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Abstract

The field of quantum computing has grown fast in recent years, both in theoretical advance-
ments and the practical construction of quantum computers. These computers were initially
proposed, among other reasons, to efficiently simulate and comprehend the complexities of
quantum physics. In this paper, we present a comprehensive scheme for the exact simula-
tion of the 1-D XY model on a quantum computer. We successfully diagonalize the proposed
Hamiltonian, enabling access to the complete energy spectrum. Furthermore, we propose a
novel approach to design a quantum circuit to perform exact time evolution. Among all the
possibilities this opens, we compute the ground and excited state energies for the symmetric
XY model with spin chains of n = 4 and n = 8 spins. Further, we calculate the expected value
of transverse magnetization for the ground state in the transverse Ising model. Both studies
allow the observation of a quantum phase transition from an antiferromagnetic to a param-
agnetic state. Additionally, we have simulated the time evolution of the state all spins up in
the transverse Ising model. The scalability and high performance of our algorithm make it an
ideal candidate for benchmarking purposes, while also laying the foundation for simulating
other integrable models on quantum computers.
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1 Introduction19

In the first decade of the XXI century, we witnessed an explosion of the quantum computing field20

driven by the incredible potential that quantum computing exhibits to solve some intractable clas-21

sical problems [1]. Among these challenges, one of the enduring objectives of quantum computing22

is the simulation of quantum systems. Although several classical strategies exist for simulating such23

systems [2,3], they often prove to be inefficient when dealing with complex quantum systems. Con-24

sequently, the simulation of quantum systems demands alternative methods for efficient execution.25

Here, quantum computers emerge as a promising solution, since due to their quantum nature the26

simulation of strongly correlated systems is the natural arena where quantum computers are ex-27

pected to show a clear advantage over classical ones, as Feynman stated in Ref. [4].28

Despite having undergone considerable development during the last decade, quantum computing29

is still in an early stage. The current state of quantum computing is known as the Noisy Intermediate-30

Scale Quantum (NISQ) era [5]. The NISQ era has been characterized by constrained-size quantum31

processors (containing 100 qubits approximately) with imperfect control over them; they are sensi-32

tive to their environment and prone to quantum decoherence and other sources of errors. Despite33

these challenges, researchers have successfully pushed the boundaries of current quantum technol-34

ogy, particularly in the simulation of physical systems [6]. This progress has been largely enabled35

by the development of error mitigation techniques and the optimization of quantum circuits [7, 8],36

where more hardware-faithful implementations have been prioritized over error-prone alternatives.37

Nevertheless, these methods require thorough characterization of the underlying quantum hard-38

ware, making it essential to develop scalable and standardized benchmarking techniques. Such39

benchmarks are crucial for both companies and researchers to evaluate and compare the efficiency40

of emerging quantum devices.41

This paper presents a circuit suitable for the NISQ era, offering the capability to explore intriguing42

phenomena such as quantum phase transitions. Our work consists of implementing a quantum circuit43

that performs the exact simulation of a 1-D spin chain with an XY -type interaction. We programmed44

a set of Python libraries that allows the implementation of the circuit for systems with a power of45

2 number of qubits using Qibo [9], an open-source framework for quantum computing. Moreover,46
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Qibo is the native language of the Barcelona Supercomputing Center quantum computer, which will47

allow the users to directly test this algorithm with real machines. The foundation of our work is48

based on Ref. [10,11], where the steps followed to design the quantum circuit rest upon tracing and49

implementing the well-known transformations that solve the model analytically [12]. As a result, this50

technique can access the whole spectrum, enabling us to simulate any excited or thermal state and its51

dynamical evolution. In addition, this framework can be easily extended to other integrable models,52

including the Kitaev-honeycomb model [13], or to systems whose effective low-energy behavior can53

be suitably described by quasi-particles [14].54

This paper is organized as follows: In Sec.2 we describe the characteristics of the XY model and55

solve it analytically. Moving to Sec.3, we revisit the method introduced in Ref. [10] to construct56

an efficient circuit that diagonalizes the XY Hamiltonian. We then present the circuit employed for57

simulating spin chains of n= 4 and n= 8 qubits. Next, in Sec.4 we design a quantum circuit tailored58

for exact time evolution. Our simulations, utilizing the proposed quantum circuit, are detailed in59

Sec.5. Finally, the conclusions are exposed in Sec.6 and the code is available in Ref. [15].60

2 The 1− D XY model61

The XY model is derived from the Heisenberg model [16] by introducing an easy-plane anisotropy.62

Those models are widely used to study critical points and phase transitions of magnetic systems63

within the condensed matter field. The 1− D XY Hamiltonian can be written as64

HX Y = J

� n
∑

i=1

1+ γ
2
σx

i σ
x
i+1 +

1− γ
2
σ

y
i σ

y
i+1

�

+λ
n
∑

i=1

σz
i (1)

where n is the number of spins in the 1-D spin chain, σi
j with i = x , y, z are the Pauli matrix acting65

on the site j, J determine the behavior of the ordered phase, ferromagnetic for J < 0 and antifer-66

romagnetic J > 0, γ is the anisotropic parameter and λ represents the strength of the transverse67

magnetic field.68

One important feature for which the XY model stands out is that it exhibits a quantum phase69

transition [17, 18]. These transitions occur at zero temperature and stem from the competition of70

the different terms within the Hamiltonian, regulated by a non-thermal physical parameter of the71

system. At zero temperature, each term presents a specific ground state, and the properties of these72

ground states dictate the phase of the system.73

Specifically for the 1−D XY model, the Hamiltonian presents three terms with ground states that74

exhibit different phases. The first two terms parametrized by J and γ are σx
i σ

x
i+1 and σ y

i σ
y
i+1. Both75

by themselves correspond to the well-known Ising model, in which the ground state is ferromagnetic76

or antiferromagnetic, depending on the sign of J , and points respectively to the x or y axis. Con-77

trarily, the ground state of the third term σz
i , parametrized by λ is paramagnetic and points to the78

z axis. As a result, the ground state will show ferromagnetic or antiferromagnetic behavior when79

|J | > λ and the direction of the spin will be mediated by γ. However, the ground state will show80

paramagnetic behavior for |J | < λ. In Fig.1 there is shown the phase diagram at T = 0 of the 1-D81

XY model for J = −1.82
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Figure 1: Phase diagram of the quantum XY model.

In the next subsections, we derive the analytical solution of the XY model. However, before start-83

ing is convenient to rewrite Eq.(1) it in terms of spin ladder operatorsσ+(−) which increase(decrease)84

the projection of the third component of the spin Sz by 1. The σx and σ y operators then can be writ-85

ten as86

σx = σ+ +σ−,

σ y = −i
�

σ+ +σ−
�

,

σz = 2σ+σ− − 1. (2)

Hence, the Hamiltonian from Eq.(1) becomes87

H′X Y = J

�n−1
∑

i=1

σ+i σ
−
i+1 +σ

−
i σ
+
i+1 + γ
�

σ+i σ
+
i+1 +σ

−
i σ
−
i+1

�

�

+λ
n
∑

i=1

�

2σ+σ− − 1
�

. (3)

88

Furthermore, it is worth remembering some properties from the Spin 1
2 , which will be used later89

on in the next steps.90

σ+ (−σz) = σ+, σ− (−σz) = −σ−,

−σzσ+ = −σ+, −σzσ− = σ−. (4)

2.1 Jordan-Wigner transformation91

Generally, quantum spin objects are notoriously difficult to deal with in many-body physics because92

they neither fulfill fermionic nor bosonic algebra. For this reason, the first step to diagonalize XY93

Hamiltonian consists of applying the Jordan-Wigner transformation [19] which maps the spin oper-94

ators σ into spinless fermionic modes c.95
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The Jordan-Wigner transformation takes advantage of the similarities between fermions and spin96

operators. The existence of the stated similarity can be noticed by how both operators act on their97

respective basis, where fermionic basis |1〉 and |0〉 respectively corresponds to having one or no98

fermion in the state (no fermion state is also called void), while |+〉 and |−〉 means having a spin99

pointing up or down in the z axis. As shown in Table 1, there is a clear equivalence between |0〉 and100

|−〉, and the same with |1〉 and |+〉.101

Fermions Spin 1
2

c† |0〉= |1〉 σ+ |−〉= |+〉

c† |1〉= 0 σ+ |+〉= 0

c |0〉= 0 σ− |−〉= 0

c |1〉= |0〉 σ− |+〉= |−〉

Table 1: Fermionic and Spin operator’s behavior when acting in their respective basis.

However, there is also an important difference between them, their commutation relationships.102

The commutation relationship followed by σ+(−) and σ− operators are103

[σ+j ,σ−i ] = 0 i ̸= j,

{σ+i ,σ−j }= I i = j,
(5)

while the operators c and c† obey the fermionic algebra {c†
i , c j}= δi j .104

To solve this problem, Jordan and Wigner introduced an operator, called the string operator105

eπi
∑i−1

j=1σ
+
j σ
−
j . This operator counts the number of |+〉 states or fermionic particles in the system and106

ensures the addition of a minus sign whenever two fermions are interchanged, thereby enabling the107

correct mapping between spin and fermionic operators.108

Thus, the Jordan-Wigner transformation is defined as109

c†
i = σ

+
i e−πi
∑i−1

j=1σ
+
j σ
−
j ,

ci = eπi
∑i−1

j=1σ
+
j σ
−
j σ−j ,

c†
i ci = σ

+
j σ
−
j .

