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Abstract

We study the behaviour of two-time correlation functions at late times for finite sys-
tem sizes considering observables whose (one-point) average value does not depend on
energy. In the long time limit, we show that such correlation functions display a ramp
and a plateau determined by the correlations of energy levels, similar to what is already
known for the spectral form factor. The plateau value is determined, in absence of de-
generate energy levels, by the fluctuations of diagonal matrix elements, which highlights
differences between different symmetry classes. We show this behaviour analytically by
employing results from Random Matrix Theory and the Eigenstate Thermalisation Hy-
pothesis, and numerically by exact diagonalization in the toy example of a Hamiltonian
drawn from a Random Matrix ensemble and in a more realistic example of disordered
spin glasses at high temperature. Importantly, correlation functions in the ramp regime
do not show self-averaging behaviour, and, at difference with the spectral form factor
the time average does not coincide with the ensemble average.
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1 Introduction

Universal properties derived from Random Matrix Theory (RMT) [1] have demonstrated ex-
ceptional robustness in describing quantum non-integrable systems [2]. Recently, there has
been a growing interest in applying these concepts to systems with many interacting degrees
of freedom, with developments from various fields, including the characterisation of chaotic
behaviour in quantum many-body dynamics [3–6] and the emergence of gravity in high-energy
physics [7–10].

RMT universality has long been observed in the correlations that govern close by energy
levels in “non-integrable" Hamiltonians, at least at high enough energies. The paradigmatic
observation generically made for non-integrable models is the phenomenon of level repulsion
which forbids excessively small energy gaps and enforces some spectral rigidity. Correlations
between energy levels are accurately diagnosed by their Fourier transform called the Spectral
Form Factor (SFF). At short times, the SFF always decays during the slope regime, which usually
arises from the disconnected part of the pair distribution of energy levels. At late times, the
behaviour of the SFF depends on the nature of the system considered. For chaotic or RMT
systems, the SFF first shows a clear growth, usually dubbed the ramp, which is a fingerprint
of level repulsion manifested in the connected pair density of levels. At even larger times
comparable with the Hilbert space dimension (the Heisenberg time), the SFF reaches a plateau
and fluctuates around this constant value. For integrable models, the ramp is absent, and
the slope instead directly transitions to a plateau. In RMT and chaotic quantum many-body
systems, the averaged (over an ensemble or time) SFF can thus be decomposed in two terms

SFF(t) = SFFd(t) + SFFc(t) , (1)

where the first disconnected term usually describes the slope and the second connected term
generically contains the universal late-time behaviour predicted by RMT.

RMT universality has also been discussed in the context of chaotic eigenvectors, extend-
ing the pioneering idea that eigenfunctions of the Hamiltonian can be modelled as random
vectors [11]. While the eigenvectors of rotationally-invariant random matrix ensembles are
structureless, and therefore too simple to account for some form of locality present in more re-
alistic Hamiltonians, many of their properties can be generalised in order to take into account
some energy dependence. This has been done within the Eigenstate Thermalisation Hypothesis
(ETH), first in its original version [3,12–14] and later in more general extensions [15,16]. Al-
though the ETH’s original scope was to describe the onset of thermal equilibrium [13,14,17],
the objects of interest described within the ETH are dynamical correlation functions, typically
seen in the thermodynamic limit. While the ETH remains formally unproven, a good working
hypothesis is that it holds for systems exhibiting level repulsion (an exception being made for
systems with quantum many-body scars, which display a few “athermal" eigenstates [18–20]).
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In this work, we put together the universal properties of energy levels and those of the
ETH eigenvectors to characterise the late-time behaviour of two-time correlation functions (at
equilibrium) in large but finite systems. We show that, upon averaging and for well-chosen
observables, correlation functions of some observables display a ramp and a plateau similar to
that of the SFF. This leads to the decomposition

Γ (t) = Γd(t) + Γc(t) , (2)

for a suitably-defined connected correlation function Γ (t) which depends on the RMT univer-
sality class of the system. We show that Γd(t) amounts for the non-universal physical dynamical
correlations (i.e. the Fourier transform of the smooth ETH off-diagonal function), while Γc(t)
can be written as the convolution of the latter with the spectral correlations, and thus repre-
sents the spectral correlations responsible for the late-time ramp-plateau behaviour.

Similar observations have been drawn in the high-energy literature [7, 21–24], random
circuits [25] or hydrodynamics [26]. While the mechanism by which such a ramp can appear
is easy to grasp, a justification of when it can be actually observed is instead rather subtle.
Here, we provide a careful analytical study using the ETH approach. Our main assumption
is that the average over energy levels and eigenvectors decouples. This is a standard result
for rotationally-invariant Hamiltonians, and we here assume it also holds true for realistic
many-body systems satisfying the ETH. We also show numerical evidence for our predictions
in macroscopic many-body systems. While we chose to study numerically spin glass models,
the same conclusions could have been drawn considering the SYK model, which however was
not convenient for us as we need to treat separately different RMT universality classes. A key
requirement to expect such a RMT behaviour is to consider observables whose expectation
values (one-point functions) do not show any energy dependence. This allows, in absence of
degenerate energy levels, the plateau to arise mainly from the fluctuations of the observable’s
diagonal matrix elements, making it exponentially small in the system size. This is to be put
in contrast with the case considered in [27,28], and recently in [29], where an explicit energy
dependence leads to a plateau which scales polynomially with the system size. Besides this in
our calculations we assumed that the ETH function f (ω) which characterises the off-diagonal
matrix elements has a finite value for ω→ 0.

