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Abstract

We present fast parallel rearrangement of single atoms in optical tweezers into arbitrary
geometries by updating holograms displayed by an ultra fast spatial light modulator.
Using linear interpolation of the tweezer position and the optical phase between the
start and end arrays, we can calculate and display holograms every 2.76(2)ms. few ms,
limited by technology. To show the versatility of our method, we sort the same atomic
sample into multiple geometries with success probabilities exceeding 99 % per imaging
and rearrangement cycle of 0.997(2) per rearrangement cycle. This makes the method
a useful tool for rearranging large atom arrays for quantum computation and quantum
simulation.
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1 Introduction

Large arrays of neutral atoms are proving to be a quintessential tool for quantum simula-
tion [1–4] and quantum computation [5–7]. Unlike on many other platforms, scaling up the
number of physical qubits in a neutral atom tweezer machine is often a matter of enough laser
power, and arrays of up to thousands of single atoms have been demonstrated [8–12]. Recent
work explored continuous loading of neutral atom arrays in lattices to increase this number
even further [9,13,14].

To harness the full potential of many interacting single atoms, rearrangement of atoms
is necessary to create defect-free geometries. For quantum computing, rearrangement is also
used to shuttle atoms in between storage, interaction and imaging zones [8,10]. Most often,
static patterns are made using a spatial light modulator (SLM) [5, 8] or lattices [9, 14], but
the rearrangement of atoms is almost exclusively done by acousto-optic deflectors (AODs),
because of the fast response time of AODs compared to an SLM [15]. However, simultaneous
sorting of more than one row of atoms requires multiple AODs and is limited in the types of
sorting moves that can be implemented [5, 16]. Furthermore, moving an atom with an AOD
while using an SLM for static tweezers adds a handover from SLM to AOD tweezers and back
per move, which requires a high degree of alignment and optimization, introduces a non-zero
loss probability and takes constant overhead time [5,17].

A way to circumvent these problems is rearrangement with an SLM. In previous work
[18,19], a modified weighted Gerchberg-Saxton (WGS) algorithm was implemented to update
holograms on a high-speed SLM, moving atoms in parallel to non-lattice geometries [19–22].
However, lack of computational strength resulted in slow rearrangement cycles. In the mean-
time, significant atom losses per movement imposed the need for multiple rearrangement
cycles to obtain defect-free arrays. In combination with a limited vacuum lifetime, these prob-
lems made the method so far unpractical for large scale quantum simulations and computa-
tions.

In this article, we present a fast and efficient method for parallel atom rearrangement with
an SLM. We demonstrate a linear phase interpolation method, controlling not only the position,
but also the optical phase of tweezers in successive holograms. The control of the optical phase
reduces intensity flicker of tweezers during moves and thus enhances the probability that an
atom survives these moves. Fixing both the amplitude and the phase of the desired tweezer
geometry also greatly reduces computational complexity and allows us to reach computation
and display cycles of 2.76(2)ms2.736(6)ms on commercial hardware.

In the first part of the paper, we present experimental results of testing our method on
a 6 × 6 tweezer array. This results in transport losses that are competitive with AODs, with
survival rates of over 99 % per tweezer per image and rearrangement cyclesuccess probabilities
of 0.997(2) per tweezer per rearrangement cycle. In Sec. 3, we present a detailed investigation
on how controlling the optical phase of the tweezers minimizes the atom loss. In Sec. 4, we
present benchmarks of the computational time and show that it is nearly independent of the
number of tweezers. Finally, we present an outlook on potential use-cases of the developed
technique in Sec. 5.
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fig1.png

Figure 1: Schematic overview of our experimental sequence for fully parallel re-
arrangement into arbitrary geometries. At the start of the sequence, single atoms
are stochastically loaded into an initial tweezer geometry with approximately 45 %
probability per tweezer. Empty tweezers and tweezers with excess atoms are ex-
tinguished. Remaining atoms are mapped to target positions and trajectories are
calculated that move the other atoms into the desired geometry. Using linear inter-
polation of position and optical phase of the tweezers, the trajectories are divided
into multiple steps. For each step a hologram is calculated in real time and displayed
on a high-speed SLM, moving all atoms at the same time.

