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Dear Referee,

We thank you for reviewing our article and respond to your comments below.

Referee comment:

1. I disagree with this statement in the abstract: “Moreover, it has been

shown that most of the proposed SAM and OAM operators do not

satisfy the defining commutation relations of angular momentum op-

erators and are thus not legitimate splittings.” Consequently, I partially

agree with the first half of the statement since the relativistic gauge-dependent

SAM and OAM operators fulfill the cyclic commutation relations, and the gauge-

independent operators do not. However, the second half of the statement about

the splitting being non-legitimate is not fully correct in my opinion. The reasons

for my concern are covered in the comments listed below.

2. One of the primary concerns addressed in this paper revolves around the

angular momentum operators for massless bosons that do not follow the SO(3)

commutation relations. This has been highlighted in the Introduction, in the

statement: “However, most of these operators have been shown to either not

be well defined or else not actually satisfy SO(3) commutation relations and

are therefore not genuine angular momentum operators.” This directly ques-

tions the definition of Angular Momentum in the context of massless bosons.

The fundamental definition of the angular momentum operator comes from the

fact that it is a generator of rotation for the corresponding symmetry group

under analysis. In DOI: 10.1103/PhysRevA.26.3428 (1982), Lenstra and Man-

del showed that the total angular momentum operator generates rotations for a

general massless field, which is also highlighted in DOI: 10.1364/JOSAB.524752

(2024). However, the derivations done by Lenstra and Mandel in 1982

do not imply that the commutation relations from SO(3) group is a

necessary rule for angular momentum operators for the massless field.

Reply:

∗ ep11@princeton.edu
† hongqin@princeton.edu

2

mailto:ep11@princeton.edu
mailto:hongqin@princeton.edu


The requirement that the total angular momentum operators J satisfies

[Ja, Jb] = iϵabcJc (1)

is a direct consequence of the Poincaré symmetry (Lorentz symmetry + spacetime translation

symmetry) of the universe. One of the Wightman axioms of quantum field theory is that the

Hilbert space of particle states is a unitary representation of the Poincaré group ISO+(3, 1)

(see for example [1] Defn. 6.1, [2] Sec. 5.5 iii., or [3] p. 56, II.1.2 (A.1)). Indeed, since Wigner

[4] first noted the correspondence between particles and irreducible unitary representations

of the Poincaré group, essentially all formulations of quantum field theory assume that

the single particle states (and by extension the multiparticle Fock space) have well-defined

transformations under the Poincaré group i.e. are a representation of the Poincaré group.

Any representation of the Lie group ISO+(3, 1) has an induced representation of the Lie

algebra iso(3, 1). We will focus on the subgroup of Lorentz transformations SO+(3, 1) and

its Lie algebra so(3, 1). The generators of any representation of so(3, 1) are the Hamiltonian

H, the momentum operators P , the (total) angular momentum operators J , and the boost

generators K which satisfy the commutation relations ([5], p. 61)

[Ja, Jb] = iϵabcJc , [Ja, Kb] = iϵabcKc , [Ka, Kb] = −iϵabcJc (2)

[Ja, Pb] = iϵabcPc , [Ka, Pb] = iHδab , [Ka, H] = iPa (3)

[Ja, H] = [Pa, H] = [Pa, Pb] = [H,H] = 0. (4)

In particular, there is a canonical copy of 3D rotations SO(3) in SO+(3, 1) (describing the

observed rotationally symmetry of universe) and a corresponding canonical copy of so(3) in

iso(3, 1). The generators of this so(3) subalgebra are the total angular momentum operators

J and they satisfy (1) as seen from (2). This is an infinitesimal version of the requirement

that acting on a state with a rotation R1 ∈ SO(3) followed by another rotation R2 ∈ SO(3)

gives the same result as acting on the state with the the composite rotation R2R1. We

emphasize that this is purely a mathematical consequence of the physical requirement that

the theory is Poincaré symmetric. Indeed, their is a basis of the Lie algebra so(3, 1) which

also satisfy Eqs. (2)-(4), and by the definition of a Lie algebra representation ([6], Defns.

