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Responses to Referee 2: 
---------------------------------------------------------------------------------------------------------------------   
We thank the referee for the careful reading of our manuscript and the recommendation for 
publication given the comments are addressed based on the positive judgement that our paper is 
“clearly written with interesting results”, providing a “novel way of detecting topology in 
amorphous topological metals”. We also appreciate his/her constructive suggestions/questions 
which are invaluable in improving our paper. The following contains our detailed response to 
specific points. 
 
Comment 1: - potentially novel way of detecting topology in amorphous topological metals 
- clearly written manuscript 
 
Reply: We thank the referee for the high evaluation of our paper. 
 
Comment 2: the more interesting case of topological semimetal phase protected by the time 
reversal symmetry is less explored. 
 
Reply: We thank the referee for the nice suggestion. In the original version, for the time-reversal 
symmetric case we did not provide numerical results as rich as the case without the time-reversal 
symmetry, because the time-reversal symmetric case consumes much more computational 
resources due to the doubled internal degrees of freedom and we did not expect qualitatively 
different results. In the revised version, we have followed the referee’s suggestion to calculate 
the Bott index, density of states and localization length of the time-reversal invariant case, as 
shown in Sec. 6 and Fig. 5 of the revised version, with Fig. 5 reproduced in the following.  
 

 
We find that the Bott index on amorphous lattices [see the red line in the above figure (b)] agrees 
well with the Hall conductance (blue line). Similar to the case without time-reversal symmetry, 



the shift of the plateau of the Hall conductance in energy is attributed to the right-moving 
behavior of the Landau levels as shown in the above figure (c) with arrows indicating the shifting 
direction of Landau levels induced by structural disorder. Although the Landau levels overlap 
with each other and renders the system gapless, the bulk states are localized except at a critical 
point, demonstrated by the normalized localization length in the figure (d). We see that the 
normalized localization length decreases as 𝐿𝐿𝑥𝑥 increases far away from 𝐸𝐸 = 10.7 and tends to 
converge to a constant near this energy. The inset shows the result of the finite-size scaling 
calculations. For 𝐸𝐸 = 8.1 and 14, we observe a finite slope, indicating the localization behavior, 
whereas for 𝐸𝐸 = 10.7, we see a vanishing slope, which is a signature of the critical extended 
property. Therefore, the quantized Hall conductance arises from the edge states that remain 
extended; meanwhile, the localized bulk states do not contribute to the transport. The generic 
mechanism indicates that 3D quantum Hall effect may be broadly used to detect the topology of  
time-reversal symmetric topological semimetals, provided that the Landau levels are not too 
close in the energy space. 
 
We have also studied the time-reversal invariant case under a tilted magnetic field with 𝜃𝜃 = 10∘. 
Surprisingly, on amorphous lattices we see a transition from a plateau of Hall conductance at 
𝑒𝑒2/(2ℎ) to a plateau at −𝑒𝑒2/(2ℎ) as shown in the following figure (a) (the blue line), in stark 
contrast to the case under a vertical magnetic field with Hall conductance quantized at even 
integer values in units of 𝑒𝑒2/(2ℎ), shown in Fig. 5(b). However, on a regular lattice, no 
quantized plateaus of Hall conductance arise in the same energy region up to 𝐿𝐿𝑥𝑥 = 550 and no 
signature of quantization is observed during the increasing of the system size. To elaborate on 
the reason why quantized Hall conductance emerge on amorphous lattices while is absent on the 
regular lattice, we show the energy spectrum with respect to the lattice momentum 𝑘𝑘𝑥𝑥 on a 
regular lattice in the following figure (b), exhibiting Landau levels with edge states going 
upwards and downwards alternately. For example, within the gap near 𝐸𝐸 = 8 (indicated by the 
blue and red points), there exist two edge states propagating in the same direction (indicated by 
blue points) and one in opposite direction (indicated by the red point) on each edge, also shown 
schematically in the following figure (c). The quantized Hall conductance is prohibited by the 
backscattering between the counter-propagating edge states on each edge. On amorphous 
lattices, a pair of counter-propagating edge states become localized due to disorder with only one 
edge channel left, resulting in the quantized Hall conductance. 
                    