2 Parallel rearrangement of atoms with SLM

In this section, we present the experimental realization of fully parallel rearrangement of sin-
gle 88Sr atoms using an SLM. The experimental apparatus is largely the same as the one used
in references [23, 24], with the main difference being the installation of an ultra-high speed
SLM (Meadowlark UHSP1K-488-850-PC8) with over 1 kHz refresh rate on the optical path
to generate the 813-nm tweezer patterns, see Appendix A. In Fig. 1, a schematic of the ex-
perimental sequence is presented. At the start of each experimental cycle, a single atom is
prepared in about 45 % of the tweezers and detected with 99 % imaging survival above 99 %.
A set of trajectories is calculated to link atoms from their starting tweezer to the desired final
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fig2.png

Figure 2: (a): Fluorescence images of single atoms stochastically loaded into a square
6× 6 array (left panel). The green (red) circles denote the presence (absence) of an
atom in a tweezer. The arrows show trajectories that sort 16 atoms into a defect-free
4× 4 array. The right panel shows the verification image after rearrangement. (b):
The average filling fraction per tweezer in the verification image for 1000 experimen-
tal realizations. The error bars are the standard deviation of the mean. The average
filling fraction over all tweezers is 0.988(4). Corrected for the image survival, this
corresponds to a rearrangement success of 0.998+0.002

−0.006 per atom.

fig3.png

Figure 3: An example experimental realization of the same atoms being sequentially
rearranged to various geometries. From left to right: image of the initially loaded
6×6 array, a circular geometry, a kagome lattice, a triangular lattice and a 4×4 array.
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location. The trajectories are divided into multiple steps by linearly interpolating both the
position and the optical phase of every tweezer from start to end. For each step, a hologram
is calculated and displayed on the SLM so that all atoms move in parallel from their starting
position to their final position. The unused tweezers are ramped off before any move. Details
of the method used to calculate the holograms are presented in Sec. 3. After the atoms have
been rearranged, a verification image is taken.

In Fig. 2a, an example experimental realization of sorting a 6 × 6 tweezer array into a
defect-free 4 × 4 tweezer array is presented. In both patterns, the atoms are spaced 6µm
apart. From the 20 atoms loaded initially (left panel, green circles), 16 atoms are selected
and rearranged to the final geometry (right panel, green circles). To characterize the loss of
the method, the experiment was repeated 1200 times. In Fig. 2b, we plot the probability of
detecting an atom in each tweezer in the verification image, under the condition that there
were 16 or more atoms detected in the initial image. The mean probability is 0.988(4), with
a minimum probability of 0.975(6). The error bars represent the standard deviation of the
sample. The detection probability is mainly limited by the survival rate of the atoms during
the first image. Correcting for this survival, we obtain a success probability of 0.998+0.002

−0.006 per
atom for the rearrangement, see Appendix B. For the particular instance presented in Fig. 2a,
the rearrangement was performed using 13 hologram updates, which took in total around
40 ms.

A benefit of using an SLM over using crossed AODs for rearrangement is the ability to
easily change geometries during experiments. This allows for complex connectivity changes
within quantum simulations or computations. We experimentally investigated the ability of
our method to sequentially change geometries, by arranging 16 atoms out of the initial 6× 6
geometry into a circle, a section of a kagome lattice, a triangular lattice, and finally a 4 × 4
square grid. Fig. 3 shows images taken directly after loading and after each rearrangement.
The spacing in between neighboring atoms was the same in all geometries. Repeating this
experiment 2000 times while monitoring the filling fraction in the final image yielded an aver-
age filling fraction of 0.968(7). Assuming the same success probability for each rearrangement
and correcting for losses induced by imaging in the different geometries, this results in a re-
arrangement success of 0.997(2) per atom per cycle. This corresponds to a success rate of
0.991 per rearrangement and imaging cycle per atom, which makes our method suitable for
adjusting geometries on the same atomic sample.

3 Linear phase interpolation for flicker-free transport

Next, we go into details of the method used for calculating the holograms for the SLM. In
previous work, all holograms for rearrangement were calculated using the WGS algorithm [19,
25]. The WGS algorithm leaves the optical phase of the tweezers as optimization parameters
to iterate towards the desired amplitude distribution. As a consequence, if we use the WGS
algorithm to calculate a sequence of holograms for atom rearrangement, the optical phase of
the tweezers can jump randomly from hologram to hologram. This leads to intensity flicker
during the switching transient from one hologram to the next, which in turn leads to heating
and potential loss of atoms. To overcome this issue, we propose and implement a linear phase
interpolation method (LPI) for calculating a sequence of holograms for atom rearrangement.