(6)

Where the c and c†
i are the new spinless fermionic operators. Note that σ+j σ

−
j and σ+i σ

−
i com-110

mute111

[σ+i σ
−
i ,σ−j ] = −δi jσ

−
j , [σ+i σ

−
i ,σ+j ] = δi jσ

+
j , [σ+i σ

−
i ,σ+j σ

−
j ] = 0. (7)

Therefore,112

e±iπ
∑m

j=nσ
+
j σ
−
j =

m
∏

j=n

e±iπσ+j σ
−
j . (8)
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The next step is to develop the exponential operator113

e±iπσ+j σ
−
j =

∞
∑

l=0

1
l!
(±iπ)l
�

σ+j σ
−
j

�l
= 1− 2σ+j σ

−
j = −σ

z
j . (9)

114

In consequence, sometimes the Wigner-Jordan transformation is also written as115

c†
i = σ

+
i

� i−1
∏

l=1

−σz
l

�

, ci =

� i−1
∏

l=1

−σz
l

�

σ−j , c†
i ci = σ

+
j σ
−
j . (10)

For practical reasons, it is interesting to write down the inverse transformation116

σ+i = c†
i

� i−1
∏

l=1

−σz
l

�

= c†
i eπi
∑i−1

j=1σ
+
j σ
−
j , σ−i =

� i−1
∏

l=1

−σz
l

�

ci = e−πi
∑i−1

j=1σ
+
j σ
−
j ci , σ

z
i = 2c†

i ci − 1. (11)

Now the transformed spin operators obey the canonical fermion algebra117

{ci , c†
j }= δi j , {ci , c j}= 0, {c†

i , c†
j }= 0, (12)

as it is shown in Ref. [20].118

119

Subsequently, let’s derive some useful relations. Using Eq.(12) we can to compute the following120

commutator121

[c†
i ci , c†

j c j] = 0 i f i ̸= j. (13)

For the case i = j the commutator is also 0. Additional useful commutator relations are122

[c†
i ci , c j] = −δ jici , [c

†
i ci , c†

j ] = δ jic
†
i , (c†

i ci)
2 = c†

i ci . (14)

Applying the different properties derived from the expressions before and cici = 0, one can compute123

124

{1− 2c†
i ci , ci}= 0, {1− 2c†

i ci , c†
i }= 0. (15)

Now, using the properties from Eq.(14) and Eq.(15), one can compute the commutation relationship125

between the string operator described in Eq.(8) and the new fermionic operators126

[e±iπ
∑m

j=n c†
j c j , ci] = [e

±iπ
∑m

j=n c†
j c j , c†

i ] = 0, i ̸∈ [n, m],

{e±iπ
∑m

j=n c†
j c j , ci}= {e

±iπ
∑m

j=n c†
j c j , c†

i }= 0, i ∈ [n, m].
(16)

Jordan-Wigner transformation in the XY model127

Here, we apply the Jordan-Wigner transformation into the elements that appear in the XY Hamilto-128

nian, from Eq.(3). For the σ+i σ
+
i+1 term,129

σ+i σ
+
i+1 = c†

i c†
i+1, (17)

where we have taken in count that c†
i c†

i = 0. Likewise, one can calculate the σ−i σ
−
i+1 term130

σ−i σ
−
i+1 = ci+1ci . (18)

Lastly, the σ+i σ
−
i+1 and σ−i σ

+
i+1 can be transformed131

σ+i σ
−
i+1 = c†

i ci+1, σ−i σ
+
i+1 = c†

i+1ci . (19)

132
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Boundary conditions133

Until now, we have not mentioned anything about what happens in the boundary terms σn+1. Given134

the finite nature of our simulations, it becomes imperative to establish certain boundary conditions135

for our system. Specifically, we’ve implemented periodic boundary conditions (PBC). However, it’s136

worth noting that we’ve opted for a direct application of PBC within the fermionic space. This choice137

translates to the relationship between fermionic operators, namely, cncn+1 = cnc1.138

To add this term to our XY Hamiltonian, first, it has to be mapped into the spin space using the139

Jordan-Wigner transformation. Unfortunately, this transformation maps the PBC to PBC or antiperi-140

odic boundary condition (APBC) depending on whether the system has an odd or even number of141

particles or |+〉 states. Consequently, the boundary term of our Hamiltonian must present this parity142

dependence to correctly be mapped into PBC in the fermionic space, this can be achieved using the143

σ
y
1σ

z
2 · · ·σ

z
n−1σ

y
n and σx

1σ
z
2 · · ·σ

z
n−1σ

x
n terms from Eq.(1). Then the Hamiltonian simulated in this144

work reads145

HX Y = J

�n−1
∑

i=1

1+ γ
2
σx

i σ
x
i+1 +

1− γ
2
σ

y
i σ

y
i+1

�

+λ
n
∑

i=1

σz
i (20)

+ J
1+ γ

2
σ

y
1σ

z
2 · · ·σ

z
n−1σ

y
n + J

1− γ
2
σx

1σ
z
2 · · ·σ

z
n−1σ

x
n . (21)

The first two terms correspond to the 1− D XY Hamiltonian, whereas the last two terms belong to146

the boundary conditions. These boundary terms can be substituted with the conventional periodic147

terms σx
nσ

x
1 and σ y

nσ
y
1 for states with an even number of spins pointing up, and the same terms148

with a negative sign for states with an odd number of spins pointing up. It is worth keeping in149

mind that even the Hamiltonian we are working on is not strictly the same as the XY model, in the150

thermodynamic limit the boundary conditions do not play any role and we recover the same results.151

Now we will demonstrate that when the Jordan Wigner transformation is applied to this term,152

the PBC is recovered for the fermionic operators. First, we need to write the σ y
1σ

z
2 · · ·σ

z
n−1σ

y
n and153

σx
1σ

z
2 · · ·σ

z
n−1σ

x
n using the σ+ and σ− operators154

σ
y
1σ

z
2 · · ·σ

z
n−1σ

y
n = −σ

+
1σ

z
2 · · ·σ

z
n−1σ

+
n +σ

+
1σ

z
2 · · ·σ

z
n−1σ

−
n+

+σ−1σ
z
2 · · ·σ

z
n−1σ

+
n −σ

−
1σ

z
2 · · ·σ

z
n−1σ

−
n ,

σx
1σ

z
2 · · ·σ

z
n−1σ

x
n = σ

+
1σ

z
2 · · ·σ

z
n−1σ

+
n +σ

+
1σ

z
2 · · ·σ

z
n−1σ

−
n+

+σ−1σ
z
2 · · ·σ

z
n−1σ

+
n +σ

−
1σ

z
2 · · ·σ

z
n−1σ

−
n .

(22)

Next, the Jordan-Wigner transformation is applied to the different terms that appear in the above155

expression using the properties shown in Eq.(4), σzσz = 1 and we will restrict our system to have156

an even number of qubits (n). First let’s compute the term σ+1σ
z
2 · · ·σ

z
n−1σ

+
n ,157

σ+1σ
z
2 · · ·σ

z
n−1σ

+
n = c†

1σ
z
2 · · ·σ

z
n−1

�n−1
∏

l=1

−σz
l

�

c†
n = c†

1c†
n. (23)

158

The rest of the terms can be computed following the same steps, the results are summarized in159

the following expressions160

σ+1σ
z
2 · · ·σ

z
n−1σ

+
n = c†

1c†
n, σ+1σ

z
2 · · ·σ

z
n−1σ

−
n = c†

1cn,

σ−1σ
z
2 · · ·σ

z
n−1σ

+
n = c†

nc1, σ−1σ
z
2 · · ·σ

z
n−1σ

−
n = cnc1,

(24)

7



SciPost Physics Submission

Subsequently, the boundary term reads161

HBC =
1+ γ

2
σ

y
1σ

z
2 · · ·σ

z
n−1σ

y
n +

1− γ
2
σx

1σ
z
2 · · ·σ

z
n−1σ

x
n =

= c†
1cn + c†

nc1 + γ
�

c†
nc†

1 + c1cn

�

= c†
n+1cn + c†

ncn+1 + γ
�

c†
nc†

n+1 + cn+1cn

�

,

where now is easy to see that this Hamiltonian fulfills the PBC in the fermionic space.162

2.2 Fermionic Fourier Transform (fFT)163

Combining all the solutions outlined in the previous sections yields the Hamiltonian corresponding to164

the XY model but now is quadratic in fermionic annihilation and creation operators c and c† instead165

of quadratic in spin operator σ+ and σ−166

HJW = J
n
∑

i=1

�

c†
i ci+1 + c†

i+1ci + γ
�

c†
i c†

i+1 + ci+1ci

��

+λ
n
∑

i=1

�

2c†
i ci − 1
�

. (25)

