

Energetic and Structural Properties of Two-Dimensional Trapped Mesoscopic Fermi Gases

Emma K. Laird^{1,*}, Brendan C. Mulkerin², Jia Wang³, and Matthew J. Davis¹

1 ARC Centre of Excellence in Future Low-Energy Electronics and Technologies, University of Queensland, Saint Lucia Queensland 4072, Australia

2 ARC Centre of Excellence in Future Low-Energy Electronics and Technologies, Monash University, Clayton Victoria 3800, Australia

3 Centre for Quantum Technology and Theory, Swinburne University of Technology, Hawthorn Victoria 3122, Australia

* e.laird@uq.edu.au

Abstract

We theoretically investigate equal-mass spin-balanced two-component Fermi gases in which pairs of atoms with opposite spins interact via a short-range isotropic model potential. We probe the distinction between two-dimensional and quasi-two-dimensional harmonic confinement by tuning the effective range parameter within two-dimensional scattering theory. Our approach, which yields numerically exact energetic and structural properties, combines a correlated Gaussian basis-set expansion with the stochastic variational method. For systems containing up to six particles, we: 1) Present the ground- and excited-state energy spectra; 2) Study non-local correlations by analysing the one- and two-body density matrices, extracting from these the occupation numbers of natural orbitals, the momentum distributions of atoms and pairs, and the molecular ‘condensate fraction’; 3) Study local correlations by computing the radial and pair distribution functions. This paper extends current theoretical knowledge on the properties of trapped few-fermion systems as realised in state-of-the-art cold-atom experiments.

Copyright attribution to authors.

This work is a submission to SciPost Physics Core.

License information to appear upon publication.

Publication information to appear upon publication.

Received Date

Accepted Date

Published Date

¹

Contents

3	1	Introduction	2
4	2	Model	3
5	3	Results and Discussion	5
6	3.1	Energy Spectra	5
7	3.2	Density Matrices and Occupation Numbers	7
8	3.2.1	One-Body Density Matrix	7
9	3.2.2	Two-Body Density Matrix	10
10	3.2.3	Molecular Condensate Fraction	12
11	3.3	Momentum Distributions	14

12	3.4 Radial and Pair Distribution Functions	16
13	3.5 Finite Effective Range Effects	18
14	4 Conclusions	22
15	A Analytical Results in the Non-Interacting Limit	23
16	References	25
17		

18 **1 Introduction**

19 Many-body quantum systems are generally intractable due to their vast complexity and nu-
20 merous degrees of freedom. A few of the simplest cases — such as the Lieb–Liniger model of
21 the one-dimensional Bose gas or the one-dimensional Fermi–Hubbard model — admit exact
22 analytical solutions because they are integrable, but these are rare exceptions. One promising
23 strategy for discerning how many-body features emerge in more realistic settings is to probe
24 the underlying physics from the few-body limit. Since the two-body system is typically well
25 characterised, a ‘bottom-up’ approach can be employed in which the number of particles is
26 increased one by one, thereby introducing complexity in a controlled and stepwise manner. In
27 this way, mesoscopic observables are often found to converge surprisingly rapidly toward the
28 predictions of many-body theories, once those predictions are rescaled to account for varying
29 particle number [1–9].

30 An experimental bottom-up approach has been realised by the research group of Selim Jo-
31 chim using a tightly focused optical microtrap (‘optical tweezer’). By superimposing this mi-
32 crotrap onto a large reservoir of ultracold fermionic atoms and gradually lowering its depth,
33 a chosen small number of particles can be deterministically prepared in the ground state of a
34 harmonic oscillator potential at temperatures close to zero [1, 8–10]. Applying this method to
35 two-component Fermi gases, their experiments have shown that in quasi-one-dimensional ge-
36ometries a many-body Fermi sea can form from only four atoms [1]. In quasi-two dimensions
37 many-body ‘Cooper-like’ pairing — evidenced by a peak in the correlations between particles
38 with opposing spins and momenta at the Fermi surface — has been experimentally observed
39 with as few as twelve atoms [9].

40 To better understand the latter experiment, in Ref. [11] we theoretically modelled an in-
41 creasing number of spin-balanced two-component fermions confined in a quasi-two-dimens-
42 ional harmonic trap. Our numerical approach — commonly referred to as the explicitly corre-
43 lated Gaussian (ECG) method [12–15] — combined a stochastic variational framework with
44 the use of ECG basis functions [16, 17], allowing us to compute experimentally measurable
45 observables with very high accuracy. In particular, we calculated the lowest monopole excit-
46 ation energies and ground-state opposite-spin pair correlations as functions of increasing at-
47 tractive interaction strength [11]. The few-body physics was captured by applying two-dim-
48 ensional scattering theory [18–20] to a finite-range Gaussian interaction potential, with the
49 effective range tuned to model realistic quasi-two-dimensional scattering [21–24]. For gases
50 comprising up to six equal-mass fermions, we found that time-reversed pairing in the ground
51 state was predominant at momenta significantly below the Fermi momentum [11]. Together
52 with experimental findings [9], this suggested that the Fermi sea — which, beneath the Fermi
53 surface, Pauli-blocks the superposition of momenta required to form a paired state — must
54 emerge in the transition from six to twelve particles.

55 Here, we apply the ECG method to the same Fermi gases to obtain new energy spectra and
56 ground-state structural properties, which are crucial for their theoretical characterisation and

57 thereby further advance our understanding of fermionic few-body systems. This paper is or-
 58 ganised as follows: In Section 2 we outline our model and the underlying two-body scattering
 59 theory. Section 3 details our results: In Subsection 3.1 we generate the energy spectra of the
 60 ground state and low-lying excited-state manifolds for gases containing two, four, and six par-
 61 ticles. We quantify non-local correlations between the trapped fermions by analysing the one-
 62 and two-body density matrices in Subsection 3.2. In Subsection 3.3 we analytically Fourier
 63 transform the density matrices to extract the momentum distributions of individual atoms and
 64 opposite-spin pairs. To quantify local correlations in the Fermi gases we examine the radial
 65 and pair distribution functions in Subsection 3.4. In Subsection 3.5 we elucidate the effect of
 66 the trap aspect ratio — i.e., effective range — on the energetic and structural properties men-
 67 tioned above. We conclude and discuss the relative merits of our approach in Section 4. Our
 68 work is strongly inspired by earlier, similar studies of trapped few-fermion systems subject to
 69 three-dimensional harmonic confinement — particularly Ref. [25], as well as Refs. [26–29].
 70 These publications, in turn, are partly motivated by research on bosonic ^4He and fermionic
 71 ^3He droplets [30] which, although much denser than ultracold atomic gases, can be described
 72 using the same theoretical framework.

73 2 Model

74 The two-component Fermi gases considered in our analysis consist of equal-mass atoms with
 75 balanced spin populations, such that $N = N_\uparrow + N_\downarrow$ and $N_\uparrow = N_\downarrow = N/2$, where N_\uparrow and N_\downarrow
 76 denote the number of ‘spin-up’ and ‘spin-down’ fermions, respectively. Each gas is confined
 77 in an isotropic two-dimensional (2D) harmonic trap and in the non-interacting ground state
 78 only the first two harmonic oscillator shells are occupied — corresponding to particle numbers,
 79 $N_\uparrow + N_\downarrow = 1 + 1$, $2 + 2$, and $3 + 3$. Our work is inspired by recent experiments in the group of
 80 Selim Jochim [8,9], which show that the harmonically trapped ground state of a small number
 81 of fermionic ^6Li atoms — ranging from 20 down to just 2 — can be prepared with very high
 82 fidelity.

83 The effective low-energy Hamiltonian reads as follows:

$$\mathcal{H} = \sum_{i=1}^N \left[-\frac{\hbar^2}{2m} \nabla_{\mathbf{r}_i}^2 + V_{\text{ext}}(|\mathbf{r}_i|) \right] + \sum_{i < j}^N V_{\text{int}}(|\mathbf{r}_i - \mathbf{r}_j|), \quad (1)$$

84 where m is the atomic mass and \mathbf{r}_i is the 2D position vector of the i^{th} atom measured from
 85 the centre of the trap. The first term corresponds to the kinetic energy, the second term to the
 86 external confinement,

$$V_{\text{ext}}(|\mathbf{r}_i|) = \frac{m\omega_r^2}{2} r_i^2, \quad r_i \equiv |\mathbf{r}_i|, \quad (2)$$

87 where ω_r is the radial harmonic trapping frequency, and the third term to short-range pairwise
 88 interactions. Note that Pauli exclusion ensures identical fermions do not interact. The interac-
 89 tions between distinguishable fermions are described using a finite-range Gaussian potential,
 90 parameterised by a width r_0 (> 0) and a depth V_0 (< 0):

$$V_{\text{int}}(|\mathbf{r}|) = V_0 \exp\left(-\frac{r^2}{2r_0^2}\right) - V_0 \frac{r}{l_r} \exp\left(-\frac{r^2}{2(2r_0)^2}\right). \quad (3)$$

91 Here, $l_r = \sqrt{\hbar/(m\omega_r)}$ is the radial harmonic oscillator length scale in the plane. This poten-
 92 tial has previously been employed to model the breathing modes [24] and time-reversed pair

93 correlations [11] of a few interacting fermions in a 2D harmonic trap. In the non-interacting
 94 limit of $V_0 = 0$, the eigenvalues of the Hamiltonian (1) are $\varepsilon_{nm}^{(0)} = (2n + |m| + 1)\hbar\omega_r$, where
 95 $n = 0, 1, 2, \dots$ is the principal quantum number and $m = 0, \pm 1, \pm 2, \dots$ is the quantum number
 96 for orbital angular momentum.