As a starting point of our method, we first calculate holograms for the initial and final
tweezer pattern using the WGS algorithm [19, 25]. To minimize imaging losses in the exper-
iment, we typically perform several iterations on both the initial and final patterns to reach a
tweezer trap depth deviation of less than 1 % from the average trap depth [24, 26]. The trap
depth deviation is measured with spectroscopy on the narrow 1S0−3 P1 transition of strontium.
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Figure 4: (a): The relative intensity recorded with an 11-kHz frames-per-second cam-
era of a moving spot made by holograms generated with the WGS algorithm (blue
trace) and made with LPI for the special case of identical initial and final tweezer
phase (orange trace). The WGS-generated spot has multiple dips with almost no
intensity left, while the LPI-generated spot stays above 70 % throughout the moves.
(b): The calculated optical phase at the location of the moving spots for each holo-
gram displayed during the movement.

By taking the fast Fourier transform (FFT) of the initial hologram, we obtain for each tweezer
a position, an amplitude, and an optical phase. We do the same for the final hologram.

Each rearrangement cycle starts with stochastically loading atoms into the initial geometry.
Using the Jonker-Volgenant algorithm, we map loaded atoms to target tweezers in the final
geometry while minimizing the maximum length of trajectories by using a squared distance
cost function [27, 28]. After determining which tweezers will be used in the rearrangement,
all other tweezers are ramped off by computing and displaying a low number (typically one or
two) of holograms that linearly ramp down the amplitude of the unused tweezers and ramp
those of the remaining tweezers to the values in the final hologram, while keeping the positions
and optical phases of all tweezers fixed. The tweezer amplitudes are normalized, which results
in a redistribution of the light power that was used for the extinguished tweezers onto the
remaining tweezers. For the remaining tweezers, we linearly interpolate the position and the
optical phase between their initial and final values over N steps. For each step, a hologram
is calculated by taking the inverse FFT of the interpolated tweezer pattern. By performing an
FFT on a commercially available high-end GPU (Nvidia GeForce RTX 4090) with OpenCL and
VkFFT, the total computational time of a single hologram for the 1024×1024 pixel SLM takes
less than 200µs [29]. When the atoms have arrived in the final geometry, the hologram is
identical to the intensity balanced final hologram.

The total number of intermediate holograms N is chosen to match the longest trajectory
in Fourier units of λ f

mL , where λ is the laser wavelength, f the focal length of the objective
and 0.31LmL the demagnified side length of the square SLM chip with m ≈ 0.41. In this
way, atoms move at most one Fourier unit per hologram in both directions, which ensures an
overlap between consecutive tweezers even for diagonal moves.

The effect of the phase restriction on the intensity flicker of optical tweezers during trans-
port is characterized on a separate test setup using a high-speed camera (Phantom Miro 110)
with 11-kHz frame rate. In Fig. 4a, we compare the relative intensity flicker of a single moving
spot generated using the WGS algorithm with a spot of which the optical phase remains the
same throughout all holograms (LPI for the special case of identical initial and final tweezer
phase). While the intensity of the LPI-spot never drops more than 30 %, the WGS-spot almost
vanishes completely several times. As an explanation, we calculate the FFT of each hologram
and plot in Fig. 4b the expected optical phase at the tweezer location in each frame. The op-
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Figure 5: (a): The average survival rate of atoms in a 6×6 array after having moved
10 steps of one Fourier unit in total with a tweezer phase slip of ∆ψ per step. The
blue trace is the result while taking as computational center (see Appendix A) the
center pixel of the SLM, which leads to a maximum loss at∆ψ≈ 1.05π. To measure
the effect of alignment, a second scan was performed (orange trace) with a shift in
computational center of 250 pixels. This results in an additional tweezer phase slip
per step of ξ≈ 0.5π. Dashed lines are a guide to the eye. (b) and (c): Translating a
spot using the SLM is equivalent to changing the slope of a phase gradient hologram
(solid line) displayed on the SLM (dashed line). The left and right panels correspond
to consecutive holograms moving the tweezer by one Fourier unit, which increases
the hologram phase value at the edge of the SLM by π. When the optical axis (dash
dotted line at center of laser beams) crosses the SLM at the position at which the
phase gradient crosses zero (black dot), no phase shift is acquired by a tweezer when
moving it by one Fourier unit, as shown in (b). When these positions do not match,
each translation introduces an additional tweezer phase shift ξ, as shown in (c). The
reflection angles of the outgoing beams are not to scale.

tical phase of the WGS-generated spot varies strongly over the different patterns. During the
update of the SLM we observe transient patterns on the camera, displaying spots at both the
original position of the tweezer and at the new position. When those (partially overlapping)
spots have a large optical phase difference, destructive interference creates intensity flicker.