Interestingly enough, at late times when dynamical correlation functions present a ramp,
their fluctuations are so large that their time-average does not reproduce their ensemble-average,
contrary to the SFF. This is at stark contrast with usual quantities that are generically computed
within the ETH and have a smooth self-averaging behaviour. The lack of self-averaging means
that working with a fictitious ensemble as is usually assumed in the ETH is tricky. In order to
show our predictions we preferred to work with disordered systems where we unequivocally
specify the ensemble of Hamiltonians as that generated by all instances of disorder.

We organise the manuscript by presenting first the results from RMT in Sec. 2, where
the Hamiltonian is drawn from the GOE or the GUE. In order to see the ramp, it appears
important to distinguish between these two ensembles. Section 3 then presents the results for
the many-body problems, justifying our predictions with ETH and RMT arguments, and then
studying numerically two examples of spin glasses at infinite temperature exhibiting GOE or
GUE statistics.

2 Random Matrix Hamiltonians

2.1 Two-time correlations and SFF in RMT

In this section, we review the simpler instance in which the system’s Hamiltonian H is drawn
from a rotationally-invariant ensemble [1], where Eq.(2) acquires a particularly straightfor-
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ward form. For simplicity, in the numerical simulation, we will specialise in a N ×N Gaussian
ensemble. Specifically, we consider the Orthogonal and Unitary Gaussian ensembles (GOE and
GUE), defined over symmetric (and Hermitian) matrices, described by the probability distri-
bution

P(H)∝ exp
�

−βRMT
N
4

Tr(H2)
�

, (3)

where βRMT = 1 for the GOE and βRMT = 2 for the GUE [1,30]. The eigenvalues {Ei} density
of states is denoted

ρ(E) =
∑

i

δ(E − Ei) (4)

and, for largeN , the associated single-eigenvalue distributionρ(E)/N converges to the Wigner
semicircle distribution p(E) = 1

2π

p
4− E2 [31]. Let us stress again that while here, for simplic-

ity, we focus on the GOE or GUE ensemble, the results could be generalised to any rotationally-
invariant ensemble [1], suitably changing the asymptotic spectral function. This will only
change the slope part.

Eigenvalues correlations are encoded in the Spectral Form Factor, which, for a fixed Hamil-
tonian, is defined as

SFF(t) = |〈e−iH t〉|2 , (5)

where 〈•〉 = Tr(•)/N is the infinite-temperature canonical average. In the case of random
matrix models, the SFF displays well-known features and leads to the so-called slope-dip-ramp-
plateau picture [7, 31, 32]. Let us recall here its basic properties. We will denote ensemble
averages by • . In continuous energy variables, the ensemble average of the SFF reads

SFF(t) =
1
N 2

∫

dE1 dE2ρ(E1)ρ(E2)e
i(E1−E2)t , (6)

and can be split into two parts SFF(t) = SFFd(t)+SFFc(t), as in Eq.(1). The disconnected part,
denoted SFFd, is defined as

SFFd(t) =
1
N 2

∫

dE1 dE2ρ(E1)ρ(E2)e
i(E1−E2)t =

�

�

�

�

1
N

∫

dE eiE tρ(E)

�

�

�

�

2

(7)

which encodes for the average ρ(E) and hence accounts for the non-universal early-time de-
cay. The connected part, SFFc, encodes the level density correlations, and it accounts for the
universal RMT level repulsion as

SFFc(t) = SFF(t)− SFFd(t) =
1
N 2

∫

dE1 dE2

�

ρ(E1)ρ(E2)−ρ(E1)ρ(E2)
�

ei(E1−E2)t , (8)

At early times, the SFF is dominated by the decay (i.e. the slope) of SFFd. In the case of Gaussian
ensembles, the slope is given by

SFFd(t) =
�

J1(2t)
t

�2

∼
1
t3

, (9)

with J1 the 1st Bessel function of the first kind. Around the time tdip ∼
p
N , the SFF stops de-

creasing (dip) and the contribution SFFc becomes dominant. It grows (ramp) before saturating
at a constant value (plateau). In RMT, the connected two-point correlations of the density of
states can be expressed as

ρ(E1)ρ(E2)−ρ(E1)ρ(E2) =N 2R[N (E1 − E2)] (10)
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where the exact expressions ofR for the different Gaussian ensembles can be found in Ref. [31].
For the GUE, taking the Fourier transform of R yields a strictly linear ramp

SFFc(t) =

¨

t
2N 2 for t < 2N
1
N for t > 2N , (11)

while, for the GOE, logarithmic corrections appear

SFFc(t) =

¨

t
N 2 − t

2N 2 ln(1+ t
N ) for t < 2N

2
N −

t
2N 2 ln( t+L

t−L ) for t > 2N . (12)

It is worth noting that the plateau value is always N−1, while the dip value is tdip/N 2 ∼N−3/2.