Hamiltonians quadratic in fermionic annihilation and creation operators are ubiquitous in condensed167

matter systems, describing systems of free fermionic particles. Diagonalizing this type of Hamiltonian168

is a well-established process, achieved through the fermionic Fourier transform (fFT).169

In the second quantization, the Fourier transform is defined as170

c j =
1
p

N

n
2
∑

k=− n
2+1

bkei 2πk
n j , c†

j =
1
p

N

n
2
∑

k=− n
2+1

b†
ke−i 2πk

n j , (26)

where b†
k and bk are the creation and annihilation operators of the fermionic Fourier modes.171

The discrete k values are acquired establishing the translational invariance of the system by PBC172

|x + n〉= |x〉 ,
∑

k

ei 2πk
n (x+n) |k〉=
∑

k′
ei 2πk′

n (x) |k′〉 . (27)

Then, we multiply at both sides by 〈k|, and applying 〈k|k′〉= δk,k′173

ei 2πk
n (x+n) = ei 2πk

n (x) → ei 2πkn
n = 1,

2πkn
n
= 2πm → k = m,

(28)

where m is an integer. Because the number of qubits (n) is even,as mentioned in Section 2.1, we can174

choose our k values to be175

k = −
n
2
+ 1,−

n
2
+ 2, ...,−1, 0,1, ...,

n
2
− 1,

n
2

. (29)

In the case where the number of qubits is odd, from Eq.(23) it can be seen that an extra "−" sign176

appears in the final result obtaining APBC −c†
1c†

n. Then applying translational invariance we get177

that the k possible values are the same as in the previous case. As surprising as it may seem, one178

can expect this result if one thinks in terms of sinusoidal functions. If the period of the sinusoidal179

8
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function is L we will recover in x = 0 the same result as in x = L, hence we have PBC. Nonetheless,180

if our lattice ends in x = L
2 then we will have the same absolute value in x = 0 and x = L

2 but with a181

different sign. As a result, we have APBC. In the end, the n odd case for APBC must have the same182

k values as 2n with PBC.183

Even though we will be only focusing on the even number of qubits case, the procedure followed184

for the odd case will be equivalent to the one we will describe for the even case. One can find more185

information about the general case and boundary conditions in Ref. [21].186

Fermionic Fourier Transform in the XY model187

Before computing the new terms of the XY Hamiltonian, let us first recall the fundamental properties188

of the FT189

1
N

∑

k

ei 2πk
n ( j− j′) = δ j, j′ ,

1
N

∑

j

ei 2π(k−q)
n j = δk,q, (30)

where δ j, j′ and δk,q are Kronecker deltas, which are 0 when j ̸= j′ or k ̸= q and 1 when are equals.190

By applying Eq.(30) to each term appearing in Eq.(25), we obtain the FT of our Hamiltonian,191

n
∑

j=1

c†
j c j+1 =

n
∑

j=1





1
p

n

n
2
∑

k=− n
2+1

b†
ke−i 2πk

n j









1
p

n

n
2
∑

k′=− n
2+1

bk′e
i 2πk
′

n ( j+1)



=
∑

k

b†
k bkei 2πk

n , (31)

192

193
n
∑

j=1

c j+1c j =
n
∑

j=1

�

1
p

n

∑

k

bkei 2πk
n ( j+1)

��

1
p

n

∑

k′
bk′e

i 2πk
′

n j

�

=
∑

k

i sin
�

2πk
n

�

bk b−k, (32)

194

195
n
∑

j=1

c†
j c

†
j+1 =

n
∑

j=1

�

1
p

n

∑

k

b†
ke−i 2πk

n j

��

1
p

n

∑

k′
b†

k′e
−i 2πk

′

n ( j+1)

�

=
∑

k

i sin
�

2πk
n

�

b†
k b†
−k, (33)

196

197
n
∑

j=1

c†
j+1c j =

N
∑

j=1

�

1
p

n

∑

k

b†
ke−i 2πk

n ( j+1)

��

1
p

n

∑

k′
bk′e

i 2πk
′

n j

�

=
∑

k

b†
k bke−i 2πk

n , (34)

198

199
n
∑

j=1

c†
j c j =

N
∑

j=1

�

1
p

n

∑

k

b†
ke−i 2πk

n ( j)

��

1
p

n

∑

k′
bk′e

i 2πk
′

n j

�

=
∑

k

b†
k bk. (35)

200

The transformed Hamiltonian becomes201

HF T =
∑

k

�

2
�

λ+ J cos
�

2πk
n

��

b†
k bk + iJγ sin
�

2πk
n

�

(b†
k b†
−k + bk b−k)
�

−λn. (36)

As a result of working in momentum space, the XY-Hamiltonian does not contain mixed terms202

between first neighbors, however, it is not diagonal yet because it contains terms with opposite203

momentum k and −k coupled.204

9
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For future calculations, it is beneficial to rewrite the Eq.(36) making use of the cosine function205

parity (cos (α) = cos (−α)), acknowledging that the summation takes over positive and negative k206

values and without carrying the constant term λn. Thereafter, the Hamiltonian is expressed as fol-207

lows208

H′F T =
∑

k

��

λ+ J cos
�

2πk
n

��

�

b†
k bk + b†

−k b−k

�

+ iJγ sin
�

2πk
n

�

(b†
k b†
−k + bk b−k)
�

=

=
∑

k

�

εk

�

b†
k bk − b−k b†

−k + 1
�

+ i∆k(b
†
k b†
−k + bk b−k)
�

.
(37)

The last term can be rewritten in matrix-vector form, then the expression becomes209

∑

k

�

b†
k b−k

�

�

εk i∆k
−i∆k −εk

��

bk

b†
−k

�

+
∑

k

εk. (38)

Here, the definitions of εk = λ+ J cos
�2πk

n

�

and ∆k = Jγ sin
�2πk

n

�

serve the purpose of enhancing210

the clarity of the upcoming mathematical development.211

2.3 Bogoliubov Transformation212

The last step to diagonalize the Hamiltonian completely is the Bogoliubov transformation. This trans-213

formation is used to diagonalize quadratic Hamiltonians, for instance, it is used in the Superconduc-214

tivity BSC theory or solid-state physics in Hamiltonians described by phononic interactions [22]. It215

can be understood as a change of basis, where the new base decouples the opposite momentum216

terms.217

Specifically, the transformation will have a form such as218

ak = uk bk + vk b†
−k, a−k = u−k b−k + v−k b†

k,

a†
k = u∗k b†

k + v∗k b−k, a†
−k = u∗−k b†

−k + v∗−k bk,
(39)

where a†
k and ak are the Bogoulibov fermionic annihilation and creation operators associated with219

pseudo-momentum k, while a†
−k and a−k are the Bogoulibov fermionic annihilation and creation220

operators associated with pseudo-momentum −k.221

Because we are working in a fermionic system, we have to impose the anticommutation relation-222

ship of these new operators223

{ak, a†
k}= 1 → |uk|2 + |vk|2 = 1,

{ak, a−k}= 0 → ukv−k + vku−k = 0
(40)

To fulfill the second relationship, we use the condition v−k = −vk. This last condition along with224

Eq.(39) could be used to reverse the fermionic operator transformation. The old fermionic operators225

as a linear combination of the new fermionic operators are226

bk = u∗kak − vka†
−k, b−k = u∗ka−k + vka†

k,

b†
k = uka†

k − v∗k a−k, b†
−k = uka†

−k + v∗k ak.
(41)
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For our purposes, it is useful to arrange the last expression in the vector-matrix form227

�

bk

b†
−k

�

=

�

u∗k −vk
v∗k uk

��

ak

a†
−k

�

. (42)

The next step consists of passing from a non-diagonal Hamiltonian HF T to a diagonal one by228

applying a change of basis matrix, which transforms the bk to ak operators.229

H′Bog =
∑

k

�

a†
k a−k

�

�

uk vk
−v∗k u∗k

��

εk i∆k
−i∆k −εk

��

u∗k −vk
v∗k uk

��

ak

a†
−k

�

. (43)

The Hamiltonian matrix written in terms of ak operators becomes230

�

εk

�

|uk|2 − |vk|2
�

+ i∆k

�

ukv∗k − u∗kvk

�

−2εkukvk + i∆k (ukuk + vkvk)
−2εku∗kv∗k − i∆k

�

u∗ku∗k + v∗k v∗k
�

−
�

εk

�

|uk|2 − |vk|2
�

+ i∆k

�

ukv∗k − u∗kvk

��

�

(44)

The Bogoliubov modes that diagonalize the Hamiltonian are found by vanishing the non-diagonal231

terms. For this purpose, it is convenient to express uk and vk as232

uk = eφ1 cos
�

θk

2

�

, vk = eφ2 sin
�

θk

2

�

. (45)