To determine the maximally allowed phase slip per hologram for atoms to survive, we load
atoms in a 6× 6 tweezer array and translate all the spots five steps of one Fourier unit in one
direction and then reverse this movement. During each step, we programme a variable slip
∆ψ of the optical phase of the tweezer. When reversing the movement, we flip the sign of this
phase slip. We image the atoms again after they have returned to the original position. We
plot the survival as blue disks in Fig. 5a. It can be seen that tweezer phase slips of up to several
tenths of π radians per step do not drastically influence the atom survival, whereas phase slips
around π lead to atom loss.

A moving tweezer can also acquire a phase slip due to an unwanted displacement d of the
real optical axis and the optical axis assumed when calculating holograms. Moving a tweezer
sideways corresponds to adding a phase gradient to the hologram, equivalent to the phase
change induced by a mirror at the SLM location that is being rotated to shift the tweezer
position. If the gradient’s origin (i.e. the “mirror’s rotation axis” or the “computational center”
of the hologram, see also Appendix C) coincides with the optical axis, the center of the beam
has the same phase for every gradient. Consequently, changing the phase gradient does not
change the tweezer phase, see Fig. 5b. However, if there is a displacement, the tweezer’s
phase experiences a phase change ξ in addition to the desired∆ψ in each movement step, see

7



SciPost Physics Submission

fig6.png

Figure 6: Scaling of the Independence of the average duration per hologram of dif-
ferent parts of the method for increasing number of tweezers Ntw. The purple pen-
tagons denote the total duration of a computation and display cycle, which consists
of updating of the tweezer positions (blue circles), computing the next hologram on
a GPU (orange downward triangles), the transfer of this hologram from GPU to CPU
memory (green squares), and the display of the hologram on the SLM (red upward
triangles). Due to the low overhead for all the scaling costs, the total average dura-
tion per hologram does not significantly increase up to at least 2400 tweezers.

Fig. 5c. In Appendix C we show that ξ depends on the displacement d (given in SLM pixels)
as ξ(d) = 2πd/M , where M is the total number of SLM pixels along one dimension. Tweezer
motion can lead to atom loss if the total phase change ∆ψ+ ξ approaches π.

To probe the effect of misalignment experimentally, we perform the same phase-slip ex-
periment as described above, but with the computational center of the hologram displaced
from the optical axis. The average survival rate of the atoms is given by orange triangles in
Fig. 5a. The shift of the computational center is 250 pixels, which for our 1024 pixel wide
SLM leads to a shift of ξ ≈ 0.5π per step. This is in complete agreement with the observed
shift of the maximum atom loss by −0.5π in ∆ψ. Note that this type of measurement can be
used to determine the displacement between computational center and optical axis, thereby
providing the information needed to null this displacement.

4 Scaling to large atom arrays

Due to the fully parallel nature of the transport, SLM rearrangement has the promise of scal-
ing very well to large-number atom arrays. Where rearrangement with only AODs is limited
to moving at most a row of atoms per AOD at a time, with the SLM all atoms can move si-
multaneously, in individual directions. If SLM-created tweezer patterns are required for the
experiment at hand, using the SLM also for sorting furthermore alleviates the atom loss and
overhead time associated with transferring atoms from SLM tweezers to AOD tweezers and
back.

For the LPI method, the computational time needed to determine updated tweezer posi-
tions and phases for the next hologram in a rearrangement move scales linearly with the total
number of tweezers Ntw. Modern hardware executes these operations in nanoseconds even
for thousands of tweezers, which is negligible on the scale of the SLM refresh time. Fourier
transform and SLM refresh time are independent of the number of tweezers, which means that
the SLM update cycle time is effectively independent of Ntw.
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We benchmark the timing for our method by moving a
p

Ntw×
p

Ntw sized array 10 steps for
10000 repetitions, with Ntw increasing varying from 32 to 492. The measurement was repeated
twice in ascending order, and twice in descending order. During the process, we monitor: the
time it takes the CPU to calculate the next tweezer positions and phases; the time it takes the
GPU to update the buffers and calculate the next hologram; the time it takes to transfer the
hologram from GPU to CPU memory; and the time it takes to display the hologram on the
SLM. In Fig. 6, we plot the average durations per step over all repetitions. The error bars are
the standard deviation of the mean per sample. The average total time (purple pentagons) is
2.76(2)ms2.736(6)ms per computation and display cycle. We note that the measured timing
may vary with different hardware.

