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Strengths 

1- An interesting proposal is presented for superconductivity in heavy fermions    
2- This is potentially testable in experiments 

Weaknesses 

1- Poor writing 
2- Assumptions need not be discussed/justified a little more strongly 
3- Possible experimental tests must be fleshed out 

Report 

The manuscript discusses a holon-based mechanism for superconductivity in heavy fermion 
systems. Starting from a Kondo lattice model, the authors introduce a holon-singlon-doublon 
representations n to describe the Hilbert space of each impurity. A strong on-site repulsion on 
the impurity site prohibits doublons. Subsequently, a chemical potential is introduced for the 
holons in order to preserve the impurity occupancy. The authors argue that these holons can 
mediate superconductivity by generating an effective attraction between pairs. Notably, each 
pair is composed of one conduction and one impurity electron. 

We thank the referee for taking the time to carefully read our manuscript and for 
providing us with encouraging and helpful comments and suggestions. We are glad that 
the referee finds our proposal interesting and testable in experiments. We carefully 
address referees all comments and suggestions below in point-by-point details and make 
appropriate changes in the manuscript.  

The presentation and the writing needs improvement. Spelling errors include “guage” and 
“Ovbnikov”. There are incorrect usages that make the manuscript difficult to read (e.g., “former 
materials” after listing three families of materials, using “condensate” as a verb, “primitive 
CeCu2Si2 compound”, “…incipiently relies on…”, “..intercepting the first dome”, etc.). The 
authors should revise the manuscript in this regard. 

We apologize for our oversights and typographical errors. We appreciate that the referee 
has kindly pointed out these errors. We have now proof-read the entire manuscript more 
carefully to correct the above typos as well as any other typos that we spotted.     

The central idea presented here is interesting and plausibly applicable to CeCu2Si2. However, 
there are several points that are not clear to me: 

a. The authors review experiments on CeCu2Si2. In particular, they point out an apparent 
contradiction between early indications of nodal unconventional pairing and recent 
claims of gapped conventional pairing. In their subsequent analysis, they invoke many 
simplifying assumptions to argue for s-wave gapped pairing. Their stand is not clear 
here. Do they suggest that CeCu2Si2 is a gapped superconductor? How do they explain 
earlier observations? 

Referee’s above point is valid, and we explain here this point in details and also made 
appropriate revision as mentioned below. There were mainly three experimental results 



which could be taken as evidence for ‘unconventional’ pairing. However, they can also 
be explained within the ‘conventional’ pairing scenario. (Here by ‘unconventional’ we 
refer to sign-reversal, k-dependent pairing structure with/without a nodal state, while 
‘conventional’ means constant-sign, fully gapped pairing symmetry). We discuss these 
three experiments and their possible explanation within our theory. 

1) T3 – dependence of the 1/T1 data of NQR experiment [Refs. 13-15 in our 
manuscript]. The power law behavior of NQM data has been taken as evidence of 
nodal SC structure, and hence unconventional pairing. Later papers [Refs. 21, 22] 
have shown that the T3 behavior of 1/T1 data can as well be reproduced within a 
two-band superconductor model with conventional, s-wave pairing symmetry. The 
same model is also used to describe specific heat and penetration depth data. 
Note that we also have a two band (conduction and local electrons) model with s-
wave pairing and thus our theory can reproduce this data as well.  
 

2) Angle dependent Hc2 [Ref 16]: There are early reports finding a weak but finite a 
four-fold angle dependence of the upper critical field (Hc2). This result suggests 
that the vortex size is anisotropic. The anisotropy in vortex can come from the SC 
gap anisotropy (such as d-wave gap), and/or from the Fermi surface anisotropy as 
well. In fact, one of us showed earlier in a different paper with realistic two-band 
model [Ref. 17] that a four-fold modulation in Hc2 (and in other quantities) can 
solely come from the four-fold modulation of the Fermi surface even for isotropic 
s-wave superconductor. In addition, the disorder dependence of Hc2 is very weak 
compared to what one would expect from an unconventional pairing [see Ref. 23, 
25]. Therefore, the anisotropy in Hc2 cannot be taken as a direct and ambiguous 
proof of unconventional pairing and can be explained within out theory by 
including Fermi surface anisotropy. In fact, prior DFT calculations have shown the 
presence of anisotropic Fermi surface in CeCu2Si2 [Refs. 29,30]. 
 

3) Spin Resonance peak: A recent inelastic neutron scattering (INS) experiment 
observed a peak or hump like feature in the magnetic susceptibility below the 
superconducting transition temperature (Tc). Both unconventional and 
conventional superconductor theories predict spin resonance in the SC state. For 
unconventional superconductivity, a resonance is expected at energy ω < 2Δ with 
very sharp spectral weight. On the other hand, a hump feature in spin 
susceptibility can be expected from conventional pairing at energy ω > 2Δ. 
Therefore, whether the observed mode indicates an unconventional or 
conventional pairing is not yet fully resolved. Our argument is as follows. (a) 
Given the absence of any direct measure of the SC gap amplitude Δ in CeCu2Si2, it 
is yet not clear if the mode energy is below or above 2Δ. (b) The observed peak is 
very broad compared to a resonance peak expected for unconventional pairing, 
(c) Our theory also predicts a novel resonance like peak/hump in the energy scale 

of  
𝟐𝚫𝟐

𝝃𝒇
̅̅ ̅   which can well explain the experimental observation (see Sec. IV B). 

 

Following referee’s comments above, we now expand our discussion section to address 
these three points in details [page 6, paragraphs 3, 4, 5 in the discussion section].   



Regarding referee’s second point above “In their subsequent analysis, they invoke many 
simplifying assumptions to argue for s-wave gapped pairing. Their stand is not clear here. Do 
they suggest that CeCu2Si2 is a gapped superconductor?”: There are plenty of evidence for 
fully gapped, fixed sign superconductivity in CeCu2Si2. It is known from BCS theory that 
for an attractive potential, s-wave superconductivity is the most favorable channel if the 
attractive interaction is isotropic. In fact, it can be shown that for attractive pairing 
interaction, a sign-reversal pairing channel has much lower strength than a fixed sign 
one, like s-wave. Therefore, s-wave, spin singlet channel is the most natural pairing 
symmetry for an attractive potential, as we obtained here. Therefore, we aim to explain 
the increasing evidence for fully-gapped, constant-sign, s-wave pairing symmetry in this 
material. 

 b. The authors refer to the e-particle as a gauge field. In my view, this language is not 
appropriate. It does not represent a gauge degree of freedom (like photons), even though a 
gauge structure can possibly be invoked for the representation. It may be better to call it a 
pseudo-particle in analogy with Schwinger bosons or Abrikosov fermions. 

Referee’s above point is valuable. In the quantum field theory, when a gauge field (like 
electromagnetic potential) is quantized, we write the field in terms of ladder operators 
(e.g. photons). Since these ladder operators follow commutation relation, they are 
bosons. Similarly, phonons are the quantized bosonic particles of vibration, i.e., the 
restoring force – a gauge field. In the present case, we have holons (e-particles) which 
are bosons, and one can write an associated gauge field in the same fashion as 

𝐀(𝒓) =  ∑[𝒆𝒒 𝒆𝒙𝒑(𝒊𝒒. 𝒓) + 𝒆𝒒
†𝒆𝒙𝒑(−𝒊𝒒. 𝒓)]

𝒒

 

where 𝐀 is the corresponding gauge potential. In this sense, holons are not a gauge field, 
but are associated with a gauge field. 

We realize it is better off using an easier nomenclature and hence we avoid calling 
holons as gauge field, and call it a bosonic field or simply holons throughout the entire 
paper.  

c. There are several hidden and perhaps unnecessary assumptions in Eq. 1.  
i. Why do all impurity orbitals (all m’s) have the same energy?  

This is an important point. First of all, as we mentioned in the manuscript, we have a 
“periodic” Anderson model. This means the impurity potential is same in every unit cell, 
enforced by the discrete translational invariance of the system. This fixes the impurity 
potential 𝝃𝒇 (f-orbitals onsite energy) to be the same in all unit cells.  

