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Figure 1: Plot of the variational ground-state energy density error (1) as a function of the perturba-
tion coupling δ, defined in (2). System size is L = 500.

Figure 1 displays the variational ground-state energy density error,

Evar − Ecrit

L
, (1)

plotted as a function of the perturbative coupling δ in system size L = 500. Evar(L) reads as Evar(L) =
〈ψGS(δ)|Hcrit|ψGS(δ)〉, whereas ψGS(δ) is the ground state of the Hamiltonian,

H(δ) = −
L−1
∑

n=1

σx
nσ

x
n+1 − (1+δ)

L
∑

n=1

σz
n , (2)

and Hcrit = H(0). Furthermore, Ecrit(L) = −2/ sin(π/(2L)).
We solve the quadratic Hamiltonian (2) with its free fermion representation and obtain its ground

state and ground state energy density numerically exactly [1], allowing us to measure observable
(1) numerically.

One can observe a small bias towards the paramagnetic (PM) phase (δ > 0) in terms of lower
energies as opposed to the spontaneous-symmetry breaking (SSB) phase (δ < 0) as a function of δ.

The grey dashed lines are a guide to the eye, visualizing lines of constant correlation length ξ(χ)
(vertical part), and therefore constant bond dimension χ, ξ(χ)∝ |δ|−ν. As discussed in the main
text, the correlation length in the SSB phase scales with a factor of 1/2 of that in the trivial PM phase,
since the excitations in the SSB phase are domain walls, and one therefore needs two quasiparticles
to create nontrivial correlations on top of the ground state, as opposed to a single quasiparticle in
the PM phase. That implies, in the Ising model, ξ(χ) = aδ≶0 |δ|

−1 with aδ<0 = 1/2 and aδ>0 = 1.
Hence, we show a case where the perturbation, induced by a finite bond dimension (or correlation
length), takes an amplitude of δSSB = −0.01, and δPM = +0.02, leading to their respective variational
ground-state energy density error. Of these two candidates, the SSB GS energy is lower than that of
the PM candidate (horizontal part). This shows the fact that the different proportionality constants
aδ≶0 result in a clear preferred ground state when it comes to the variational optimization performed
by the DMRG algorithm: the variational ground state in the SSB phase, which coincidentally is the
case of higher entanglement entropy; see Fig. 2 for L = 500, where we display the half-chain von
Neumann entanglement entropy,

ρA(δ) = Tr¬A (|ψ(δ)〉〈ψ(δ)|) (3)

SA(δ) = −Tr(ρA log(ρA)) (4)
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Figure 2: Plot of the half-chain von Neumann entanglement entropy of the variational ground state
of (2) as a function of the perturbation coupling δ. System size is L = 500. Subsystem A comprises
sites A= 1, . . . , L/2, and we partially trace over its complement.

The limiting behavior of the half-chain entanglement entropy is limδ→−∞ SA(ψ(δ)) = log(2) ≈
0.693 and limδ→+∞ SA(ψGS(δ)) = 0. This is because the limiting SSB GS (δ → −∞) is doubly
degenerate and given in terms of the maximally mixed two Néel states, which are product states,
while the limiting PM GS (δ→ +∞) is a trivial, fully polarized product state. In the thermodynamic
limit, the entanglement entropy diverges logarithmically with the correlation length at δ = 0, as
S = c log(ξ)/6+ const∝−cν log(|δ|).
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