The total average duration stays approximately constant because of two nearly constant
non-scaling bottlenecks in the current implementation of our method: the retrieval of the holo-
gram from GPU to CPU memory (green squares), which takes 0.794(13)ms0.821(6)ms, and
the display of the pattern on the SLM (red upward triangles), which takes about 1.86(3)ms1.772(15)ms.
In the current implementation, the computation of the next pattern is halted until the SLM has
finished updating its display, such that these durations add up directly to form the majority
of the total duration. An improvement would be the parallelization of these tasks, so that
the computation is not halted by the display process. Other future improvements include an
improved resource sharing between GPU and CPU to reduce memory transfer times and the
use of a faster refresh rate SLM [30–32].

The total duration of a rearrangement will thus be linearly dependent on the number of
consecutive holograms necessary for the rearrangement. This number is determined by the
longest trajectory of an atom. In the frequently studied case of rearranging square grids into
another square grid with the same tweezer spacing, the longest potentially required trajectory
scales proportional to

p

Ntw. Depending on the final tweezer pattern, one can take advantage
of the versatility of SLMs and choose an initial tweezer pattern that has many reservoir tweez-
ers next to the target tweezers [19,33], reducing the probable trajectory lengths and therefore
rearrangement duration.

The limit to how many atoms can be rearranged using this method ultimately comes from
the loss rate per tweezer [9]. Treating the success rate per rearrangement cycle as an indepen-
dent probability p for every tweezer, the probability of a full defect-free arrangement scales
with Ntw as pNtw . In the experiments presented in Sec. 2 of this paper, the number of tweez-
ers was limited to 36 by the available 813-nm laser power. For such a low tweezer number,
a single rearrangement cycle proved to be sufficient to detect defect-free final geometries in
82.5 % of the realizations. For much larger arrays however, this will not be the case. For ex-
ample, using the measured rearrangement success probability of p=0.997, the probability of
successfully rearranging Ntw = 1000 atoms in tweezers is around 5 %. In the other 95 % of
the cases, only a few atoms (≤ 10) are expected to be lost, and a second rearrangement cycle
to fill the gaps can drastically increase the success rate. Simulations in reference [34] show
that, for square geometries, more rearrangement cycles are beneficial when the losses from
imaging and rearrangement are below 1/

p

Ntw. For the values reported in this work, this
is true for array sizes of up to thousands of tweezers. it will be necessary to include multiple
rearrangement cycles. Simulations in reference show that imaging survival and rearrangement
success probabilities per tweezer similar to the ones reported here are sufficient to assemble
arrays of many thousands of atoms. We note that such large arrays with sufficient trap depth
on our current apparatus would require more than 100 W of 813-nm laser power, which is
unrealistic. For other tweezer machines with fewer optical losses and a more favorable po-
larizability of the atomic species, thousands of tweezers can be obtained, and our technique
could be employed [8,10].
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5 Discussion and Outlook

Looking forward, the LPI method presented here shows promise for rearranging large tweezer
arrays into arbitrary geometries. The reported success probability of rearrangement and imag-
ing of >0.99 in this work is competitive with AOD sorting methods [1,10,14]. Under the as-
sumption that fewer than a few tens of holograms are needed, the LPI method can rearrange
atoms in tens of milliseconds. This is comparable to the total rearrangement duration with
existing AOD sorting methods in arrays of a few hundred atoms [1, 2, 16]. For array sizes in
the thousands of atoms, the LPI method is expected to be more time efficient thanks to its
constant scaling. Moreover, using the SLM allows movements over the whole array, whereas
commercially available AODs are lacking field-of-view for transport over such large arrays [10].

A potential improvement of the success probability of rearrangement could be artificially
enlarging the computational space with zero-padding [19], so that atoms can move less than
one Fourier unit per hologram. This improvement comes at the cost of increased computational
time and number of holograms.