The reason for not having any ‘m’ (pseudospin index) dependence in the onsite energy is 
the same. We are working in a single-impurity model, which means we only have a single 
orbital state with two possible spins. We note that even for a single impurity case, the 
holon onsite energy 𝝎𝒆 can have different values. Here also, we are under the 
assumption that the holons are already condensed to a single state, and we are studying 
the fluctuations around the condensed energy. This is analogous to the Einstein phonon 
model. We mention this point in the manuscript [page 2, right column, third paragraph.] 



 
ii. Why is the hybridization, v_k, independent of conduction electron spin? This seems 
particularly unreasonable. This assumption goes on to give s-wave character in pairing. This 
needs strong justification.  

𝒗𝒌 is the valence fluctuation potential, which mediates ‘charge’ or valency transfer 
between f- and conduction orbitals. The potential, by nature, does not violate the spin-
conservation symmetry of each orbital, and thus cannot be spin-dependent. This is the 
model proposed and used widely in the literature to describe the mixed valence 
phenomena of heavy-fermions materials. 

Although, the spin-dependence of the valence fluctuation potential (hybridization 
potential) 𝒗𝒌 is itself unphysical, but it is not related to the s-wave pairing channel. The k-

independence of 𝒗𝒌 (isotropic) is rather related to the isotropic nature of the potential. 

[A secondary note can be made in the context that: The valence fluctuation in addition to 
Hubbard interaction gives the Kondo model in which spin-spin interaction (Kondo 
coupling) arise from the Hubbard interaction, not from the valence fluctuation.] 

iii. Later on, the authors assume on-site hybridization to motivate s-wave pairing. They should 
justify this or atleast provide references to previous studies where this has been argued. 

This was also briefly mentioned in the manuscript [page 3, right column, first paragraph]. 
A k-dependence in the valence fluctuation potential 𝒗𝒌 would arise if the f- orbital and the 
conduction electron orbitals are not sitting on the same site. If they are coming from the 
same atom, and/or they reside on the same site, the k-dependence drops out. In 
CeCu2Si2, DFT results showed that the f-orbitals and the d-orbitals (conduction electrons) 
near the Fermi level both come from Ce atom [Ref. 30]. Therefore, the k-dependence is 
not present. We kept k-dependence up to the point which can be done without this 
assumption. For analytical calculations, we dropped the k-dependence.  

[Note that for attractive potential, the k-dependence of the potential can give a weak k-
dependence in the gap function, but it still possesses fixed sign gap. Such gaps are 
often refereed as s++ or extended s-wave etc. [See Alex Aperis and Peter M. Oppeneer, 
Phys. Rev. B 97, 060501(R) (2018).]  

d. The e, f and d particles are assumed to be fermions. This must be clearly specified. 

By the way, e and d are bosons (spin = 0), while 𝒇̅ states are fermions (spin = 1/2). Their 
commutation relations also suggest the same. Note also that these Fock states are the 
fractionalized excitations of the original f-fermion state. Therefore to have the 

anticommutation relation of the original f-state intact, 𝒇̅ is fermions, e and d have to be 
bosons. These are consistent with the literature [Refs. 47-49, 51, 53]. 

e. I do not find the discussion regarding the relation between T_K and v_k to be convincing, 
especially in the light of the h-d-e-f representation used here. What is the mean value n_e that is 
appropriate? When is this justified? 



First of all, we do not have any ‘h’ operator, only f, d, e operators in the main text. Note 
that 𝒗𝒌 gives Kondo/coherence temperature TK, which is well studied in the literature 
using mean-field theory [see our text in Sec. III. A]. This is traditionally done in the 
literature [see, e.g., Refs. 45, 54, 55, 57], where d-operators are projected out, e-operators 

are replaced with its mean-value (scalar). By definition 𝒏𝒆 = 𝒆†𝒆 is the number operator 

for the holons. When we take a mean-value of  < 𝒆† > = < 𝒆 > (real number), we get 

< 𝒆† > = < 𝒆 >= √𝒏𝒆 which is the average number of holons.  

With this approximation, the rest of the Hamiltonian can be exactly diagonalized. This 

opens a band gap between the 𝒇̅ and c bands, and TK represents the corresponding 
temperature where the coherence occurs. This is already solved by many groups and we 
used those results [with appropriate references e.g. Refs. 45, 54, 55, 57] to find a 
relationship between TK and Tc. Note that TK and Tc are both measured experimentally, 
therefore, we wanted to point out that our predicted relationship agreed well with the 
corresponding experimental data.  

Referee’s comment made us realize that the introduction of ne before Eq (12) is rather 
oddly done and it is not used in the following discussions. Therefore, its better off 
removing this text, and only pointing out the earlier result of TK here with proper 
references to the corresponding papers. 

f. Eq. 14 seems to have a typo with regard to the position of \mathbf{a}. It should perhaps sit 
inside the k summation. What is the significance of the primed summation here? 

There is not typo here. a(q) is a function of photon momenta q, while k gives electron’s 
momentum. Since the summation is over k-only, and J(q) is a function of q, there is no 
summation on q in Eq. 14. a(q) does indeed come out of the k-summation [This is shown 
explicitly in Appendix D (Eqs. D4,D5)]. In any case, we have neglected the photon 
momentum and set q=0 only.  
 
“The prime over the summation indicates that the summation is restricted to the first 
quadrant of the Brillouin zone.” as mentioned in Appendix D. We missed to mention the 
same in the main text and now do so. [This is because we explicitly include the fermions 
from both +k and -k in our spinor in Eq. D1 and thus the k-summation should be 
restricted to +k only to avoid double counting.] 
 

g. The behaviour shown in Fig. 4 is described as 'exponential decay’ in the text. This is not the 
commonly understood meaning of `exponential decay’. 

We apologize for any confusion here. We meant the exponential behavior at T-> 0 limit 
which is indeed the behavior. This is commonly termed so for fully gapped 
superconductor [see Refs. 23, 24, 43 and also Tinkham book chapter 3 (3.10,3.11)]. We 
rephrase the ‘exponential decay’ to ‘exponential behavior at T-> 0’. 

h. Fig. 3 compares experimental data for two materials with calculated T_C and T_K. These 
quantities are calculated using several assumptions that lead to s-wave pairing. Are these 
assumptions justified in these materials? 



As mentioned above, the result of s-wave pairing channel is a natural one due to the fact 
that the valence fluctuation is isotropic in CeCu2Si2 (onsite valence fluctuations between 
different orbitals within the same compound). Hence the momentum dependence of the 
gap naturally drops out. Furthermore, the effective interaction is attractive, and hence the 
most favorable solution is a fixed-sign pairing symmetry. Therefore, for such a case, s-
wave is the natural pairing symmetry.  

Note however that for anisotropic potential  𝒗𝒌, general, low-energy formulas for Tc and 
TK will remain the same as Eq. 9 and before Eq. 12, respectively. The only change will be 
in the value of SC coupling constant λ, and JK. In these two quantities the (𝒗𝒌)2 term will 

be replaced with a Fermi surface average value of <𝒗𝒌>2. Note that, λ and JK drops out 

from Eq. 13 and hence the Tc vs TK relationship remains the same.  

i. In my opinion, the discussion section should be expanded to discuss clear experimental 
signatures of the proposed mechanism.  

We thank the referee for the suggestions. We have now expanded the discussion 
section. We include discussions of two-band SC gap, FFLO superconductivity in the 
discussion section. We also include now elaborate discussions on how the present 
theory can also explain the earlier data which predicted unconventional pairing. Finally, 
we also now include discussion of how our theory compares with other theory of 
‘conventional’ pairing in CeCu2Si2. [Please see newly added paragraphs (2,3,4) in the 
Discussion section] 

i. The discussion of Andreev reflection is not fleshed out. There seem to be strong assumptions 
about the character of the normal side, e.g., its electrons hybridize with the conduction electrons 
of the heavy fermion, but not with the local moments.  

We thank the referee for the above question. We have made a generic statement about 
the expected Andreev reflection behavior for the presented superconducting state in a 
junction with a normal metal. The argument is very simple. When a conduction electron 
tunnels to the superconductor, it forms pair with a f - orbital. Therefore, a heavy f - hole is 
reflected back to the normal metal. Since the f - holes are heavy or localized, the Andreev 
reflection amplitude is strongly suppressed. This serves as a testimony to the theory of 
pairing between a conduction and local electrons. Otherwise, if the pairing occurs 
between two conduction electrons, a conduction electron will be reflected back with 
enhanced reflection amplitude. Otherwise, if the pairing occurs between two localized 
electrons, there will be no Andreev process when junction is made with a normal metal 
without f-orbitals. Given that suppression of Andreev reflection is observed in heavy-
fermion compounds [Refs. 62, 19, 20], it serves as a strong proof of local-conduction 
electron pairing. 

