
Response to the Referee comments on “ Simulation of the 1d XY 
model on a quantum computer ” 

We are thankful for the referee’s detailed report and we consider it has helped to 
improve the readability of the new manuscript version as well as clarify some of its 
parts. 

In the following lines, we reproduce the referee’s comments and respond to them 
providing, when appropriate, the explicit modifications on the new manuscript 
version. 
 

Answer to report 1: 

Comments on the text: 

“There may be missing references: previous work on such simulation exists in 
literature, e.g. Quantum Information Processing 20.8 (2021): 264; Physica Scripta 97.2 
(2022): 025101; Physical Review Research 6.3 (2024): 033107, Physical Review A 95.5 
(2017): 052339. The authors may wish to note some of these publications and cite 
them if needed.” 

We sincerely appreciate the referee's suggestion regarding relevant references. After 
carefully reviewing the mentioned works, we find them highly relevant to our study. 
Consequently, we have expanded the introduction to emphasize the importance of 
using circuits with known exact solutions as essential benchmarks for mitigating 
experimental errors in real hardware. As these references highlight, analytical systems 
serve as ideal cases for this purpose. Accordingly, we have cited these works where 
appropriate to strengthen the context of our study. 

 

 

“Minor errors: (i) Immediately after Eq(1), there should not be an indent after an 
equation. I think the authors left a space after the equation in their LaTeX version. (ii) In 
the paragraph above Eq(2), "spin leather operators" should read "spin ladder 
operators". (iii) Check Eq (3), there is an additional plus sign due to erroneous typing.” 

We sincerely thank the referee for identifying these minor errors. We have corrected 
them as thoughtfully suggested. 

 



 

Answer to report 2: 

Comments on the text: 

“I would suggest a revision of the text, as it is not very well-written in some parts. Here, 
I highlight some issues I found in the text, along with improved versions. However, I 
think there are many other issues throughout the text... 

1. "In this paper, we present the comprehensive scheme for..." -> "In this paper, 
we present a comprehensive scheme for..." 

2. "These transitions occur at absolute zero..." -> "These transitions occur at zero 
temperature..." 

3. "The quadratic Hamiltonian in fermionic annihilation and creation operators 
appears in more condensed matter systems notably exemplified in the 
Hubbard model" -> "Hamiltonians quadratic in fermionic annihilation and 
creation operators are ubiquitous in condensed matter systems, describing 
systems of free fermionic particles." Concerning the Hubbard model: usually 
this model is considered with the interaction term, so is not quadratic... 

4. "...leading us to the subsequent phase: the fermionic Fourier transform (fFT)." -
> "Diagonalizing this type of Hamiltonian is a well-established process, 
achieved through the fermionic Fourier transform (fFT)." 

5. "...our primary objective centers around obtaining the matrix" -> "...our primary 
objective is to obtain the matrix" 

6. "Figure 3: In the diagram is shown the decomposition of the building block of 
Fnk shown in Eq.(60), where ϕk =−i2πkn." -> "Figure 3: The diagram illustrates 
the decomposition of the building block of Fnk (Eq.(60)), where ϕk =−i2πkn." “ 

We thank the referee for carefully proofreading our manuscript and helping us 
improve its readability. Accordingly, we have incorporated all the referee’s 
suggested changes and made several minor replacements to enhance clarity and 
readability while preserving the original intent of the text. 

 

 

“Shouldn't the order of the three unitaries in Eq. (54) be reversed? Based on Eq. 
(52), it seems that U_JW should be applied to H first...” 

As the referee rightly pointed out, we had mixed the correct order of operators in 
Eq.(52). The operator $U_{dis}=U_{BG} U_{FT} U_{JW}$ maps vectors from the spin 



basis to the eigenbasis of the Hamiltonian. Consequently, the diagonalized 
Hamiltonian, ($tilde{H}_{XY}$)  is given by $ U_{dis} H_{XY} U^{dagger}_{dis} $ . This 
equation has now been corrected. 

 

Other questions: 

“Why you say the circuit is "specifically designed for the NISQ era"? What is NISQ 
specific here?” 

We realized the term “specifically designed for the NISQ era”  can be confusing and 
not clear and we have changed it to “suitable for the NISQ era”. While the circuit can 
also be used for Fault-Tolerant Quantum Computers (FTQC), its structure, which 
contains relatively few gates, makes it particularly advantageous for NISQ devices by 
helping to reduce the effects of noise in real hardware. 