Besides the scalability of the LPI method, we foresee several other ways in which it in-
creases parallel operation in current tweezer machines. In previous experiments with SLMs,
tweezers that were not used after rearrangement remained on, essentially wasting optical
power on empty tweezers. Having the capability to turn off unused tweezers makes the LPI
method very efficient in the use of laser power. In machines that load tweezers continually
such as those in references [7, 9], we expect that the availability of extra laser power after
extinguishingramping off empty tweezers can readily be useful: After using the SLM for re-
arrangement, one could hold the desired atoms in a storage zone, while using the extra laser
power to create and fill new tweezers in a loading zone.

Having real-time control of holograms on the SLM is also a promising tool for site-selectivity.
To obtain site-selectivity in tweezer arrays one typically illuminates specific tweezers with non-
magic trapping light, making use of a differential AC Stark shift [23,35,36]. Implementations
using AODs cannot illuminate many atoms that are not in the same row or column. With a
high-speed SLM that creates patterns of non-magic light, one can quickly update illumination
patterns to select specific atoms.

Moving atoms using an SLM could also serve as a tool for coherent transport of qubits.
Since moving a tweezer only requires modifying the hologram and not sweeping RF frequen-
cies (which change the tweezer laser frequency), one can maintain magic trapping wavelength
conditions. This could be particularly interesting for qubit encodings such as optical clock
qubits [37] and fine structure qubits [38,39].

Lastly, the use of an SLM allows for complex changes in tweezer geometry. Once a stochas-
tically loaded sample has been rearranged, the position of every atom is known. Pre-calculated
hologram sequences can then be used to further move or otherwise change tweezers, making
it possible to use holograms that are beyond the scope of our fast atom sorting method. This
opens up possibilities for 3D rearrangement [40] and could be interesting to create complex
changes in the connectivity of Rydberg atom arrays [20,22]. Decreasing the distance between
atoms could be used to create strong Rydberg interactions between many atoms, while in-
creasing the distance could be useful for imaging the atom arrays. With methods developed
to calculate holograms that produce very tightly spaced tweezer arrays [41], a next step for
the method would be to explore if atoms can be reversibly rearranged into such tightly spaced
arrays using an ultra-high speed SLM.
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6 Conclusion

We have demonstrated fast parallel rearrangement of single atoms in tweezers by displaying
a sequence of holograms on an ultra-high speed SLM. The holograms were calculated using
linear interpolation of tweezer positions and phases. This technique is capable of sorting many
atoms into arbitrary geometries, regardless of the initial geometry. We also showed that mul-
tiple rearrangement cycles of the same atomic sample into different geometries are possible.
We could update the tweezer positions every 2.736(6)ms2.76(2)ms, with several options for
further speedup. This number does not vary significantly for arrays of up to at least 2400
tweezers and is mostly limited by technological restrictions. We expect only mild

p

Ntw scal-
ing for the total rearrangement time for typically used tweezer patterns. When correcting for
losses due to imaging survival, the rearrangement success probability per atom was found to
be 0.997(2). Combined with sufficiently high imaging survival Together with the high survival
probability of more than 99 % per tweezer per image and rearrangement, this opens the door
to the fast assembly of thousands of single atoms in the near future.
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A Experimental details

Each experimental sequence described in this work starts by loading cold (1µK) atoms from a
single frequency magneto-optical trap (MOT) operating on the 1S0 −3 P1 transition at 689nm
into an array of optical tweezers and using light-assisted collisions to obtain single atoms [23].
The tweezers are formed by illuminating the ultra-high speed SLM with 450mW of 813-nm
light with a Gaussian beam waist of 6mm. The SLM is operated at a chip temperature of 33 ◦C
to minimize phase flicker, while retaining a fast update rate. On the SLM, a hologram is dis-
played that is the sum (modulo 2π) of the intended target hologram, an aberration correction
pattern, a blazed grating and a Fresnel lens phase, such that a real image of the tweezer pattern
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is formed approximately 1110mm after the SLM. An achromatic doublet ( f = 500mm) and
a microscope objective (Mitutoyo G Plan Apo 50X, f = 4mm) image this inside the vacuum
chamber to form the tweezers. The SLM and the achromatic doublet are 1680mm apart. The
distance between the achromatic doublet and the objective is 680mm to achieve approximate
aperture conjugation. Due to losses dominated by the absorption of the backplane of the SLM,
only 235mW of the 813-nm power is left before the microscope objective. We estimate that
less than 40 % of this power is effectively used to form tweezer traps, mostly due to losses
inside the objective, because the elements in the objective are not coated to be used at this
wavelength. At maximum power, we estimate the trap depth by measuring differential AC
Stark shifts on the 1S0 −3 P1 (mJ = ±1) transition to be about 130µK (270µK) for the arrays
containing 36 (16) atoms.