There is no assumption about the hybridization, local moment etc for the normal metal. 
In fact, the normal metal should not have any local moment or heavy-electrons. It should 
only have conduction electrons. Any typical metal such as Cu, Al etc should be used for 
the normal metal. 

 



 
ii. Are there clear ways to distinguish charge e vs. 2e?  

This is a good point. People commonly perform flux quantization, noise measurements, 
or quantum capacitance measurements to estimate the change of Cooper pairs. We note 
that the proposed Cooper pair here is a bound state of two electrons with total charge -
2e. However, here the f-electrons do not (orbitally) couple to the magnetic field. 
Therefore, if the flux quantization and other measurement are done with the magnetic 
field applied perpendicular to the samples, the Cooper pairs may exhibit single -e charge. 
This however comes with the disclaimer that if the f-orbitals are dispersive then the 
measurements will show -2e charge or an average value which lies between -e to -2e. 
This is not an invalidation of the present theory. 

iii. The authors state “…we find a complete exclusion of the magnetic field at T->0”. How is this 
known? How strongly does this depend on the assumptions made (e.g., s-wave pairing)? 

We should start with a note that even in other superconductors, the complete exclusion 
is possible only at T=0 limit where all electrons form Cooper pair and the paramagnetic 
current is zero. In our case also, we find that [Eq. D5] that the paramagnetic current goes 
to zero as T->0 and only diamagnetic current is present. This proves that the magnetic 
field be excluded from the entire sample. We show below the separate T-dependence of 
the paramagnetic, diamagnetic and total current. We immediately observe that there is no 
paramagnetic current and the total current comes from diamagnetic term. Therefore, the 
system will be fully diamagnetic at T-> 0 limit.  

                                                

Finally, we thank the referee again for reading our manuscript and for appreciating its 
novelty and originality. We are also thankful for all the suggestions and comments. Our 
answers and revisions indeed helped improve the manuscript for which we are thankful 
to the referee. Since there is no points remained unaddressed, we hope the referee will 
be satisfied and recommend for publication of our manuscript. 
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Novel attractive pairing interaction in strongly correlated superconductors

Priyo Adhikary, and Tanmoy Das1, ∗
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Conventional and unconventional superconductivity, respectively, arise from attractive (electron-phonon) and
repulsive (many-body Coulomb) interactions with fixed-sign and sign-reversal pairing symmetries. Although
heavy-fermions, cuprates, and pnictides are widely believed to be unconventional superconductors, recent evi-
dence in former materials one of the heavy fermion superconductor (CeCu2Si2) indicate the presence of a novel
conventional type pairing symmetry beyond the electron-phonon coupling. We present a new mechanism of at-
tractive potential between electrons, mediated by emergent gauge boson fields (vacuum or holon) in the strongly
correlated mixed valence compounds. In the strong coupling limit, localized electron sites are protected from
double occupancy, which results in an emergent holon gauge fields. The holon states can, however, attract
conduction electrons through valence fluctuation channel, and the resulting doubly occupied states with local
and conduction electrons condense as Cooper pairs with onsite, fixed-sign, s-wave pairing symmetry. We de-
velop the corresponding self-consistent theory of superconductivity, and compare the results with experiments.
Our theory provides a new mechanism of superconductivity whose applicability extends to the wider class of
intermetallic/mixed-valence materials and other flat-band metals.

I. INTRODUCTION

Superconductivity arises from the formation of electron-
electron pairs, namely, Cooper pairs. Celebrated Bardeen-
Cooper-Schrieffer (BCS) theory showed that an effective at-
tractive potential between electrons can emanate from the
electron-phonon coupling, resulting in a fully gapped, con-
stant sign superconducting (SC) gap (conventional s-wave
symmetry).[1] Interestingly, discussions of unconventional
superconductivity from repulsive interactions dates back to
1965.[2] It was shown that Cooper pairs can be formed in a
repulsive interaction medium, provided the corresponding gap
function changes sign in the momentum space[2, 3, 4, 5]. The
first heavy-fermion (HF) superconductor CeCu2Si2[6] was
widely believed to be an unconventional superconductor.[7, 8,
9, 10] Subsequently, more HF superconductors,[11] followed
by cuprate, and pnictide superconductors are discovered to
feature unconventional pairings with either nodal d-wave, or
nodeless but sign-reversal s±-pairing symmetry, or their vari-
ous irreducible combinations.[12]

However, the pairing symmetry, and the pairing mechanism
in the primitive first-discovered heavy-fermion compound
CeCu2Si2 are recently called into questions. Earlier reports
of nuclear quadrupole resonance (NQR) data revealed a T 3

behavior in the relaxation rate without a coherence peak, sug-
gesting the presence of line nodes in the SC gap structure.[13,
14, 15] Observation of four-fold modulation in the upper crit-
ical field Hc2 in CeCu2Si2 can predict a point-node d-wave
pairing state[16], provided the Fermi surface (FS) anisotropy
is small enough to cause the same modulation.[17] Finally,
the observation of a spin resonance in the SC state by inelas-
tic neutron scattering measurement[18] can be interpreted as
to arise from sign-reversal of the SC gap if the resonance
peak is very sharp and its energy lies within the SC gap
amplitude. More recently, counter-evidence of fully gapped

∗ tnmydas@iisc.ac.in

superconductivity are obtained in various measurements in-
cluding point-contact tunneling spectroscopy,[19, 20] specific
heat,[21, 22, 23] magnetic penetration depth,[23, 24] and ther-
mal conductivity[23]. The field-angle dependence of the spe-
cific heat data also shows no evidence of gap anisotropy.[22]
Furthermore, the observed robustness of superconductivity to
disorder supports the absence of sign-reversal in the pairing
symmetry scenario.[23, 25] These results collectively signal
towards a conventional, fixed-sign, isotropic pairing symme-
try in CeCu2Si2.

CeCu2Si2 has an interesting phase diagram exhibiting two
SC domes under pressure, with an antiferromagnetic (AFM)
quantum critical point (QCP) intercepting lying beneath the
first SC dome, while a valence fluctuation critical point is pos-
sibly present at the second dome.[26, 27, 28] The proximity to
the AFM QCP inspires the proposals of spin-fluctuation me-
diated unconventional, sign-changing pairing symmetry.[24,
29, 30] The valence fluctuation, which is ubiquitous in HF
compounds, can promote superconductivity with uncon-
ventional pairing mechanism.[8, 9, 26, 27, 31, 32] In par-
ticular, it is widely argued by various groups that the ver-
tex correction due to valence-fluctuation exchange can di-
rectly mediate a pairing channel,[9, 31, 32] or can augment
pairing strength arising from other sources[33, 34]. Kondo
coupling can induce various unconventional pairings.[10, 35,
36, 37, 38, 39, 40] Following the overwhelming evidence
of conventional pairing symmetry, the electron-phonon cou-
pling problem with strong Coulomb interaction is revisited
recently.[33, 41, 42] In general, electron-phonon coupling,
if present, can be overturned by the strong onsite Coulomb
repulsion in the HF quasiparticles exhibiting effective mass
∼ 103 times the bare mass.

Our present work is motivated by the question: Can there
be other source of attractive potential for superconductivity
in general? Here, we provide a new mechanism of attractive
potential originating from the interplay between the Coulomb
interaction and valence fluctuations. The physical picture is
illustrated in Fig. 1. When the Coulomb interaction is strong
on the f -electron’s site, double f -electron’s occupancy is
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FIG. 1. Illustration of the valence fluctuation mediated attractive po-
tential. (a) The unoccupied state (holon) in each valence fluctuation
term can attract another conduction electron through the valence fluc-
tuation channel. The conjugate process also occurs simultaneously.
Wavy lines depict conduction electrons (c, c†), while filled (f̄ , f̄†))
and open (e, e†) circles give singly occupied and unoccupied f -sites,
respectively. Bar symbol over f -operators emphasizes that they are
single-f -electrons occupied states. Arrows dictate valence fluctua-
tion channels. (b) As we integrate out the unoccupied states (e, e†),
we obtain an effective interaction V < 0, forming Cooper pair be-
tween the single site f̄ -electron and conduction c electron.

prohibited. Within the field theory view, a singly occupied
f -electron site is annexed with an unoccupied f -state − a
bosonic holon gauge field − which repels another f -electrons
to occupy the state. However, the unoccupied f -site can be
occupied by a conduction electron since the presence of va-
lence fluctuation channel allows mutation between the f - and
conduction electrons. Remarkably, we show here that the dou-
bly occupied state with f - and conduction electrons condense
like a Cooper pair. Mathematically, as we integrate out the
gauge boson fields (unoccupied holons), we obtain a robust,
new attractive potential channel between the conduction elec-
trons and singly occupied f -sites, naturally commencing on-
site, constant sign, s-wave like superconductivity. Conceptu-
ally, this process is somewhat analogous to the theory of me-
son mediated attractive nuclear force, except here the attrac-
tion commences between onsite electrons. We formulate the
corresponding theory of superconductivity, and find excellent
agreement with the recently observed fully gap, constant sign
gap features in CeCu2Si2,[19, 20, 21, 22, 23, 24, 25] as well
as in the Yb-doped CeCoIn5 superconductors[43]. We predict
definite relationship between SC Tc and valence fluctuation
(coherence) temperature TK, and other unique properties of
the present theory.