Moreover, the circuit serves as a valuable benchmark for NISQ systems. Additionally, 
its ability to implement time evolution allows for easy adjustment of complexity by 
adding more time evolution steps, enabling systematic hardware testing across 
different circuit depths, providing valuable insights into noise effects and error 
characterization, both of which are crucial for the NISQ era. 

 

 

“Could your circuit serve as a starting point for a variational quantum circuit designed 
to address more complex, interacting Hamiltonians?” 

As stated in our work, we believe that the use of this circuit does not necessarily have 
to remain limited to benchmarking purposes. The XY Hamiltonian, particularly in the 
2D case, doesn’t present an analytical solution. Therefore, it could be interesting to 
use the circuit to simulate the 1D case as a base for constructing a more complex 
approach, such as finding the ground state of the 2D system. 

One possible way to achieve this would be to introduce variational interactions within 
the circuit to approximate the effects of the 2D Hamiltonian that are absent in the 1D 
case. In fact, we have explored a similar approach, albeit using an adiabatic rather 
than a variational method. However, in our specific case, we encountered a gap 
crossing, which made unfeasible this approach. 

 



 

 

Answer to report 3: 

Comments on the text: 

“The manuscript clearly aims at being very pedagogical, with lot of details about 
textbook calculations. Although I very much like the spirit in general, it seems to me 
that it wanders off into being excessively pedantic in many parts (see pages full of 
small intermediate manipulations of equations), while being imprecise in others (e.g., 
quoting the Hubbard model as an example of quadratic Hamiltonian… or stating that 
Eq.(52) converts the H_{XY} Hamiltonian in a non-interacting one…). It almost reads as 
the first version of a master thesis, that still needs a round of polishing.” 

We acknowledge that using the Hubbard model as an example of a quadratic 
Hamiltonian could be confusing. We were specifically referring to the Fermi-Hubbard 
model in the weak interaction regime (with the interaction term set to zero). To avoid 
any misunderstandings, we have decided to remove that reference. 

Regarding Eq. (52), we had incorrectly ordered the operators. The correct mapping 
from the spin basis to the eigenbasis of the Hamiltonian is given by the operator 
$U_{dis} = U_{BG} U_{FT} U_{JW}$, which ensures that the diagonalized Hamiltonian, 
$\tilde{H}{XY}$, is expressed as $\tilde{H}{XY} = U_{dis} H_{XY} U^{\dagger}_{dis}$. 
This equation has now been corrected, and we have revised our explanation to be 
clearer and more concise. 

Additionally, we have made an overall effort to improve the readability of the text, 
reducing excessive textbook calculations and ensuring that the most potentially 
confusing points are explained more clearly to the reader. 

 

 

“By the way, I might have got lost with the notation, but I miss why the ground state of 
the XY model should not be in the fermionic half-filled sector (i.e., in the zero 
magnetization one when dealing with spins), but rather be given by Eq. (68). I am 
almost sure it is simply some glitch, but it proves that overwhelming the reader might 
also be counterproductive.” 

In Eq. (68), we analyze the ground state of the symmetric XY model, where the 
anisotropy parameter is $\gamma = 0$. This ensures symmetry between the X and Y 



axes. In this particular case, the Hamiltonian becomes diagonal immediately after 
applying the Fourier transform. From our expression, the eigenstate with the lowest 
eigenvalue corresponds to a state with a single fermion in the $k=2$ mode. 

This result differs from the expected result of the symmetric XY model, where the 
ground state belongs to the half-filled sector because we impose periodic boundary 
conditions in the fermionic space rather than in the spin space, which is the more 
typical case. In principle, boundary conditions do not affect the system in the 
thermodynamic limit. However, for finite-size systems, they can significantly alter the 
energy values of each state.  

 

“Same applies with the fact that the important discussion about periodic/antiperiodic 
boundary conditions depending on the fermionic population (the spin magnetization) 
is put aside at some point and only the even case seems to matter from there on… 
Shrinking excessive details could offer a possibility of letting messages pass better.” 

We appreciate the feedback regarding the confusion about boundary conditions. We 
have reviewed the text and revised several sections to clearly emphasize that this 
circuit is designed for $2^n$ qubits, where $n$ is an integer, as this is the case in 
which the fermionic Fourier transform can be performed efficiently. 

Additionally, we are not using the standard XY Hamiltonian but rather imposing 
boundary conditions that correspond to periodic boundary conditions (PBC) in the 
spinless fermionic modes. In contrast to the standard case, where one must analyze 
how PBC in the spin operators translate into either PBC or antiperiodic boundary 
conditions (APBC) depending on the spin magnetization, here we can work with PBC 
independently of the spin magnetization. 

