
--------------------------------------------------------------------------------------------------------------------- 
Responses to Referee 1: 
---------------------------------------------------------------------------------------------------------------------   
We thank the referee for the careful reading of our manuscript and the positive comments that 
our paper “has sufficient novelty and relevance to the scientific community”, “quite relevant for 
current research in the field”, “clear writing and presentation” and thus “warrant publication”. 
We also appreciate his/her constructive suggestions/questions which are invaluable in improving 
our paper. The following contains our detailed response to specific points. 
 
Comment:  
1) Novel findings, with an approach motivated by experimental relevance. 
2) Multiple methods applied to verify and explain results. 
3) Generally clear writing and presentation. 
 
Reply: We thank the referee for the high evaluation of our paper. 
 
Comment 1: The cases with and without time-reversal symmetry could be compared and 
contrasted more; results are often obtained only for one or the other with no explanation for the 
choice. 
 
Reply: We thank the referee for the nice suggestion. In the original version, for the time-reversal 
symmetric case we did not provide numerical results as rich as the case without the time-reversal 
symmetry, because the time-reversal symmetric case consumes much more computational 
resources due to the doubled internal degrees of freedom and we did not expect qualitatively 
different results. In the revised version, we have followed the referee’s suggestion to calculate 
the Bott index, density of states and localization length of the time-reversal invariant case, as 
shown in Sec. 6 and Fig. 5 of the revised version, with Fig. 5 reproduced in the following.  
 

 



We find that the Bott index on amorphous lattices [see the red line in the above figure (b)] agrees 
well with the Hall conductance (blue line). Similar to the case without time-reversal symmetry, 
the shift of the plateau of the Hall conductance in energy is attributed to the right-moving 
behavior of the Landau levels as shown in the above figure (c) with arrows indicating the shifting 
direction of Landau levels induced by structural disorder. Although the Landau levels overlap 
with each other and renders the system gapless, the bulk states are localized except at a critical 
point, demonstrated by the normalized localization length in the figure (d). We see that the 
normalized localization length decreases as 𝐿𝐿𝑥𝑥 increases far away from 𝐸𝐸 = 10.7 and tends to 
converge to a constant near this energy. The inset shows the result of the finite-size scaling 
calculations. For 𝐸𝐸 = 8.1 and 14, we observe a finite slope, indicating the localization behavior, 
whereas for 𝐸𝐸 = 10.7, we see a vanishing slope, which is a signature of the critical extended 
property. Therefore, the quantized Hall conductance arises from the edge states that remain 
extended; meanwhile, the localized bulk states do not contribute to the transport. The generic 
mechanism indicates that 3D quantum Hall effect may be broadly used to detect the topology of  
time-reversal symmetric topological semimetals, provided that the Landau levels are not too 
close in the energy space. 
 
We have also studied the time-reversal invariant case under a tilted magnetic field with 𝜃𝜃 = 10∘. 
Surprisingly, on amorphous lattices we see a transition from a plateau of Hall conductance at 
𝑒𝑒2/(2ℎ) to a plateau at −𝑒𝑒2/(2ℎ) as shown in the following figure (a) (the blue line), in stark 
contrast to the case under a vertical magnetic field with Hall conductance quantized at even 
integer values in units of 𝑒𝑒2/(2ℎ), shown in Fig. 5(b). However, on a regular lattice, no 
quantized plateaus of Hall conductance arise in the same energy region up to 𝐿𝐿𝑥𝑥 = 550 and no 
signature of quantization is observed during the increasing of the system size. To elaborate on 
the reason why quantized Hall conductance emerge on amorphous lattices while is absent on the 
regular lattice, we show the energy spectrum with respect to the lattice momentum 𝑘𝑘𝑥𝑥 on a 
regular lattice in the following figure (b), exhibiting Landau levels with edge states going 
upwards and downwards alternately. For example, within the gap near 𝐸𝐸 = 8 (indicated by the 
blue and red points), there exist two edge states propagating in the same direction (indicated by 
blue points) and one in opposite direction (indicated by the red point) on each edge, also shown 
schematically in the following figure (c). The quantized Hall conductance is prohibited by the 
backscattering between the counter-propagating edge states on each edge. On amorphous 
lattices, a pair of counter-propagating edge states become localized due to disorder with only one 
edge channel left, resulting in the quantized Hall conductance. 
                    

 



We have added the figures and the corresponding discussion in the Sec. 6 and Sec. 7 in the 
revised manuscript. 
 
Comment 2: Potentially relevant aspects regarding parameters, in particular the magnitude of 
the magnetic field, left vague or unexplored. 
 