Let us now discuss the dynamical correlations of a local observable A and consider the
connected two-point correlation function

C(t) =
1
2
〈{A(t), A(0)}〉 − 〈A〉2 , (13)

where {•,•} is the anticommutator. Its ensemble average C(t) can be rewritten in the Hamil-
tonian’s basis {|Ei〉 , Ei}i as

C(t) =
1
N
∑

i, j

|Ai j|2ei(Ei−E j)t − 〈A〉2 =
1
N
∑

i ̸= j

|Ai j|2ei(Ei−E j)t +
1
N
∑

i

A2
ii − 〈A〉

2 , (14)

with Ai j = 〈Ei|A|E j〉 and where in the last equality, we have removed the ensemble average
over 〈A〉 since the trace does not depend on the basis it is computed in. In rotationally-invariant
ensembles as the GOE or the GUE, the probability distribution of eigenvectors and eigenvalues
factorises, so that we can take their averages separately. For N ≫ 1, the averages over the ma-
trix elements can be computed by using (see Ref. [33] for a proof of high-order expectations)

|Ai j|2 =

¨

〈A〉2 + 1
N

2κ2
βRMT

if i = j
1
N κ2 if i ̸= j

, (15)

where we have introduced the second free cumulant κ2 = 〈|A|2〉 − 〈A〉2. This leads to

C(t)
N≫1
≃
κ2

N 2

∑

i ̸= j

ei(Ei−E j)t +
2κ2

NβRMT
= κ2SFF(t) +
�

2
βRMT

− 1
�

κ2

N , (16)

with the spectral form factor (SFF) defined as SFF(t) = 1
N 2

∑

i, j ei(Ei−E j)t . It is natural to intro-
duce the shifted connected correlation function Γ such that

Γ (t) = C(t)−
�

1−
βRMT

2

�

lim
t→∞

C(t) , (17)

where in the above, the infinite time limit of C(t) is well defined, i.e. limt→∞ C(t) = 2
βRMT

κ2
N .

With this notation, one has
Γ (t) = κ2SFF(t) . (18)

Note that the shift that we perform is necessary to observe the ramp, similarly to what happens
in the partial spectral form factor [34]. This identity shows that, for a Hamiltonian drawn
from random ensembles, the behaviour of a two-point function can be extracted from that
of the SFF [7, 31]. The present analysis emphasises the importance of the symmetry classes
for extracting the eigenvalue correlations from dynamical correlators, which is encoded in the
re-scaled Eq.(17) and not in the bare connected correlator. From Eq.(18), it follows that, for
random matrices, the decomposition of dynamical correlations in Eq.(2) holds upon identifying
Γd(t) = κ2SFFd(t) and Γc(t) = κ2SFFc(t).
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2.2 Lack of self-averaging

While the previous calculation characterised the ensemble-averaged quantity Γ (t), this section
aims at estimating the single instance fluctuations δΓ (t) = Γ (t)− Γ (t). In random matrices,

because |Ai j|4∝ |Ai j|2
2

with a proportionality constant depending on the ensemble, we expect
that matrix elements behave as

|Ai j|2 =
1
N κ2 +

c
N ξi j for i ̸= j, (19)

with {ξi j}i j a set of weakly correlated random variables with mean zero, variance one, and
whose exact distributions depend on the observable considered. In a single instance Γ (t), sum-
ming the N 2 noise contributions gives rise to a noisy component of strength N−1, i.e.

Γ (t) = Γ (t) +O(N−1) . (20)

While this does not significantly obstruct the recovery of Γ (t) in the slope of order O(1) and
the plateau of order O(N−1), fluctuations completely hide the signal close to the dip which
scales as N−3/2 (see Sec. 2.1).

This is confirmed by the numerics in the Gaussian ensemble case (see the right panels of
Figs. 1-2 below) where we plot the single-sample Γ (t). Contrary to the Spectral Form Factor,
where the small-window time average reproduces the dip-ramp behaviour, for the dynamical
correlation function Γ (t), the dip and ramp are nowhere to be seen even after averaging over
a small time window. The fact that, in the RMT toy models, the noise δΓ (t) can become larger
than the average signal Γ (t) thus results in correlation functions not being self-averaging, and
in the small-window time-average not reproducing the ensemble-average in contrast to what
is usually expected in ETH in the decaying part.

2.3 Numerical analysis for RMT ensembles

We here check numerically the previous findings in the case of the gaussian ensembles sampled
with Eq. (3).

2.3.1 The Gaussian Orthogonal Ensemble

We consider here a Hamiltonian from the GOE, i.e. drawn from Eq. (3) with βRMT = 1, and
take the observable A= Sz

j , with j an arbitrary site index. Fig. 1 (right) shows the behaviour
of Γ (t) = C(t)− κ2/N and of the SFF for a single realisation of the GOE Hamiltonian. Upon
averaging over some small time window, one cannot resolve the ramp in Γ (t). However, if
one considers the average Γ (t) over many realisations of the GOE Hamiltonian, the slope-dip-
ramp-plateau becomes clear as shown in Fig. 1 (left). This is in contrast with the SFF where,
despite the fluctuations, the ramp is visible also in a single instance, and the time average of
one single instance coincides with the ensemble average.