II. THEORY

The low-energy phenomena of HF compounds are well de-
scribed by the periodic Anderson impurity (PAI) model[44,
45], which has four parts:

H =
∑
k,σ

ξkc
†
kσckσ + ξf

∑
m

f†mfm +
∑
k,σ,m

vkc
†
kσfm

+U
∑
m

f†mfmf
†
−mf−m + h.c.

(1)

c†kσ (ckσ) is the creation (annihilation) operator for the con-
duction electron with spin σ = ±1/2. The conduction elec-
tron has a dispersion ξk, with k being crystal momentum. The
strongly correlated f -electrons are treated as impurity, sitting
on each unit cell with an onsite potential ξf . The valence fluc-
tuations between the conduction and correlated electrons lead
to a hybridization potential vk. Finally, f -electrons are sub-
jected to a strong Hubbard interaction U . (The model also
holds for narrow ‘band’ f -electrons as long as U >> Df ,
with Df being its bandwidth.) Such a model is well studied
in the literature, and can be projected onto the Kondo-lattice
model using a Schrieffer-Wolf transformation[46]. Another
popular route to solve this problem is the so-called slave-
boson approach.[47, 48, 49, 50, 51]

The basic phenomenologies of the slave-boson model can
be described in two parts. A single f -orbital on a given site
has four Fock states, namely, doubly occupied site (d), singly
occupied site (f̄m), and unoccupied site (e). Clearly, d and
e operators are bosons, while f̄m are fermions, with m being
the spin index (owing to spin-orbit coupling, m can, in gen-
eral, have many multiplets). In the U → ∞ limit where dou-
ble occupancy is strictly prohibited, one can project out the
d-states.[52] The f -orbitals can be expressed in the remain-
ing three Fock states as fm = e†f̄m with the constraint Q ≡
ne + nf̄ = 1, where ne = e†e, nf̄ =

∑
m f̄
†
mf̄m are the cor-

responding number density at every site.[47, 48, 49, 51, 53]
Hence we obtain,

H =
∑
k,σ

ξkc
†
kσckσ + ξ̄f

∑
m

f̄†mf̄m + ωee
†e

+
∑

k,σ,m

(
vkc
†
kσe
†f̄m + v†kf̄

†
meckσ

)
. (2)

We have introduced a gauge onsite potential ωe > 0 for the
unoccupied state, which arises as a Lagrangian multiplier to
conserve the number of f -electron states to Q = 1 in the
U → ∞ limit. ωe is considered to be site-independent, re-
specting the translational invariance, which physically implies
that all holons are condensed to the same energy. The renor-
malized f̄ -electron’s energy is ξ̄f = ξf + ωe = Zξf , where
the corresponding band renormalization factor Z is defined as
Z = 1 + η with η = ωe/ξf .

Eq. (2) is our starting point in this work. This is not ex-
actly solvable due to the presence of the e, e†-states. Popular
methods involve hard-core boson model (classical), or mean-
field theory around the saddle point of 〈e〉[49, 54, 55]. Here
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we include the quantum fluctuations of the holons, and solve
Eq. (2) within the quantum field theory approach.

The last term in Eq. (2) implies that each valence fluctu-
ation process generates (or annihilates) a gauge boson field
e† (e), whose job is to prohibit double occupancy on the f -
sites. However, the unoccupied states or holons can attract
another conduction electron (and vice versa), i.e., they trigger
another valence fluctuation process. The two valence fluctu-
ations process can be tied together to generate an effective
interaction potential, which turns out to be attractive at low-
energy. Mathematically, this is done by integrating out the
coherent bosonic e, e†-operators to obtain an effective interac-
tion potential Vkk′(iωn). Sparing the details to Appendix A,
we present the final result of an effective interacting Hamilto-
nian (in the static limit) as

Heff =
∑
k,σ

ξkc
†
kσckσ + ξ̄f

∑
m

f̄†mf̄m

+
∑

kk′,σσ′,mm′
Vkk′ c

†
kσ f̄mf̄

†
m′ck′σ′ . (3)

Spin conservation leads to σ+m = σ′+m′. The most impres-
sive aspect of the above result lies in the form of the effective
potential

Vkk′(iωn) = vkv
†
k′

2ωe
(iωn)2 − ω2

e

, (4)

where iωn is the bosonic Matsubara frequency. In what fol-
lows, in the low energy limit iωn < ωe and ωe > 0 (since
holon’s energy is generally positive), Eq. (4) produces an at-
tractive potential. This is one of our principle results of this
work. As in the case of the BCS theory,[1] we consider here
the static limit iωn → 0 limit, yielding

Vkk′ = −
2vkv

†
k′

ωe
< 0. (5)

For a generic attractive potential, the pair correlation func-
tion has a logarithm divergence with temperature (see Ap-
pendix C), and we have a SC ground state. Looking at Eq. (3),
we find that the Cooper pairs form here between the conduc-
tion electron and singly occupied f̄m-site with the SC gap pa-
rameter defined as

∆k =
2vk
ωe

∑
k′

v†k′〈ck′σ f̄m〉. (6)

Here we make few observations. (i) This is an inter-band pair-
ing between the spin- 1

2 conduction electron and single-site f -
electron with m multiplet. (ii) The k−dependence of the SC
gap is solely determined by that of the hybridization term vk
in Eq. (5). (iii) This is a finite-momentum pairing, but un-
like the Fulde-Ferrel-Larkin-Ovchinnikov state (FFLO) or the
pair density wave state, here the Cooper pair solely absorbs
the conduction electron’s momentum. (For dispersive, narrow
f -band, which is often the case in many HF systems, Cooper
pairs can have zero center-of-mass momentum.) (iv) The SC
state, in general, does not have the particle-hole symmetry, un-
less at ξk = ξ̄f . (v) Symmetry of the Cooper pairs incipiently

(b)(a)
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FIG. 2. SC phase diagram with respect to valence fluctuation poten-
tial v and renormalized f -electron’s energy ξ̄f . (a), The SC transition
temperature Tc is plotted in the (v, ξ̄f ) space, scaled with respect
to the conduction electron’s bandwidth D. We set ξf/D = −0.1.
The white region for small values of v gives the SC-forbidden re-
gion (Eq. (11)). (b), SC gap amplitude ∆ (at T = 0) plotted in the
same parameter space. Above the critical value of v, both Tc and ∆
grows with v2 as in Eq. (9). Interestingly, optimal superconductivity
commences at a finite value of ξ̄f where all the holon gauge fields
condense to ωe → 0, and the pairing potential V →∞.

relies on is dictated by the values of m, σ, and the parity of
Vkk′ . In CeCu2Si2, the hybridization occurs between the Ce-f
and Ce-d orbitals of the same Ce-atom,[30] and thus the hy-
bridization potential can be considered as onsite, i.e., vk = v.
For onsite hybridization, one expects a spin-singlet pair for
m = ±1/2 (or higher order antisymmetric spin component if
|m| > 1/2). For an attractive potential, spin-singlet, onsite
(s-wave) pairing state has the highest eigenvalue as obtained
in the BCS case as well.[1]

III. MEAN-FIELD RESULTS AND CRITICAL
PHENOMENA

So far, we have obtained all results exactly. We now in-
voke the mean-field theory for superconductivity. The effec-
tive mean-field Hamiltonian reads

HMF =
∑
kσ

ξkc
†
kσckσ + ξ̄f

∑
m

f̄†mf̄m +
∑
kσm

∆kf̄
†
mc
†
kσ + h.c..

