

enumerator
:::::

and
:::

the
::::::::::::::

denominator.
:

:::

To
:::::::

obtain
::

a
:::::::::::::

particle-hole
:::::::::::

symmetric
:::

set
:::

of
:::::::::

Ansätze,
::::

we
:::::::::

explicitly
::::::::

average
::::

the
::::::

usual

:::::::

Ansatz
::::

with
:::::

their
:::::::::::::

particle-hole
::::::::::::

transformed
:::::::::::

counterpart
:::::::

c† → c
::::

and
::::

vice
::::::

versa.
::::::

This
::::::

results

::

in
:

D̃s1,s4
o1,o4 =

Do1,o4

2

( ⟨ns4o4ns1o1⟩
⟨ns4o4⟩ ⟨ns1o1⟩ − ⟨ns1,s4o1,o4⟩ ⟨ns4,s1o4,o1⟩

(141)

+
⟨(1− ns4o4)(1− ns1o1)⟩

⟨1− ns4o4⟩ ⟨1− ns1o1⟩ − ⟨δs1,s4δo1,o4 − ns1,s4o1,o4⟩ ⟨δs1,s4δo1,o4 − ns4,s1o4,o1⟩

)

,

C̃s1,s4
o1,o4 =

Co1,o4

2

( ⟨ns1,s4o4 ns4,s1o1 ⟩
⟨ns1,s4o4 ⟩ ⟨ns4,s1o1 ⟩ − ⟨ns4o1,o4⟩ ⟨ns1o4,o1⟩

(142)

+
⟨(δs1,s4 − ns1,s4o4 )(δs1,s4 − ns4,s1o1 )⟩

⟨δs1,s4 − ns1,s4o4 ⟩ ⟨δs1,s4 − ns4,s1o1 ⟩ − ⟨δo1,o4 − ns4o1,o4⟩ ⟨δo1,o4 − ns1o4,o1⟩

)

,

P̃ s1
o1,o4 =

Po1,o4

2

( ⟨ns1,s̄1o4o1 n
s̄1,s1
o4,o1⟩

⟨ns1,s̄1o4o1 ⟩ ⟨ns̄1,s1o4o1 ⟩ − ⟨ns̄1o4,o1⟩ ⟨ns1o4,o1⟩
(143)

+
⟨ns1,s̄1o4o1 n

s̄1,s1
o4,o1⟩

⟨ns1,s̄1o4o1 ⟩ ⟨ns̄1,s1o4o1 ⟩ − ⟨δo1,o4 − ns̄1o4,o1⟩ ⟨δo1,o4 − ns1o4,o1⟩

)

,

::::::

These
:::::::::

modified
::::::::

Ansatz
::::::::::

equations
:::::::

should
:::

be
::::::

used
:::::::::

whenever
:::::

one
:::::::

studies
:::

a
::::::::::::

particle-hole

::::::::::

symmetric
::::::::

system.
:

E
:::::::::::::::::

Comparison
::::

to
::::::

ED

::

In
:::::

this
::::::::::

appendix,
:::

we
:::::::::

compare
::::

the
::::::::

results
:::::

from
:::::::

TPSC
:::::

with
:::::

ED.
:::::

Due
:::

to
::::

the
::::::::::

restriction

::

to
::::::::::

finite-size
::::::::

systems
:::

in
:::::

ED,
::::

this
:::

is
::::::::::

essentially
::

a
::::::::::::

comparison
:::

of
:::::::::::::

Hartree-Fock
::::::

with
::::

ED,

:::::

since
::::

the
::::::

fixing
:::

of
::::

the
:::::

local
:::::::

double
:::::::::::::

occupancies
:::::

only
:::::

gives
:::::::

minor
:::::::::::

corrections
:::

on
:::::

top
::

of

:::::::::::::

Hartree-Fock.
:::::::

This
::::::::::::

comparison
::

is
::::::::::::::::

complementary
:::

to
::::

the
:::::::::::

analytical
::::::::::::::

considerations
:::

in
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::::

Sec.
::::

3.1.
::::::::

There,
::::

we
:::::::

traced
:::::

back
::::

the
::::::::::::

breakdown
::

of
:::::::

TPSC
:::

to
::::

the
::::::::::

incorrect
:::::::::::

description

::

of
:::

the
::::::

local
::::::::

thermal
:::::::::::

expectation
:::::::

values
:::

by
:::::::::::::

Hartree-Fock.
::::

To
::::::::::

emphasize
::::

this, we show data
at lower temperatures , which

:::

two
::::::::::::::

temperatures
::::::::::::

β = 0.5t, 2t.
:::::::

These
:::::::

results
:

demonstrate
that the results improve

::

at
:::::

lower
::::::::::::::

temperatures since the Hartree-Fock approximation be-
comes more reliable, see Fig. ??

:

6. Furthermore, by reducing the filling we also find better
agreement with ED in the dimer case, see Fig. 7a, while adding an

:

a
:::::::

kinetic
:

inter-orbital
coupling at half filling does not improve the results, see Fig. 7b.

::::

The
:::::::

model
:::

we
::::::

study
::

is
::::::

again
:::::

akin
::

to
:::::

Fig.
::

1
::::

and
:::

its
:::::::::::::

Hamiltonian
::

is
::::::

given
:::

by

H =
∑

σ

t(c†0,s′c1,s′ + c†1,s′c0,s′) +HHK , (144)

::::::

where
:::

we
::::

use
::::

the
:::::

same
::::::::::::::::::::

Hubbard-Kanamori
:::::::::::

interaction
::

as
:::

in
::::

the
:::::

main
:::::

text,
::::

see
::::

Eq.
:::::

(47).