2.3.2 The Gaussian Unitary ensemble

We now consider a Hamiltonian from the GUE (Eq. (3) with βRMT = 2). Fig. 2 (right) shows
the behaviour of Γ = C(t) and of the SFF for a single realisation of the GUE Hamiltonian. Upon
averaging over some small time window, the slope-dip-ramp-plateau feature becomes visible
in the SFF, while the ramp cannot be resolved in Γ . If one averages Γ and the SFF over many
realisations of the GUE Hamiltonian, the ramp-plateau becomes much more clear as shown in
Fig. 2 (left).
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Figure 1: Left: (a) Shifted correlation function Γ (t) and (b) spectral form factor
SFF(t) averaged over 1000 GOE Hamiltonians. Right: (c) Shifted correlation function
Γ (t) and (d) spectral form factor SFF(t) obtained from a single GOE Hamiltonian.
Plots (c) and (d) are for L = 12 spins. In all plots, the thin curves are the exact re-
sult while the thick curves are a smoothed version obtained by convoluting with a
Gaussian kernel. The horizontal dashed lines are the expected plateau values coming
from the diagonal ensemble. The increasing oblique dashed lines are fits∝ t.

2.3.3 Numerical evaluation of the fluctuations

In order to quantify the fluctuations of correlations relative to their average in Eq.(20), we
consider the variance of Γ (t) normalised by its average, namely

δΓ 2(t)/Γ
2
(t), (21)

which we compare with the same quantity involving the SFF

δSFF2(t)/SFF
2
(t), (22)

where δSFF(t) = SFF(t)−SFF(t) are the fluctuations of the SFF. The results for the GOE case
are summarised in Fig. 3, and a similar picture can be drawn for the GUE case. While the SFF
has a bounded noise-to-signal ratio, for the correlation function Γ , this ratio increases with
the system size L in the dip and ramp, signalling there that the fluctuations δΓ (t) completely
dwarf the ensemble average Γ (t).

This underscores a crucial difference between the SFF and dynamical correlations, even in
models of random matrices. Unlike the SFF, dynamical correlations do not self-average when it
comes to time averages over small intervals. This is due to fluctuations in the matrix elements
and, therefore, in the eigenvectors.
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Figure 2: Left: (a) Shifted correlation function Γ (t) and (b) spectral form factor
SFF(t) averaged over 1000 GUE Hamiltonians. Right: (c) Shifted correlation func-
tion Γ (t) and (d) spectral form factor SFF(t) obtained from a single GUE Hamilto-
nian. Plots (c) and (d) are for L = 12 spins. In all plots, the thin curves are the exact
result while the thick curves are a smoothed version obtained by convoluting with a
Gaussian kernel. The horizontal dashed lines are the expected plateau values coming
from the diagonal ensemble. The increasing oblique dashed lines are fits∝ t.
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Figure 3: Normalised fluctuations of the shifted correlation function Γ (t) and the
spectral form factor SFF(t) averaged over 1000 GOE Hamiltonians at inverse tem-
perature β = 0. The thin curves are the exact result while the thick curves are a
smoothed version obtained by convoluting with a Gaussian kernel.

3 Many-body Hamiltonian

In this section, we discuss how the previous results can be extended to generic many-body
interacting Hamiltonians of L constituents that obey the ETH. We show that the ensemble
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average of the properly-defined two-point functions can be decomposed as

Γ (t) = Γd(t) + Γc(t) , (23)

where in the large L limit, the first contribution, related to the disconnected spectral correla-
tions, encodes all the physical dynamical two-point function as

Γd(t) =

∫

dω | fe0
(ω)|2eiωt , (24)

where fe0
(ω) is the smooth function appearing in the off-diagonal ETH ansatz (see below).

On the other hand, the second contribution Γc is related to the connected spectral correlations
and generically features a late-time ramp followed by a plateau as for the SFF since

Γc(t)∼
∫

dt ′Cd(t − t ′)SFFc(t
′)≃ f 2

e0
(0)SFFc(t) , (25)

where we assumed that the function fe(ω) has a finite limit for ω→ 0.

3.1 Two-time correlations and SFF within ETH

For definiteness, we focus on infinite temperature and consider 2-level systems, such that the
total Hilbert space dimension is N = dimH = 2L . Given a generic Hamiltonian Ĥ with energy
levels {Ei}i , we define the density of states ρ(E) of a many-body system as in Eq.(4). It is
related to the thermodynamic entropy S(E) as

ρ(E)≃ eS(E), (26)

where • now denotes some form of averaging over an ensemble to be specified. It could be
some small perturbation of the system, the disorder in a random Hamiltonian or some en-
ergy/time window. In general, one can introduce a thermodynamically well-defined energy
density e = E/L and entropy density s(e = E/L) = S(E)/L so the density of states is exponen-
tially large in the number L of degrees of freedom (and the level spacing exponentially small).
We will assume that no degeneracies are present in the spectrum.