Substituting the last expression in the non-diagonal term of Eq.(44) and making it vanish, one gets233

the expression234

− 2εkeφ1+φ2 cos
�

θk

2

�

sin
�

θk

2

�

+ i∆kukuk − (−i∆k) vkvk = 0→

− 2εkeφ1+φ2 cos
�

θk

2

�

sin
�

θk

2

�

+∆ke2φ1+
π
2 cos2
�

θk

2

�

−∆ke2φ2−
π
2 sin2
�

θk

2

�

= 0. (46)

If one wishes to vanish the phase term in the expression, the relation φ1+φ2 = 2φ1+
π
2 = 2φ2−

π
2235

must be fulfilled. Without loss of generality, the relative phase can be chosen as φ1 = 0 and φ1 =
π
2 .236

Accordingly, the new fermionic operators a†
k and ak are237

ak = cos
�

θk

2

�

bk + i sin
�

θk

2

�

b†
−k, a−k = cos

�

θk

2

�

b−k − i sin
�

θk

2

�

b†
k,

a†
k = cos
�

θk

2

�

b†
k − i sin
�

θk

2

�

b−k, a†
−k = cos
�

θk

2

�

b†
−k + i sin
�

θk

2

�

bk.
(47)

In addition, using the expressions sin(2θ ) = 2cos(θ ) sin(θ ) and cos(2θ ) = cos2(θ )−sin2(θ ), the238

Eq.(46) becomes239

tan (θk) =
∆k

εk
. (48)
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It is now possible to obtain the required expressions to compute the diagonal energy terms (Ek)240

|uk|2 − |vk|2 = cos2
�

θk

2

�

− sin2
�

θk

2

�

= cos (θk) =
1
p

1+ tan (θk)
=

εk
q

ε2
k +∆

2
k

,

ukvk = u∗kvk =
i
2

sin (θk) =
i
2

tan (θk) cos (θk) =
i
2

∆k
q

ε2
k +∆

2
k

,

ukv∗k = u∗kv∗k = −
i
2

∆k
q

ε2
k +∆

2
k

,

Ek =
Ç

ε2
k +∆

2
k.

(49)

Therefore, Eq.(43) has the diagonal form241

H′Bog =
∑

k

�

a†
k a−k

�

�

Ek 0
0 −Ek

��

ak

a†
−k

�

=
∑

k

Eka†
kak − Eka−ka†

−k =

=
∑

k

Ek

�

a†
kak + a†

−ka−k − 1
�

=

n
2
∑

k=−n
2 +1

2Ek

�

a†
kak −

1
2

�

.

(50)

Finally, the diagonal Hamiltonian has the form242

H̃ =

n
2
∑

k=−n
2 +1

�

2Ek

�

a†
kak −

1
2

�

+ εk −λ
�

, (51)

where Ek =
r

�

λ+ J cos
�2πk

n

��2
+
�

Jγ sin
�2πk

n

��2
are the energies related to having one fermion in243

the Bogoulibov mode k or −k. As a result, we have diagonalized the XY Hamiltonian.244

3 Quantum circuit to diagonalize the XY model245

In this section, we introduce a circuit Udis designed to convert the XY Hamiltonian HXY into a non-246

interacting form H̄XY, by247

H̄XY = UdisHXYU
†
dis. (52)

248

Using this transformation, we can obtain all eigenstates and any superposition of them in the249

spin basis, by preparing a product state in the computational basis and applying U†
dis,250

|X Y eigenstate〉= U†
dis |Comp. basis〉 . (53)

Furthermore, we can reverse this process. Applying Udis to states in the computational basis251

allows us to obtain any spin state represented in the diagonal basis.252

Unfortunately, constructing these disentangling circuits Udis for an arbitrary Hamiltonian is a253

challenging task. However, for models that present analytical solutions, we can try to map each step254
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into a quantum operation. For the case it concerns us, the XY Hamiltonian needs three operations:255

i) Jordan-Wigner transformation, ii) Fourier transform, iii) Bogoliubov transformation. In the end,256

the disentangling circuit will exhibit the structure257

Udis = UBog.UF TUJW . (54)

UJW UF T UBog

Figure 2: Schematic representation of the disentangling quantum circuit Udis for
n= 8 qubits.

In the following section, we detail the construction of each Udis operation using basic quantum258

gates.259

3.1 Jordan-Wigner circuit260

The Jordan-Wigner transformation maps the spin states to a fermionic spinless mode. In terms of261

the wave function,262

|Ψ〉=
∑

i1,...,in=0,1

Ψi1,...,in |i1, ..., in〉=
∑

i1,...,in=0,1

Ψi1,...,in

�

c†
1

�i1 · · ·
�

c†
n

�in |0〉 , (55)

where i j represent the state i of the qubit at position j, with j going from 1 to the number of qubits263

n. In spin and fermionic space, the i can take values 0 or 1. In spin space, |0〉 = |+〉 and |1〉 = |−〉,264

while in fermionic space |0〉 j means the j-th position is not occupied by a fermion, and |1〉 j means265

having one fermion.266

Notice that the coefficients Ψi1,...,in remain unchanged under the transformation. Thus, in the-267

ory, no additional gate is required to implement the Jordan-Wigner transformation. However, two268

important caveats must be addressed here.269

The first one arises when two-qubit states are exchanged using a SWAP operation. Since we are270

dealing with fermions, exchanging two fermions requires introducing a minus sign to account for271

their antisymmetric nature. This adjustment is implemented using the fermionic SWAP operation272

(fSWAP). In matrix form, the fSWAP is represented as273

f SWAP =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1






, (56)
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which can be decomposed into a standard SWAP gate followed by a controlled-Z gate.274

The second issue concerns a notation discrepancy. In conventional terms, spin states are denoted275

|+〉= |0〉, whereas in n-body systems the vacuum state is written as |0〉 or occasionally |Ω〉. Since the276

Jordan-Wigner maps |−〉 into |Ω〉, an X gate has been introduced to keep the standard convention277

and avoid potential confusion. As a result, the circuit is initialized with a layer of X gates applied to278

each qubit.279

We want to stress that this decision is primarily for consistency with established conventions.280

Choosing not to apply X gates is a valid alternative. In such a case, the unitary transformation281

required to disentangle the X Y model will differ slightly from the approach described in this work.282

However, the final result should remain unchanged.283

3.2 Fermionic Fourier transform circuit284

The next step involves transforming the fermionic modes into momentum space using the Fourier285

transform. When the number of particles is a power of two, meaning n = 2m where m is a natural286

number, the fermionic Fourier transform can be implemented by following the classical Fast Fourier287

Transform scheme [23].288

The idea is based on the work of Andrew J. Ferrys in Ref. [24]. First, we decompose the n-qubit289

Fourier transform in two parallel n
2 -qubit Fourier transforms, one acting upon odd and even modes290

respectively291

b†
k =

1
p

n

n−1
∑

j=0

ei 2π
n jkc†

j =
1
Æ

n
2 2

n/2−1
∑

j′=0

ei 2π
n 2 j′kc†

2 j′ +
1
Æ

n
2 2

n/2−1
∑

j′=0

ei 2π
n (2 j′+1)kc†

2 j′+1 =

=
1
p

2





1
Æ

n
2

n/2−1
∑

j′=0

ei 2π
n/2 j′kc†

2 j′ + ei 2π
n k 1
Æ

n
2

n/2−1
∑

j′=0

ei 2π
n/2 j′kc†

2 j′+1



 .

(57)

To avoid confusion with the operators defined earlier, we have chosen to use the tilde symbol292

to denote the operators derived from the FT in this section. In this context, b†
k is equivalent to the293

operator b†
k defined in Sec.2.2.294

We can now define a new set of fermionic operators for even and odd sites a j ≡ c2 j′ and295

d j ≡ c2 j′+1. The fermionic Fourier Transform of those operators using n
2 points will be296

ã†
k =

1
Æ

n
2

n
2−1
∑

j=0

ei 2π
n jka†

j , d̃†
k =

1
Æ

n
2

n
2−1
∑

j=0

ei 2π
n jkd†

j . (58)

If we now insert the prior definition in Eq.(57)297

b†
k =

1
p

2

�

ã†
k + ei 2π

n k d̃†
k

�

, b†
k+ n

2
=

1
p

2

�

ã†
k − ei 2π

n k d̃†
k

�

, (59)

where in the last equality we have used the periodicity of the Fourier Transform. In the case of n
2298

Fourier Transform the period for k values is n
2 , so ã†

k+ n
2
= ã†

k and exactly the same for d̃†
k operator.299

Equation (59) shows us that we can obtain the values of the n qubit Fourier Transform (bk) from a300
n
2 (ak, dk) qubit Fourier Transform. In the case of systems with n= 2m qubits, this process of division301
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can continue iteratively until the Fourier Transform is reduced to a 2-qubit operation. Notably, the302

