
Response to Ref 2

1. Referee: In Sec. 4.1, the authors seem to mix several setups. They apply the meth-

ods from Ref. [21], which studies the resolution of the entanglement entropy in a

CFT on the complex plane with respect to a symmetry of the theory. Formula in

Eq. (38) seems to assume a cylinder geometry. However, the final result (Eq. (40))

is compared with results from Ref. [24], where the entanglement asymmetry of an

interval attached to a boundary that breaks the symmetry is studied. I am confused

by the exact setup the authors are considering. This needs to be clarified.

Response: In our paper, we have studied entanglement asymmetry of a CFT interval

attached to a boundary of a strip for both in equilibrium and out-of-equilibrium set-

tings. In both cases, we start with the state which manifestly breaks the symmetry

generated by Q. By going to the upper-half plane (UHP), we find the appearance

of the conformal boundary state which breaks the symmetry corresponding to the

charged symmetry sector. Since a conformal boundary state can be written as a

sum of primary and Virasoro descendent states, it is expected to break the symme-

try of the full theory as well as that of individual charge sectors. That is why, the

one-point functions in UHP becomes non-zero; they can be easily computed using

standard method of images. In a cylinder, the ground state respect the symme-

try as [H,Q] = 0 and H|0⟩ = 0. Hence in that case, we can not use the formal

procedure of computing entanglement asymmetry which already assumed the fact

that [ρ,Q] ̸= 0. Thus if we wanted to work in the cylinder geometry, we would need

to start from such excited primary state of the CFT. We hope that this clarifies

our setting and we have added a brief discussion in the draft regarding this in the

introduction section.

We note that the structural similarity of (38) for a strip and that for the cylinder

is well-known; it comes from the conformal mapping. This is also true in the same

expression of entanglement entropy(upto an overall 1/2 factor) for an interval in

full plane and an interval in an UHP attached to the boundary of half plane. The

difference is that, in cylinder to complex plane mapping, primary one point function

will be zero, while mapping from strip to the UHP, this is non vanishing. What

we are computing is exactly composite twist one point function in an UHP, which,

appealing to the method of images, is similar in structure to the two-point twist

correlations in cylinder. We hope that this point addresses the issue raised by the

referee.
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2. Referee: The formulas in Eq. (37) are derived using the Appendix of Ref. [21],

where the vertex opertors that implement the conserved charge e−iαQ create a topo-

logical defect line. In that case, one can split the flux α among the replicas such

that
∑n

j=1 αj = α. This mimics the case of asymmetry in Eq. (33). However, the

result I obtain for dn is different from the expression in Eq. (37). I am obtaining

dn = c(n− 1/n)/24 +∆
∑n

j=1 αj/n
2. What is the crucial point I am missing to get

Eq. (37) instead of the dn I am obtaining?

Response: In [21], the authors studied symmetry resolved entanglement entropy

which is by definition

Sn(q) =

∫
dαTr(ρnAe

iα(Q−q))) =

∫
dαTr(

n∏
j=1

ρA,je
iα
n
(Q−q))) (1)

Here, in the second equality we just split ρnA =
∏n

j=1 ρA,j such that ρA,j = ρA for

each j. This is possible since [ρA, Q] = 0 by definition. According to this line, we

can think of computing n-sheeted partition function where in each sheet a vertex

operator ei
α
n
(Q−q) is threaded along the intervals. Along this line, Sela et al. has

computed the symmetry resolved EE by computing the composite twist operator.

In contrast, to compute entanglement asymmetry we have used the

Tr(ρnA,Q) =

∫
dα1dα2 . . . dαn

(2π)n
Tr

[
n∏

j=1

ρAe
iαj,j+1Q

]
, αj,j+1 = αj+1 − αj (2)

This is same as writing equation (33) in our draft where the integral variables are

α′
j ≡ αj,j+1, such that

∑n
j′=1 αj′ = 0. Hence we have (n− 1) independent integrals

to compute as from (33). We again use the composite twist formalism to compute

n-sheeted partition function similar to [21] but with different αj on each sheet. Due

to different αj′ , we will have a term in the twist dimension
∑

j′
∆(αj′ )

n2 . If all αj′ are

the same then it reduces to the Sela et al. (and referee’s expression) as we explained

above. Since we have only (n−1) independent αj′ from (33), the sum over j′ should

run from 1 to (n− 1). This is the logic to obtain equation (37). We hope this will

clarify referee’s question (2).