Imaging the atoms is done by recording the atomic fluorescence under illumination of
689-nm light, following the protocol explained in our previous work [23]. Each image in
this work had a total duration of 200ms, during which the intensity and frequency of the
689-nm light was alternating in 20 cycles between either favoring many scattering events
(I/Is ≈ 320 during 88 % of the image) or cooling the atoms (I/Is ≈ 70 during 12 % of the
image). The detuning varies with trap depth. We used −720 kHz (−760kHz) and −1420 kHz
(−1460 kHz) as imaging (cooling) frequencies for the 36- and 16-atom arrays, respectively.
For each tweezer, we identify a region-of-interest (ROI) of 3× 3 pixels in which we sum the
collected fluorescence. To correct for observed drifts in the tweezer position we translate each
ROI around 1 step in each direction and record the maximum fluorescence. We label an atom
as being present if the signal is over a pre-set threshold value. Detection fidelities and imaging
survival are discussed in Appendix B. 5

B Data analysis and fidelities

We characterize the detection fidelities and imaging survival for the 4 × 4 and 6 × 6 arrays.
By taking more than 1000 images of atoms in either pattern, we obtain histograms of the
collected fluorescence in each ROI. After fitting the zero-atom and single-atom peaks in the
histograms with an Erlang distribution or skewed Gaussian distribution, we determine a bina-
rization threshold [24,43,44]. We obtain a value for the true-negative fidelity (F0) by looking
at the fraction of the fitted probability distribution of the zero-atom peak that is below the
threshold. Similarly, we obtain a true-positive fidelity (F1) by looking at the fraction of the
one-atom peak that is above the threshold.

To characterize the imaging survival, we take two consecutive images. We use the detec-
tion fidelities to get the probability di of detecting an atom in the first image, based on the
probability p1 that an atom was present in the tweezer:

di = F1p1 + (1− F0)(1− p1). (B.1)

After the first image, the probability of an atom being still present is Sp1, where S is the imaging
survival. The probability of an atom being detected in the second image is then given as:

d f = F1Sp1 + (1− F0)(1− Sp1). (B.2)

We measure the raw image survival S0 as the conditional probability of detecting an atom in
the second image, provided one was detected in the first image:

S0 =
d f

di
. (B.3)
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Solving for S, we obtain:

S =
S0(F1p1 + (1− F0)(1− p1)) + F0 − 1

p1(F1 + F0 − 1)
(B.4)

= S0 −
(1− S0)(1− F0)
p1(F1 + F0 − 1)

. (B.5)

We note that this expression differs from the one in reference [43]. Under the assumptions
that p1 = 1 and di = 1, the results become the same. This would neglect the false positive
detections in the first image, which we find unjustified. In fact, the value for S in Eqn. (B.5)
stays below S0 for reasonable detection fidelities. This is not the case for the result in reference
[43].

Assuming p1 ≈ 0.45, the results of the characterization measurements are summarized in
Tab. 1. We observe that the image survival probability is higher for deeper traps. In line with
our previous work, we suspect this is due to lower axial trapping frequencies in shallower traps
that ultimately limit the Sisyphus cooling. We observed that for 16-atom patterns other than
the 4×4 array the fidelities were similar, again indicating that the trap depth is the important
parameter for the values for the fidelities. For simplicity of the next derivation, we assume the
exact same values for all 16-atom patterns.

Next, we use the above fidelities to derive corrected values of the rearrangement success
probability. In the first rearrangement experiments presented in Sec. 2, atoms were rearranged
from a 6×6 array to a 4×4 array. Because the detection fidelities and imaging survival depend
on the trap depth, we adopt subscripts to denote the array size. Using the same procedure as
above, the probability R for an atom to survive the rearrangement can be expressed in terms
of the measured fraction R0 as:

R=
R0(F1,36p1 + (1− F0,36)(1− p1)) + F0,16 − 1

S36p1(F1,16 + F0,16 − 1)
. (B.6)

Taking R0 = 0.988(4) from the main text, a corrected value of R= 0.998+0.002
−0.006 is obtained using

p1 ≈ 0.45 and the detection fidelities from Table 1. We put an upper limit to the uncertainty
to avoid non-physical values of R> 1.