(7)

The corresponding self-consistent gap equation is (see Ap-
pendix B)

∆k =
2vk
ωe

∑
k′

v∗k′
∆k′

4E0k′

∑
ν=±

ν tanh

(
βEνk′

2

)
. (8)

ν = ± are the two quasiparticle bands: E±k = ξ−k ± E0k,

where E0k =
√

(ξ+
k )2 + |∆k|2, and ξ±k = (ξk ± ξ̄f )/2. β =

1/kBT .
In the case of onsite hybridization vk = v, the k-

dependence of the pairing potential is removed. This gives
Vkk′ = − 2|v|2

ωe
with ωe > 0, leading to a ‘conventional’ s-

wave pairing symmetry ∆k = ∆. Taking advantage of the
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onsite attractive potential, and s-wave pairing channel, we can
solve Eq. (8) analytically. Solutions of Eq. (8) in the two
asymptotic limits of T → 0, and ∆ → 0 yield the gap am-
plitude ∆ and Tc as

∆ = D̄e−
1

2λ

[
1 + re−

1
λ

]1/2
,

kBTc = Dγe
− 1
λ

[
1−

(
ξ̄f

2Dγ

)2

e
2
λ

]1/2

. (9)

Here D̄ =
√
D2 − ξ̄2

f ,Dγ = 2Dγ/π and r = (D+ξ̄f )/(D−
ξ̄f ), with γ being the Euler constant, and D = 1/2N , and N
are bandwidth and density of states of conduction electrons at
the Fermi level. The SC coupling constant is defined as

λ =
2N |v|2

ωe
= 2|η|−1NJK, (10)

where JK = |v|2/|ξf | is the Kondo coupling constant. η is
defined below Eq. (2). The first terms before the parenthe-
sis in both ∆ and Tc are the usual BCS solutions, while the
correction terms within the parenthesis have important con-
sequences. The correction term in Eq. (9) suggests that su-
perconductivity arises above a critical value of the coupling
constant

1

λ
< ln

(
2Dγ

|ξ̄f |

)
. (11)

This implies that there exists a lower critical value of the
hybridization vc above which superconductivity is possible.
Since v is related to the coherence temperature TK, we show
below that the above constraint translates into a lower limit for
TK to produce superconductivity. This result is in contrast to
the BCS result where any infinitesimal electron-phonon cou-
pling is sufficient for finite Tc. Interestingly, the BCS ratio
∆/kBTc is not a universal constant here, even in the weak
coupling limit. In the limit of D >> ξ̄f , we recover BCS-
type behavior of ∆→ De−1/2λ, and kBTc → Dγe

−1/λ, with
∆/kBTc → 1.73e1/2λ, suggesting a strong coupling limit of
the superconductivity.

Plots of ∆ and Tc as a function of v and ξ̄f are shown in
Fig. 2. Both phase diagrams exhibit funnel like behavior in
the v − ξ̄f space. We highlight here two key features. (i)
In Tc plot we find a white region for small values v which
marks the forbidden (non-SC) region dictated by the con-
straint 1/v2 > (N/2ωe) ln |2Dγ/ξ̄f | (Eq. (11)). In the rest
of the regions where both ∆ and Tc are finite, we obtain a sec-
ond order phase transition with the critical exponent of 1/2.
(ii) Secondly, superconductivity is optimal at a characteristic
value of ξ̄f 6= 0 (marked by arrows in Fig. 2). At this point
ωe → 0 (ξ̄f = ξf ) and hence the pairing potential V → ∞,
stipulating maximum superconductivity. At the optimal Tc,
f -electron’s band renormalization Z → 1.

A. Connection to coherence temperature TK.

From Eq. (4), it is evident that ωe is analogous to the De-
bye frequency of the electron-phonon mechanism. The es-

FIG. 3. Relationship between Tc and TK . We demonstrate the re-
lationship between Tc and TK for several values of the exponent η
(from Eq. (13)). Interestingly, Tc vanishes below some critical value
of TK , where the cutoff value decreases with decreasing η. Tc, TK

are normalized to some highest values of Tc0, TK0, respectively, for
each values of η. For CeCoIn5, Yb and La dopings[56] are known
to modulate the valence fluctuation strength TK , giving an intrigu-
ingly similar Tc versus TK relationship, as predicted by our theory
in Eq. (13). Experimental values agree well for η ∼ 1 − 1.5 for
ξ̄f = 0.7eV.

sential dependence of Tc and λ on observable parameters
such as coherence temperature TK can be derived using the
saddle point approximation[49, 54, 55]. near a mean value
of 〈e〉 = 〈e†〉 =

√
ne. For this case, Eq. (2) can be solved

exactly,[57] yielding kBTK = De−1/NJK . Therefore, from
Eq. (10), we find that the SC coupling constant λ depends on
TK as

1

λ
= η ln

(
D

kBTK

)
. (12)

This result is consistent with the fact that the Kondo
critical point prompts optimal superconductivity as ob-
tained in CeCu2Si2,[26] as well as in many other HF
superconductors.[8, 9, 11, 58, 59, 60] However, Tc is termi-
nated below a critical TK which can be obtained from Eq. (9)
as

(kBTc)
2 = D2

γ

(
kBTK

D

)2|η|

−
ξ̄2
f

4
, (13)

where η is the same as before. Eq. (13) is another impor-
tant result of our theory, which finds a surprisingly consistent
agreement with experimental data (see Fig. 3). We plot Tc
and TK for several parameter values in Fig. 3. Both the crit-
ical behavior and the power-law dependence between Tc and
TK agree remarkably well with the experimental data of La,
and Yb doped CeCoIn5 samples.[56]
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FIG. 4. Computed superfluid density as a function of temperature.
The temperature dependence shows a typical exponential behavior at
low-T as seen in CeCu2Si2.

IV. SIGNATURES OF PAIRING STRUCTURE.

A. Meissner effect

Unlike the typical Cooper pair of two conduction electrons
with opposite momenta in other types of superconductors,
here we have a pairing between conduction electron and cor-
related singly occupied f -electrons. The conduction electrons
directly couple to the gauge field A as p′ = ~k− e

cA. On the
other hand, the f -states do not couple to the vector potential in
its localized limit. Importantly, despite that the magnetic field
couples only to the conduction electron, we find a complete
exclusion of the magnetic field at T → 0, a hallmark of su-
perfluid state. Interestingly, however, in the strongly localized
limit of the f -orbitals, the Meissner effect experiments will
exhibit charge of the Cooper pair to be −e, instead of −2e as
in other Conventional Cooper pair between two itinerant elec-
trons. Caution to be taken in realistic heavy-fermion systems,
where the band structure calculation[29] shows weak disper-
sion of the f -electrons, which couple to the external gauge
field, and hence may contribute to the Cooper pair charge of
−2e or a value between −e to −2e on average.

Here we proceed with computation of the diamagnetic (Jd)
and paramagnetic (Jp) current of the conduction electrons
only:

Jd =
e2a

c

∑
kσ

1

mk
c†kσckσ, Jp = e

∑
kσ

vkc
†
kσckσ. (14)

vk and mk are the velocity and effective mass, respectively,
of the conduction electron, and a is the Fourier component of
the vector potential A. Using the mean-field solution of the
quasiparticle bands, the superfluid density (inversely propor-
tional to the magnetic penetration depth) is obtained to be

λ−2
ij (T ) =

4πe2

c2

′∑
k

[
1

mij,k

(
1−

∑
ν

(ανk)2 tanh

(
βEνk

2

))

−β
2
vikvjk

∑
ν

(ανk)2sech2

(
βEνk

2

)]
, (15)

ν = ± for two quasiparticle bands. [Prime symbol over the
summation indicates that it is restricted within the first quad-
rant of the Brillouin zone, since both +k and −k fermions
are included exclusively to obtain Eq. (D2), (D3) (see Ap-

pendix D).] (α∓k )2 = 1
2

(
1 ∓ ξ+

k

E0k

)
is the coherence fac-

tors of the mean-field solutions. The numerical evaluation of
Eq. 15 yields an exponential behavior of superfluid density as
T → 0, as shown in Fig. 4. This behavior is also observed
experimentally in CeCu2Si2 [23, 24] as well as in Yb-doped
CeCoin5[43].