In the following, we aim to characterise dynamical correlations and thus assume the ETH
ansatz for the matrix elements of a local observable A. The off-diagonal matrix elements are
expected to fluctuate as [14]

|Ai j|2 ≃ ρ(E+i j)
−1

f 2
e+i j
(ωi j) (i ̸= j) , (27)

where e+i j = E+i j/L = (Ei+E j)/(2L) is the mean intensive energy andωi j = Ei−E j is the energy
difference. The diagonal matrix elements are characterised by a microcanonical average A(e)
of order O(1) and small fluctuations which lead to

A2
ii ≃A2(ei) +δA2

ii . (28)

The fluctuations of diagonal elements are related to those of off-diagonal elements due to the
local rotational invariance of the many-body Hamiltonian (see for instance [35]), implying
that

δA2
ii ≃

2
βRMT

ρ(Ei)
−1

f 2
ei
(ωii = 0) , (29)

with βRMT = 1 for real Hamiltonians (GOE-like) and βRMT = 2 for complex Hamiltonians
(GUE-like).
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An important assumption made in the following is that the observable A has an average
A(e) that does not depend on e, while A still fluctuates as in Eq. (29). In fact, if ∂eA(e), with
e = E/N the energy density, is of order one in the system’s size, there will always be polyno-
mial corrections in L coming from the diagonal part of the matrix elements after integration
by saddle-point (see below). This hypothesis is required to avoid extra terms which could
hide the slope-dip-ramp-plateau behaviour we are looking for [29], because of polynomially
small/large corrections to the plateau, which may be understood by the fact that the fluctua-
tions of the observable are then driven by the large local excursions of energy, see e.g. Ref. [29].
The assumption of no energy dependency is, for instance, guaranteed in the presence of sym-
metries and conservation laws. In particular one can study a local observable protected by some
global conservation law in a disordered system, as will do in the following1. Other examples
could be drawn from disordered systems in their paramagnetic phase and at high energies
where the ensemble average due to disorder implies the vanishing of expectation values of
several quantities, at least in a certain range of temperatures (for instance the (mixed) p-spin
model in transverse field), or from Floquet systems.

Drawing inspiration from the previous section on RMT, we now wish to establish a link
between the large-time behaviour of connected correlation functions defined in Eq. (13) and
the SFF. To simplify the analysis, we consider the system at infinite temperature (β = 0),
since the extension to finite β is a natural generalization. In fact, even at finite temperatures,
energy-independent observables must still be considered to observe the exponentially small
ramp, ensuring a simple generalization.

In the limit of large, yet finite, system size, the ensemble-averaged correlation function
reads

C(t) =
1

2Z

∫

dE1 dE2ρ(E1)ρ(E2) |AE1,E2
|2ei(E2−E2)t + c.c.− 〈A〉2 . (30)

As for the rotationally-invariant ensembles considered in Sec. 2.1, the equation above assumes
that the probability distribution over eigenvectors and eigenvalues of the Hamiltonian fac-
torises. Next, distinguishing between off-diagonal and diagonal elements of A and using the
ETH ansatz of Eqs. (27-29) leads to

C(t) =
1
Z

∫

dE dω

|ω|≥ρ(E)
−1

ρ(E +ω/2)ρ(E −ω/2)

ρ(E)
f 2
e (ω)e

iωt

+
1
Z

∫

dE
ρ(E)2

ρ(E)

�

A2(e) +
2
βRMT

f 2
e (0)

ρ(E)

�

− 〈A〉2 , (31)

where E = (E1 + E2)/2 and ω = E1 − E2. Due to the standard saddle-point argument of the
ETH, the contribution of the canonical average 〈A〉2 exactly cancels that of the microcanon-
ical average A(e) provided that ∂eA(e) does not depend on energy on the saddle-point, as
discussed above. Shuffling terms between both integrals gives

C(t) =
1
Z

∫

dE dω
ρ(E +ω/2)ρ(E −ω/2)

ρ(E)
f 2
e (ω)e

iωt +
�

2
βRMT

− 1
�

1
Z

∫

dE
ρ(E)2

ρ(E)
2 f 2

e (0) ,

(32)

1To be precise, we will focus on the following mechanism. We consider a disordered spin system that conserves
the total magnetization M z =

∑

i σ
z
i and restricts ourselves to one of the sectors of the Hilbert space with fixed total

magnetization M ∈ Z. In the restricted Hilbert space, the thermal average of the total magnetization is, of course,
〈M z〉β = M . Then, we consider a given site i and its local magnetisation 〈σz

i 〉β which fluctuates depending on the

disorder realisation. However, upon ensemble averaging, site-permutation symmetry is restored and 〈σz
i 〉β = M/L.

Therefore this quantity does not depend on temperature and energy.