16.12 and 16.36), the generators (H,J ,K) must satisfy the same commutation relations

as the Lie algebra. We also emphasize that everything above applies to both massive and

massless quantum field theory. In the massive case, one can take the nonrelativistic limit,
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and one instead obtains a representation of the Galilean group which still has a canonical

copy of 3D rotations SO(3). The generators of the corresponding Lie algebra representation

are the nonrelativistic angular momentum operators and which must also satisfy Eq. (1) ([5],

p. 62). Lorentz/Poincaré symmetry is a fundamental requirement of any relativistic theory,

and it is for this reason that the the commutation relations Eq. (1) are assumed throughout

the literature [5, 7–14]. Exceptions are the recent papers you mention by Yang et al. [15]

and Das et al. [16]), which we will address in our reply to your subsequent comments.

We now address your reference to the article by Lenstra and Mandel [17] titled “Angular

momentum of the quantized electromagnetic field with periodic boundary conditions”. We

point that since they quantize the electromagnetic field in a box of side length L with periodic

boundary conditions. These boundary conditions explicitly break Poincaré symmetry (as

also noticed by Van Enk and Neinhuis on p. 968 of Ref. [18]) so it is unclear how relevant

their results are to the problem at hand. Regardless of this limitation, their results are

concerned with the commutators of the fields with the angular momentum operators, not

with the commutation relations between the angular momentum operators themselves. As

seen from axiomatic treatments of QFT, the requirement that the Hilbert space is a unitary

representation of the Poincaré group is separate from the requirement of how the fields

transform under Poincaré transformations. Compare, for example, axioms A.1 and D in

Haag [3] (pp. 56-57), or WA1 and WA6 in De Faria and De Melo [1] (pp. 118-119). This

is to say, the relativistic invariance of the particle states requires Eq. (1) regardless of how

the field commutes with angular momentum operators. We do remark, however, that the

commutators of field operators with the angular momentum operators are always consistent

with Eq. (1). Indeed, let ϕ(x) be some quantum field operator, Λ ∈ ISO+(3, 1), and Σ

be the representation of ISO+(3, 1) on the particle states with corresponding Lie algebra

representation η. Then the action on the fields is given by the adjoint action induced by Σ

([19], Eq. 11.67)

AdΛϕ(x)
.
= ΣΛϕ(x)ΣΛ−1 (5)

The induced Lie algebra representation of iso(3, 1) is the ad-representation where if ω ∈

iso(3, 1) then

adωϕ(x) = [ηω, ϕ(x)]. (6)

Restricting to ω ∈ so(3) we have a representation of so(3) so in the standard basis
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{ω1, ω2, ω3} of so(3), the ad-representation must obey the standard so(3) commutation

relations

[adωa , adωb
] = iϵabcadωc . (7)

Note that by definition ηωa = Ja. Applying both sides of Eq. (7) to ϕ(x) and using Eq. (6)

and the Jacobi identity gives

[[Ja, Jb], ϕ(x)] = [iϵabcJc, ϕ(x)]. (8)

This equation is satisfied if Eq. (1) holds. While in theory it may be possible to find some

other commutation relation among the Ja which satisfy Eq. (8), we again emphasize that

Eq. (1) is fundamentally required by the Poincaré symmetry of the particle states, not

because of Eq. (8).

Referee Comment:

2. (cont.) Since the article deals with massless bosons, the little symmetry group

ISO(2) should be the central theme for the angular momentum calculations, and

not SO(3). The authors should consider modifying the sections to include the

ISO(2) symmetry group, as opposed to SO(3) for these reasons.