B. Spin-resonance mode

For unconventional pairing symmetry, the sign-reversal of
the SC gap leads to a spin-resonance mode at ωres ≤ 2∆.[12]
Such a mode is rather weak in intensity and may lie above 2∆
for conventional (fixed sign) pairing symmetry.[61] Experi-
mentally, a resonance is observed in the SC state in CeCu2Si2
at Q ∼ (0.215, 0.215, 1.458) in r.l.u. in the energy scale of
∼0.2 meV which is roughly at 4kBTc (Tc ∼ 0.6 K).[18]

The present pairing symmetry has few interesting collective
spin modes which can explain the above experimental behav-
ior. For the calculation of spin fluctuation to be tractable we
consider that the f -electrons possess spin m = ±1/2. In this
case, the total spin operator can be defined as a summation
over conduction spin and f -electrons spin:

Sq =
1

2

(∑
kαβ

c†kασαβck+qβ +
∑
αβ

f̄†ασαβ f̄β

)
. (16)

α, β are spin indices. The transverse spin susceptibility is
defined as χ(q, τ) = 〈TτS+(q, τ)S−(−q, 0)〉. Solving in
the mean-field SC state, we obtain

χ(q, iωn) =
∑
k

∑
µ,ν=±

Aµνkq
f(Eµk+q)− f(Eνk)

iωn + Eνk − E
µ
k+q

, (17)

where

Aµνkq =
1

2

(
1±

ξ+
k ξ

+
k+q + ∆k∆k+q

E0k+qE0k

)
, (18)

µ, ν = ± are the band indices, and ± in Eq. (18) corresponds
to amplitude of the oscillators for µ = ν (intra-) and µ 6= ν
(inter-) quasiparticle band transition. Eq. (17) can give var-
ious collective excitations, depending on the band structure
details. We are here interested in the possible modes inside
the SC gap. Indeed, we find the solution of a localized spin-
excitation in the SC state at a wavevector which corresponds
to the condition ξ+

k = −ξ+
k+Q. (Note that this is not the con-

dition of the conduction electron’s FS nesting). In this case,
we have a resonance at an energy

ωres = E+
k+Q − E

−
k ∼

2∆2

|ξ̄f |
, (19)

in the limit of ∆� ξ+
k . The corresponding oscillator strength

of the resonance mode is Aµ,ν 6=µkq = (ξ+
k )2/E2

0k > 0. Since
ξ̄f > ∆, the resonance occurs inside the SC gap, as observed
experimentally in CeCu2Si2[18] .
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C. Other measurements

The present theory of valence fluctuation mediated attrac-
tive pairing channel can be verified in multiple ways. For ex-
ample, the present theory predicts a unique Andreev reflec-
tion behavior. In a typical normal metal and superconductor
interface, as an electron tunnels from the metal into the super-
conductor side, it reflects back a hole, and vice versa. In our
present case, the conduction electron from the normal metal
forms a Cooper pair with a f -state in the SC sample, and thus
reflects a f -electron to the normal metal, which can be easily
probed. The reflection probably is inversely proportional to
the effective mass of the f -electron. This means in the limit
of the localized f -electron case, the Andreev reflection can be
strongly suppressed or absent. A suppression of Andreev re-
flection amplitude is observed in CeCoIn5,[62] and CeCu2Si2
[19, 20].

As also mentioned in the above section, in the limit of fully
localized f -orbitals when the coupling to the external gauge
field is suppressed, one may find evidence of−e charge of the
Cooper pair in such experiments. However, the band structure
effect of the f -orbitals can help coupling of the f -orbitals to
the gauge field and hence the charge of the Cooper pair on
average can be observed to be somewhere between−e to−2e
in experiments.

V. DISCUSSIONS AND CONCLUSIONS

Our theory demonstrates the existence of an attractive pair-
ing potential mediated by the interplay between Coulomb in-
teraction and valence fluctuations. The origin of the attrac-
tive potential is the emergent gauge boson field (holon) asso-
ciated with single-site f -states to restrict double occupancy
due to strong Coulomb interaction. The effective interaction
is a result of multiple valence fluctuations: The holon field
generated in a given valence fluctuation is absorbed in the sec-
ond valence fluctuation, and the resulting two valence fluctua-
tion processes generate an effective interaction between the f -
and conduction electrons. The interaction is attractive at low-
frequency and isotropic in the case of onsite valence fluctua-
tion process. The onsite, attractive interaction naturally gives
an isotropic, constant sign s-wave pairing channel between
the single-site f -electrons, and conduction electrons.

Our result of fixed-sign, isotropic s-wave pairing chan-
nel is consistent with numerous experimental data discussed
in the introduction.[19, 20, 21, 22, 23, 24, 25] The ex-
ponential temperature dependence of point-contact tunnel-
ing spectroscopy,[19, 20] specific heat,[21, 22, 23] ther-
mal conductivity[23], and penetration depth[23, 24] are nat-
urally explained within our model. Moreover, there have
been several recent evidence of two-band superconductiv-
ity in CeCu2Si2.[21, 22, 24] It was shown that most of
the above data, as well as the T 3 dependence of the NQR
data[13, 14, 15] can be fitted well with a two-band model
with a simple s-wave pairing symmetry. This is fully con-
sistent with our theory which has a two-band (conduction and
local) behavior with s-wave pairing. Furthermore, the pro-

posed pairing (Eq. (6)) is a finite momentum pairing in the
limit of fully localized f -electrons, and itinerant conduction
electrons. Consistently, there have been recent evidence of fi-
nite momentum pairing state in CeCu2Si2.[63] Finally, strong
suppression of Andreev reflection amplitude in CeCoIn5,[62]
and CeCu2Si2 [19, 20] are well known, suggesting the in-
volvement of the localized f -orbitals in the Cooper pairs.

In addition, the present theory can also explain the other
three experimental signatures which were taken earlier as ev-
idence of unconventional, sign-reversal pairing symmetry. (i)
The T 3 dependence of the NQR relaxation rate 1/T1 below Tc
in CeCu2Si2 is often considered as evidence of line nodes in
the SC gap structure.[13, 14, 15] As mentioned above, a two-
band model with purely s-wave gap, as in the present case,
is shown to reproduce the same power-law behavior of 1/T1

without invoking gap nodes.[21, 22] Therefore, we anticipate
our theory is equally applicable here. (ii) The four-fold angu-
lar modulation of Hc2 in CeCu2Si2 [16] can be a signature of
the SC gap anisotropy. However, it was shown in a realistic
two-band model that a strong anisotropy in Hc2 (as well as in
other quantities) can well arise solely from the Fermi surface
anisotropy even for a purely isotropic s-wave SC gap.[17] In-
deed, the conduction electron’s Fermi surface is known to be
substantially anisotropic in CeCu2Si2.[29, 30] (iii) Finally, it
is known that a spin-resonance as measured by inelastic neu-
tron scattering experiments can arise either from unconven-
tional, sign-reversal pairing symmetry, or even for a fixed-sign
s-wave pairing.[61] For sign-reversal pairing gap, the spin-
resonance is typically very sharp and its energy must follow
ωres < 2∆, where ∆ is the SC gap amplitude. On the other
hand, for fixed-sign, conventional pairing, the resonance is
usually very broad, and its energy lies at ωres ≥ 2∆. The mea-
sured spin-resonance in CeCu2Si2 [18] is indeed quite broad,
and the present data cannot discern if the resonance energy
lies below or above 2∆. Moreover, our theory also predicts a
novel resonance mode at an energy (Eq. (19)) determined by
2∆/ξ̄f .

We compare and contrast the concepts of the present the-
ory with the prior theories of ‘conventional’ pairing solutions
in CeCu2Si2. Valence fluctuation mediated or assisted pair-
ing mechanism has been a steady theme of discussions in
the heavy-fermions community.[8, 9, 26, 27, 31, 32, 33, 34]
Miyake and Onishi [31, 32] have proposed a phenomenolog-
ical pairing vertex formula with the help of an empirical va-
lence fluctuation susceptibility defined near its critical point.
Unlike our case, the pairing vertex in Ref. [31] does not in-
voke electron-electron correlation, however, the pairing inter-
action is argued to be retarded when correlation in included.
On the other hand, in our case, the pairing interaction is mi-
croscopically derived from the interplay between correlation
and valence fluctuation and has a robust solution of attrac-
tive channel at the low-energy limit. Our pairing interaction
can be considered as a generalized, dynamical Kondo inter-
action. If we express the interaction in Eq. (3) in terms of
local spin and conduction spin interaction, then Vkk′(ω) can
be cast as dynamical Kondo interaction JK(ω) (similar re-
sult in the static limit can be obtained within the Schrieffer-
Wolf transformation[46]). Starting from Kondo interaction
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with JK < 0, a composite Cooper pair theory was proposed
where conduction electron pairs up the (chargeless) fermionic
representation of the local spin.[36, 38] Such composite pair-
ing channel is also s-wave like in the limit of local Kondo
channel. A prior quantum Monte Carlo simulation of peri-
odic Anderson model showed the existence of a s-wave pair-
ing interaction.[35] This gives a validation of the attractive
pairing interaction we derive in Eq. (4). Finally, we propose
that a future dynamical mean-field theory (DMFT) calculation
will be valuable to further confirm the existence of the attrac-
tive paring solution in such a model.