97 The values of r_0 and V_0 can be adjusted to generate potentials with different s -wave scattering
 98 properties in 2D free space [31]. We solve the s -wave radial Schrödinger equation for
 99 the relative motion of two elastically scattering atoms, matching the logarithmic derivatives of
 100 the wave functions inside and outside the range of the interaction potential (3) to obtain the
 101 scattering phase shift $\delta(k)$. By subsequently fitting the phase shift to the known form [18–20]
 102 of its low-energy expansion in two dimensions,

$$\cot[\delta(k)] = \frac{2}{\pi} \left[\gamma + \ln\left(\frac{ka_{2D}}{2}\right) \right] + \frac{1}{\pi} k^2 r_{2D} + \dots, \quad (4)$$

103 we ascertain both the s -wave scattering length a_{2D} and effective range r_{2D} .¹ Above, $k \equiv |\mathbf{k}|$ is
 104 the magnitude of the relative wave vector between the atoms in the plane and $\gamma \simeq 0.577216$
 105 is Euler's constant. With this definition of a_{2D} , the relative radial wave function has the logarithmic
 106 large-distance form $\psi(r) \propto \ln(a_{2D}/r)$ which is characteristic of zero-energy two-dimensional
 107 scattering. Importantly, the low-energy physics does not depend on the short-range
 108 details of the true interaction potential and is, instead, universally determined by a_{2D} and r_{2D} .
 109 In all our calculations, we therefore choose Gaussian widths small enough ($r_0 \lesssim 0.1l_r$) that
 110 higher order terms in the expansion (4) are negligible in the energy range of interest. In two
 111 dimensions a two-body bound state always exists — even for arbitrarily weak attractive inter-
 112 actions — since the scattering amplitude obtained by the analytic continuation of Eq. (4) to
 113 negative energies always exhibits a pole. In the zero-effective-range limit, the corresponding
 114 binding energy ε_b is related to the 2D scattering length via $\varepsilon_b = 4\hbar^2 e^{-2\gamma}/(ma_{2D}^2)$. For finite
 115 r_{2D} this relationship must be determined numerically from the phase shift expansion; however,
 116 ε_b still serves as a monotonic proxy for interaction strength [32].

117 The scattering length is always positive ($a_{2D} > 0$) because it enters as the argument of the
 118 logarithm in Eq. (4) and the phase shift must remain real at low energies. In the many-body
 119 limit as a_{2D} increases, the two-component Fermi gas undergoes a crossover from a Bose–Einstein
 120 condensate (BEC) of tightly bound diatomic molecules to a Bardeen–Cooper–Schrieffer
 121 (BCS) superfluid of long-range Cooper pairs [32, 33]. However unlike in three dimensions,
 122 there is no unitary limit where the interaction strength diverges and becomes scale invariant.
 123 Rather, the strongly interacting regime emerges around the point $\ln(k_F a_{2D}) = 0$, where the
 124 Fermi momentum k_F determines the average interparticle spacing [32, 33]. In the few-body
 125 limit this spacing becomes ill-defined due to large fluctuations, making the regime of strong
 126 interactions more difficult to characterise for only a small number of atoms.

127 A two-dimensional geometry is experimentally realised by applying a strong harmonic con-
 128 finement along the axial direction [8, 9], characterised by an angular frequency ω_z and a cor-
 129 responding length scale $l_z = \sqrt{\hbar/(m\omega_z)}$. However, in reality, the gas extends a small but fin-
 130 ite distance perpendicular to the plane. At low energy, when l_z is small (such that $kl_z \ll 1$) but
 131 still much larger than the van der Waals range of the interactions, the two-body scattering of
 132 distinguishable fermions can be mapped to a purely 2D scattering amplitude with an effective
 133 range given by [21–24]

$$r_{2D} = -l_z^2 \ln(2). \quad (5)$$

134 As a result, the effect of a *quasi*-2D geometry on the scattering can be mimicked and probed
 135 by attributing a finite, negative value to the effective range in the 2D model, Eqs. (1)–(5).

¹Note that the exact definitions of the 2D scattering length and effective range are not fixed in the literature. Our definition of r_{2D} has units of squared length, consistent with Refs. [11, 24].

136 The effective range can be tuned through a wide range of negative values near a shape resonance
 137 [24, 34] which arises due to the structure of the model potential. Virtual bound states
 138 are supported in the attractive well associated with the first term of Eq. (3), and these can
 139 couple to free-space scattering states through the small repulsive barrier created by the sec-
 140 ond term. We restrict our calculations to the regime where this potential supports a single
 141 two-body s -wave bound state in two-dimensional free space [11, 24]. In Subsections 3.1–3.4
 142 we fix the effective range to very nearly zero, $r_{2D}/l_r^2 = -0.001 \approx 0$, in order to determine
 143 the energetic and structural properties of the Fermi gases very close to the strictly 2D limit,
 144 which is of fundamental interest. Increasing $|r_{2D}|$ — while remaining within the regime of the
 145 mapping in Eq. (5) — leads to small quantitative shifts in these results but, most of the time,
 146 leaves them qualitatively unchanged. In Subsection 3.5 we show how our results are modified
 147 for $r_{2D}/l_r^2 = -0.2$ which was the largest negative value considered in Ref. [11].

148 We note that the two-Gaussian interaction potential in Eq. (3) has been chosen for three
 149 reasons. First, it provides a minimal two-parameter model that both reproduces a target scat-
 150 tering length a_{2D} and simultaneously allows the effective range r_{2D} to be tuned across a broad
 151 interval by adjusting the relative weights of the attractive well and repulsive barrier. Second,
 152 it is numerically tractable when combined with the use of Gaussian basis functions. Third, this
 153 potential has been employed successfully in previous ECG calculations for quasi-two-dimen-
 154 sional few-fermion systems where it was shown to capture the relevant low-energy scattering
 155 properties [11, 24]. However, since the low-energy physics depends universally on only a_{2D}
 156 and r_{2D} , and not on the microscopic details of the short-range potential, the *precise* functional
 157 form we use is unimportant. This was verified in Refs. [11, 24] where the modified potential
 158 given in Eq. (S23) of the Supplemental Material of Ref. [24] was shown to reproduce the same
 159 energies at fixed binding energy ε_b and effective range.

160 3 Results and Discussion

161 To numerically solve the time-independent Schrödinger equation for the Hamiltonian (1) we
 162 employ the explicitly correlated Gaussian method discussed in detail in our earlier publica-
 163 tion [11] (see Appendix A therein). Other works which have also applied this technique to
 164 study ultracold two-component fermions include Refs. [24–29]. Our calculations are parame-
 165 terised in terms of the two-body binding energy $\varepsilon_b \geq 0$ and the effective range r_{2D} . Although
 166 ε_b was introduced in Section 2 in the context of free-space pairwise scattering, it can addi-
 167 tionally be defined in the presence of the harmonic trap. The two definitions coincide in the
 168 weak confinement limit and in both cases ε_b remains a monotonic function of the underlying
 169 scattering parameters, a_{2D} and r_{2D} . In practice, we determine the trapped value of ε_b by using
 170 the ECG method to compute the relative ground-state energy ε_{rel} for the 1+1 system described
 171 by Eq. (1) with specified values of r_0 and V_0 . The total ground-state energy in the harmonic
 172 trap is $\varepsilon = \varepsilon_{\text{com}} + \varepsilon_{\text{rel}} = 2\hbar\omega_r - \varepsilon_b$, and since the ground state contains no centre-of-mass
 173 excitations $\varepsilon_{\text{com}} = \hbar\omega_r$, we can immediately find ε_b .

174 3.1 Energy Spectra

175 In two dimensions the exact energy spectrum for 1+1 fermions was analytically calculated
 176 by Busch et al. in 1998 [35]. Their approach involved modelling the interaction with a reg-
 177 ularised Dirac delta distribution, expanding the relative wave function in the harmonic oscil-
 178 lator basis, and using standard integral representations to evaluate the Schrödinger equation.
 179 In 2010 Liu et al. numerically computed the exact energy spectrum for 2+1 fermions by ex-
 180 tending the approach of Efimov [36] to the two-dimensional trapped case and applying the
 181 Bethe–Peierls boundary condition [37]. Here, we obtain numerically exact energy spectra for

182 1 + 1, 2 + 2, and 3 + 3 fermions at very nearly zero effective range, $r_{2D}/l_r^2 = -0.001 \approx 0$. After
 183 separating off the centre-of-mass degree of freedom, we expand the eigenstates of the relative
 184 Hamiltonian in terms of explicitly correlated Gaussian basis functions [11–15]. These basis
 185 functions depend on a series of non-linear variational parameters (the Gaussian widths) which
 186 are optimised by energy minimisation. In Fig. 1 we plot the resultant energies as functions of
 187 the two-body binding energy ε_b .