Reply: We thank the referee for the nice suggestion. To elaborate on the effect of the magnitude 
of the magnetic field on the 3D quantum Hall effect, we have followed the referee’s suggestion 
to calculate the Hall conductance with respect to the inverse of the magnetic field 𝐵𝐵 at a fixed 
𝐸𝐸𝐹𝐹, as shown in the following figure (also see Fig. 4 in the revised manuscript). 
 

 
 
We see quantized plateaus in both regular (black line) and amorphous lattices (blue line) and as 
the magnitude of the magnetic field decreases (𝜋𝜋/𝐵𝐵 increases), the Hall conductance transitions 
from one plateau to another one with larger absolute value. The transition is attributed to the 
shifting of the Landau levels to lower energy as the magnetic field decreases, as shown in the 
above figure (b) for amorphous lattices. We also observe that the plateaus of the Hall 
conductance on amorphous lattices float upwards compared with the regular lattice, which is 
caused by the right moving of the Landau levels in the energy space induced by the structural 
disorder as we have explained in Fig. 3(a). 
 
The magnitude of the magnetic field cannot be too small for the occurrence of 3D quantum Hall 
effect which can be understood easily by taking the limit of no magnetic field under which no 
quantum Hall effect arises. When the magnetic field is too large, the 3D quantum Hall effect will 
also disappear. Intuitively, as the strength of the magnetic field increases, the bulk states with 
energy further away from the Weyl points will be squeezed into Landau levels together with the 
Fermi arc states near the Weyl points, because the degeneracy of the Landau level is proportional 
to the magnitude of the magnetic field. Away from the Weyl points, the bulk DOS is large, 
reminiscent of the conventional 3D metal, leading to the disappearance of well-separated Landau 
levels even on the regular lattice. Thus, the magnitude of the magnetic field has an upper bound 
for the 3D quantum Hall effect. To justify our arguments above, we calculate the DOS on 
amorphous lattices as shown in the above figure (c) under magnetic fields with magnitude 𝜋𝜋

𝐵𝐵
=

5, 22, 200. Only for moderate magnitude 𝜋𝜋
𝐵𝐵

= 22 (the red line), we see clear patterns of 
broadened Landau levels with stark contrast between peaks and valleys, which often implies the 



existence of the quantum Hall effect. Under too large (the blue line) and too tiny (the yellow 
line) magnetic field, Landau levels cannot be identified, indicating the absence of the quantum 
Hall effect. Therefore, the occurrence of the 3D quantum Hall effect requires the magnetic field 
in a moderate range of magnitude.    
 
We have added a new Section 5 to discuss the effects of the magnitude of the magnetic field on 
the quantum Hall effect in the revised manuscript. 
 
Comment 3: The main finding of the work appears to be that the presence of magnetic fields can 
allow for a detection of Weyl bands in amorphous materials even when time-reversal invariance 
(in the absence of a magnetic field) causes the conductance from those bands to ordinarily cancel 
out. With recent experiments finding evidence for a 3D quantum Hall effects in crystalline 
system, and the challenges with measuring amorphous anomalous Hall conductance mentioned 
in the manuscript's introduction, the findings are quite relevant for current research in the field. 
The authors find that topology (as calculated by Bott index) and observables (Hall conductivity) 
match well, and explain the well-defined quantization by considering the localization length of 
bulk wavefunctions. 
 
Reply: We thank the referee for the nice summary of our paper and judging our paper as “quite 
relevant for current research”.  
 
Comment 4: Two Hamiltonians are considered, first without and later with time-reversal 
symmetry. The latter seems potentially more significant as a finding, as the case with broken 
TRS, although without a magnetic field, was already considered in Ref. [54]. 
 
However, many of the results, e.g. the localization lengths and scaling, as well as the tilted 
magnetic field in the appendix, are only obtained for the TR-breaking case. Even if I do find it 
plausible the results would not be too dissimilar, an explicit discussion of this is absolutely 
warranted. 
 
Reply: We thank the referee for the comment and the suggestion. We have followed the 
referee’s suggestion to calculate the Bott index, density of states and localization length for the 
time-reversal invariant case (see our reply to Comment 1 and the added discussion in Sec. 6 in 
the revised manuscript) and study the case under a tilted magnetic field (see our reply to 
Comment 1 and the added discussion in Sec. 7 in the revised manuscript). 
 