Finally, we make few remarks about the future extension
of the present theory. A full, self-consistent treatment of Tc,
η, and TK requires an Eliashberg-type formalism. Since Tc
is significantly low in HF compounds, the present mean-field
treatment is however a good approximation for the estimates
of Tc. The theory also holds for dispersive f -electrons state
as long as the corresponding bandwidth is much lower than
U . For a dispersive f -state, one can obtain a zero center-
of-mass momenta Cooper pair 〈c†kσ f̄

†
−km〉. Therefore, the

present theory is applicable to the wider class of intermetallic
and mixed valence superconductors where a narrow band and
a conduction band coexist, and possesses finite interband tun-
neling (valence fluctuation) strength.[64] Our calculation does
not include Coulomb interaction between the conduction and
f -electrons (the Falicov-Kimball type interaction). However,
it is obvious that such a Coulomb interaction term will lead to
a pair breaking correction (e.g µ∗-term), in analogy with the
Coulomb interaction correction to the electron-phonon cou-
pling case (the so-called McMillan’s formula)[65]. Finally,
the vertex correction to the pairing potential can be envisaged,
in analogy with the Migdal’s theory, to scale as m/M , where
m, and M are the mass of the conduction and f -electrons.
Since M ∼ 103 in these HF systems, we argue that the vertex
correction can be negligible.
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Appendix A: Field theory treatment of the hole states and
effective attractive potential

The action of the Hamiltonian in Eq. (2) is broken into four
components

S = Sc + Sf̄ + Se + Sv, (A1)

where

Sc =

∫
dτ
∑
k,σ

c̃kσ(τ)(∂τ + ξk)ckσ(τ), (A2)

Sf̄ =

∫
dτ
∑
m

˜̄fm(τ)(∂τ + ξ̄f )f̄m(τ), (A3)

Se =

∫
dτ ẽ(τ)(∂τ + ωe)e(τ), (A4)

Sv =

∫
dτ

∑
k,σ,m

(
vkc̃kσ(τ)ẽ(τ)f̄m(τ) + h.c.

)
. (A5)

Here ẽ, e are bosonic coherent states and ˜̄f, f̄ , c̃, c are Grass-
mann variables for singly occupied f -states, and conduction
electrons respectively (‘tilde’ means conjugation). τ is imag-
inary time axis. Thermodynamic properties of the system
can be calculated from the partition function Z = Tre−S ,
where the trace is taken over all degrees of freedom of the
system. We obtain an effective action Seff by integrating out
the bosonic variables ẽ, e as

Z =

∫
D[c̃, c]D[ ˜̄f, f̄ ]D[ẽ, e]e−Sc−Sf̄−Se−Sv ,

=

∫
D[c̃, c]D[ ˜̄f, f̄ ]e−Sc−Sf̄

∫
D[ẽ, e]e−Se−Sv ,

=

∫
D[c̃, c]D[ ˜̄f, f̄ ]e−Seff [c̃,c, ˜̄f,f̄ ], (A6)

where

Seff = Sc + Sf̄ − ln

∫
D[ẽ, e]e−Se−Sv . (A7)

It is easier to perform the τ integration in the Matsubara
frequency space. The Fourier transformation to the Mat-
subara frequency domain of the e(τ) variable gives e(τ) =

1√
β

∑
n en exp (−iωnτ), where iωn is bosonic Matsubara

frequency and en = e(iωn). In the Matsubara space, we get

Se = −
∑
n

ẽn(Ge)−1(iωn)en, (A8)

where Ge is the bare Green’s function for the en-states:
(Ge)−1 = iωn − ωe.

Next we define a bosonic hybridization field ρkσm as

ρkσm(τ) = c̃kσ(τ)f̄m(τ), (A9)

whose Fourier component is ρkσm(τ) =
1√
β

∑
n ρkσm,n exp (−iωnτ), where ρkσm,n = ρkσm(iωn)

with iωn being the bosonic Matsubara frequency. Hence we
can express the hybridization action as

Sv =

∫ β

0

dτ
∑
k,σ,m

(vkẽ(τ)ρkσm(τ) + v∗kρ̃kσm(τ)e(τ)) ,

=
∑
k,σ,m

∑
n

(vkẽnρkσm,n + v∗kρ̃kσm,nen) . (A10)

Interestingly, now in Eqs. (A8),(A10) the integration over τ -
variable is replaced with summation over discrete Matsub-
ara frequencies n. Let us say at a given temperature we
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have N number of Matsubara frequencies. So we define
a bosonic spinor E = (e1, e2, ..., eN )T , and Ẽ = (ẽ1, ẽ2,
..., ẽN ). Similarly, we define a vector for the hybridization
field as V = (v1, v2, ..., vN )T , Ṽ = (ṽ1, ṽ2, ..., ṽN ) where
vn =

∑
kσm vkρkσm,n, and ṽn =

∑
kσm v

∗
kρ̃kσm,n. Fi-

nally, we define a diagonal matrix G−1 for the inverse Green’s
function (Ge)−1 in Eq. (A8), whose components are G−1

nn =
(Ge)−1 = iωn − ωe. Hence we can express Eqs. (A8),(A10)
respectively as

Se = −Ẽ ·G−1 ·E, (A11)
Sv = Ẽ ·V + Ṽ ·E. (A12)

Therefore, the last term of Eq. (A7) can be evaluated as∫
D[Ẽ,E]e−Se−Sv = πNdet G−1e−[Ṽ·G−1·V].(A13)

(We ignored some irrelevant constant factors). The factor of
the exponent on the right hand side of Eq. (A13) can now be
evaluated rigiously. In T → 0 limit, the Matsubara frequen-
cies span from n = −∞ to∞. Hence we obtain,

Ṽ ·G−1 ·V

= −
∑
k,σ,m

k′,σ′,m′

∞∑
n=−∞

v∗kρ̃kσm,n
1

−iωn + ωe
vk′ρkσ′m′,n

=
∑
k,σ,m

k′,σ′,m′

∞∑
n=0

v∗kvk′
2ωe

(iωn)2 − ω2
e

ρ̃kσm,nρkσ′m′,n

=
∑
k,σ,m

k′,σ′,m′

∞∑
n=0

Vkk′
˜̄fm(iωn)ck,σ(iωn)c̃k′,σ′(iωn)f̄m′(iωn).

(A14)

In the last equation, we have substituted the hybridization field
into fermionic field from Eq. (A9). The effective potential is

Vkk′ = v∗kvk′
2ωe

(iωn)2 − ω2
e

. (A15)

Appendix B: Mean-field solutions

We use the Nambo-Gorkov basis ψk = (ckσ f̄†m)T , in
which the mean-field Hamiltonian (Eq. (7)) reads

HMF(k) = ξ−k I2×2 + ξ+
k σz −∆kσx, (B1)

where σi are the 2×2 Pauli matrices and I2×2 is a unit matrix.
ξ±k = (ξk ± ξ̄f )/2. The BdG eigenvalues are

E±k = ξ−k ± E0k, with E0k =
√

(ξ+
k )2 + |∆k|2. (B2)

The Bogoliubov operators for the two eigenvalues E±k are(
φ+
k

(φ−k )†

)
=

(
α+
k −α

−
k

α−k α+
k

)(
ckσ
f̄†m

)
. (B3)

where

(α∓k )2 =
1

2

(
1∓

ξ+
k

E0k

)
, (B4)

Evaluating the self-consistent gap equation from Eq. (6), we
get Eq. (8).