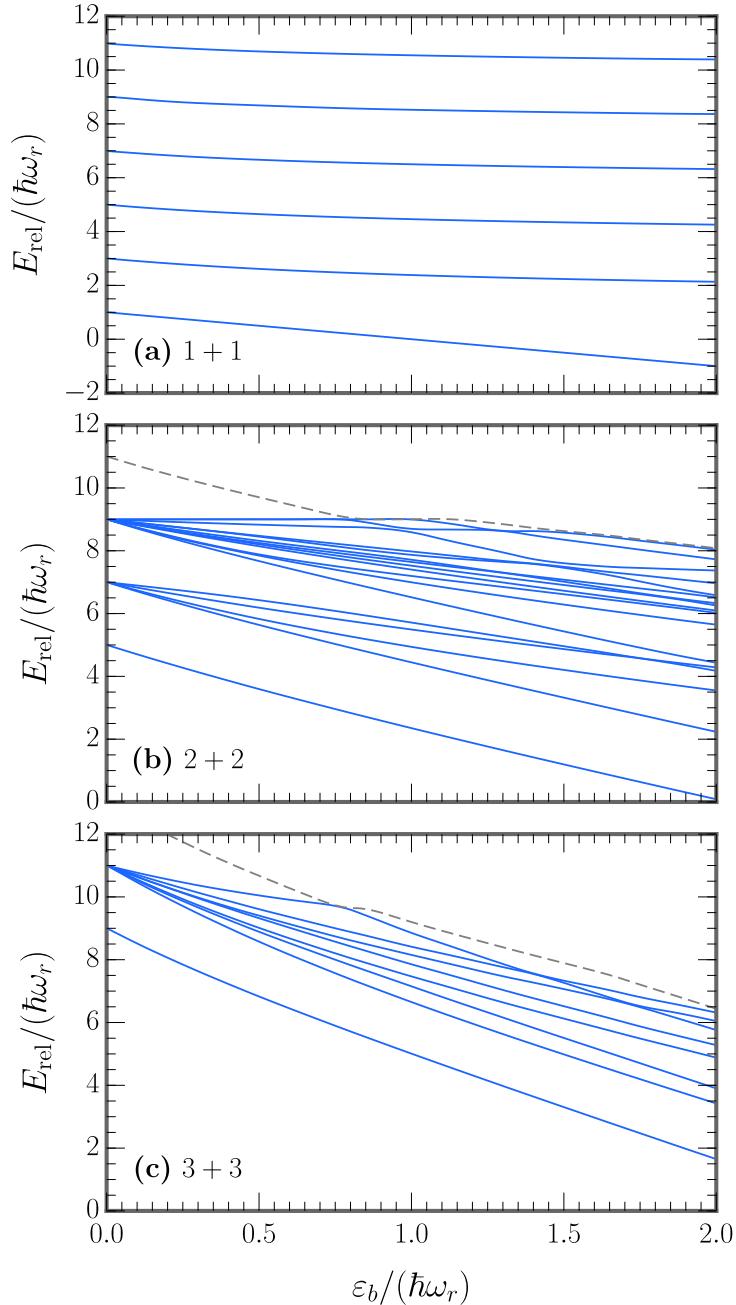


Figure 1: The monopole energy spectrum for (a) 1 + 1, (b) 2 + 2, and (c) 3 + 3 fermions at very nearly zero effective range, $r_{2D}/l_r^2 = -0.001 \approx 0$. E_{rel} is the energy of relative motion and ε_b is the two-body binding energy. In panels (b) and (c) the grey dashed line indicates the energy of the first state of the next (unshown) manifold.

188 The non-interacting ground state at $\varepsilon_b = 0$ can assume one of two configurations depending
 189 on the total number of particles N : either all of the degenerate single-particle states of
 190 the highest energy level of the 2D harmonic oscillator are filled ('closed shell'), or some of
 191 the degenerate states remain empty ('open shell'). The $1 + 1$ and $3 + 3$ systems both feature
 192 a closed-shell ground state that is non-degenerate, whereas the $2 + 2$ ground state is open-
 193 shell. We restrict our analysis to ground states characterised by zero total orbital angular mo-
 194 mentum. For the $2 + 2$ system this means that the two highest energy opposite-spin fermions
 195 reside in different degenerate single-particle states. Since the Hamiltonian is rotationally sym-
 196 metric, only monopole excitations between states with the same (i.e., zero) total angular mo-
 197 mentum occur. (The m quantum numbers for all atoms sum to zero in both the ground and
 198 excited states.) We can see in Fig. 1 that for all three atom numbers at $\varepsilon_b = 0$, all monopole
 199 excitations have an energy of $2\hbar\omega_r$. This can be attributed either to exciting a single particle
 200 up two harmonic oscillator shells, or to exciting a time-reversed pair of particles (n, m, \uparrow) and
 201 $(n, -m, \downarrow)$ up one shell each.

202 Our result for $1 + 1$ fermions in Fig. 1(a) agrees with the 'Busch spectrum' [35] for the con-
 203 sidered range of binding energies, $0 \leq \varepsilon_b \leq 2\hbar\omega_r$. As evident in Fig. 2 of Ref. [11], this range
 204 is sufficient to capture the non-monotonic dependence on ε_b of the lowest monopole excitation
 205 of $3 + 3$ fermions [Fig. 1(c)] — a feature which is driven by coherent pair correlations [38].
 206 Larger basis sizes are required for the ECG method to converge at higher binding energies,
 207 $\varepsilon_b > 2\hbar\omega_r$, where the tight composite bosonic wave functions become difficult to represent
 208 numerically [11, 25]. Currently, convergence cannot be achieved in this regime for six atoms,
 209 although it may be possible for four (and is certainly possible for two). It is additionally chal-
 210 lenging to solve for more than six particles at *any* binding energy due to the factorial growth
 211 (with N) in the number of permutations of identical fermions required to antisymmetrise the
 212 full wave function [11, 25]. The spectra in Fig. 1 for increasing N are qualitatively similar, but
 213 increasingly complex due to the existence of higher degeneracies in the non-interacting limit.
 214 For $1 + 1$ fermions [Fig. 1(a)] we choose to show the six lowest energy states, while for $2 + 2$
 215 fermions [Fig. 1(b)] we choose to show the ground state and the first- and second-excited-state
 216 manifolds. For $3 + 3$ fermions [Fig. 1(c)] we display the ground state and the first-excited-state
 217 manifold which, in this case, is the largest number of states that can be computed to numerical
 218 convergence within a reasonable time frame (on the order of months).

219 3.2 Density Matrices and Occupation Numbers

220 3.2.1 One-Body Density Matrix

221 In the first-quantised position representation the one-body density matrix for the spin- \uparrow parti-
 222 cles is given by

$$\rho_{\uparrow}(\mathbf{r}, \mathbf{r}') = \left[\int \cdots \int d\mathbf{r}_1^{\uparrow} d\mathbf{r}_2^{\downarrow} \cdots d\mathbf{r}_{N-1}^{\uparrow} d\mathbf{r}_N^{\downarrow} \left| \Psi(\mathbf{r}_1^{\uparrow}, \mathbf{r}_2^{\downarrow}, \dots, \mathbf{r}_{N-1}^{\uparrow}, \mathbf{r}_N^{\downarrow}) \right|^2 \right]^{-1} \times \\ \int \cdots \int d\mathbf{r}_2^{\downarrow} d\mathbf{r}_3^{\uparrow} d\mathbf{r}_4^{\downarrow} \cdots d\mathbf{r}_{N-1}^{\uparrow} d\mathbf{r}_N^{\downarrow} \Psi(\mathbf{r}, \mathbf{r}_2^{\downarrow}, \mathbf{r}_3^{\uparrow}, \mathbf{r}_4^{\downarrow}, \dots, \mathbf{r}_{N-1}^{\uparrow}, \mathbf{r}_N^{\downarrow}) \Psi^*(\mathbf{r}', \mathbf{r}_2^{\downarrow}, \mathbf{r}_3^{\uparrow}, \mathbf{r}_4^{\downarrow}, \dots, \mathbf{r}_{N-1}^{\uparrow}, \mathbf{r}_N^{\downarrow}), \quad (6)$$

223 where Ψ is the total N -body wave function and all integrals are two-dimensional ($d\mathbf{r} \equiv d^2\mathbf{r}$).
 224 The first line above is a normalisation constant; in the second line the density $\Psi\Psi^*$ is integrated
 225 over all co-ordinates except those of a single spin- \uparrow atom.