Reply:

We first note that we do talk about the little group extensively throughout this paper,

and its relationship to the obstruction of an SAM-OAM decomposition for massless par-

ticles. However, the little group is unrelated to the commutation relations that the total

angular momentum operators J should satisfy. Indeed, the little group method [4, 5] was in-

vented by Wigner as a systematic method to construct representations of the Poincaré group

ISO+(3, 1) which correspond to particles. The little group is an important theoretical tool,

but ultimately the constructed particle representation of ISO+(3, 1) contain a canonical copy

of SO(3) whose generators are the total angular momentum operators [5], following from

the same construction discussed in our reply to the previous comment. It is of particular

note that this copy of SO(3) corresponds to the subgroup of rotations in both the massive

and massless cases; while the little group does happen to be SO(3) in the case of massive

particles, this is an altogether different copy of SO(3) [20]. The total angular momentum op-

erators always correspond to this 3D rotational symmetry, regardless of the little group, and
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thus always satisfy Eq. (1). Eqs. (11) and (12) in the paper hold for any representation of

the Poincaré group, we have made no assumptions other than the fundamental assumption

that particle states are Poincaré symmetric, which is one of the foundational assumptions

of a relativistic theory.

Referee Comment:

3. Equations 11 and 12 needs modifications, since these equations are valid

for gauge-dependent angular momentum operators, and not for the gauge-

independent case(please refer Paragraph 2 of Point 2 above). In fact, Reference

(16) from the paper and DOI: 10.1364/JOSAB.524752 (2024) proves this state-

ment.

Reply:

Equations (11) and (12) in the paper impose the commutation relations [Ja, Jb] = iϵabcJc

on the total angular momentum operator. As discussed in the reply to the first comment,

this is required by the Poincaré symmetry of the theory. The total angular momentum

operator for photons indeed satisfies this equation. This is derived, for example, in the

Gupta-Bleuler formalism by Ref. [11] Eq. (27). Furthermore, this total angular momentum

is gauge-invariant ([11], Sec 3.C).

In Ref. [16] you cite, Das et al. use a non-covariant quantization scheme to suggest that

the total angular momentum operators do not satisfy Eq. (1) but instead

[Ĵa, Ĵb] = iℏϵmnpL̂c (9)

where L̂ is another operator they define. This would indicate that the theory violates

Lorentz symmetry, which would be at odds with the dictates of special relativity on which

particle physics is based. To us, it seems that the most reasonable interpretation of Eq. (9)

is that in this quantization scheme Ĵ is not the correct total angular momentum operator.

A similar conclusion was reached by Leader and Lorcé in 2019 ([10], pp. 23-24) when

discussing previous proposed angular momentum operators. We quote, “. . . if other methods

are utilized to construct new variants of the angular momentum operators and these fail to

satisfy the commutation relations Eq. (1), that does not imply a ‘sick’ theory, but simply

that the constructed operators are not genuine angular momentum operators.”
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We also emphasize that second quantization is not a single strictly defined procedure.

It is rather a set of related procedures one applies to a classical field theory in the hopes

of producing a well-behaved quantum field theory. There are points, particularly when

quantizing gauge fields, where one must make choices on how to perform the quantization

and there can be multiple quantization procedures which lead to satisfactory quantum field

theories (e.g. Gupta-Bleuler vs. non-covariant quantization). It is always necessary to

check at the end that one has in fact produced a well-behaved quantum field theory, and in

particular that one has a genuine representation of the Poincaré group i.e. that the iso(3, 1)

generators satisfy the commutation relations (2)-(4). Das et al. [16] use the Coulomb gauge

which is not Lorentz invariant, and so it is easy to lose track of the Lorentz symmetry

during quantization. There is no problem with utilizing such non-covariant quantization

provided that in the end it produces a quantum field theory which is Poincaré invariant.

The particular non-covariant quantization used in [16] is a common one and known to

produce a valid quantum field theory, but it is not a natural setting to discuss problems

which are explicitly related to Lorentz symmetry. In particular, it is not obvious how to

write down angular momentum operators which satisfy the required commutation relations

(1). The work of Das et al. [16] shows that Ĵ defined by their Eq. (1) satisfies (9) rather

than (2) and is thus not a satisfactory candidate for the total angular momentum operator

by the standard definition.