10
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which, as for the RMT case in Eq. (17), suggests to introduce

Γ (t) = C(t)−
�

1−
βRMT

2

�

lim
t→∞

C(t) . (33)

where limt→∞ C(t) =
∫

dE ρ(E)
2

ρ(E)
2 f 2

e (0). We are now in the position to evaluate the ensem-

ble average. Looking at Eq. (32), one is left with evaluating the two-point correlations of the
density of states ρ(E +ω/2)ρ(E −ω/2). This can be done by separating the disconnected cor-
relations, which capture the short-time physics of the many-body system, from the connected
correlations, which are expected to display an RMT behaviour. Using Eq. (26), the disconnected
part turns out to be

ρ(E +ω/2)ρ(E −ω/2)≃ ρ(E)
2
e

1
4L

d2s(e)
de2 ω

2
, (34)

with 1
L

d2s
de2 = −β2/CV and CV the heat capacity. This gives a contribution Γd to the shifted

correlation function Γ defined by

Γd(t) =
1
Z

∫

dE dωρ(E)e
1

4L
d2s(e)

de2 ω
2
f 2
e (ω)e

iωt . (35)

As in the RMT case, Γd is expected to give rise to the slope since it comes from the disconnected
part of the correlations between energy levels. It is furthermore expected to be self-averaging
with respect to the ensemble average, as is usual within the ETH. In the large system size limit,

the factor exp
� 1

4L
d2s(e)

de2 ω
2
�

can be dropped and a saddle point approximation (also done for
the partition function Z) leads to

Γd(t) =

∫

dω f 2
e0
(ω)eiωt , (36)

where e0 is such that ds
de (e0) = 0. Note that, if the observable were dependent on the energy,

this quantity would be corrected by an additional term ∆2
e (∂eA)2, with ∆2

e ≃ N−1 the energy
fluctuations, which would hide the ramp and the plateau, see e.g. Ref. [29].

We now turn to the connected two-point correlations of the density of states. Since this
part is expected to have a random matrix behaviour, we generalise Eq. (10) for a many-body
system as

ρ(E1)ρ(E2)−ρ(E1)ρ(E2) = π
2ρ(E1)ρ(E2)R
�

N (Φ(E1)−Φ(E2))
�

, (37)

where the function Φ is the function relating to spectral unfolding [36] and it is defined as

dΦ
dE
=
π

N ρ(E). (38)

The equation is understood as substituting the density of states N
π found in the bulk of the

Gaussian ensembles by that of the many-body system, ρ(E). This gives rise to the following
random matrix contribution

Γc(t) =
1
Z

∫

dE dωπ2ρ(E +ω/2)ρ(E −ω/2)

ρ(E)
R
�

N (Φ(E +ω/2)−Φ(E −ω/2))
�

f 2
e (ω)e

iωt

=
1
Z

∫

dE dωπ2ρ(E)R[πρ(E)ω] f 2
e (ω)e

iωt , (39)

11
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where the last line is a smallω expansion valid at large time t. For large systems, a saddle-point
computation yields

Γc(t)≃ π2

∫

dωR[πρ(E0)ω] f
2
e0
(ω)eiωt . (40)

To understand this expression, one has to compare it with the SFF in many-body systems.
Here, we reintroduce the temperature as it is convenient to study the SFF as a function of the
complex variable z = β + i t [37]. The average of the SFF is then given by

SFF(t) =
|Z(β + i t)|2

Z(β)
2 = SFFd(t) + SFFc(t), (41)

and, following the steps of the derivation done previously for Γ , the contributions SFFd and
SFFc are expressed as

SFFd(t) =

√

√

√

�

�

�

�

d2s
de2
(eβ)

�

�

�

�

1
4πL

∫

dω e
1

4L
d2s(e)

de2 ω
2

eiωt , (42)

SFFc(t)∼
∫

dωπ2R[πρ(Eβ)ω]eiωt , (43)

where ds
de (eβ) = β . Thus, in the time domain Eq. (40) becomes

Γc(t)∼
∫

dt ′Γd(t − t ′)SFFc(t
′) . (44)

This can be interpreted as the SFF smoothed on the scale of the physical correlation function
Γd. Note that this is also valid at the level of the single instance, which therefore implies that
the fluctuations intrinsic to the SFF also get smoothed out. At times t∝N , Γd(t − t ′) acts as
a delta function∝ δ(t − t ′) for the slowly varying function SFFc and thus in the convolution
one retrieves

Γc(t)∼ f 2
e0
(0)SFFc(t). (45)

While the SFF and Γ seem to behave similarly at late times, it is not the case at early times
when both functions are dominated by the slope. From Eqs. (36,42), it appears that Γd decays
slower than SFFd because of f 2(ω). This means that two different dip times are expected for
Γ (t) and SFF(t).

3.2 Numerical analysis in a many-body Hamiltonian

In this section, we test our predictions for two spin-glass Hamiltonians characterised by two
different symmetry classes. We will focus on the infinite-temperature regime where no spin-
glass phase is expected; see Ref. [38] for spectral correlations in the spin-glass phase at lower
temperatures.

To test our predictions for systems with GOE statistics, we consider the XY spin glass defined
as

H =
∑

i< j

Ji j(S
x
i S x

j + S y
i S y

j ) (46)

where Ji j
iid∼ N (0,1/

p
L) and {Sµi }µ are the Pauli matrices. Assuming an even number L of

spins and since [H, m] = 0 with m= 1
L

∑

i Sz
i the magnetization, we focus on the magnetization

sector m = 2/L and consider the observable A= Sz
L/2. It can be numerically checked that this

model does not have any degenerate levels within a magnetization sector.