:::

As
::

in
::::

the
:::::

main
:::::

text
::

U
::::

and
::

J
::::

are
:::::::::

measured
:::

in
:::::

units
:::

of
::

t,
::::::

which
::

is
:::

set
:::

to
::

1.
::::

We
:::::::::

consider
:::

the

:::::

weak
:::::::::

coupling
:::::

limit
::

in
:::::::

which
::::::

TPSC
:::::::::::::::

(Hartree-Fock)
:::::::

should
:::::

give
::::

the
:::::::

correct
::::::::

leading
:::::

order

:::::::::

behavior.
::::

For
::::

the
::::

ED
::::::::::::

calculations,
:::

we
::::

use
::::::

pyED
:::::::

[108]
::::

from
::::

the
::::::::

TRIQS
::::::::::

framework
::::::

[109]

:

.
:::::

The
:::::::

results
::::

for
:::

all
::::::

three
:::::::::

methods
:::

as
::

a
:::::::::

function
:::

of
:::

U
::::

and
:::

J
::::

are
:::::::

plotted
:::

in
:::::

Fig.
:::

6.
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Figure 6: Comparison between TPSC
:::::::

TPSC3
:::::::

(blue),
::::::::

TPSC5
::::::::

(yellow)
:

and ED

:::::

(red)
:::

for
::::

the
:::::::

model
:::::::

defined
:::

in
::::

Eq.
::::::

(144)
:

at β = 2
:::::::

β = 0.5
:::

on
::::

the
::::

left
:::::

and
::::::

β = 2

::

on
:::::

the
:::::

right, for different U at J = 0 at quarter filling (panel a) and with
an inter-orbital coupling of unit strength (panel b)

::

J
:::::::::::::

combinations. For these
comparisons we

:::

We include the zeroth order self-energy correction
::

in
:::::

both
:::::::

TPSC

::::::::

variants.

:::::

Both
:::::::

TPSC3
:::::

and
:::::::

TPSC5
::::::

show
:::::::

indeed
::::

the
:::::::

correct
::::::::

leading
:::::

order
:::::::::

behavior
::::

for
:::

all
::::::::

TPEVs,

:::::::::::

irrespective
:::

of
::::

the
:::::

ratio
:::

of
:::

U
:::::

and
:::

J .
::::::::::::::

Furthermore,
::::

we
::::::::

observe
:::::

that
::::::::

TPSC5
:::::::::

performs

:::::::::::

significantly
::::::

worse
::::::

when
::

J
:::::::::

becomes
::::::::::::

unphysically
::::::

large,
::::::

while
::::::::

TPSC3
:::::

stays
::::::

much
::::::

closer
::

to

:::

the
::::

ED
:::::::

result.
::::

The
:::::::

TPEV
:::

do
:::::::

match
:::::

well
::::::::

between
::::::::

TPSC3
::::

and
::::

ED
:::::::::::

throughout
::::

the
::::::

whole

:::::

range
:::

of
::::::::::

examined
::::::::::::

parameters.
:::

In
::::::::

general,
::::

the
:::::::::

deviation
:::

is
:::::::::

strongest
:::

in
:::

the
:::::::::::::

pair-hopping

:::::::::::

component,
:::

in
::::::

which
::::

the
:::::

error
::::::::::::::

monotonously
:::::::::

increases
:::::

with
:::

J .
::::

We
::::::

stress
:::::

again
:::::

that
:::::

since

::

we
:::::

stay
:::

in
::::

the
::::::::::::::

weak-coupling
::::::::

regime,
::::::

these
::::::::::::

benchmarks
::::::

have
:::

no
::::::

direct
:::::::::::::

implications
:::

for

:::::::::::

applications
:::

in
::::

the
::::::::

strongly
::::::::::

correlated
::::::::

regime.
:

:::

To
::::::::::::

complement
::::

the
:::::::

results
::::::::::

presented
:::

in
::::

Fig.
:::

2,
:::

we
::::::

show
::::

the
:::::

same
::::::::::::

comparison
::

of
::::

ED

::::

and
::::

the
::::::

TPSC
:::::::::

variants
:::

at
::::::

lower
::::::

filling
::::::::

(upper
:::::::

panel)
::::

and
:::::

with
:::::::::::

additional
::::::::::::

inter-orbital

::::::

kinetic
:::::::::

coupling
:::::::::::

introduced
:::

in
::::

Fig.
:::

7.
:::::

The
:::::::

results
:::

do
:::::::::::::

qualitatively
::::::

agree
:::::

with
::::

Fig.
:::

2.
:::

As

:::::::::

expected,
::::

the
:::::::

TPEV
:::

are
::::::

closer
:::

to
::::

ED
:::

at
:::::

lower
:::::::

filling.
:
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a)

b)

Figure 7: Comparison between TPSC and ED at β = 2, for different U
::

at
::::::

J = 0

::

at
:::::::

quarter
::::::

filling
:::::::

(panel
::

a)
:

and J combinations
:::::

with
:

a
:::::::

kinetic
::::::::::::

inter-orbital
:::::::::

coupling

::

of
:::::

unit
::::::::

strength
:::::::

(panel
:::

b). For these comparisons we include the zeroth order
self-energy correction.
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