226 The matrix elements of Eq. (6) in the explicitly correlated Gaussian basis were derived in
 227 our earlier work (see Appendices A, C, and D of Ref. [11]); for ease of reference, we quote the

228 final result below:

$$[\rho_{\uparrow}(\mathbf{r}, \mathbf{r}')]_{\mathbb{A}\mathbb{A}'} \equiv \langle \phi_{\mathbb{A}} | \rho_{\uparrow}(\mathbf{r}, \mathbf{r}') | \phi_{\mathbb{A}'} \rangle = c_1 \exp \left\{ -\frac{1}{2} \left[c \mathbf{r}^2 + c'(\mathbf{r}')^2 - a \mathbf{r}^T \mathbf{r}' \right] \right\}, \quad (7)$$

229 which contains the following scalars:

$$c_1 = \frac{(2\pi)^{N-1}}{\det[\mathbb{B} + \mathbb{B}']}, \quad (8a)$$

$$c = b_1 - \mathbf{b}^T \mathbb{C} \mathbf{b}, \quad (8b)$$

$$c' = b'_1 - (\mathbf{b}')^T \mathbb{C} \mathbf{b}', \quad (8c)$$

$$a = \mathbf{b}^T \mathbb{C} \mathbf{b}' + (\mathbf{b}')^T \mathbb{C} \mathbf{b}. \quad (8d)$$

230 Here, $b_1 = (\mathbb{U}^T \mathbb{A} \mathbb{U})_{11}$ is also a scalar, $\mathbf{b} = ((\mathbb{U}^T \mathbb{A} \mathbb{U})_{12}, \dots, (\mathbb{U}^T \mathbb{A} \mathbb{U})_{1N})$ is an $(N-1)$ -dimensional vector, \mathbb{B} is an $(N-1) \times (N-1)$ -dimensional matrix given by $\mathbb{U}^T \mathbb{A} \mathbb{U}$ with the first row and column removed, and $\mathbb{C} = (\mathbb{B} + \mathbb{B}')^{-1}$. The $N \times N$ transformation matrix \mathbb{U} ($\mathbf{x} = \mathbb{U}\mathbf{y}$) converts the single-particle co-ordinates \mathbf{y} into relative and centre-of-mass generalised Jacobi co-ordinates \mathbf{x} (where \mathbf{x} and \mathbf{y} are vectors of vectors). The $N \times N$ correlation matrix \mathbb{A} comprises non-linear variational parameters (the Gaussian widths) which are optimised stochastically. Operationally, the stochastic variational procedure proposes random updates to the elements of \mathbb{A} and retains them only if they lower the variational ground-state energy. The bounds of these random proposals are chosen to reflect the physically relevant interparticle length scales, which differ for distinguishable and indistinguishable fermions due to the Pauli principle. Each ECG basis function $|\phi_{\mathbb{A}}\rangle$ is numerically represented by a unique \mathbb{A} matrix [11].

241 Equation (6) can be expanded over a complete set of basis functions — the natural orbitals
242 $\chi_{nm}(\mathbf{r})$ — where the expansion coefficients correspond to the occupation numbers \mathcal{N}_{nm} of those
243 orbitals:

$$\rho_{\uparrow}(\mathbf{r}, \mathbf{r}') = \sum_{nm} \mathcal{N}_{nm} \chi_{nm}^*(\mathbf{r}) \chi_{nm}(\mathbf{r}'). \quad (9)$$

244 These components are normalised as follows:

$$\int d\mathbf{r} \chi_{nm}^*(\mathbf{r}) \chi_{n'm'}(\mathbf{r}) = \delta_{nn'} \delta_{mm'}, \quad (10a)$$

$$\sum_{nm} \mathcal{N}_{nm} = 1, \quad (10b)$$

245 where (n, m) are the harmonic oscillator quantum numbers defined below Eq. (3), and where
246 the asterisk denotes complex conjugation (although in our specific case the natural orbitals
247 are real). This natural-orbital decomposition of the one-body density matrix follows the stan-
248 dard framework introduced by Löwdin [39] in the context of quantum chemistry, and indepen-
249 dently by Penrose and Onsager [40] in the context of Bose-Einstein condensation. Yang [41]
250 further developed the framework by formulating the criterion of off-diagonal long-range or-
251 der. This approach has since been widely adopted in ultracold-atom physics, including anal-
252 yses of interacting many-body Bose systems by DuBois and Glyde [42] and few-body studies
253 of trapped Bose gases by Zöllner et al. [43]. In these applications the eigenvalues (i.e., occu-
254 pation numbers) of the one-body density matrix provide a basis-independent characterisation
255 of single-particle structure and condensation.

256 In practice, because direct decomposition of the four-dimensional object $\rho_{\uparrow}(\mathbf{r}, \mathbf{r}')$ in the
257 form of Eq. (9) is computationally infeasible, we first reduce the number of degrees of freedom
258 by defining partial-wave projections:

$$\rho_{\uparrow}^m(r, r') = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{2\pi} d\theta d\theta' e^{-im\theta} \rho_{\uparrow}(\mathbf{r}, \mathbf{r}') e^{im\theta'}, \quad (11)$$

259 with $\theta^{(\prime)}$ denoting the angle associated with the vector $\mathbf{r}^{(\prime)}$ and $r^{(\prime)} \equiv |\mathbf{r}^{(\prime)}|$. This procedure
 260 mirrors that used in the few-body fermionic studies of Blume and Daily [25] where the three-
 261 dimensional case is addressed. The explicitly correlated Gaussian matrix elements of Eq. (11)
 262 are

$$[\rho_{\uparrow}^m(r, r')]_{\mathbb{A}\mathbb{A}'} \equiv \langle \phi_{\mathbb{A}} | \rho_{\uparrow}^m | \phi_{\mathbb{A}'} \rangle = 2\pi c_1 \mathcal{I}_m \left(\frac{arr'}{2} \right) \exp \left\{ -\frac{1}{2} [cr^2 + c'(r')^2] \right\}, \quad (12)$$

263 where $\mathcal{I}_m(x)$ is the modified Bessel function of the first kind, and where the scalars $\{c_1, c, c', a\}$
 264 have been defined in Eq. (8).

265 The ground-state ('GS') matrix element of the projected one-body density matrix can now
 266 be written as

$$[\rho_{\uparrow}^m(r, r')]_{\text{GS}} \equiv \frac{\langle \Psi^{(\text{GS})} | \rho_{\uparrow}^m(r, r') | \Psi^{(\text{GS})} \rangle}{\langle \Psi^{(\text{GS})} | \Psi^{(\text{GS})} \rangle} = \frac{\sum_{i,j} c_i^* [\rho_{\uparrow}^m(r, r')]_{\mathbb{A}_i \mathbb{A}_j} c_j}{\sum_{i,j} c_i^* \mathbb{O}_{\mathbb{A}_i \mathbb{A}_j} c_j}. \quad (13)$$

267 Above, the second expression is obtained from the first by inserting two complete sets of ex-
 268 plicitly correlated Gaussian basis states into both the numerator and denominator. The i^{th}
 269 (real) coefficient of the total ground-state wave function in this basis is $c_i \equiv \langle \phi_{\mathbb{A}_i} | \Psi^{(\text{GS})} \rangle$, and
 270 the overlap matrix element is [14]

$$\mathbb{O}_{\mathbb{A}_i \mathbb{A}_j} \equiv \langle \phi_{\mathbb{A}_i} | \phi_{\mathbb{A}_j} \rangle = \frac{(2\pi)^N}{\det[\mathbb{A}_i + \mathbb{A}_j]}. \quad (14)$$

271 The indices i and j both run over the minimum number of (previously found) optimised basis
 272 states required to converge the ground-state energy at a given two-body binding energy ε_b .
 273 While the equations in this and later subsections are written in terms of unsymmetrised basis
 274 states for clarity, these must be antisymmetrised to account for particle exchange (refer to
 275 Appendix D of Ref. [11] for further details).

276 At this point, the occupation numbers can be found by discretising the variables r and
 277 r' into grids of width Δr and then finding the eigenvalues of $\sqrt{r} [\rho_{\uparrow}^m(r, r')]_{\text{GS}} \sqrt{r'} \Delta r$ for a
 278 given partial wave m . The first such eigenvalue is $\mathcal{N}_{n=0,m}$, the second is $\mathcal{N}_{n=1,m}$, and so on.
 279 These results are shown in panels (a), (c), and (e) of Fig. 2. In the non-interacting limit of
 280 $\varepsilon_b = 0$, where the natural orbitals are the single-particle harmonic oscillator levels, they are
 281 straightforward to understand. Due to the antisymmetry of the wave function same-spin fermi-
 282 ons must occupy different single-particle levels. For 1 + 1 fermions the spin-up atom is in the
 283 $n = m = 0$ ground state, which has an occupation number of $\mathcal{N}_{0,0} = 1$ due to the normalisation
 284 condition (10b), while all other occupation numbers are zero. For 2 + 2 fermions the second
 285 spin-up atom is equally distributed between the two degenerate first excited states with $n = 0$
 286 and $m = \pm 1$ — leading to three finite occupation numbers, $\mathcal{N}_{0,0} = 1/2$ and $\mathcal{N}_{0,\pm 1} = 1/4$. In
 287 the 3 + 3 case, the three lowest energy states contain one spin-up fermion each and thus the
 288 corresponding occupation numbers become $\mathcal{N}_{0,0} = \mathcal{N}_{0,\pm 1} = 1/3$, whereas all others vanish.