The result above can be extended to n rearrangements by assuming every rearrangement
has the same success probability and every 16-atom pattern shares the same fidelities. We
note that especially the first assumption is not obvious, since the number of holograms per
rearrangement cycle in the experiments in Sec. 2 were not constant. Using these assumptions,
the corrected rearrangement success R based on a result R0 is given as:

R=

�

R0(F1,36p1 + (1− F0,36)(1− p1)) + F0,16 − 1

S36Sn−1
16 p1(F1,16 + F0,16 − 1)

�1/n

. (B.7)

Using n = 4 cycles and R0 = 0.968(7), we obtain R = 0.997(2) as the success probability for
a single rearrangement, excluding imaging survival. This matches very well with the above
result for n= 1.

C Derivation of phase slip per displacement

Here, we present a derivation for the amount of tweezer phase slip ξ acquired per move
for a single spot due to a displacement d of the real optical axis compared to the assumed
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Array Size Trap Depth F0 F1 S0 S
36 130µK 0.9986(13) 0.997(3) 0.988(3) 0.988(3)
16 270µK 0.9992(7) 0.9998(2) 0.9966(13) 0.9966(13)

Table 1: Average detection fidelities and survival probabilities for the 4×4 and 6×6
arrays. Values are averaged mean values over all tweezers and the errors are standard
deviations of the mean.

optical axis. The electric field in the focal plane of the objective is given by the discrete Fourier
transform:

U(m∆x ′, n∆y ′) =

Nx
2
∑

k=− Nx
2

Ny
2
∑

l=−
Ny
2

|U (k∆x , l∆y) |ei2π
�

(k−dx )m
Nx

+
(l−dy )n

Ny

�

eiϕ(k,l), (C.1)

where U is the profile of the illuminating tweezer laser. For ease of computation, we assume
that the profile of the illuminating laser is uniform (U = 1). The pixel indices are (k, l) in
the SLM plane and (m, n) in the Fourier plane. ϕ(k, l) is the hologram displayed by the SLM
with Nx × Ny pixels. The pixel spacing is given by (∆x , ∆y), which leads to Fourier units

(∆x ′,∆y ′) = (λ f
Lx

, λ f
L y
), with λ, f and Li the laser wavelength, the objective focal length and

demagnified size of the SLM at the back focal plane of the objective, respectively. We account
for a possible displacement of the optical axis with respect to the SLM’s center pixel by intro-
ducing a relative coordinate shift (dx , dy) between the exponent of the Fourier transform and
the hologram.

In the ideal situation the optical axis aligns with the SLM’s center, so that dx = dy = 0. To
form a single tweezer, no hologram is needed. If we substitute ϕ = 0 into Eqn. (C.1), we find
that for sufficiently large Nx and Ny the formed pattern approximates up to some constants a
Dirac delta function: U(m∆x ′, n∆y ′)∝ δ (m= 0, n= 0). Moving the position of the single
tweezer can be done by choosing a phase gradient as a hologram. For example, a move of one
Fourier step in the x-direction can be done with a hologram ϕ(k, l) = 2πk/Nx .Substituting
this into Eqn. (C.1) results again in an approximated delta function, but now translated to
δ (m= −1, n= 0). We define the “computational center” of the hologram as the position at
which it remains unchanged when moving tweezers, which is the central pixel for our specific
choice of phase gradient.

Next we look at what happens when there is a displacement (dx , dy) between the computa-
tional center of the hologram and the optical axis. By taking the displacement term out of the
summation, we see that the effect of the displacement is a coordinate dependent phase shift

of the optical phase of the tweezer of −2π
�

mdx
Nx
+

ndy
Ny

�

. Every move of a tweezer is the change
of a coordinate in Fourier units by 1 (e.g. m 7→ m − 1). Substituting both coordinates into
Eqn. (C.1) yields a tweezer phase shift of ξ(dx) = 2π dx

Nx
per move. Note that for the shifted

hologram data shown in Fig.5a we shifted the hologram with respect to the SLM by 250 pixels
using circular boundary conditions instead of moving the SLM.
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