 
We have added the figures and the corresponding discussion in the Sec. 6 and Sec. 7 in the 
revised manuscript. 



Comment 3: it is not clear whether the results are generic to all time-reversal symmetry 
protected topological phases. 
 
Reply: We thank the referee for the question. In topological semimetals with Fermi arcs on the 
surfaces and Weyl or Dirac points in the bulk, the 3D quantum Hall effect arises from the Weyl 
orbit. For gapped topological phases such as 3D topological insulators with time-reversal 
symmetry, while Weyl orbits do not exist under magnetic fields, the Dirac cone surface states 
can still lead to the appearance of Landau levels under magnetic fields, resulting in the quantum 
Hall effect. Recent experiments have observed spin-momentum locked surfaces in amorphous 
Bi2Se3 (Ref. [72]). In the presence of a magnetic field, these surface states may contribute to the 
formation of Landau levels, as suggested by our results that even in completely random lattices, 
Landau levels can exist, albeit broadened, and can still give rise to quantized Hall conductance. 
Thus, quantum Hall effects in amorphous Bi2Se3 deserves to be studied both theoretically and 
experimentally. 
 
We have added a sentence “In addition, our results demonstrate the presence of Landau levels in 
3D amorphous systems, which may stimulate further investigation into the quantum Hall effect 
in amorphous topological insulators [72], such as Bi2Se3, under magnetic fields.” in the revised 
manuscript. 
 
Comment 4: The authors show that the amorphous topological metallic systems may exhibit a 
3D quantum Hall effect in presence of the magnetic field. Since this phenomenon can be 
observed experimentally, the work offers a way to detect/confirm topological features in 
amorphous metallic systems that do not admit momentum-space topological invariants. This is 
particularly relevant for Weyl semimetals protected by the time-reversal symmetry for which 
most of the real-space approaches to calculating the topological invariant fail, with the exception 
of the spectral localizer (see Schulz-Baldes & Stoiber EPL 136 27001 (2021) and J. Math. Phys. 
64, 081901 (2023); Cerjan & Loring PRB 106 064109 (2022); Dixon et al. PRL 131 213801 
(2023); Franca & Grushin arXiv: 2306.17117). 
 
Reply: We thank the referee for the nice summary of our paper and for judging our work 
“particularly relevant” for the study of Weyl semimetals. We also thank the referee for bringing 
us the spectral localizer with references and we have added the references in the introduction of 
the revised manuscript.  
 
Comment 5: I find the manuscript clearly written with interesting results. Provided the authors 
answer my comments, I would be happy to recommend this work for publication in Scipost 
Physics Core. 
 
Reply: We thank the referee for the high evaluation of our paper and his/her recommendation for 
publication after we address the comments. Based on the referee’s questions and suggestions, we 
have carried out substantial new calculations and significantly revised the manuscript and hope 
that this strengthened manuscript will convince him/her to recommend publication of this work 
in SciPost Physics rather than SciPost Physics Core. In the following, we would like to clarify 
why our paper is suitable for publication in SciPost Physics. 
 



First, we show that the 3D quantum Hall effect can serve as a probe of the Weyl-band-like 
topology in amorphous systems, especially in the case with time-reversal symmetry that the 
topology is hard to detect by other methods. The amorphous materials are ubiquitous in nature, 
and the breakthrough of observing topological surface states in amorphous Bi2Se3 by ARPES 
will definitely stimulate intense interest in the search of more amorphous topological materials, 
including amorphous topological semimetals which have never been found. Thus, our findings 
providing new ways to detect topology in amorphous systems are highly relevant to the current 
research, thereby significantly advancing the field of amorphous Weyl/Dirac metals. 
 
Second, the 3D quantum Hall effect in crystalline topological semimetal has been experimentally 
observed in Cd3As2 [Nature 565 331 (2019)] and an important further step is to study the effect 
in non-crystalline materials as disorder plays a central role in physics and non-crystalline 
materials are ideal platforms to study the effect of disorder in real materials. Therefore, our paper 
is highly relevant to the ongoing experimental development. We have slightly modified the 
conclusions in the revised manuscript accordingly. 
 