289 When the binding energy increases ($\varepsilon_b > 0$) the finite values of $\mathcal{N}_{0,0}$ and $\mathcal{N}_{0,\pm 1}$ decrease,
 290 while the occupation numbers of higher excited natural orbitals increase as one would gener-
 291 ally expect. However, for the range of interaction strengths covered by the energy spectra in
 292 Subsection 3.1 ($0 \leq \varepsilon_b \leq 2\hbar\omega_r$) this variation is not strong — and the one-body density matrix
 293 can always be decomposed with a good level of accuracy by only including up to six natur-
 294 al orbitals. Such an observation suggests that we are never close to the deep Bose–Einstein
 295 condensation regime. If we instead had a tight composite bosonic wave function, then its ex-
 296 pansion into effective single-particle orbitals (the natural orbitals of ρ_{\uparrow}) would require many
 297 terms [25]. In that case, many more occupation numbers would take on (small but) non-van-
 298 ishing values, forcing a more significant reduction in the values of $\mathcal{N}_{0,0}$ and $\mathcal{N}_{0,\pm 1}$ than what
 299 can be seen in Fig. 2.

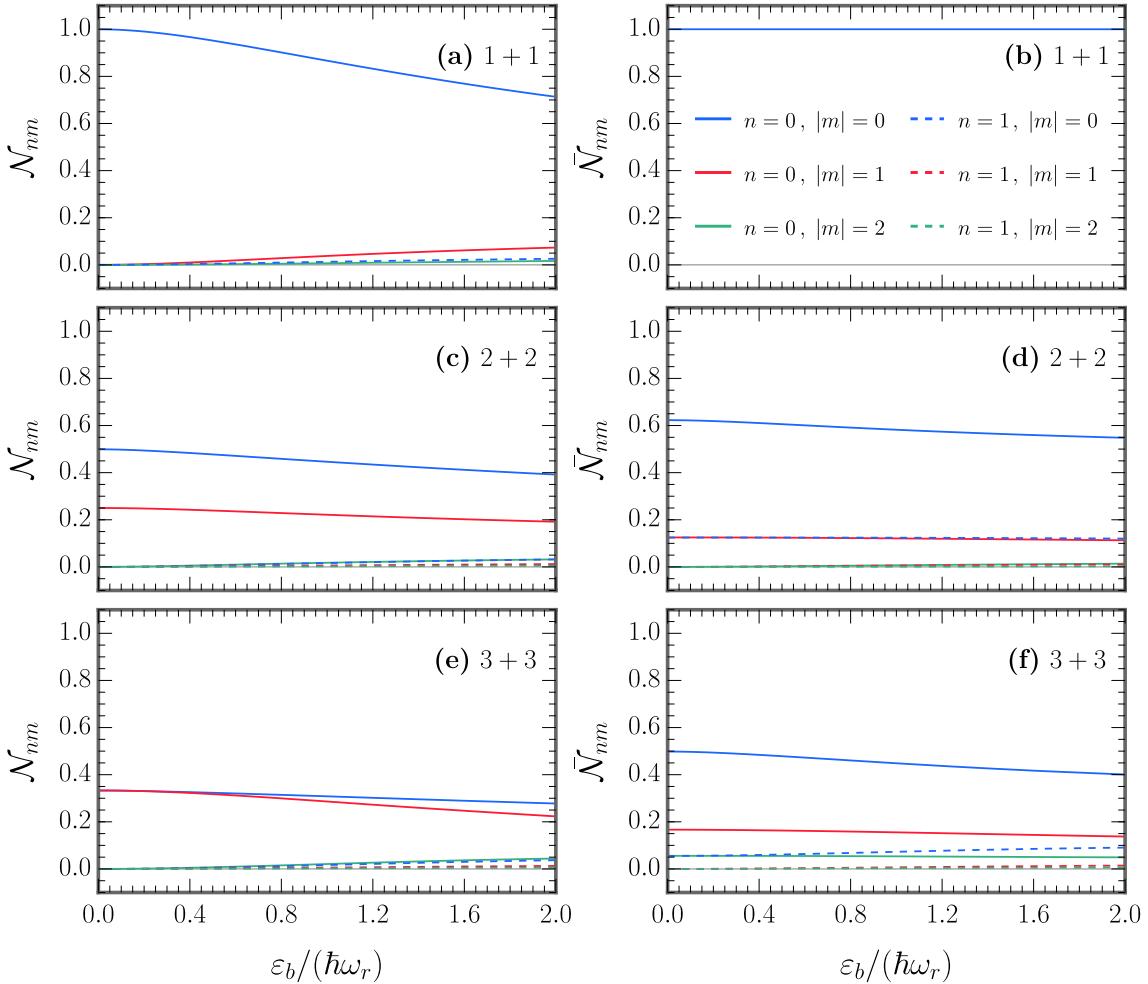


Figure 2: Left panels: Ground-state occupation numbers (eigenvalues) of the one-body density matrix \mathcal{N}_{nm} (9) for (a) 1 + 1, (c) 2 + 2, and (e) 3 + 3 fermions. Right panels: Ground-state occupation numbers of the reduced two-body density matrix $\bar{\mathcal{N}}_{nm}$ (17) for (b) 1 + 1, (d) 2 + 2, and (f) 3 + 3 fermions. The results are plotted as a function of the two-body binding energy ε_b for (very nearly) zero effective range, $r_{2D}/l_r^2 = -0.001 \approx 0$. Note in panel (b) that for any binding energy $\bar{\mathcal{N}}_{0,0} = 1$, while all other occupation numbers vanish.

300 3.2.2 Two-Body Density Matrix

301 The two-body density matrix in the first-quantised position representation is given by

$$\rho(\mathbf{r}_1, \mathbf{r}'_1; \mathbf{r}_2, \mathbf{r}'_2) = \left[\int \cdots \int d\mathbf{r}_1^\uparrow d\mathbf{r}_2^\downarrow \cdots d\mathbf{r}_{N-1}^\uparrow d\mathbf{r}_N^\downarrow \left| \Psi(\mathbf{r}_1^\uparrow, \mathbf{r}_2^\downarrow, \dots, \mathbf{r}_{N-1}^\uparrow, \mathbf{r}_N^\downarrow) \right|^2 \right]^{-1} \times \\ \int \cdots \int d\mathbf{r}_3^\uparrow d\mathbf{r}_4^\downarrow \cdots d\mathbf{r}_{N-1}^\uparrow d\mathbf{r}_N^\downarrow \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow, \dots, \mathbf{r}_{N-1}^\uparrow, \mathbf{r}_N^\downarrow) \Psi^*(\mathbf{r}'_1, \mathbf{r}'_2, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow, \dots, \mathbf{r}_{N-1}^\uparrow, \mathbf{r}_N^\downarrow), \quad (15)$$

302 where the density $\Psi\Psi^*$ is integrated over all co-ordinates except those of one spin- \uparrow particle
303 and one spin- \downarrow particle. In two dimensions $\rho(\mathbf{r}_1, \mathbf{r}'_1; \mathbf{r}_2, \mathbf{r}'_2)$ is an eight-dimensional array, so

304 we again need to reduce the number of degrees of freedom prior to diagonalisation. To this
 305 end we follow Ref. [25], which considered the three-dimensional version of this problem, and
 306 transform from the co-ordinates of the individual atoms to the centre-of-mass and relative co-
 307 ordinates of the two spin- \uparrow -spin- \downarrow pairs: $\mathbf{R} = (\mathbf{r}_1 + \mathbf{r}_2)/2$ and $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ (and their primed
 308 equivalents). By setting $\mathbf{r} = \mathbf{r}'$ we can then define the *reduced* two-body density matrix as

$$\rho_{\text{red}}(\mathbf{R}, \mathbf{R}') = \int d\mathbf{r} \rho\left(\mathbf{R} + \frac{\mathbf{r}}{2}, \mathbf{R}' + \frac{\mathbf{r}}{2}; \mathbf{R} - \frac{\mathbf{r}}{2}, \mathbf{R}' - \frac{\mathbf{r}}{2}\right), \quad (16)$$

309 which measures non-local correlations between pairs described by the *same* relative-distance
 310 vector.