1. Transition temperature Tc

For the attractive potential, onsite pairing is more favorable.
Hence we set Vkk′ = −2|v|2/ωe. In this case, superconduct-
ing transition temperature Tc can be obtained by taking the
limits of ∆ → 0, which renders E+

k → ξk, E−k → −ξ̄f ,
E0k → |ξk+ξ̄f |

2 . From Eq. (8) we obtain

1 = λ

∫ D

−D

dξ

2(ξ + ξ̄f )

[
tanh

(
βcξ

2

)
+ tanh

(
βcξ̄f

2

)]
,

(B5)

where we have substituted λ = 2N |v|2/ωe. βc = 1/kBTc.
The first integral in Eq. (B5) is a tricky one. In the limit of
D >> ξ̄f , we can approximately evaluate this integral. The
first integral of Eq. (B5) gives

I1 ≈ λ ln

 2Dγ√
ξ̄2
f + (2kBTc)2

 , (B6)

where Dγ = 2Dγ/π with γ = 1.78 being the Euler constant.
The second integral is trivial to evaluate which gives

I2 = λ tanh
(
βcξ̄f

2

)
ln

∣∣∣∣ D + ξ̄f
−D + ξ̄f

∣∣∣∣ . (B7)

In the limit of D > ξ̄f , I2 → 0. Therefore, we are left with
I1 = 1, which gives,

(kBTc)
2 = D2

γe
−2/λ −

ξ̄2
f

4
, (B8)

Eq. (8) in the main text is obtained from the above equation.

2. SC gap amplitude

Next we take the T → 0 limit in Eq. (8). In this limit, we

get tanh(
βE±k

2 )→ ±1. Hence we are left with

1 = λ

∫ D

−D

dξ√
(ξ + ξ̄f )2 + 4∆2

= λ ln


√

(D + ξ̄f )2 + 4∆2 +D + ξ̄f√
(D − ξ̄f )2 + 4∆2 −D + ξ̄f


≈ λ ln

(
2(D + ξ̄f )√

(D − ξ̄f )2 + 4∆2 −D + ξ̄f

)
(B9)
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In the last equation above, we assumed D >> ∆. Solving
Eq.(B9)

∆ = D̄e−
1

2λ

[
1 + re−

1
λ

]1/2
,

(B10)

where D̄ =
√
D2 − ξ̄2

f , and r = (D + ξ̄f )/(D − ξ̄f ). In

the weak coupling limit λ → 0, we get ∆ → D̄e−
1

2λ (no-
tice the factor of 2λ in the exponent) while in the strong
coupling limit, we obtain the BCS-type formalism of ∆ →√
D2 + ξ̄2

fe
− 1
λ ≈ De− 1

λ .

Appendix C: Pair susceptibility

To affirm that there exists a pairing instability in Eq. (3) in
the main text, we compute the pair-pair correlation function.
We consider the pair field

bk(τ) =
∑
σ,m

ckσ(τ)f̄m(τ), (C1)

where τ is the imaginary time. The pair susceptibility is de-
fined as

χp(q, iωn) =

∫ β

0

∑
k

〈
Tτ bk(τ)b†k+q(τ ′)

〉
e−iωn(τ−τ ′)

(C2)

Where Tτ is the time ordered operator. Using Wick’s decom-
position, we evaluate the above average as〈
Tτbk(τ)b†k+q(τ ′)

〉
=
∑
σ,m

Gfm(τ − τ ′)Gck,σ(τ − τ ′)δq,0,

(C3)

where Gck,σ(τ − τ ′) = 〈Tτ ckσ(τ)c†kσ(τ ′)〉 is the con-
duction electron’s Green’s function, and Gfm(τ − τ ′) =
〈Tτ f̄m(τ)f̄†m(τ ′)〉 is the Green’s function for the single site
f̄m states. In the fermionic Matsubara frequency ipn space
these two Green’s functions becomeGck,σ(ipn) = (ipn −
ξk)−1, and Gfm(ipn) = (ipn−ξ̄f )−1. Substituting the Green’s
functions in Eq. (C2), and doing the Fourier transformation we
get

χp(iωn) =
1

β

∑
k,σ,m

∑
n′

Gfm(ipn′)Gck,σ(iωn − ipn′). (C4)

Substituting the corresponding Green’s functions and per-
forming the standard Matsubara frequency summation on
ipn′ , we arrive at

χp(iωn) =
∑
k

1− f(ξ̄f )− f(ξk)

ξ̄f + ξk − iωn
, (C5)

f(ξ) is the Fermi distribution function. We are interested in
the ω → 0, and q→ 0 limits. Taking analytic continuation to

FIG. 5. Static pair susceptibility at q = 0 as a function of temper-
ature for different values of ξ̄f . As expected from Eq. (C7) the pair
correlation function diverges at T → 0 for ξ̄f → 0.

the real frequency plane iωn → ω+ iδ, the pair susceptibility
becomes

χp(ω ≈ 0) =
N

2

∫ D

−D
dξ

tanh(
βξ̄f

2 ) + tanh(βξ2 )

ξ̄f + ξ
. (C6)

This equation is nothing but the R.H.S. of Eq. (B5), except the
constant factor V . Again in the limit ofD >> ξ̄f this integral
gives the solution as in Eq. (B6). Hence we get

χp(T ) = N ln

 2Dγ√
ξ̄2
f + (2kBT )2

 . (C7)

Interestingly, unlike the typical BCS case, the pair correlation
function does not have a logarithmic divergence as T → 0
except in the limit of ξ̄f → 0. This is the reason superconduc-
tivity is limited by a minimum limit of the coupling constant
λ and TK to overcome the onsite energy ξ̄f as discussed in the
main text.

Appendix D: Further details of the Meissner effect

Unlike the typical Cooper pair of two conduction electrons
with opposite momenta in other mechanism, here we have
a pairing between conduction electron and correlated singly
occupied f -electrons. How do these Cooper pairs couple
to the applied magnetic field? It is easy to envisage that
conduction electrons directly couple to the gauge field A as
p′ = ~k− e

cA. On the other hand, the f -states do not couple
to the vector potential in its localized limit. Therefore, im-
portant changes are expected here , in the Meissner effects,
compared to typical BCS case.

First of all, under the magnetic field the BdG states be-
come chiral and thus the Bogolyubov states φ±±k and the cor-
responding eigenvalues E±±k for ±k are no longer the same.
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Hence we treat them explicitly as:

ckσ = αkφ
+
k + βk(φ−k )†

c−kσ = αkφ
+
−k + βk(φ−−k)†. (D1)

αk, and βk are the coherence factors at zero magnetic field.
The corresponding change in the eigenvalue are Eν±k = Eνk∓
e
ca.vk, where ν = ±, and a is the Fourier component of the
vector potential in the momentum space. vk = ∂ξk/(~∂k)
is the conduction band velocity with v−k = −vk. Eνk are
the eigenvalues without the magnetic field, and hence Eν−k =
Eνk . In the weak magnetic field limit, this corresponds to the
change in the Fermi Dirac distribution functions as f(Eν±k) =

f(Eνk)∓ ( eca.vk) ∂f
∂Eνk

. The two current operators are

Jd(q) =
e2

c
a(q)

′∑
kσ

1

mk

[
c†k−qσckσ + c†−k+qσc−kσ

]
,(D2)

Jp(q) = e
′∑

kσ

vk−q

[
c†k−qσckσ − c

†
−k+qσc−kσ

]
. (D3)

Here mk is the effective mass of the conduction electron. In
the above two equations we utilized the fact that v−k = −vk,
and m−k = mk. The prime over the summation indicate

that the summation is restricted to the first quadrant of the
Brillouin zone. By substituting Eq. (D1) and after a lengthy
and straightforward calculation, we arrive at

Jd(0) = −e
2a(0)

c

′∑
k

1

mk

×
[
1− (α+

k )2 tanh

(
βE+

k

2

)
− (α−k ) tanh

(
βE−k

2

)]
,

(D4)

Jp(0) =
e2β

2c

′∑
k

(a.vk)vk

×
[
(α+

k ) sech2

(
βE+

k

2

)
+ (α−k ) sech2

(
βE−k

2

)]
.

(D5)

Next we take the linear response theory and within the Lon-
don’s equations, we define the penetration depth λ(T ) as
λ−2
ij = − 4π

c
Ji(0)
aj(0) , where J = Jp +Jd is the total current. i, j

are the spatial coordinates. This gives the final result given in
Eq. (15). This equation reduces to the typical BCS form in the
case of ξk = −ξ̄f .
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