2-qubit Fourier Transform has the same expression as Eq.(59) with k = 0.303

At this stage, we have established the interplay between bk and their counterparts ak and dk. Nev-304

ertheless, our primary goal is to derive the matrix that defines the relationship between |k〉b |k+
n
2 〉b305

and |k〉a |k〉d states. This matrix can be determined by recognizing that the vacuum state remains306

unchanged under the transformation, as the Fourier Transform does not mix annihilation and cre-307

ation operators in its definition. Hence, the remaining states can be attained by applying the creation308

operators to the void state, explicitly309

• void vector (0 fermions) |0〉kb
|0〉kb+

n
2
= |0〉ka

|0〉kd
,310

• apply b†
k+ n

2
to obtain |0〉kb

|1〉kb+
n
2
= 1p

2

�

|1〉ka
|0〉kd
− ei 2π

n k |0〉ka
|1〉kd

�

,311

• apply b†
k to obtain |1〉kb

|0〉kb+
n
2
= 1p

2

�

|1〉ka
|0〉kd

+ ei 2π
n k |0〉ka

|1〉kb

�

,312

• apply b†
k b†

k+ n
2

to obtain |1〉kb
|1〉kb+

n
2
= −ei 2π

n k |1〉ka
|1〉kd

.313

Here, the subscript kb means that this vector belongs to the n-qubit Fourier space, ka indicates that314

the vector is associated with the n even-qubit Fourier space, and kd denotes that the vector belongs315

to the n odd-qubit Fourier space.316

Deriving the matrix that performs the mentioned operation is a straightforward process. For the317

remainder of this work, we will refer to this matrix as the "General FT 2-qubit gate" or F n
k . It takes318

the following form319

F n
k ≡

























1 0 0 0

0 −e−i 2π
n k

2
1p
2

0

0 e−i 2π
n k
p

2
1p
2

0

0 0 0 −e−i 2π
n k

























, (60)

where the F n
k matrix transforms the |k〉a |k〉b vectors into |k〉c |k+

n
2 〉c . Additionally, the 2-qubit320

Fourier Transform is recovered whenever k = 0, which is represented as F2.321

It is key to bear in mind that there is a gap between the gates that can be applied theoretically in a322

quantum computer and those that can currently be implemented on real devices. Therefore, all gates323

must be decomposed into basic gates that can be implemented in a quantum computer. In certain324

cases, analytical schemes exist for such decompositions [25]. For the case F n
k , the decomposition325

into basic gates is shown in Fig.3.326

Up to this point, we have found the 2-qubit gate transform. Now we will describe the circuit327

needed to perform the FT of n qubits. The approach involves decomposing the n qubits into the even328

and odd sectors, followed by applying the fermionic Fourier Transform of n
2 qubits.329

Once the n
2 Fourier Transform is complete, the F n

k gate is applied to the i qubit and the i + n
2330

qubit. This process is repeated iteratively until the FT is reduced to 2-qubit operations, which will331

be performed by F2. Nevertheless, depending on the connectivity of the qubits, additional fSWAP332
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F n
k =

H H H H

Ph(φk) H H H H H

Figure 3: The diagram illustrates the decomposition of the building block of F n
k

(Eq.(60)), where φk =
−i2πk

n .

operations may be required. In this work, we assume a linear connectivity model, where qubits are333

arranged in a 1D configuration.334

|x = 0〉 |k = 0〉F T

|x = 1〉 |k = 1〉F T

|x = 2〉 |k = 2〉F T

|x = 3〉 |k = 3〉F T

n= 4 Sor t.

F2

n= 4 Reor.

F4
0

F2 F4
1

Figure 4: Scheme followed to perform the fermionic Fourier Transform (fFT) for
the case of n = 4 qubits. The first step of the algorithm corresponds to the Qubit
sorting (Sort.), then the fermionic Fourier Transform for n= 2 (F2) qubits is applied
and performed into the even and odd sectors. The next step is the Fourier states
reorganization (Reor.) and finally, the General Fourier Transform 2-qubit gate (F n

k )
to recover the k and k+ 2 states.
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|x = 0〉 |k = 0〉F T

|x = 1〉 |k = 1〉F T

|x = 2〉 |k = 2〉F T

|x = 3〉 |k = 3〉F T

|x = 4〉 |k = 4〉F T

|x = 5〉 |k = 5〉F T

|x = 6〉 |k = 6〉F T

|x = 7〉 |k = 7〉F T

n= 8 Sor t.

n= 4 f F T

n= 8 Reor.

F8
0

F8
1

n= 4 f F T

F8
2

F8
3

Figure 5: Scheme followed to perform the fermionic Fourier Transform (fFT) for
the case of n = 8 qubits. The first step of the algorithm corresponds to the Qubit
sorting (Sort.), then the fermionic Fourier Transform for n= 4 (fFT) qubits is applied
and performed into the even and odd sectors. The next step is the Fourier states
reorganization (Reor.) and finally the General Fourier Transform to recover the k
and k+ 4 states.

Next, we will describe the algorithm used to construct the fermionic Fourier Transform circuit335

for n qubits assuming linear connectivity and that the first qubit is numbered as 0. This circuit is336

decomposed into four phases:337

1. Qubit Sorting (Sort.): In the initial step, we categorize the qubits into even and odd sectors338

using fermionic SWAP gates whenever we exchange two qubits.339

2. n
2 Fermionic Fourier Transform (fFT): The second phase entails the application of the Fermionic340

Fourier Transform circuit for n
2 qubits into the even and odd sectors.341

3. Fourier states Reorganization (Reor.): Subsequently, we undertake the reordering of the342

resulting states to group the keven and kodd states.343

4. General Fourier Transform Gate Application (F n
k ): The final phase involves the application344

of the general Fourier transform gate F n
k to the keven and kodd states. This step is performed to345

recover the k and k+ n
2 states.346

Figure 4 and Fig.5 represent the diagram of the fermionic Fourier Transform for the case of n= 4 and347

n= 8 qubits respectively. Both pictures show the different parts of the algorithm described above.348

Qubit Sorting349

The initial step involves the segregation of qubits into even and odd sectors through a series of350

fermionic SWAP operations, a process that occurs throughout n
2 −1 layers. In the first layer, precisely351
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n
2−1 fermionic gates come into play, each consecutively applied, starting with qubit 1. Subsequently,352

in each successive layer, one fewer gate is used than in the previous layer, following a sequential353

progression starting with the next qubit after the initial qubit of the preceding layer. Moreover, in354

Algorithm 1, we presented the algorithm in pseudocode:355

Algorithm 1 Qubit Sorting circuit

Require: num_qubit = 2m

Ensure: qc_sor t ing → Quantum circuit which separates the qubits in even and odd sectors.
num_label = n

2 − 1
num_gates = n

2 − 1
qubit_ini t = 1
for i = 1 to num_label do

count_qubit = qubit_ini t
for j=num_gates to 1 do

add fSWAP into count_qubit and count_qubit + 1
count_qubit = count_qubit + 2

end for
qubit_ini t = qubit_ini t + 1
num_gates = num_gates− 1

end for

To enhance the accessibility and comprehensibility of the algorithm lecture, we have illustrated356

the circuit for the scenario where n= 8 in Fig.6. This visualization aims to make the algorithm more357

user-friendly and easier to use.358

|x = 0〉 |x = 0〉
|x = 1〉 |x = 2〉
|x = 2〉 |x = 4〉
|x = 3〉 |x = 6〉
|x = 4〉 |x = 1〉
|x = 5〉 |x = 3〉
|x = 6〉 |x = 5〉
|x = 7〉 |x = 7〉

Figure 6: Qubit sorting circuit for the case of n= 8 qubits. Here, the fermionic SWAP
gate has been represented using the same diagrammatic symbol as the SWAP gate.

n
2 fermionic Fourier transform359

The next step involves applying two fermionic Fourier transforms to n
2 qubits, separately for the odd360

and even sectors. As a result, the transformed vector states correspond to momentum states labeled361

by k, ranging from − n
4 + 1 to n

4 included.362

It is important to highlight that Fourier space is periodic, specifically with a period of n
2 . This363

periodicity allows the k states to also be labeled from 0 to n
2 . In the specific case where n

2 = 2,364
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the fermionic Fourier transform reduced to the application of F2
0 , as described by Eq.(60). Figure 7365

illustrates the circuit scheme for the case of n= 8.366

|x = 0〉e |k = 0〉e
|x = 1〉e |k = 1〉e
|x = 2〉e |k = 2〉e
|x = 3〉e |k = 3〉e

|x = 0〉o |k = 0〉o
|x = 1〉o |k = 1〉o
|x = 2〉o |k = 2〉o
|x = 3〉o |k = 3〉o

n= 4 f F T

n= 4 f F T

Figure 7: The n
2 fermionic Fourier transform circuit for the case of n= 8 qubits, the e

subindex stands for even while o stands for odd. We use the periodicity of the Fourier
transform, where the k = 3 state is equivalent to k = −1 state.