311 In analogy to the one-body density matrix, the reduced two-body density matrix can be
 312 expanded in terms of natural orbitals and occupation numbers:

$$\rho_{\text{red}}(\mathbf{R}, \mathbf{R}') = \sum_{nm} \bar{\mathcal{N}}_{nm} \bar{\chi}_{nm}^*(\mathbf{R}) \bar{\chi}_{nm}(\mathbf{R}'), \quad (17)$$

313 which have the normalisations,

$$\int d\mathbf{R} \bar{\chi}_{nm}^*(\mathbf{R}) \bar{\chi}_{n'm'}(\mathbf{R}) = \delta_{nn'} \delta_{mm'}, \quad (18a)$$

$$\sum_{nm} \bar{\mathcal{N}}_{nm} = 1. \quad (18b)$$

314 We again perform partial-wave projections according to Eq. (11): $\rho_{\text{red}}(\mathbf{R}, \mathbf{R}') \rightarrow \rho_{\text{red}}^m(R, R')$
 315 with $R^{(\prime)} \equiv |\mathbf{R}^{(\prime)}|$. The derivation of the ground-state matrix element of the *projected reduced*
 316 two-body density matrix $[\rho_{\text{red}}^m(R, R')]_{\text{GS}}$ then follows identically to Eqs. (12)–(13) with only
 317 one minor change. The vector of single-particle co-ordinates \mathbf{y} must be replaced by \mathbf{y}' ,

$$\mathbf{y} = (\mathbf{r}_1^\uparrow, \mathbf{r}_2^\downarrow, \mathbf{r}_3^\uparrow, \dots, \mathbf{r}_N^\downarrow) \rightarrow \mathbf{y}' = (\mathbf{R}, \mathbf{r}, \mathbf{r}_3^\uparrow, \dots, \mathbf{r}_N^\downarrow), \quad (19)$$

318 and therefore the transformation matrix \mathbb{U} should be redefined appropriately, $\mathbf{x} = \mathbb{U}'\mathbf{y}'$ [25].
 319 The replacement matrix \mathbb{U}' that takes the place of \mathbb{U} is shown below for each of the total par-
 320 ticle numbers ($N_\uparrow + N_\downarrow$) considered in this work; for reference, the original \mathbb{U} matrices were
 321 defined in Eq. (A.2) of Ref. [11]:

$$1+1: \quad \mathbb{U} = \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \mathbb{U}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (20a)$$

$$2+2: \quad \mathbb{U} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \rightarrow \mathbb{U}' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \end{pmatrix}, \quad (20b)$$

$$3+3: \quad \mathbb{U} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \rightarrow \mathbb{U}' = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}. \quad (20c)$$

322 The occupation numbers $\bar{\mathcal{N}}_{nm}$ are obtained as the eigenvalues of $\sqrt{R}[\rho_{\text{red}}^m(R, R')]_{\text{GS}}\sqrt{R'}$
 323 $\times \Delta R$ and are displayed in panels (b), (d), and (f) of Fig. 2. Although the values in the non-
 324 interacting limit ($\varepsilon_b = 0$) are less intuitive than in the one-body case, they may be verified

325 by comparing against analytically derived results. In Appendix A we detail these steps for the
 326 $2 + 2$ system as an example. For increasing binding energy ($\varepsilon_b > 0$) the occupation numbers
 327 from the reduced two-body density matrix follow the same qualitative trends as those from
 328 the one-body density matrix. It may initially seem counter-intuitive that the largest eigenvalue
 329 $\bar{N}_{0,0}$ has a higher value in the absence of pairs ($\varepsilon_b = 0$) than in the presence of pairs ($\varepsilon_b \gg 0$).
 330 However, this is directly due to the procedure used to eliminate degrees of freedom and define
 331 the quantity $\rho_{\text{red}}(\mathbf{R}, \mathbf{R}')$ — and was similarly observed in the three-dimensional case [25].

332 3.2.3 Molecular Condensate Fraction

333 In a trapped one-component Bose gas the condensate fraction becomes appreciable when the
 334 lowest eigenvalue of the one-body density matrix becomes of order unity. In a two-component
 335 Fermi gas, by contrast, none of the natural orbitals of the one-body density matrix can be-
 336 come macroscopically occupied due to the antisymmetry of the wave function under particle
 337 exchange. A significant condensate fraction can only arise when bosonic pairs are formed, and
 338 hence, such insight must instead come from an analysis of the two-body density matrix.

339 Due to the elimination of degrees of freedom as described above, the absolute magnitude
 340 of $\bar{N}_{0,0}$ no longer corresponds directly to the number of condensed pairs. Rather, condensa-
 341 tion occurs when the lowest natural orbital of the reduced two-body density matrix becomes
 342 macroscopically occupied — in other words, when $\bar{N}_{0,0}$ greatly exceeds all other \bar{N}_{nm} [25].
 343 Accordingly, we define the condensate fraction $\mathcal{N}_{\text{cond}}$ in two dimensions as follows:

$$\mathcal{N}_{\text{cond}} = 1 - \frac{\max(\sum_{m=\pm\ldots} \bar{N}_{nm})}{\bar{N}_{0,0}}, \quad (n, m) \neq (0, 0), \quad (21)$$

344 i.e., one minus ‘the largest competing eigenvalue divided by the (0, 0) eigenvalue’ of the re-
 345 duced two-body density matrix. Notice that the sum applies to non-zero m : when $m = 0$ the
 346 physical mode is unique and its occupation is the single value $\bar{N}_{n,0}$; when $|m| > 0$ the physical
 347 mode is the multiplet with angular momentum $|m|$, consisting of the two degenerate states $+m$
 348 and $-m$, so the relevant quantity to compare is the total occupation of that multiplet. In the
 349 deep molecular regime essentially all pairs occupy a single two-body natural orbital, so $\bar{N}_{0,0}$
 350 becomes much larger than any other \bar{N}_{nm} and the ratio in Eq. (21) correspondingly becomes
 351 very small: $\mathcal{N}_{\text{cond}} \rightarrow 1$. In the non-interacting limit ($\varepsilon_b = 0$) several \bar{N}_{nm} have comparable
 352 magnitude, so the ‘largest competitor’ in Eq. (21) is of the same order as $\bar{N}_{0,0}$. The ratio in
 353 Eq. (21) is thus of order unity and $\mathcal{N}_{\text{cond}}$ becomes small: it approaches zero in the many-body
 354 limit, while for few-body systems it settles to a finite fraction less than one. We remark that
 355 Eq. (21) is directly analogous to the three-dimensional definition given in Eq. (16) of Ref. [25].

356 The eigenvalues \bar{N}_{nm} measure the extent to which the N -body state comprises pairs with
 357 centres of mass occupying the two-body natural orbital labelled by (n, m) . As the binding en-
 358 ergy ε_b is increased, the reduced two-body density matrix redistributes its fixed total spectral
 359 weight: the dominant eigenvalues decrease in absolute magnitude, while many additional ei-
 360 genvalues ‘turn on’ from zero yet remain extremely small. These small components reflect the
 361 weak occupation of non-condensed and excited centre-of-mass pair configurations that appear
 362 as the interactions become stronger. The behaviour of the condensate fraction is determined by
 363 the relative evolution of the leading ($\bar{N}_{0,0}$) and subleading eigenvalues: $\mathcal{N}_{\text{cond}}$ increases when
 364 $\bar{N}_{0,0}$ falls off more slowly than the subleading eigenvalue, and decreases when the opposite
 365 ordering holds. Therefore, $\mathcal{N}_{\text{cond}}$ grows when the *relative* dominance of $\bar{N}_{0,0}$ over the rest of
 366 the spectrum increases. Equation (21) permits the identity of the subleading mode to change
 367 as the interaction strength varies; however, as seen in Fig. 2 the same mode remains sublead-
 368 ing throughout the entire range of binding energies considered.

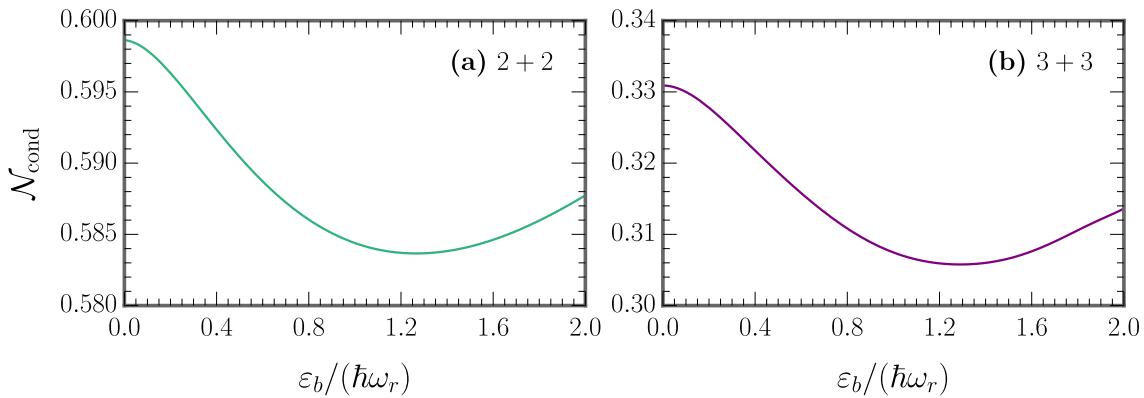


Figure 3: The condensate fraction $\mathcal{N}_{\text{cond}}$ (22) as a function of the two-body binding energy ϵ_b for (a) 2+2 and (b) 3+3 fermions in the ground state. The effective range is very close to zero in each panel, $r_{2D}/l_r^2 = -0.001 \approx 0$.