Comment 6: I do not agree with the authors that ARPES cannot be used to probe amorphous 
systems as it was in fact used in their Ref. 70 to demonstrate experimentally the existence of a 
topological phase in amorphous Bi2Se3. This is because in amorphous systems, we can still have 
well defined plane waves of momentum k describing the outgoing electron. The ARPES 
measures the overlap of these plane waves with the eigenstates of the Hamiltonian, implying that 
sharp spectral features in ARPES of amorphous systems indicate the presence of states. 
 
Reply: We thank the referee for the important comment. We have followed Ref. [70] (Ref. [72] 
in the current version) to calculate the surface spectral function on both regular and amorphous 
lattices as shown in the following figure. We see clear Fermi arcs on the regular lattice [figure 
(a)] but vague signature on amorphous lattices [figure (b)], suggesting that the ARPES 
measurement of the topological amorphous metal may be difficult. 

 
 
For clarity, we have replaced the term "impractical" with "difficult" in the introduction of the 
revised manuscript. We have also added the figure and corresponding discussion in Appendix A 
of the revised manuscript. 
 
Comment 7: In the last line of page 3, the authors set a value for parameter A that I could not 
find previously defined in the text. Since their Ref. 8 uses a parameter A in the Hamiltonian, and 



they use γ, I wonder shouldn't A be replaced with γ? This should also explain why they never set 
the value of parameter γ in the manuscript. 
 
Reply: We thank the referee for pointing out the typo. We have followed the referee’s 
suggestion to replace 𝐴𝐴 with 𝛾𝛾 in the revised manuscript. 
 
Comment 8: In Figs. 2(c) and (d), it is very unusual to see that the bulk states remain so visible 
even after averaging over 100 configurations. Could the authors explain this? 
 
Reply: We thank the referee for the question. We think that the high local density of states 
(LDOS) in certain locations in the bulk arise due to the finite number of samples. If we have 
infinitely many samples, the islands in the bulk with high values in the LDOS profile will be 
smoothed out. However, we only calculate 100 samples here due to the large consumption of 
computational resources, which are not enough to see a uniform LDOS distribution in the bulk.  
 
We know that in many previous works on amorphous topological phases, a hundred of samples 
are enough for a smooth LDOS profile in the bulk. However, in our case, the fluctuations of 
LDOS over samples are much severe, requiring more samples. To show the large fluctuations, 
we display the LDOS of four samples in the following. We can identify edge states in all the four 
samples under the identical color map, but the edge states in (a) and (b) are much clearer than (c) 
and (d), implying large fluctuations of LDOS over the samples. We see localized bulk states with 
high LDOS in the samples, which is even much more visible than the edge states in (c) and (d), 
implying the large number of samples needed for a smooth distribution in the bulk. As the bulk 
states emerge at different positions over the samples, we deduce a uniform probability 
distribution for the occurrence of the bulk states over the spatial positions in the bulk and thus 
expect a smooth profile of bulk LDOS for an infinite number of samples. The large fluctuations 
are a specific property of our model, perhaps due to the presence of the magnetic field and the 
3D nature. We have clarified this in Sec. 3 in the revised manuscript. 
 

 
 
Comment 9: Concerning section 5 that focuses on the time-reversal symmetry protected Weyl 
semimetals, it is not clear to me whether the results the authors obtain are specific to this model 



or are generic to this class of systems. It would significantly add to the value of the manuscript if 
the authors could provide a discussion on this. 
 
Reply: We thank the referee for the question. We believe that the results are generic to time-
reversal symmetric topological semimetals beyond the specific model we study. In the main 
manuscript, we show that the 3D quantum Hall effect can exist in amorphous systems because 
the bulk states are localized except at the critical point although the Landau levels broaden and 
overlap. The Chern number (Bott index) is carried by the critical states. Since this mechanism is 
generic, the quantum Hall effect should be able to exist in various models and a large range of 
system parameters as long as the separation between the Landau levels in the energy space is not 
too small. We have added a discussion on this point in Sec. 6 of the revised manuscript.  
 