We discuss the paper by Yang et al. [15] in our response to the next comment.

Referee Comment:

4. This line in section 3 “The defining property of angular momentum

operators is that they generate SO(3) symmetries”, which talks about

massless bosons needs to be modified, since for massless bosons, the group ISO(2)

should be the primary center of study, and not SO(3) which is the case for massive

particles. This negates the need for reinforcing Equations 15 and 16. This

directly leads to the modification of No-Go Theorem 1 in the context of massless

bosons. The last line of Section 3 “The other set of operators, (Lobs
M , Lobs

M ), are

gauge invariant, but the Lobs
M,i commute with each other rather than satisfy cyclic

SO(3) relations and are therefore not angular momentum operators.” should be
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modified for the same reason.

Reply:

As discussed in the reply to the previous comment, the total angular momentum operators

must satisfy SO(3) commutation relations as generators of a the subgroup of 3D rotations

SO(3) of the Poincaré group. This is required by the assumption of Poincaré invariance

central to modern particle physics, and is unrelated the little group or whether or not a

particle is massive or massless. However, the term “angular momentum operators” have also

been applied to other operators besides the total angular momentum operators, notably

the SAM and OAM operators for massive particle in relativistic or nonrelativistic quantum

mechanics. The standard definition in the literature [6, 7, 9–14, 21] is that generic angular

momentum operators L are generators of an SO(3) representation, or equivalently, that they

satisfy Eq. (1). There is good reason for this definition, as essentially all of the theoretical

tools related to angular momentum operators rely on this assumption. For example, the

addition of angular momentum formula ([6], Sec. 17.9), the Clebsch-Gordan formalism

([22], Sec. 15.2), the Casimir invariance of L2 and the form of its eigenvalues as ℓ(ℓ + 1)

([6], Prop. 17.8), and the multiplet structure of the irreducible representations in terms of

eigenstates of (L2, Lz) and the theory of ladder operators ([22], Sec. 12.5) all follow from

the assumption that [La, Lb] = iϵabcLc. The purpose of this paper is to explore potential

SAM-OAM decompositions using this standard definition.

To emphasize this, we have modified the passage you first quote to now read

In this article, we take the defining property of angular momentum operators to

be that they generate SO(3) symmetries, as is standard in the literature [6, 7, 9–

14, 21]. This ensures that standard results about angular momentum operators

hold such as the addition of angular momentum equation, the Clebsch-Gordan

formalism, the Casmimir invariance of the S2 and L2, and the angular momen-

tum multiplet structure of the eigenspaces of (L2, Lz) and (S2, Sz). We note

that there has been some work in which this requirement on angular momentum

operators is not imposed [15, 16] and that our results do not apply in such a

setting.

We have also modified the second passage you quote, in which we discuss the operators

defined by Yang et al. [15], to emphasize that our comments assume the standard definition
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of angular momentum operators as generators of an SO(3) representation

The other set of operators, (Sobs
M ,Lobs

M ), are gauge invariant, but the Sobs
M,i com-

mute with each other rather than satisfy cyclic so(3) relations, and are therefore

not angular momentum operators by the standard definition.

Referee comment: 5. There are a couple typos in the paper:

(a) “Massless” in Section 3 title

(b) Some parts of the paper says SO(3), while others say so(3)

Reply:

(a) Thank you for catching this.

(b) SO(3) and so(3) are different objects, the former is the Lie group and the latter is the

corresponding Lie algebra. The use of capital letters for Lie groups and Goethic/Fraktur

font for the corresponding Lie algebras is standard notation, see for example Refs. [23] p.

211, [24] p. 230, [2] p. 9, or [25]. Our first use of this notation was on page 4, in which we

wrote

The Lie group representations Σ and Σ̃ of ISO+(3, 1) induce corresponding Lie

algebra representations η and η̃ of iso(3, 1) describing the infinitesimal group

actions . . .

which we believe makes our notation unambiguous.
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