369 In Fig. 3 we plot the condensate fractions for the 2+2 and 3+3 Fermi systems as functions
 370 of the interaction strength:

$$\mathcal{N}_{\text{cond}} = 1 - \frac{\bar{\mathcal{N}}_{0,+1} + \bar{\mathcal{N}}_{0,-1}}{\bar{\mathcal{N}}_{0,0}}. \quad (22)$$

371 In both cases the behaviour is qualitatively similar. For $\epsilon_b \gtrsim 1.2\hbar\omega_r$ the condensate fraction
 372 shows a gentle upward trend, consistent with a gradual strengthening of pairing correlations.
 373 For $\epsilon_b \lesssim 1.2\hbar\omega_r$, however, the condensate fraction initially decreases before rising again, re-
 374 sulting in a weakly non-monotonic dependence over the range $\epsilon_b \lesssim 2\hbar\omega_r$. This behaviour ar-
 375 arises because at weaker binding the dominant eigenvalue decreases more rapidly than its near-
 376 est competitor, while at stronger binding the relative rates reverse. It is important to note that
 377 the total variation on the vertical axis is very small, which means that the condensate fraction
 378 is effectively flat on the non-molecular side of the two-dimensional crossover. This observation
 379 is consistent with results from a complementary three-dimensional study. In particular, Fig. 11
 380 of Ref. [25] shows that in the corresponding regime of negative inverse scattering length in
 381 three dimensions, the condensate fractions of the 2+1, 2+2, and 3+2 Fermi systems likewise
 382 remain very nearly constant (for the 3+3 system only two data points are available, so no ov-
 383 erall trend can be inferred for that case).

384 We do not extend our analysis to larger binding energies ϵ_b where the condensate fraction
 385 approaches unity because, in practice, the explicitly correlated Gaussian method becomes in-
 386 creasingly difficult to converge in this regime. As the binding energy grows, the internal size of
 387 each $\uparrow\downarrow$ pair shrinks and the relative wave function develops structure on progressively shorter
 388 length scales. Accurately resolving these sharper features requires Gaussians with very small
 389 widths, while the overall trapped state still demands basis functions with much larger spatial
 390 extent. For systems with more than two atoms this separation of length scales rapidly ampli-
 391 fies the number of basis functions required for convergence. This challenge is compounded by
 392 the stochastic nature of the basis-optimisation process, which involves generating and testing
 393 many candidate basis functions at each expansion step, further increasing the computational
 394 burden. In the 3+3 case the computational cost becomes prohibitive before a tightly bound
 395 molecular regime is reached, and even for 2+2 the basis sizes needed at higher ϵ_b are substan-
 396 tially larger than those required in the crossover regime. For this reason, our results focus on

397 an intermediate range of binding energies for which fully converged calculations are attain-
 398 able across all particle numbers considered.

399 **3.3 Momentum Distributions**

400 The momentum distribution of the spin- \uparrow atoms is given by the Fourier transform of the one-
 401 body density matrix defined in Eq. (6):

$$n_{\uparrow}(\mathbf{k}) = \frac{1}{(2\pi)^2} \int \int d\mathbf{r} d\mathbf{r}' \rho_{\uparrow}(\mathbf{r}, \mathbf{r}') \exp[-i\mathbf{k}^T(\mathbf{r} - \mathbf{r}')]. \quad (23)$$

402 It is straightforward to prove that Eq. (23) is equivalent to

$$n_{\uparrow}(\mathbf{k}) = \sum_{nm} \mathcal{N}_{nm} |\tilde{\chi}_{nm}(\mathbf{k})|^2, \quad (24)$$

403 where

$$\tilde{\chi}_{nm}(\mathbf{k}) = \frac{1}{2\pi} \int d\mathbf{r} \chi_{nm}(\mathbf{r}) \exp(-i\mathbf{k}^T \mathbf{r}) \quad (25)$$

404 is the Fourier transform of the natural orbitals introduced in Eq. (9). In order to obtain an
 405 analytical expression for the matrix elements of Eq. (23) in the explicitly correlated Gaussian
 406 basis, we can use the result for $[\rho_{\uparrow}(\mathbf{r}, \mathbf{r}')]_{\mathbb{A}\mathbb{A}'}$ shown in Eq. (7):

$$[n_{\uparrow}(\mathbf{k})]_{\mathbb{A}\mathbb{A}'} = \frac{c_1}{(2\pi)^2} \int \int d\mathbf{r} d\mathbf{r}' \exp\left\{-\frac{1}{2}\left[c\mathbf{r}^2 + c'(\mathbf{r}')^2 - a\mathbf{r}^T\mathbf{r}'\right]\right\} \exp[i\mathbf{k}^T(\mathbf{r}' - \mathbf{r})]. \quad (26)$$

407 By defining $\mathbf{X} = \mathbf{r}' - \mathbf{r}$ the equation above becomes

$$[n_{\uparrow}(\mathbf{k})]_{\mathbb{A}\mathbb{A}'} = \frac{c_1}{(2\pi)^2} \int \int d\mathbf{r} d\mathbf{X} \exp\left[\frac{1}{2}\left(g_1\mathbf{r}^2 + g_2\mathbf{X}^2 + g_3\mathbf{r}^T\mathbf{X}\right)\right] \exp(i\mathbf{k}^T\mathbf{X}), \quad (27)$$

408 involving the coefficients,

$$g_1 = a - c - c', \quad (28a)$$

$$g_2 = -c', \quad (28b)$$

$$g_3 = a - 2c'. \quad (28c)$$

409 The integral over \mathbf{r} can be performed analytically for $g_1 < 0$:

$$[n_{\uparrow}(\mathbf{k})]_{\mathbb{A}\mathbb{A}'} = -\frac{c_1}{2\pi g_1} \int d\mathbf{X} \exp\left(\frac{1}{2}g_4\mathbf{X}^2\right) \exp(i\mathbf{k}^T\mathbf{X}), \quad (29)$$

410 with the coefficient defined as

$$g_4 = g_2 - g_3^2/(4g_1). \quad (30)$$

411 Subsequently, the integral over \mathbf{X} can be analytically carried out for $g_4 < 0$:

$$[n_{\uparrow}(\mathbf{k})]_{\mathbb{A}\mathbb{A}'} \equiv [n_{\uparrow}(k)]_{\mathbb{A}\mathbb{A}'} = \frac{c_1}{g_1 g_4} \exp\left(\frac{1}{2g_4}k^2\right), \quad k \equiv |\mathbf{k}|, \quad (31)$$

412 where the coefficient $c_1/(g_1 g_4)$ can be either positive or negative.

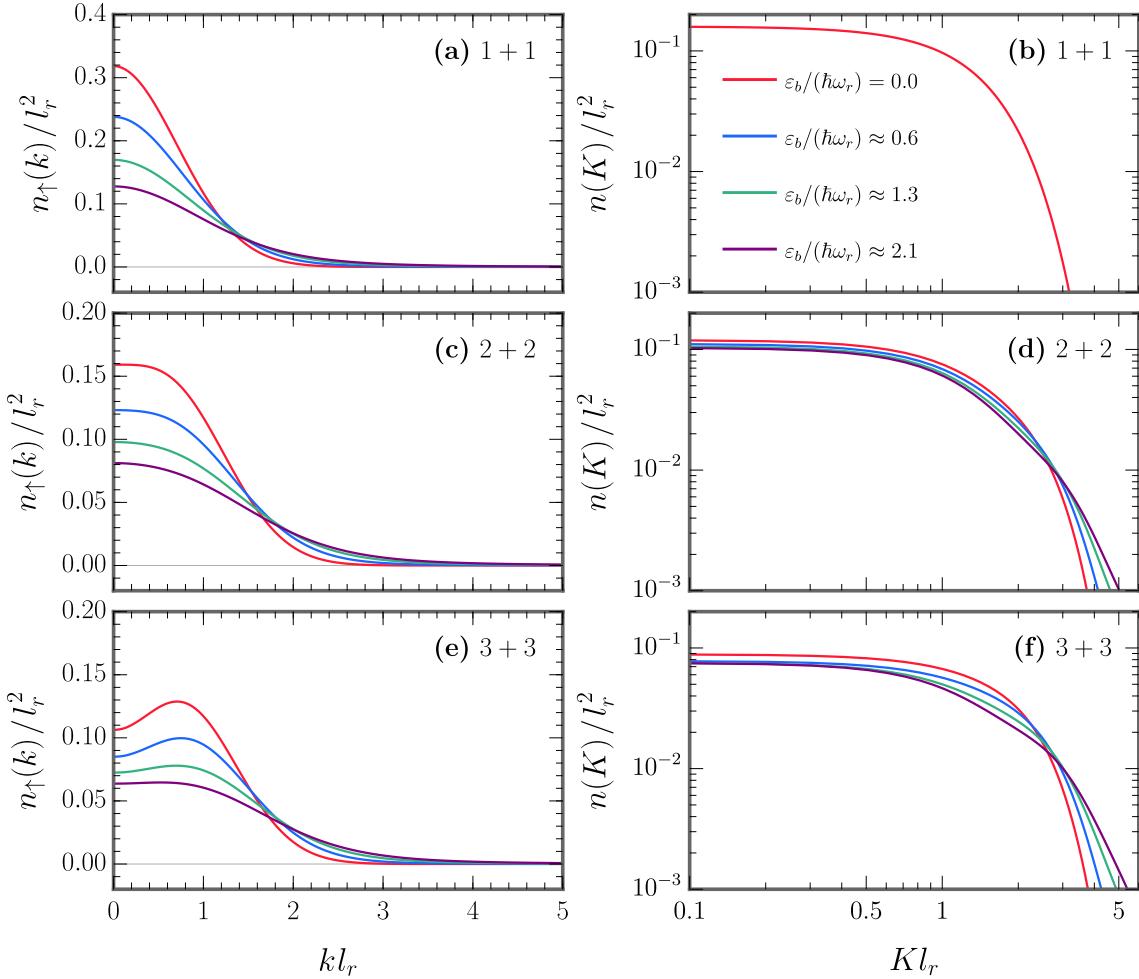


Figure 4: Left panels: The momentum distribution $n_{\uparrow}(k)$ (23) associated with the motion of spin- \uparrow atoms for (a) $1+1$, (c) $2+2$, and (e) $3+3$ fermions in the ground state. Right panels: The momentum distribution $n(K)$ (32) associated with the centre-of-mass motion of spin- \uparrow -spin- \downarrow pairs for (b) $1+1$, (d) $2+2$, and (f) $3+3$ fermions in the ground state [note the log-log scale]. The differently coloured lines correspond to different binding energies ε_b , while the effective range is fixed for all lines to very nearly zero, $r_{2D}/l_r^2 = -0.001 \approx 0$. By construction the two-body results for $1+1$ fermions in panel (b) are the same at all values of ε_b .