Comment 10: Fig. 6(b), we see that the Hall conductances for crystalline and amorphous 
systems have a very similar dependence on 𝐸𝐸𝐹𝐹, in comparison with the time-reversal broken 
case. What would be the reason for this? In addition, I find that having a calculation similar to 
Fig. 3(a) would enrich the manuscript. 
 
Reply: We thank the referee for the careful reading of our manuscript. We have followed the 
referee’s nice suggestion to calculate the local density of states in this case and plot it in the 
following figure (c) along with the Hall conductance in Fig. 6. We see that in amorphous lattices, 
the Landau levels shift roughly the distance of two Landau levels compared with the regular 
lattice, indicated by the arrows. This explains why the dependence of Hall conductance on 𝐸𝐸F 
looks similar except for a shift in vertical directions by 2e2/(2ℎ). 
 

 
We have added the figure and the corresponding discussion in Sec. 7 of the revised manuscript. 
 
Comment 11: Could the authors calculate the Bott index for Hamiltonian Eq. (6) in presence of 
magnetic field? It would be a great to show the bulk-boundary correspondence works for this 
case. 
 
Reply: We thank the referee for the nice suggestion. We have followed the referee’s suggestion 
to calculate the Bott index for the time-reversal symmetric case as shown in the following figure. 
The Bott index (red line) agrees well with the Hall conductance (blue line), revealing the bulk-
boundary correspondence in the system. 



 
We have added the figure and the corresponding discussion in Sec. 6 of the revised manuscript.  
 
Comment 12: Finally, I wonder whether about the interplay between disorder strength and the 
magnetic field. In the presence of disorder, does the nonzero Hall conductance appear for any 
magnetic field strength? 
 
Reply: We thank the referee for the nice question. To address the question, we have calculated 
the Hall conductance with respect to the inverse of the magnetic field 𝐵𝐵 at a fixed 𝐸𝐸𝐹𝐹, as shown 
in the following figure (also see Fig. 4 in the revised manuscript). 
 
 

 
 
We see quantized plateaus in both regular (black line) and amorphous lattices (blue line) and as 
the magnitude of the magnetic field decreases (𝜋𝜋/𝐵𝐵 increases), the Hall conductance transitions 
from one plateau to another one with larger absolute value. The transition is attributed to the 
shifting of the Landau levels to lower energy as the magnetic field decreases, as shown in the 
above figure (b) for amorphous lattices. We also observe that the plateaus of the Hall 
conductance on amorphous lattices float upwards compared with the regular lattice, which is 
caused by the right moving of the Landau levels in the energy space induced by the structural 
disorder as we have explained in Fig. 3(a). 
 
The magnitude of the magnetic field cannot be too small for the occurrence of 3D quantum Hall 
effect which can be understood easily by taking the limit of no magnetic field under which no 
quantum Hall effect arises. When the magnetic field is too large, the 3D quantum Hall effect will 
also disappear. Intuitively, as the strength of the magnetic field increases, the bulk states with 
energy further away from the Weyl points will be squeezed into Landau levels together with the 



Fermi arc states near the Weyl points, because the degeneracy of the Landau level is proportional 
to the magnitude of the magnetic field. Away from the Weyl points, the bulk DOS is large, 
reminiscent of the conventional 3D metal, leading to the disappearance of well-separated Landau 
levels even on the regular lattice. Thus, the magnitude of the magnetic field has an upper bound 
for the 3D quantum Hall effect. To justify our arguments above, we calculate the DOS on 
amorphous lattices as shown in the above figure (c) under magnetic fields with magnitude 𝜋𝜋

𝐵𝐵
=

5, 22, 200. Only for moderate magnitude 𝜋𝜋
𝐵𝐵

= 22 (the red line), we see clear patterns of 
broadened Landau levels with stark contrast between peaks and valleys, which often implies the 
existence of the quantum Hall effect. Under too large (the blue line) and too tiny (the yellow 
line) magnetic field, Landau levels cannot be identified, indicating the absence of the quantum 
Hall effect. Therefore, the occurrence of the 3D quantum Hall effect requires the magnetic field 
in a moderate range of magnitude.    
 
We have added a new Section 5 to discuss the effects of the magnitude of the magnetic field on 
the quantum Hall effect in the revised manuscript.                                                                              


