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Dear Referee,

We thank you for your careful reading and excellent comments. Below we address each

comment and describe the accompanying changes in the manuscript.

Referee comment:

1) I disagree with a statement that is written in the abstract

“SAM-OAM splitting is unambiguous for massive particles”

and also in the introduction

“For massive particles, the angular momentum naturally and uniquely splits into

SAM and OAM.”

and whose justification is contained right after Eq. (17).

I do not think that the split is valid even for massive particles. Here is why.

For a particle of mass M , it is clear that the little group of the standard vector

with four-momentum (M, 0, 0, 0) is SO(3). Note that (M, 0, 0, 0) represents a

particle at rest with 3-momentum equal to (0, 0, 0). For such particle at rest,

the spin-1 matrices are indeed the angular momentum operators. However, this

does not mean that the spin-1 matrices are good angular momentum operators

for the general case of massive particles out of their rest frame. Rather, one can

see in the definition of J

J = r × P + S. (1)

that J = S when P = 0, as a particular case.

The point is that the Poincare group contains only one kind of spatial rotations,

and such transformations have J as their generators.

I refer to the authors to Sec. 10.4.2 of Wu-Ki Tung’s book: Group theory in

physics, and also to to Sec. 16 of the fourth volume of the Landau and Lifshitz

course of theoretical physics: Quantum Electrodynamics, where it says that:

“In the relativistic theory the orbital angular momentum L and the spin S of a

moving particle are not separately conserved. Only the total angular momentum

is. The component of the spin in any fixed direction (taken as the z-axis) is
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therefore not conserved and cannot be used to enumerate the polarization (spin)

states of the moving particle.”

Reply and Revisions:

In our goal to focus on the massless case, our original manuscript was overly brief in dis-

cussing the massive case which, as you point out, has some subtleties to it as well. In

summary, there is potential confusion because there are actually two different spin opera-

tors in use for massive particles [1], but only one of these commutes with the Hamiltonian.

One is the Wigner SAM operator defined on particles with positive energy; this commutes

with the Hamiltonian and thus its eigenvalues constitute “good” quantum labels. The other

is the Dirac spin which is defined on both the positive (particle) and negative (anti-particle)

energy states (i.e. in the bispinor representation). The Dirac spin mixes the positive and

negative energy solutions and thus does not commute the Hamiltonian. We discuss this in

detail below.

We first note that Foldy [2] gives a simple construction of relativistic massive spin s

representations on wave functions χa(r, t) with 2s + 1 complex components. In this repre-

sentation (in position space) [2] J = −ir×∇+s where s are the spin s matrices which act

only on the internal components of the wave function (they mix the χa(r, t) at fixed (r, t)).

The Hamiltonian is given (neglecting constants) by Foldy’s Eq. (23):

Hχa(r, t) =

∫ √
m2 + k2eik·(r−r′)χa(r′, t)dr′dk. (2)

Since the Hamiltonian does not mix components of χ and since s does not change (r, t),

we have that [H, s] = 0, so s is conserved (and therefore so is l
.
= −ir × ∇). Thus,

contrary to the quoted claim by Landau and Lifshitz, it is possible to define SAM and

OAM operators for massive particles which are independently conserved (although their

claim makes sense in reference to the bispinor/Dirac representation we will later discuss).

We note that Foldy explicitly constructs a massless representation for which this holds.

Wigner [3] uses substantially more involved methods to show that all representations with

the same mass are isomorphic, so that it follows that every massive representation can be

put into the form described by Foldy if coordinates are correctly chosen (although it is not a

priori obvious how to do so). Indeed, one can use Wigner’s little group method to explicitly

write down SAM and OAM operators which commute with the Hamiltonian and to choose

coordinates which put s and l into the simple Foldy form. This is described in Ref. [1] and
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this SAM operator is called the Wigner spin. We have derived an equivalent form of this for

an arbitrary massive vector bundle representation. We describe this construction here and

have added it to Section 3 of the manuscript.

Let π : Em → Mm denote a vector bundle consisting of all states (k, v) of a particle with

definite 4-momentum k = (k0,k) on the mass m hyperboloid where v describes the internal

polarization states (which has 2s+1 DOFs). Let Σ be the Poincaré action on Em. We seek

a decomposition

J = L+ S (3)

where S and L both generate SO(3) symmetries of Em, and S does not change k. As

you point out, J generates the canonical copy of SO(3) in the Poincaré group ISO+(3, 1)

describing the pure 3D rotations (no boost or translation). S and L will certainly not

generate that canonical copy of SO(3) since we assume that S and L are both unequal to

J . Nonetheless, we can still seek other SO(3) actions on Em. In fact, the Poincaré group

contains an infinite number of copies of SO(3) apart from the aforementioned canonical

copy, and these show up in the little group method. The little group Hk at k is defined by

Eq. (17) in the manuscript as the set of Lorentz transformations leaving k invariant. The

canonical copy of SO(3) corresponds to Hk0 where k0 = (m, 0, 0, 0). For k ̸= k0, let Λk be

the unique boost taking k0 to k, and then we see that

Hk = Λk ◦Hk0 ◦ Λ−1
k . (4)

Since the subgroups Hk0 and Hk are conjugate (in the group theory sense), they are isomor-

phic. For each k we obtain a copy of SO(3) in ISO+(3, 1) which describes an internal SO(3)

symmetry of the particles with momentum k. For k ̸= k0, many of the elements of Hk are

not pure rotations. Indeed, typical elements of Hk will involve boosts to some new k′ (with

|k′| = |k|) followed by a rotation which brings k′ back to k. We note that Hk ̸= Hk′ for

k ̸= k′, so no single Hk generates an internal SO(3) symmetry on all of Em. However, Eq.