Comment 5: As for the TR-breaking case, given that [54] found a quantized Hall conductance 
with no external magnetic field, the claim that parameters are chosen "with no loss of generality" 
is not obvious to me. Intuitively, while the Hamiltonian is different, could not a large enough 
TR-breaking term even here yield the observed results regardless of any external magnetic field? 
An elaboration on the effects of the magnitude of B on the observed results would do much to 
clarify this. This would also add scientific novelty to this part (in taking more of distance from 
[54]). 
 
Reply: We thank the referee for the question. We would like to clarify that the anomalous Hall 
conductivity found in Ref. [54] (Ref. [56] in this version) originates from the Fermi arcs (surface 



states) rather than Landau levels. There, the Hall conductivity is not quantized (see Fig. 2(a) in 
Ref. [56] in this version). In contrast, in our case, the quantized Hall conductance arises from the 
Landau level of the surface states. In the absence of magnetic fields, Landau levels do not exist 
so that the Hall conductance based on the terminal configuration shown in the following figure 
(b) vanishes. 
 

 
 
To demonstrate this, we reproduce the terminal configuration in Ref. [54] (Ref. [56] in this 
version) in the above figure (a) for comparison. The Weyl points are separated in the 𝑧𝑧 direction, 
i.e. located at 𝒌𝒌 = (0,0, ±𝑘𝑘𝑤𝑤), so the four surfaces connected to terminals all have Fermi arcs, 
which contribute to the anomalous Hall conductance, which is not quantized. However, in our 
paper where the Weyl points are also separated in the 𝑧𝑧 direction, the surface connected to 
terminal 2 and 4 do not have Fermi arcs due to the different terminal configuration, as shown in 
Fig.(b) in the following (note the difference in the coordinate system). Therefore, in the absence 
of a magnetic field, no conventional anomalous Hall conductivity is observed. Only under the 
magnetic field, the Fermi arcs on the top and bottom surfaces form Weyl orbits giving rise to 3D 
quantum Hall effect, which is explained in the manuscript. In summary, although our current 
paper and Ref. [54] both study the TRS-broken Weyl semimetal, the Hall conductance arise from 
completely different origins. Thus, Ref. [54] should not weaken the significance of our paper. 
We have given a brief discussion on this point in Sec. 3 in the revised manuscript. 
 
In addition, we have shown that the 3D quantum Hall effect can exist in amorphous systems 
because the bulk states are localized except at the critical point although the Landau levels 
broaden and overlap. This mechanism is generic, so the quantum Hall effect can exist in a large 
range of system parameters as long as the distance between the Landau levels in the energy space 
is not too close. We have added a sentence on this point in Sec. 4 in the revised manuscript.  
 
As in the reply to a comment above, we have also elaborated on the effect of the magnitude of 
the magnetic field following the referee’s suggestion, as shown in Sec.5 in the revised version.     
 
Comment 6: There are also some other details that could, in my opinion, improve the 
manuscript: 
- It is specified that the sample used be thin along y. Whether this was a choice made for 
computational expedience, or something that is significant to the results, could be mentioned. 
 
Reply: We thank the referee for the question. The sample cannot be too thick along the 𝑦𝑦 
direction for the 3D quantum Hall effect, because the Landau levels will become closer as the 



sample gets thicker. For an infinitely thick sample, the Landau levels will touch each other and 
no quantized Hall conductance can be observed. Note that the requirement for finite thickness is 
not only necessary for our amorphous system, but also for the pristine regular Weyl semimetal 
[PRL 119 136806 (2017), Nature 565 331 (2019)]. We have added a sentence on this issue in 
Sec. 2 of the revised manuscript and detailed analysis in Appendix B. 
 
Comment 7: The LDOS figures show high values in certain locations in the bulk of the system. 
While this would be expected for individual realizations, it is not immediately obvious why this 
feature is seen in a sample-averaged quantity, where fluctuations due to random sites should be 
equally distributed over the bulk. Is it a finite-size effect due to the location of the leads? This 
could also be mentioned in the text. 
 
Reply: We thank the referee for the question. We think that the high local density of states 
(LDOS) in certain locations in the bulk arise due to the finite number of samples. If we have 
infinitely many samples, the islands in the bulk with high values in the LDOS profile will be 
smoothed out. However, we only calculate 100 samples here due to the large consumption of 
computational resources, which are not enough to see a uniform LDOS distribution in the bulk. 
In addition, in our calculation of the LDOS, since we do not take into account of the leads, the 
phenomenon does not arise from their location.  
 