Furthermore, since we consider only an even number of qubits (or equivalently, an 
even number of sites), the Fourier transform does not require analyzing the values of 
$k$ for an odd number of sites. Beyond this point, the boundary conditions no longer 
need to be carefully handled. 

 

“In particular, some effort should be spent instead around Fig. 18 in explaining how a 
continuous (Ising) phase transition could ever exhibit discontinuities in the 
(transverse) magnetization, even more in a system of finite size… This looks more like 
some level crossing / first order phase transition, which does not sound right, but I 
possibly misinterpreted the figure caption.” 



The boundary conditions used in this work differ from the conventional periodic 
boundary conditions (PBC) typically imposed in spin Hamiltonians. Instead, we adopt 
boundary conditions that circumvent the common issue arising from the Jordan-
Wigner transformation, where the periodic/antiperiodic nature of the fermionic 
operators depends on the fermionic population. Specifically, our boundary conditions 
adapt based on whether the spin population contains an even or odd number of spin-
up states. After applying the Jordan-Wigner transformation, these conditions always 
map to PBC for the fermionic operators, not requiring us to account for different 
fermionic populations. Consequently, our Hamiltonian approximates the expected 
behavior in the thermodynamic limit, i.e. when lambda=1 it exhibits a discontinuity in 
the magnetization. However, as the number of particles increases, the influence of the 
boundary conditions decreases, recovering the expected behavior of the original XY 
model Hamiltonian. This effect is evident in the following figure, where we have 
performed an exact diagonalization of the Hamiltonian used in our work to obtain the 
ground state and compute its magnetization. 

 

 

 

 

 



As a stark contrast, the text feels really to come short when it deals with the actual 
results on the quantum computer and their discussion. The agreement between 
theory curves and experimental data looks excellent, which is a remarkable news in 
the realm of NISQ digital simulations at present date (compare the above mentioned 
Ref. 8 by the last Author). Therefore I would have naively thought that this was the 
central message of this work, while the section reads a bit sketchy and not delving into 
the reasons that allowed for such a nice performance. Along the same spirit, it would 
be nice to read some deeper consideration on the perspective of applying the same 
machinery to other models, possibly hinting at foreseen roadblocks to be 
circumvented and not just listing a couple of model names.  

 

To be clear, there are no experimental results shown in this article. The points shown 
in Fig. 18 and 19 correspond to a simulation of the quantum circuit, to show the 
agreement with the theory. The error bars correspond to the statistical error of that 
simulation (in other words, we simulate the quantum circuit assuming perfect 
quantum gate operations and a specific number of measurements). We have clarified 
this point in the sentence "arios. The results show the classical simulation using the 
quantum computing library Qibo [REF], for the spin chain n = 4 and n = 8 using the 
circuits represented in Figs. 13, 14. “ 

With current coherence times and gate errors of IBM's quantum computers, we 
expect similar results as the ideal simulation, since this is an n=4 qubit shallow 
circuit. The use of these quantum computers has increased almost exponentially in 
the last years, which makes really difficult for free users to use the devices for 
scientific projects without paying a subscription (very long execution queues). Since 
this circuit was already executed in 2018, we decided not to push for a revision of the 
experimental results (otherwise it will have take much longer to finalize it), and focus 
our work in a pedagogical revision of the simulation of XY model with the 
corresponding code that can be used for the community on IBM's and other quantum 
computers. 

We also extended the conclusions to discuss a little bit more the perspective of 
extending this work to study other condensed matter models. 

Other questions: 

It would be desirable if the text would communicate in a much clearer way what is the 
element of novelty that the present study brings along -- one guess that I can make is 
that the quality of the experimental data seems to be considerably better and in 



excellent agreement with theory, but this should come out of the text without requiring 
the reader to skim through other papers. I am glad to see if other points can be 
brought by the Authors. 

The key contributions of our work include an open-source code that enables the 
construction of a disentangling circuit for the 1D XY model, generalized for any 
number of qubits of the form $2^n$, where $n$ is an integer. Additionally, our 
implementation is based on the Qibo framework, whereas previous studies on 
simulating the 1D XY model primarily relied on Qiskit. 

Furthermore, we introduce a circuit for performing exact time evolution, a feature not 
proposed in prior works. However, we acknowledge that the primary objective of this 
work is pedagogical. In this regard, we agree that it would be more appropriately 
suited for SciPost Lecture Notes or Physics Core rather than SciPost Physics. 