12
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Figure 4: Left: Diagonal elements of the local observable A as a function of the energy
density Ei/L and of the size L. By order of increasing sizes, the diagonal elements
have a standard deviation of 0.20, 0.15, and 0.06. Right: On-shell correlations of
order 2 (F (2)(ω)) for L = 14. The dashed line is a fit done with the sum of two
Lorentzians. The inset shows the collapse of data for L = 8, 10,12, 14 at ω∼ 0.

3.2.1 GOE spin glass Hamiltonian

Before proceeding with our analysis, we wish to check the assumptions made in Sec. 3.1.

1. The average of the observable A is independent of the energy. Fig. 4(left) shows how
the diagonal elements Aii = 〈Ei|A |Ei〉 of the observable vary with the energy density Ei/L for
sizes L = 8,10, 12. As expected, the fluctuations from eigenstate to eigenstate rapidly diminish
upon increasing the size L and concentrate around the energy-independent average m= 2/L,
thus verifying assumption 1.

2. The on-shell correlations of order 2, F (2)(ω) = f 2
e (ω), have a well-defined limit when

ω→ 0. As in [39], F (2)(ω) can be computed for the XY spin glass by simply Fourier trans-
forming the shifted correlation function Γ (t) shown in Fig. 5. The result shown in Fig. 4(right)
checks assumption 2. It is also worth noticing that F (2)(ω) is well fitted by a sum of two shifted
Lorentzians at small frequencies, which means that Γd displays an exponential decay with os-
cillations within (as seen in Fig. 5).

The numerical results for the SFF(t) and Γ (t) are shown for a single Hamiltonian in Fig. 5
(right), and averaging over 1000 Hamiltonians in Fig. 5 (left). The shifted correlation function
Γ (t) exhibits a slope-dip-ramp-plateau behaviour, just as the SFF, very visible in the left plot
of Fig. 5. However, for the system sizes at our disposal, the ramp is not as linear as in the
SFF, pointing to the effect of corrections in the kernel induced by f (ω). Moreover, we note
that differently from the SFF, the function Γ is not positively defined, so in the slope, it shows
negative oscillations. The fact that, instead, it remains positive at large times is a consequence
of the predictions that we make about its random matrix component. Moreover, as in RMT,
we clearly see that, contrarily to the SFF, the time average of Γ does not reproduce the ensem-
ble average in the ramp. The noise observed in Fig. 5 could be suppressed introducing some
dissipation [40].

As a final remark, we add that we have checked that such a slope-dip-ramp-plateau feature

is visible also in the Heisenberg spin glass H =
∑

i< j Ji j(S x
i S x

j +S y
i S y

j )where Ji j
iid∼N (0,1/

p
L).
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Figure 5: Left: (a) Shifted correlation function Γ (t) and (b) spectral form factor
SFF(t) averaged over 1000 XY spin glass Hamiltonians (46) at inverse temperature
β = 0. Right: (c) Shifted correlation function Γ (t) and (d) spectral form factor SFF(t)
obtained from a single XY spin glass Hamiltonian (46). The inset shows some neg-
ative oscillations appearing in the ramp. Plots (c) and (d) are for L = 14 spins at
inverse temperature β = 0. In all plots, the thin curves are the exact result while the
thick curves are a smoothed version obtained by convoluting with a Gaussian kernel.
The horizontal dashed lines are the expected plateau values coming from the diago-
nal ensemble. The increasing oblique dashed lines are fits∝ t.

3.2.2 GUE spin glass Hamiltonian

The generalisation of the results obtained in Sec. 2.3.2 for random matrices with GUE statistics
and predicted in Sec. 3.1 for many-body systems are tested against the following chiral spin
glass

H =
∑

i< j<k

Ji jkSi ·
�

Sj × Sk

�

, (47)

where Ji jk
iid∼N (0,1/L). This is a mean-field model of 3-spin chiral interactions that appear, for

instance, in frustrated Hubbard models [41–44]. Notice that [42] has shown that, for indices
i, j, k all different

Si ·
�

Sj × Sk

�

=
i
2

∑

l,m,n

ϵlmnSz
l S+mS−n (48)

where ϵlmn is the standard Levi-Civita symbol and l, m, n take the values of all possible permu-
tations of i, j, k. From Eq. (48), it follows that [H, m] = 0 with m= 1

L

∑

i Sz
i the magnetization.