We know that in many previous works on amorphous topological phases, a hundred of samples 
are enough for a smooth LDOS profile in the bulk. However, in our case, the fluctuations of 
LDOS over samples are much severe, requiring more samples. To show the large fluctuations, 
we display the LDOS of four samples in the following. We can identify edge states in all the four 
samples under the identical color map, but the edge states in (a) and (b) are much clearer than (c) 
and (d), implying large fluctuations of LDOS over the samples. We see localized bulk states with 
high LDOS in the samples, which is even much more visible than the edge states in (c) and (d), 
implying the large number of samples needed for a smooth distribution in the bulk. As the bulk 
states emerge at different positions over the samples, we deduce a uniform probability 
distribution for the occurrence of the bulk states over the spatial positions in the bulk and thus 
expect a smooth profile of bulk LDOS for an infinite number of samples. The large fluctuations 
are a specific property of our model, perhaps due to the presence of the magnetic field and the 
3D nature. We have clarified this in Sec. 3 in the revised manuscript. 
 
 



 
 
Comment 8: Given the current status of experimental research into the 3D quantum Hall effect, 
it could be of interest to consider whether there are any known materials that may be used for 
studying the case presented here, and if so how relevant parameters in those compare to the 
model Hamiltonians here. 
 
Reply: We thank the referee for the question. The 3D quantum Hall effect can exist in 
amorphous systems because the bulk states are localized except at the critical point although the 
Landau levels broaden and overlap. This mechanism is generic, so the quantum Hall effect can 
exist in a large range of system parameters as long as the energy separation between the Landau 
levels is not too small. Therefore, it is quite promising to observe this phenomenon in 
experiments.  
 
Following the referee’s suggestion, we have tried the Dirac semimetal Cd3As2 in which the 3D 
quantum Hall effect in crystalline lattice have been experimentally observed [Nature 565 331 
(2019)]. We use the tight-binding parameters of Cd3As2 given in PRL 119 136806 (2017) and 
generalize the tight-binding model to random lattices in the same way as in Sec. 2 of our 
manuscript except that here we add displacement δ𝐫𝐫 obeying Gaussian distribution 𝐷𝐷(δ𝐫𝐫) =
exp �− |δ𝐫𝐫|2

2𝜎𝜎2
� /(2𝜋𝜋𝜎𝜎2) to the regular lattice. It is reasonable because there is residue spatial order 

in real amorphous materials. We see quantized Hall conductance up to the standard deviation 
𝜎𝜎 = 0.1. For larger 𝜎𝜎, i.e., stronger disorder, we cannot conclude whether the quantum Hall 
conductance still preserves under the system size within the capacity of numeric.  To find 
concrete real material realizations of the 3D quantum Hall effect in amorphous systems is an 
important but highly nontrivial task, which deserves further efforts.  
 
We have added a discussion on this in the conclusion part of the revised manuscript.  
 
Comment 9: I do hold that there may be results here of sufficient novelty and relevance to the 
scientific community to warrant publication, especially with regards to the TR-invariant 
Hamiltonian. However, the comparison between the separate parts of the work and between this 



and previous works - chiefly [54] - should be elaborated on in the text. In its current format these 
aspects are left much too vague. 
 
Reply: We thank the referee for judging our paper as having “sufficient novelty and relevance to 
the scientific community to warrant publication”.  
 
We have followed the referee’s suggestion to further study the TR-invariant part which was less 
explored in the original version and make comparisons with the TR-symmetry broken case, as 
detailed in the reply to a previous comment and revised manuscript. We find both similarities 
and interesting points unique to the time-reversal symmetric case.  
 
In the above, we have also clarified the difference of our paper from Ref. [54] (Ref. [56] in this 
version). The effect of the magnitude of the magnetic field has also been investigated. We thus 
believe that our work is now suitable for publication in SciPost Physics. 
 
Comment 10: Add a discussion of to what extent results apply to case with / without time-
reversal symmetry.      
 
Reply: We thank the referee for the suggestion. As addressed in the reply above, in our revised 
manuscript, we have further studied the TR-invariant case which was less explored in the 
previous version. We find the bulk-boundary correspondence and mechanism of the localization 
of bulk states also apply for the TR-invariant case, as discussed in Sec. 5 of the revised version. 
The mechanism of the localization of bulk states is generic, so the effect can be realized in a 
large range of parameters and do not rely on the model details too much, as long as the Landau 
levels are not too close in the energy space.  
 
We have added the discussion in Sec. 4, Sec. 5 and Sec. 6 in the revised manuscript. 
    
Comment 11: Elaborate on the effects of the magnitude of B on the results.     
 
Reply: We thank the referee for the suggestion. We have added a new Sec. 5 to elaborate on the 
effect of the magnitude of the magnetic field in the revised manuscript, as we have also 
addressed above. 
 