Fourier states reorganization367

The reorganization phase is designed to group the newly obtained n
2 -qubit Fourier states by pairing368

together the k states from the even sector with the corresponding k states from the odd sector. This369

is achieved by the inverse circuit developed in the qubit sorting step. Figure 7 illustrates the resulting370

circuit for the n= 8 case.371

|k = 0〉e |k = 0〉e
|k = 1〉e |k = 0〉o
|k = 2〉e |k = 1〉e
|k = 3〉e |k = 1〉e
|k = 0〉o |k = 2〉e
|k = 1〉o |k = 2〉o
|k = 2〉o |k = 3〉e
|k = 3〉o |k = 3〉o

Figure 8: The Fourier states reorganization circuit for the case of n= 8 qubits, the e
subindex stands for even while o stands for odd. Additionally, the SWAPs represented
are fermionic SWAPs.

General Fourier Transform Gate Application372

At this stage, although we have obtained k states resulting from the n
2 -qubit fermionic Fourier trans-373

form, we still need to recover the k states for the full n-qubit fermionic Fourier transform. To achieve374

this final step, the F n
k gate must be applied to the |ke〉 and |ko〉 states. This operation recovers the375

|k〉 and |k+ n
2 〉 states associated with the n-qubit Fourier Transform.376
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Algorithm 2 General Fourier Transform Gate Application circuit

Require: num_qubit = 2m

Ensure: qc_generalF T → Quantum circuit which recovers the n Fourier transform states |k〉 and
|k+ n

2 〉 from the n
2 Fourier transform states |ke〉 and |ko〉.

num_qubit = 0
for k_values= 0 to n

2 − 1 do
Add the F n

k gate to qubit num_qubit and num_qubit + 1 with k = k_values.
num_qubit = num_qubit + 2

end for

We have illustrated the circuit for the scenario where n = 8 in Fig.9, to clarify the algorithm377

described.378

|k = 0〉e |k = 0〉F T = |k = 0〉F T

|k = 0〉o |k = 4〉F T = |k = 4〉F T

|k = 1〉e |k = 1〉F T = |k = 1〉F T

|k = 1〉e |k = 5〉F T = |k = −3〉F T

|k = 2〉e |k = 2〉F T = |k = 2〉F T

|k = 2〉o |k = 6〉F T = |k = −2〉F T

|k = 3〉e |k = 3〉F T = |k = 3〉F T

|k = 3〉o |k = 7〉F T = |k = −1〉F T

F8
0

F8
1

F8
2

F8
3

Figure 9: The General Fourier Transform Gate Application circuit for the case of n= 8
qubits. Furthermore, we have illustrated the equivalence between the Fourier states,
denoted by the k labels ranging from − n

2 + 1 to n
2 or from 0 to n− 1.

3.3 Bogoulibov transformation gate379

The Bogoliubov transformation described in Eq.(47) mixes creation and annihilation operators from380

k and −k Fourier modes. Consequently, the vacuum changes after implementing the Bogoliubov381

transformation. The new vacuum state |Ω0〉 can be found in relation to the Fourier basis |0〉 , |k〉 , |−k〉382

and |−k, k〉 imposing383

384

ak |Ω0〉=
�

cos
�

θk

2

�

α− cos
�

θk

2

�

γb†
−k + i sin
�

θk

2

�

δb†
−k + i sin
�

θk

2

�

αb†
−k b†

k

�

|0〉= 0,

a−k |Ω0〉=
�

cos
�

θk

2

�

β + cos
�

θk

2

�

γb†
k − i sin
�

θk

2

�

δb†
k − i sin
�

θk

2

�

β b†
k b†
−k

�

|0〉= 0.

(61)
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From the last equation, notice that α = 0, β = 0 and i sin
�

θk
2

�

δ − cos
�

θk
2

�

γ = 0. Using these385

constraints, the ground state is determined as386

|Ω0〉= δ |0〉+α |1k〉+ β |1−k〉+ γ |1−k1k〉= γ



b†
−k b†

k +
cos
�

θk
2

�

i sin
�

θk
2

�



 |0〉

〈Ω0|Ω0〉= |γ|2



1+
cos2
�

θk
2

�

sin2
�

θk
2

�





|γ|=

√

√

√

√

√

1

1+
cos2
�

θk
2

�

sin2
�

θk
2

�

=

√

√

sin2
�

θk

2

�

= | sin2
�

θk

2

�

|.

(62)

Here, we have the freedom to choose the global phase of γ, we choose γ = i sin
�

θk
2

�

. Then the387

ground state is388

|Ω0〉= i sin
�

θk

2

�

|1−k1k〉+ cos
�

θk

2

�

|0〉 . (63)

Note that the new vacuum vector only depends on the vacuum of the FT and the |1k1−k〉 Once the389

new vacuum is acquired, the remaining vectors can be derived by applying the creation operators a†
k390

and a†
−k391

392

a†
k |Ω0〉=
�

cos2
�

θk

2

�

b†
k |0〉+ 0
�

+
�

0+ sin2
�

θk

2

�

b†
k |0〉
�

= |1k〉 ,

a†
−k |Ω0〉=
�

cos2
�

θk

2

�

b†
−k |0〉+ 0
�

+
�

0− sin2
�

θk

2

�

bk b†
−k b†

k |0〉
�

= |1−k〉 ,

a†
−ka†

k |Ω0〉= cos
�

θk

2

�

|1−k1k〉+ i sin
�

θk

2

�

|0〉 .

(64)

393

Consider that the calculations have been done assuming the order |−k, k〉. However, for our394

purposes, it is more advantageous to rephrase this sequence as |k,−k〉, which entails incorporating395

a −1 whenever the state |11〉 is interchanged. The ultimate expressions are396

|0k0−k〉Bog = cos
�

θk

2

�

|0k0−k〉F T − i sin
�

θk

2

�

|1k1−k〉F T ,

|1k0−k〉Bog = |1k0−k〉F T ,

|0k1−k〉Bog = |0k1−k〉F T ,

|1k1−k〉Bog = −i sin
�

θk

2

�

|0k0−k〉F T + cos
�

θk

2

�

|1k1−k〉F T ,

(65)

where we have used a different notation. The |k,−k〉Bog corresponds to the Bogoulibov states, and397

the |k,−k〉F T corresponds to the Fourier states.398

Once we have the Bogoulibov states written in terms of Fourier states, deriving the matrix that399

performs this operation is straightforward. Through the remainder of this work, we will refer to this400
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matrix as the "Bogoulibov 2-qubit gate" or Bn
k . It takes the following form401

Bn
k =











cos
�

θk
2

�

0 0 i sin
�

θk
2

�

0 1 0 0
0 0 1 0

i sin
�

θk
2

�

0 0 cos
�

θk
2

�











, (66)

where the Bn
k matrix transforms the |k,−k〉F T vectors into |k,−k〉Bog and θk is described in Eq.(48).402

The basic gate decomposition of Bn
k is shown in Fig.10.

Bn
k

=
RX (−θk)

X X

Figure 10: Decomposition of the building block of Bn
k shown in Eq.(66), where θk is

defined in Eq.(48).

403
The circuit is designed to decouple the k and −k Fourier modes using the 2-qubit Bogoliubov404

gate, denoted as Bn
k . Although this task might initially seem straightforward, its complexity increases405

considerably when linear connectivity is taken into account.406

This added complexity stems from the requirement of additional fermionic SWAP operations to407

rearrange the output states produced by the fermionic Fourier Transform. Initially, these states are408

grouped as k and k+ n
2 . However, for the Bogoliubov gates to work, the states must be reorganized409

into pairs of k and −k states.410

Next, we will describe the algorithm used to build the Bogoulibov transformation circuit assum-411

ing linear connectivity and that the first qubit is numbered 0. This circuit is decomposed into two412

subcircuits:413

1. Bogoulibov Qubit Sorting: The circuit consists of a series of fermionic SWAPS gates with the414

aim of grouping k and −k states.415

2. Bogoulibov Gate Application: The circuit performs the Bogoulibov transformation applying416

the Bogoulibov gate into the modes k and −k.417

Bogoulibov Qubit Sorting:418

The initial step involves segregating qubits into k and −k modes. This can be optimally achieved419

by employing n
4 − 1 cascades of fermionic SWAP gates, arranged according to a specific geometric420

pattern.421

The first cascade begins at qubit 3, followed by the next cascade, which starts at the succeeding422

qubit after the first four gates of the previous cascade have been applied. This sequencing is crucial423

for optimizing the circuit’s depth. If the second cascade is initiated before the completion of the fourth424

gate in the previous one, it would result in an incorrect sorting of states. While there are other, more425

straightforward geometries that can be programmed, such as applying cascades sequentially, they426

do increase the overall circuit depth.427
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Each cascade initially consists of n−4 consecutive fermionic SWAP gates, each starting where the428

previous one left off. Subsequently, an additional n−5 fermionic SWAP gates are applied sequentially,429

with each gate being applied one level above the previous one.430

In Algorithm 3, we presented the algorithm in pseudocode:431

Algorithm 3 Qubit Sorting circuit

Require: num_qubit = 2m

Ensure: qc_Bog_sor t ing → Quantum circuit which groups the k and −k Fourier states.
num_cascade = n

4 − 1
qubit_ini t = 3
if num_cascade = 2 then

stop
else

for i = num_cascade to 1 do
count_qubit = qubit_ini t
down_cascade = i · 4
up_cascade = (i · 4)− 1
for j = 1 to down_cascade do

Add fSWAP into count_qubit and count_qubit + 1
count_qubit = count_qubit + 1

end for
for j = 1 to up_cascade do

Add fSWAP into count_qubit − 1 and count_qubit
count_qubit = count_qubit − 1

end for
qubit_ini t = qubit_ini t + 1
Start after the 4th fSWAP of the previous cascade

end for
end if

To enhance the accessibility and comprehensibility of the algorithm lecture, we have illustrated432

the circuit for the scenario where n = 8 in Fig.11. This visualization aims to make the algorithm433

more user-friendly and easier to use.434
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|k = 0〉F T |k = 0〉F T

|k = 4〉F T |k = 4〉F T

|k = 1〉F T |k = 1〉F T

|k = −3〉F T |k = −1〉F T

|k = 2〉F T |k = 2〉F T

|k = −2〉F T |k = −2〉F T

|k = 3〉F T |k = 3〉F T

|k = −1〉F T |k = −3〉F T

Figure 11: Bogoulibov qubit sorting circuit for the case of n = 8 qubits. Here, the
fermionic SWAP gate has been represented using the same diagrammatic symbol as
the SWAP gate.