(4) indicates how such a global action ΣS can be constructed. For a rotation R ∈ SO(3),

define

ΣS(R)(k, v) = Σ(Λk)Σ(R)Σ(Λ−k)(k, v). (5)

This action just applies the rotation R in the rest frame of the particle. This action does

not change the momentum k, so it describes a global internal symmetry. From this property
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it is clear that this is not the same SO(3) action generated by J , since the latter rotates the

3-momentum. The generator is

S = Σ(Λk) ◦ J0 ◦ Σ(Λ−k) (6)

where J0 is the restriction of J to the fiber Em(k0) of states with momentum k0 = (m, 0, 0, 0).

S is a spin angular momentum operator for a massive relativistic particle (the Wigner spin);

we emphasize that it is not equal to J . We can choose coordinates (v1, . . . , v2s+1) for Em(k0)

(corresponding to the states of a particle at rest) such that J0 acts by the spin s matrices

Ss, so that

S = Σ(Λ−k) ◦ Ss ◦ Σ(Λk). (7)

In fact, as in the little group method (Ref. [4], Eq. 2.5.5), we can choose coordinates for

the other fibers as

(k, vi)
.
= Σ(Λk)(k0, vi). (8)

Applying Eq. (7) in these coordinates, we obtain the coordinate representation

S = Ss. (9)

In other words, using the fact there is a unique boost from k to k0, we can label any internal

state according to its corresponding rest frame label. The 2s+1 component wave functions

used in Foldy’s representation are sections of the trivial bundle R3 × C2s+1. What we just

did was construct a canonical isomorphism between Em and that trivial bundle, such that

under this isomorphism the SAM operator has the simple Foldy form. Said differently, Eq.

(5) gives the general definition of the spin angular momentum operator and Eq. (9) shows

how it can be described by the spin s matrices if rest frame coordinates are used to label

internal states. The orbital angular momentum is defined by

L = J − S. (10)

It generates an SO(3) symmetry since J and S do.

We note that S and L both generate symmetries which do not change the magnitude

of the three-momentum |k|. Therefore, they do not change the energy k0 =
√
m2 + |k|2.

They thus commute with the Hamiltonian of the free theory so that S and L are both

conserved (although this is not necessarily true once interactions are included, which is also
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the case for nonrelativistic SAM and OAM). Because S and L are both generators of SO(3)

symmetries and thus angular momentum operators, one can apply the addition of angular

momentum equation and the Clebsch-Gordon sum rule to immediately determine the total

angular momentum eigenstates of the particle and their multiplicities, and one sees that

these multiplicities agree with those found in nonrelativistic quantum mechanics.

We now turn to a discussion of the Dirac spin operator Σ for massive spin 1/2 particles,

which is also discussed by Terno [1] and how it differs from the Wigner spin operator just

described. Here, we will just show that unlike the Wigner spin, the Dirac spin does not

commute with the free theory Hamiltonian. This operator arises in the bispinor/Dirac

representation in which one works with an internal state space of dimension 2(2s + 1) = 4

rather than 2s + 1 = 2. The doubling of the internal degrees of freedom corresponds to

the inclusion of negative energy solutions which correspond in turn to anti-particles. In this

representation, the definite momentum states are elements of the trivial bundle R3 × C4,

where the R3 corresponds to the momentum k and C4 to the internal states. At each k

there are two states with positive energy E ([5], Eqs. (3.99) and (3.100))

|k,+1⟩ =
√

E +m

2m


1

0

kz
E+m

kx+iky
E+m

 , |k,+2⟩ =
√

E +m

2m


0

1

kx−iky
E+m

−kz
E+m

 (11)

and two states with negative energy −E

|k,−1⟩ =
√

E +m

2m


kz

E+m

kx+iky
E+m

1

0

 , |k,−2⟩ =
√

E +m

2m


kx−iky
E+m

−kz
E+m

0

1

 . (12)

The Dirac spin operators are ([6], Eq. 3.27)

Σj =
1

2

σj 0

0 σj

 (13)

where the σj are the Pauli matrices. The Σj generally mix the positive energy states with

the negative energy states, for example,

Σx|k̂z,+1⟩ = (E +m)2 + 1

(E +m)2 − 1
|k̂z,+2⟩+ 2(E +m)

(E +m)2 − 1
|k̂z,−2⟩. (14)
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Thus, the Hamiltonian does not generally commute with Σ. Since Σ mixes particles and

anti-particle states, it describes a symmetry of the bispinor space but not of the particle or

anti-particle states independently. On these grounds, one may argue that that the Wigner

spin operator is the correct SAM operator for massive particles; Terno [1] gives additional

arguments supporting this conclusion. Nonetheless, the Dirac spin operator is an important

and commonly used theoretical tool, and we have altered our paper to avoid confusion. We

note that when Landau and Lifshitz say that the spin and orbital angular momentum are

not independently conserved, it appears they are referring to the Dirac spin operator and

the corresponding OAM, as evidenced by the fact that they refer to Σ as the spin operator

for spin 1/2 particles in the next chapter (cf. Eq. 21.21).