3. Referee: I think there is a typo in Eq. (38). The last equality should be Tr[
∏n

j=1 ρAe
iαQ]

instead of ρnQA, which would be consistent with Eq. (39).

Response: We have corrected this in the present version and we thank the referee

for pointing out this typo.
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4. Referee: I think Eq. (39) is only valid for Renyi index n = 2, but it is written for

∆Sn.

Response: The expression in (39) is correct for any integer Renyi index n > 1. This

is due to the fact that all the (n−1) integrals have the same form(as they are being

factorized due to the sum of j in dn) and they can be written as a single integral

to the power (n− 1). Taking log will merely cancel the prefactor 1
n−1

of the Renyi

entropy.

5. Referee: In the first sentence of Sec. 4.1, the authors write ”The computation of

∆Sn in equilibrium has been carried out for cylinder geometry in several works [21,

22]”. I would like to point out that, in Ref. [21], the entanglement asymmetry is

not computed but rather the symmetry-resolved entanglement, which is the opposite

situation. I would suggest to cite instead the paper JHEP 05(2024) 059 where the

entanglement asymmetry is studied in the ground state of CFTs breaking a sym-

metry in the bulk and, in particular, in the Ising CFT. Ref. [25] also investigates

asymmetry at equilibrium in CFTs in the complex plane.

Response: We thank the referee for pointing this out and we have put the suggested

citations in the new version of the draft.

6 Referee: Apart from the concerns above, I would like to ask the following question:

vi) In the driven XY spin chain and PXP model, does the quantum Mpemba effect

always occur when the symmetry is restored? It is not entirely clear to me from the

discussion.

Response: No it does not always occur and depends on the parameters chosen for

the initial state. In the driven XY spin chain and in the PXP model Mpemba effect

does not always occur when the symmetry is restored. We have chosen initial states

in such a manner, that this effect occurs. There are other initial states as well which

do not show Mpemba effect during the evolution of the entanglement asymmetry at

the parameter points where the first order effective Floquet Hamiltonian gives rise

to emergent U(1) conservation.

Consider two initial states |ϕ1⟩ and |ϕ2⟩. For observation of the Mpemba effect, two

things must happen simultaneously – (1) One of the initial states (say |ϕ1⟩) must

have a broader distribution of the conserved charge compared to the other state,
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which leads to |ϕ1⟩ having more entanglement asymmetry at the initial time. (2)

The state |ϕ1⟩, must transport the charge through faster velocity modes compared

to |ϕ2⟩.

Now as time evolves entanglement asymmetry eventually decays as a result of the ini-

tial charge fluctuations surpassing across the boundary of the cut (used to define the

entanglement entropy). If the two conditions mentioned above are satisfied simul-

taneously, then the state |ϕ1⟩ will show a faster decay of entanglement asymmetry

(compared to |ϕ2⟩) even though it initially has a higher entanglement asymmetry,

resulting in the observation of the Mpemba effect. Failure of simultaneous occur-

rence of both the conditions will result in a non-occurrence of the Mpemba effect.

This is quite similar in a periodically driven or quenched system.

The quantitative analysis has been performed for the XY model in a quench scenario

in Ref[13] of our manuscript] by considering charge transport through quasiparti-

cles whose velocities are known analytically. Such an analysis can be generalized

for the driven XY case considered in our manuscript, similar to the quasiparticle

analysis performed to obtain the analytical picture in Fig1(a), in regimes, where

the first order effective Floquet Hamiltonian gives rise to emergent magnetization

conservation. This analysis is similar to that obtained in Ref 13. For the PXP case,

the qualitative reasoning of the occurrence or non-occurrence of the Mpemba effect

remains the same. However, as the PXP model is a non-integrable model, and a

simple quasiparticles interpretation of excitations is not analytically tractable. Thus

the search for initial states which satisfy the conditions mentioned above are in gen-

eral difficult. For this one needs to look into charge transport properties of such

systems, which, in our opinion requires a separate study.
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