Bogoulibov Gate Application:435

Finally, we have arrived at the last step to obtain our diagonalizing circuit. To disentangle the k436

and −k states, the Bogoulibov gate Bn
k is applied. Hence, the new circuit will be simply a layer of437

Bogoulibov gates, where each gate will act on the corresponding k and −k states, starting from k = 0438

to k = n
2 − 1.439

Algorithm 4 Bogoulibov Gate Application circuit

Require: num_qubit = 2m

Ensure: qc_generalBog → Quantum circuit which disentangles the |k〉 and |−k〉.
num_qubit = 0
for k_values= 0 to n

2 − 1 do
Add the Bn

k gate to qubit num_qubit and num_qubit + 1 with k = k_values.
num_qubit = num_qubit + 2

end for

We have illustrated the circuit for the scenario where n = 8 in Fig.12, where can be stated the440

similarity with the General Fourier Transform circuit.441

3.4 Example: n= 4 and n= 8 spin chain442

The explicit circuit Udis for spin chains with n = 4 and n = 8 is illustrated in Fig.13, Fig.14, and443

Fig.15. As an example of the many applications facilitated by Udis, we performed simulations to444

evaluate the ground state and first excited state energies of the symmetric XY model (J = 1 and445

γ = 0) for spin chains of n = 4 and n = 8, considering various values of λ. Computing the energy446

of the ground and first excited state enables us to observe the quantum phase transition from an447

antiferromagnetic to a paramagnetic state, as mentioned in Sec.2. In the symmetric XY model, the448

diagonalized Hamiltonian becomes449

H =

n
2
∑

k=−n
2 +1

2
�

λ+ J cos
�

2πk
n

��

b†
k bk −λn, (67)
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|k = 0〉F T |k = 0〉Bog

|k = 4〉F T |k = 4〉Bog

|k = 1〉F T |k = 1〉Bog

|k = −3〉F T |k = −3〉Bog

|k = 2〉F T |k = 2〉Bog

|k = −2〉F T |k = −2〉Bog

|k = 3〉F T |k = 3〉Bog

|k = −1〉F T |k = −1〉Bog

B8
0

B8
1

B8
2

B8
3

Figure 12: In the diagram is shown the Bogoulibov Gate Application circuit for the
case of n= 8 qubits.

where b†
k bk is the number occupation of the Fourier states k. Notice from Eq.(48), that in the case450

γ = 0 the Fourier and Bogoulibov modes are equivalents. For the case n = 4, the ground and the451

first excited state written in the diagonal basis are452

|gs〉=
�

|0, 1,0, 0〉 , λ≤ 1,

|0, 0,0, 0〉 , λ≥ 1,
|e〉=
�

|0, 0,0, 0〉 , λ≤ 1,

|0, 1,0, 0〉 , λ≥ 1.
(68)

For the case n= 8, the ground and the first excited state are453

|gs〉=
�

|0, 1,0, 0,0, 0,0, 0〉 , λ≤ 1,

|0, 0,0, 0,0, 0,0, 0〉 , λ > 1,
|e〉=
�

|0, 0,0, 0,0,0, 0,0〉 , λ≤ 1,

|0, 1,0,0, 0,0, 0,0〉 , λ > 1.
(69)

Additionally, we have simulated the ground state for the transverse field Ising model (J = 1454

and γ = 1) in the n = 4 spin chain followed by the computation of the corresponding transverse455

magnetization. We have chosen magnetization because is one of the physical parameters which456

enable us to observe the phase transition discussed before. Analytically, the 〈Mz〉 =
∑n

i=1σ
z
i in the457

ground state is458

〈gs|Mz|gs〉=

¨

− λ

2
p

1+λ2 , λ≤ 1,

−1
2 −

λ

2
p

1+λ2 , λ≥ 1.
(70)

459

4 Time evolution460

We have introduced the disentangling circuit Udis for the 1-D XY model, which enables us to obtain461

the complete spectrum of the Hamiltonian. This means that we can access the full physics of the462
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X
F2 F4

0 B4
0

X

X
F2 F4

1 B4
1

X

Figure 13: Quantum circuit Udis designed to diagonalize the XY Hamiltonian for
n= 4 qubits. The initial layer consists of X gates, executing the Jordan-Wigner trans-
formation. Subsequently, F2 and F n

k implement the fermionic Fourier Transform. The
circuit concludes with the Bogoliubov transformation achieved by Bn

k . Additionally,
the swaps represented in the diagram correspond to fermionic SWAPs.

system by applying the disentangling circuit to the computational basis. This approach also sim-463

plifies the calculation of various system properties, such as the expectation values of energy and464

magnetization, as discussed in the preceding section.465

However, there are instances where our focus is on computing dynamic properties. In such cases,466

we need to calculate the time evolution of the state, which can be a challenging task. Nonetheless, a467

quantum circuit can be constructed to achieve exact time evolution for fermionic Hamiltonians that468

can be decomposed as the sum of the energies of each particle independently,469

H =
N
∑

α=1

εαa†
αaα, (71)

where εα is the energy associated with having a particle in the state α, a†
α and aα are the fermionic470

creation and annihilation operator of the particle in the given state.471

The reason for constructing the time evolution gate in this case is straightforward: for such472

Hamiltonians, the general time evolution operator U (t) can be decomposed into a product state of473

the time evolution operator for each qubit. To illustrate this, let’s express the general time evolution474

of a given state |ψ (t)〉 driven by a non-time-dependent Hamiltonian H. The evolution is accom-475

plished by the unitary time-evolution operator U (t)476

U (t)≡ e−i tH,

|ψ (t)〉= U (t) |ψ0〉=
∑

l

e−i tEl |El〉 〈El | |ψ0〉 ,
(72)

where |ψ0〉 is the initial state, |El〉 are the eigenstates of the given Hamiltonian, and El are the477

corresponding energies or eigenvalues of each state |El〉.478

Due to the decomposable form of Hamiltonian in Eq.(71), eigenstates can be expressed as a479

product state of N states, each representing the presence or absence of a fermion in the α state480

|El〉= |α= 1〉 |α= 2〉 · · · |α= N〉 . (73)

where |α〉 can be represented by the qubits |0〉 or |1〉. Consequently, the time evolution operator481
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X

f F T8

B8
0

X

X
B8

1
X

X
B8

2
X

X
B8

3
X

Figure 14: Quantum circuit Udis designed to diagonalize the XY Hamiltonian for
n= 8 qubits. The initial layer consists of X gates, executing the Jordan-Wigner trans-
formation. Subsequently, the fermionic Fourier Transform is applied by the circuit
f F T8, described in Fig.15. The circuit concludes with the Bogoliubov transforma-
tion achieved by Bn

k . Additionally, the swaps represented in the diagram correspond
to fermionic SWAPs.

becomes482

U(t) |El〉= e−i tH |α= 1〉 |α= 2〉 · · · |α= N〉= e−i t
∑N
α=1 εαa†

αaα |α= 1〉 |α= 2〉 · · · |α= N〉=
= U1 |α= 1〉U2 |α= 2〉 · · ·Un |α= N〉 ,

(74)

where Ui is the time evolution operator for the ith qubit.483

The procedure described above, tells us that to build the time evolution circuit we just need to484

perform time evolution for each qubit independently. Specifically for the XY 1-D model, the time485

evolution for the qubit representing a fermionic particle with momentum k is486

Uk = e−i t2Eka†
kak e−i t[−Ek+εk−λ] = U1U2, (75)

where εk = λ+J cos(2πk
n ) and Ek =
r

�

λ+ J cos
�2πk

n

��2
+
�

Jγ sin
�2πk

n

��2
are the energies associated487

to having one fermion in the Bogoulibov mode k.488

The unitary operators U1 and U2 can be written in matrix form489

U1 = e−i t2Eka†
kak =

�

1 0
0 e−i t2Ek

�

=

�

1 0
0 eiϕk

�

,

U2 =

�

e−i t[−Ek+εk−λ] 0
0 e−i t[−Ek+εk−λ]

�

=

�

ei2Φk 0
0 ei2Φk

�

,

(76)

whereby Ek =
r

�

λ+ J cos
�2πk

n

��2
+
�

Jγ sin
�2πk

n

��2
and εk = λ+ J cos

�2πk
n

�

. Additionally, we have490
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f F T8
=

F2 F4
0 F8

0

F2 F4
1 F8

1

F2 F4
0 F8

2

F2 F4
1 F8

3

Figure 15: Fermionic Fourier Transform circuit for the case n = 8. The swaps repre-
sented in the diagram correspond to fermionic SWAPs.

renamed the exponential arguments by ϕk = −2tEk, and Φk = −2t [−Ek + εk −λ]. The gate de-491

composition of Uk is shown in Fig.16.492

Uk = Ph(ϕk) Ph(Φk
2 ) X Ph(Φk

2 ) X

Figure 16: In the diagram is shown the decomposition of the building block of Uk
shown in Eq.(76), where ϕk = −2tEk, and Φk = −2t [−Ek + εk −λ].