In the abstract, we changed “the SAM-OAM splitting is unambiguous for massive parti-

cles” to “the angular momentum of massive particles has a natural splitting into the Wigner

SAM and OAM operators”. We have modified Sec. 3 (pp. 5-6) to include the explicit con-

struction of the Wigner SAM operator for massive particles described above, and show that

it commutes with the Hamiltonian. After this construction, we emphasize that this operator

should not be confused with the Dirac SAM operator.

Referee comment: 2) I think that the last statement in the following sentences is too

strong and should be changed.

“In particular, while the Sm operators commute with each other and thus generate an R3

symmetry, the Sp on the rhs of Equation (25) shows that the Lm do not form a Lie subalgebra.

Thus, L does not generate any symmetry at all.”

I agree that the Lm do not form a Lie subalgebra, but one can still exponentiate a given Lm

to generate a symmetry operator. That is, since Lm is self-adjoint, exp(−iθLm), for θ ∈ R,

is still a unitary operator that maps photons to photons. One can build eigenstates of such

operator, and I do not think that one can exclude that some material system could possess

such a symmetry, that is, stay invariant after transformation with exp(−iθLm).

As explained in Section 5 of Reference [12], since [Lm, Sm] = 0, one can see exp(−iθLm)

as the composition of a rotation and the transformation generated by Sm

Reply and Revisions:

We certainly agree with your statement, and this appears to just be an issue of the language

we used. As you point out, any single self-adjoint linear operator A corresponds to a unitary
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R symmetry via exponentiation (this symmetry may also sometimes descend to a symmetry

of the circle group S1 whose universal cover is R). This corresponds to the fact that an

operator always commutes with itself and thus spans the trivial 1D Lie algebra R. And as

you say, there does not appear to be any a priori reason to suggest that one cannot construct

an interacting theory in which the Hamiltonian commutes with A so that A is conserved.

In this paper, we mean to focus on a different problem, namely the question of whether

the vector operator L = (L1, L2, L3) generates a symmetry for some Lie group G. Since we

are concerned with the three-component vector operator L and not just a single component,

G must be a three-dimensional Lie group (such as SO(3) in the case of J or R3 in the

case of S). The fact that the operators L do not form a closed Lie algebra shows that L

does not generate such a symmetry. In the paper we used a boldfaced L to emphasize that

we were referring to the vector operator rather than a single component. We have further

emphasized this point by making two modifications. First, on p. 10, we have replaced the

clause

. . . the Sp on the rhs of Equation (25) shows that the Lm do not form a Lie

subalgebra.

with

. . . the Sp on the rhs of Equation (25) shows that the components of L do not

combine together to form a Lie subalgebra.

Second, we have added a short paragraph at the end of the section (p. 11) reading:

We note that while the vector operator L in the splitting (21)-(22) does not

generate any 3D symmetry, any individual component, say L3, commutes with

itself. It therefore generates a 1D symmetry, and such symmetries can be of in-

terest in interacting systems if they commute with the Hamiltonian, as discussed

in Ref. [7].

Referee comment: 3) I find the following statement somewhat misleading:

“Massless fermions, known as Weyl fermions, are exceptionally rare, and have only been

observed within the last decade in exotic materials.”

It is my understanding that, for these quasi-particles, the linear dispersion relations that

inspire the adjective “massless” do not have the same slope as a true massless particle in
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free space. In other words, the speed of light in such materials is smaller than c0. Moreover,

such dispersion relations are only approximately linear in the vicinity of a given point, and

become more complicated when going away from such point.

Reply and Revisions:

We thank you for drawing our attention to this issue. As you point out, these quasiparticles

have asymptotic behavior which is similar to massless particles, but that there are impor-

tant differences between such quasiparticles and true massless elementary particles. As our

formalism and results are concerned with elementary particles rather than such quasiparti-

cles, we have removed reference to Weyl fermion quasiparticles. In particular, the original

passage in Sec. II

We restrict our discussion to non-projective representations of ISO+(3, 1), which

corresponds to treating only particles with integer spin or helicity, i.e., bosons.

Nearly all known massless particles are bosons, so this assumption has little effect

on the generality of our results. Massless fermions, known as Weyl fermions, are

exceptionally rare, and have only been observed within the last decade in exotic

materials [8–10].

has been changed to

We restrict our discussion to non-projective representations of ISO+(3, 1), which

corresponds to treating only elementary particles with integer spin or helicity,

i.e., bosons. All elementary massless particles in the Standard Model are bosons,

so this assumption has little effect on the generality of our results.
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