For an even number L of spins, the analysis can, therefore, be restricted to the magnetization
sector m= 2/L considering the observable Sz

L/2. Numerically, it appears that this model has a
few degenerate levels but, because they are so few, we can forget about them for large systems
(i.e. L greater than ∼ 10). As in the previous subsection, the assumptions made in Sec. 3.1

14



SciPost Physics Submission

−0.5 0.5

Ei/L

−0.25

0.00

0.25

0.50

0.75
A
ii

L = 8

−0.5 0.5

Ei/L

L = 10

−0.5 0.5

Ei/L

L = 12

−10 −5 0 5 10

ω

0.0

0.2

0.4

0.6

F
(2

) (
ω

)

−1 0 1

0.4

0.6

Figure 6: Left: Diagonal elements of the local observable A as a function of the energy
density Ei/L and of the size L. By order of increasing sizes, the diagonal elements
have a standard deviation of 0.17, 0.10 and 0.06. Right: On-shell correlations of
order 2 (F (2)(ω)) for L = 14. The dashed line is a fit done with a Lorentzian. The
inset shows the collapse of data for L = 8, 10,12, 14 at ω∼ 0.
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Figure 7: Left: (a) Shifted correlation function Γ (t) and (b) spectral form factor
SFF(t) averaged over 1000 chiral spin glass Hamiltonians (47) at inverse temper-
ature β = 0. Right: (c) Shifted correlation function Γ (t) and (d) and spectral form
factor SFF(t) obtained from a single chiral spin glass Hamiltonian (47). Plots (c) and
(d) are for L = 14 spins at inverse temperature β = 0. In all plots, the thin curves are
the exact result, while the thick curves are a smoothed version obtained by convo-
luting with a Gaussian kernel. The horizontal dashed lines are the expected plateau
values coming from the diagonal ensemble. The increasing oblique dashed lines are
fits∝ t.
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are fulfilled as seen in Fig. 6. Moreover, the on-shell correlations F (2)(ω) are well fitted by a
Lorentzian at small frequency so Γd has an exponential decay in time.

The SFF(t) and Γ (t) were computed through an exact numerical diagonalization of the
Hamiltonian (47). The results are shown for a single Hamiltonian in Fig. 7 (right), and av-
eraging over 1000 Hamiltonians in Fig. 7 (left). The slope-dip-ramp-plateau feature is well
visible in this spin glass system, in both Γ (t) and SFF(t). Similarly to the previous case, the
time average fails to reproduce the ensemble average.

3.2.3 Characteristic time scales

From Figs. 5 and 7, it appears that for many-body systems, both the SFF and the correlation
function Γ exhibit a similar ramp and plateau. However, the slope appearing at early times is
not universal and is expected to differ for the SFF and Γ . Since the dip time tdip signals the
crossover between the slope and the ramp, it is not the same for the SFF and for Γ as seen in
Fig. 8. On the contrary, the ramp and the plateau being two universal features, the Heisenberg
time tHeis, corresponding to the onset of the plateau, is unique.

102 103

N

101

103 XY

102 103

N

chiral

tΓHeis

tΓdip

tSFF
Heis

tSFF
dip

Figure 8: Dip times tdip and Heisenberg times tHeis of the SFF and the correlation
function Γ as a function of the Hilbert space dimension N . Results for the XY spin
glass (46) are in the left plot, and those for the chiral spin glass (47) are on the
right. The dip times are extracted at the minimum of the SFF (or Γ ) before the ramp.
The Heisenberg times are defined as the first time the SFF (or Γ ) reaches 95% of its
plateau value given by the diagonal ensemble.

4 Summary and Conclusions

In this work, we have performed an ETH study of dynamical connected correlation functions.
As for the Spectral Form Factor (SFF), the ensemble average of such functions exhibits a ramp
and a plateau at large times for well-chosen observables. This fact, already observed in the
literature, has been described here using ETH arguments. In summary, our key findings are:

• In both the RMT and Hamiltonian cases, the symmetry classes are crucial for extracting
eigenvalue correlations from properly shifted dynamical correlation functions, defined
as Γ (t) = C(t)−(1−βRMT/2) limt→∞ C(t), where C(t) is the connected correlator. This
is particularly relevant for the orthogonal ensemble (βRMT = 1), where the ramp is not
observed without this shift.
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• While the ensemble average of the SFF always coincides with a small time-window av-
erage, the same does not hold true for correlation functions during the ramp phase. This
non-self-averaging behaviour of Γ (t) emerges from the large relative fluctuations of the
matrix elements of the observable under scrutiny.

• The plateau at long times is associated with the fluctuations of the diagonal matrix ele-
ments of the observables in the absence of degeneracies. To appreciate it in the Hamil-
tonian case, one shall consider an observable A which does not overlap with the Hamil-
tonian; hence, the {Aii}i fluctuate, but their averages do not depend on energy.

There are several directions for further research. For example, it would be interesting to
examine the impact of locality on the early non-universal behaviour and how it influences the
properties of the dip time in Hamiltonian systems. It would be valuable to explore how the
transport of other hydrodynamic modes impacts these results for the observables considered
here, for the same models but defined on a finite dimensional lattice.

A natural extension would be to generalise this result by studying how multi-time correla-
tion functions encode the higher-order powers of the SFF [24]. In the context of rotationally-
invariant random matrices, the powers of the spectral factors are encoded in the free cumu-
lants [16,33]. One shall investigate its interplay with the eigenvector fluctuations in Hamilto-
nian systems.

Lastly, it would be interesting to identify other physical observables where eigenvalue cor-
relations manifest in the form of a ramp. Known examples include survival probability [45,46],
and this concept could be extended to the adiabatic gauge potential [47].
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