As an example of the many possibilities this gate opens, let’s compute the time evolution of493

the expected value of transverse magnetization for the n = 4 qubits case, with J = 1 and γ = 1.494

Specifically, our initial state has all the spins aligned in the positive z direction |ψ(t = 0)〉= |↑ ↑ ↑ ↑〉,495

which in the computational basis is written as |0000〉 state. The first step to compute the time496

evolution consists of expressing the initial state in the eigenbasis of the XY Hamiltonian. This is497

achieved by precisely applying the Udis gate498

|ψ(t = 0)〉= Udis |0 0 0 0〉= sin
�

φ

2

�

|1 1 0 0〉 − i cos
�

φ

2

�

|1 1 1 1〉 , (77)

where φ = arctg
� 1
λ

�

. Subsequently, we apply the time evolution operator U(t) to obtain |ψ(t)〉.499

Then, the time-dependent state is500

|ψ(t)〉= e−i t2(λ−
p

1+λ2) sin
�

φ

2

�

|1 1 0 0〉 − ie−i t2(λ+
p

1+λ2) cos
�

φ

2

�

|1 1 1 1〉=,

= e−i t2λe−i2t
p

1+λ2
�

e+i4t
p

1+λ2
sin
�

φ

2

�

|1 1 0 0〉 − i cos
�

φ

2

�

|1 1 1 1〉
�

,
(78)
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(a) n=4 spin chain (b) n=8 spin chain

Figure 17: Study of the ground and first excited state energy for the symmetric XY
model (J = 1 and γ = 0) as a function of the transverse field strength parameter λ.
The solid (dashed) line represents the analytical values of the energy E, while the
scatter points correspond to results obtained from a quantum computer simulation
conducted in Qibo. (a) shows results for an n = 4 spin chain, and (b) for an n = 8
spin chain.

where the global phases are not physically relevant. After applying the time operator, we now apply501

the circuit U† to obtain the state in the spin representation. Lastly, we compute analytically the502

expected value of the transverse magnetization 〈Mz〉, which yields the analytical result503

〈Mz〉=
1+ 2λ2 + cos
�

4t
p

1+λ2
�

2+ 2λ2
. (79)

5 Results and discussion504

In this section, we delve into the outcomes and insights derived from the application of our quantum505

circuit, Udis, across various scenarios. The results show the classical simulation using the quantum506

computing library Qibo [9], for the spin chain n= 4 and n= 8 using the circuits represented in Figs.507

13, 14, and 15.508

Figure 17 presents the outcomes of the expected energy for the ground and first excited states in509

the symmetric XY model (J = 1. and γ = 0) for spin chains with n = 4 and n = 8. Given the nature510

of quantum simulations, subject to inherent probabilistic uncertainties, each data point carries a sta-511

tistical error proportional to 1p
N

, where N represents the number of shots—indicating the executions512

on a quantum processing unit (QPU). Here, N was set to 1000. Notably, the results showcase the513

circuit’s effectiveness in recovering analytical values for both cases. Moreover, a structural change in514

the ground state is evident at λ= 1, where the more stable state becomes the one without particles515

in the Bogoliubov modes k instead of having a fermion in the −k mode.516

For the transverse field Ising model (J = 1 and γ = 1) in the n = 4 spin chain, the results of the517
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ground state’s expected value of transverse magnetization 〈Mz〉 are shown in Fig. 18. The circuit518

successfully reproduces analytical values, and at λ= 1, a magnetization discontinuity occurs due to519

a phase transition from an antiferromagnetic state to a paramagnetic state.520

Figure 18: The ground state’s expected value of transverse magnetization 〈Mz〉 for
the transverse field Ising model (J = 1 and γ= 1) in a spin chain with n= 4 spins, as
a function of the transverse field strength parameter λ. The solid line represents the
analytical value of 〈Mz〉, while the scatter points correspond to the results obtained
from a quantum computer simulation conducted in Qibo, utilizing the quantum cir-
cuit developed in this paper.

Moreover, we have also used the transverse field Ising model (J = 1 and γ = 1) to explore the521

time evolution of the expected value of transverse magnetization 〈Mz(t)〉. The quantum circuit U(t)522

is applied to evolve the initial state |↑,↑,↑,↑〉 with the magnetic field strength fixed at λ= 0.5. After,523

we apply U†
dis to obtain the evolved spin state. The results are shown in Fig.19, showcasing successful524

agreement between the quantum simulation and analytical values.525

The circuit presented scales efficiently with the number of qubits. The Jordan-Wigner transfor-526

mation is a simple layer of X gate, as a result, escalates linearly with the number of qubits and the527

depth is constant. Similarly, the Bogoulibov transformation only combines k and −k modes, result-528

ing in a constant circuit depth while the number of gates escalates proportionally to ∼ n
2 , where n529

represents the number of qubits. In Ref. [24], it is shown that the circuit depth of the Fourier trans-530

forms follows a logarithmic scaling of ∼ log2(n), with the number of gates increasing as ∼ n log2(n).531

The time evolution circuit scales linearly with the number of qubits n and presents a constant depth.532

6 Conclusion533

This paper presents a comprehensive implementation of the exact simulation of a 1-D XY spin chain534

using a digital quantum computer. Our approach encompasses the entire solution process for this535

exactly solvable model, involving key transformations such as the Jordan-Wigner transformation,536

fermionic Fourier transform, and Bogoliubov transformation. Additionally, we developed an algo-537

rithm to construct an efficient quantum circuit for powers of two qubits, capable of diagonalizing the538
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Figure 19: Time evolution simulation of transverse magnetization 〈Mz〉 for the trans-
verse field Ising model (J = 1 and γ= 1) in a spin chain with n= 4 spins. The initial
spin state is |↑,↑,↑,↑〉, evolved using the quantum circuit U(t) with the magnetic
strength fixed at λ = 0.5. The solid line represents the analytical value of 〈Mz〉,
while the scatter points correspond to the results obtained from a quantum com-
puter simulation conducted in Qibo, utilizing the quantum circuit developed in this
paper.

XY Hamiltonian and executing its exact time evolution. The explicit code to reproduce these circuits539

is presented in Ref. [15] and uses Qibo, an open-source framework for quantum computing.540

The presented quantum circuit is a powerful tool, facilitating the calculation of all eigenstate541

vectors by initializing qubits on a computational basis and subsequently applying the detailed circuit.542

This feature enables access to the complete spectrum of the Hamiltonian, providing novel approaches543

for exploring various system properties, including energy, magnetization, and time evolution.544

Our introduced quantum circuit serves as a benchmark for quantum computing devices. It545

presents efficient growth and scalability with the number of qubits n, making it suitable to be used in546

devices of diverse sizes. Furthermore, the 1-D XY model’s exact solvability not only allows us to test547

the efficiency of real quantum computers but it offers an avenue to study and model errors inher-548

ent in quantum computations, establishing a bridge between theoretical predictions and real-world549

outcomes.550

Beyond its utility as a benchmark, the presented quantum circuit holds intriguing applications in551

condensed matter physics. The methods highlighted in this work can be extended to explore other552

integrable models, such as the Kitaev Honeycomb model [13], or with alternative ansatz, as seen in553

the Heisenberg model [16].554

Moreover, different strategies for simulating thermal evolution [11] could be employed, paving555

the way for new approaches to studying quantum phase transitions. Notably, the XY Hamiltonian556

lacks an analytical solution in two dimensions, making it particularly interesting to use the circuit557

to simulate the 1D case as a foundation for constructing more sophisticated methods. For instance,558

this could serve as a stepping stone toward approximating the ground state of the 2D system. One559

potential avenue to achieve this would be introducing variational interactions within the circuit to560

capture the effects of the 2D Hamiltonian that are absent in the 1D case.561

31
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In conclusion, our work contributes to the advancement of quantum computing algorithms and562

establishes a foundation for exploring quantum solutions to complex problems in condensed matter563

physics.564
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