413 Analogously, the momentum distribution corresponding to the centre-of-mass motion of
 414 spin- \uparrow -spin- \downarrow pairs is given by the Fourier transform of the reduced two-body density matrix
 415 defined in Eq. (16):

$$n(\mathbf{K}) = \frac{1}{(2\pi)^2} \int \int d\mathbf{R} d\mathbf{R}' \rho_{\text{red}}(\mathbf{R}, \mathbf{R}') \exp[-i\mathbf{K}^T(\mathbf{R} - \mathbf{R}')]. \quad (32)$$

416 Here, we use the symbol \mathbf{K} instead of \mathbf{k} to distinguish the momentum vector associated with a
 417 pair from that of an atom. As with the calculation of the occupation numbers, the derivation
 418 of an analytical expression for $[n(K)]_{\mathbf{A}\mathbf{A}'}$ follows identically to the one above for $[n_{\uparrow}(k)]_{\mathbf{A}\mathbf{A}'}$
 419 with a single minor adjustment. The transformation matrix \mathbb{U} used to compute $\{c_1, c, c', a\}$ in
 420 Eq. (26) should be replaced by \mathbb{U}' as explained in the text around Eqs. (19)–(20). Note that

421 the analysis in this subsection has been inspired by the corresponding three-dimensional cal-
422 culation of Ref. [25] (see Appendix A therein).

423 In Fig. 4 we present the momentum distributions $[n_{\uparrow}(k)]_{\text{GS}}$ and $[n(K)]_{\text{GS}}$ for the ground
424 state which were calculated by replacing $[\rho_{\uparrow}^m(r, r')]_{\mathbb{A}_i \mathbb{A}_j}$ with $[n_{\uparrow}(k)]_{\mathbb{A}_i \mathbb{A}_j}$ and $[n(K)]_{\mathbb{A}_i \mathbb{A}_j}$ in
425 Eq. (13). In the non-interacting thermodynamic limit the momentum distribution for a single
426 spin component features a ‘step’ at the Fermi momentum. However, when there are only very
427 few atoms this step becomes ‘smeared out’ with a width determined by the radial harmonic
428 trapping frequency $k_r \sim 1/l_r = \sqrt{m\omega_r/\hbar}$, as shown in panels (a), (c), and (e). Interestingly
429 $n_{\uparrow}(k)$ adopts a distinct shape for each number of fermions, with the non-monotonicity in the
430 $3+3$ case likely resulting from finite-size effects of the trap. By contrast, the distribution $n(K)$
431 displayed in panels (b), (d), and (f) varies little with either particle number or binding en-
432 ergy. For the particular case of $1+1$ fermions [Fig. 4(b)] $n(K)$ shows no dependence on the
433 binding energy, mirroring the behaviour of the occupation numbers in Fig. 2(b). In three di-
434 mensions [25] $n(K)$ was found to exhibit two distinct features in the limit of small positive
435 scattering length that could be associated with the condensation of pairs: a feature at smaller K
436 corresponding to the momentum distribution of non-interacting composite bosons of mass $2m$,
437 and a feature at larger K corresponding to the internal structure of the bosons. For our largest
438 considered binding energy $\epsilon_b \approx 2.1\hbar\omega_r$ we begin to see a ‘shoulder’ emerging at larger K that
439 resembles this phenomenon, however it is much less pronounced. This suggests — consistent
440 with the previous subsections — that we remain far from the deep BEC regime.

441 3.4 Radial and Pair Distribution Functions

442 As well as density matrices, any *local* structural property $P(r)$ of the N -body system — such
443 as a density profile or pair distribution function — can be calculated from the wave function
444 as follows [25, 26, 28]:

$$445 P(r) = \int d\mathbf{r}' \frac{\delta(r - r')}{2\pi r'} \int d^{2N}\mathbf{x} \delta(\mathbf{r}' - \mathbf{x}) |\Psi(\mathbf{x})|^2. \quad (33)$$

446 Above, \mathbf{r}' and \mathbf{x} are ‘dummy’ integration variables used to perform the radial projection and
447 many-body integration, with \mathbf{x} representing a set of generalised co-ordinates such as the N
448 Jacobi position vectors described in Appendix A of Ref. [11]. The scalar r denotes the radial
449 distance associated with the chosen local observable. We define the averaged radial one-body
450 density $P_{\uparrow}(r)$ by setting $r = |\mathbf{r}_1|$ in Eq. (33),² and also the averaged radial pair distribution
function $P_{\uparrow\downarrow}(r)$ by setting $r = |\mathbf{r}_1 - \mathbf{r}_2|$. These quantities are normalised such that

$$451 2\pi \int_0^\infty dr r P_{\uparrow}(r) = 1 \quad \text{and} \quad 2\pi \int_0^\infty dr r P_{\uparrow\downarrow}(r) = 1. \quad (34)$$

452 The value of $2\pi r P_{\uparrow}(r) dr$ therefore equals the probability of locating a particle at a distance
453 between r and $r + dr$ from the centre of the trap. Likewise, the value of $2\pi r P_{\uparrow\downarrow}(r) dr$ equates
454 to the probability of locating a spin-up particle and a spin-down particle at a distance between
455 r and $r + dr$ from each other.

456 We compute the ground-state matrix element $[P_{\sigma}(r)]_{\text{GS}}$ ($\sigma \equiv \uparrow$ or $\uparrow\downarrow$) in a similar manner
457 to Eq. (13). In the explicitly correlated Gaussian basis, the matrix elements for arbitrary one-
458 and two-body operators are respectively given by

$$459 \langle \phi_{\mathbb{A}_i} | V(\mathbf{r}_k) | \phi_{\mathbb{A}_j} \rangle = \mathbb{O}_{\mathbb{A}_i \mathbb{A}_j} \frac{b_k}{2\pi} \int d\mathbf{r} V(\mathbf{r}) \exp\left(-\frac{1}{2} b_k r^2\right), \quad (35a)$$

²Because the Fermi gases of interest are spin-balanced, the radial one-body densities for the spin-up and spin-down atoms are equal, $P_{\uparrow}(r) = P_{\downarrow}(r)$. In addition, since we consider only the sector of zero total orbital angular momentum, $P_{\uparrow}(r)$ is radially (circularly) symmetric.

$$\langle \phi_{\mathbb{A}_i} | V(\mathbf{r}_k - \mathbf{r}_l) | \phi_{\mathbb{A}_j} \rangle = \mathbb{O}_{\mathbb{A}_i \mathbb{A}_j} \frac{b_{kl}}{2\pi} \int d\mathbf{r} V(\mathbf{r}) \exp\left(-\frac{1}{2} b_{kl} r^2\right), \quad (35b)$$

458 where

$$\frac{1}{b_k} = [\omega^{(k)}]^T (\mathbb{A}_i + \mathbb{A}_j)^{-1} \omega^{(k)}, \quad [\omega^{(k)}]_p = (\mathbb{U}^{-1})_{kp}, \quad (36a)$$

$$\frac{1}{b_{kl}} = [\omega^{(kl)}]^T (\mathbb{A}_i + \mathbb{A}_j)^{-1} \omega^{(kl)}, \quad [\omega^{(kl)}]_p = (\mathbb{U}^{-1})_{ip} - (\mathbb{U}^{-1})_{jp}, \quad (36b)$$

459 and $p = 1, \dots, N$ [11, 14]. Correspondingly, we substitute $V(\mathbf{r}_k) = \delta(\mathbf{r} - \mathbf{r}_k)$ into Eq. (35a) to
460 evaluate $[P_{\uparrow}(r)]_{\mathbb{A}_i \mathbb{A}_j}$ and $V(\mathbf{r}_k - \mathbf{r}_l) = \delta(\mathbf{r} - \mathbf{r}_k - \mathbf{r}_l)$ into Eq. (35b) to determine $[P_{\uparrow\downarrow}(r)]_{\mathbb{A}_i \mathbb{A}_j}$.

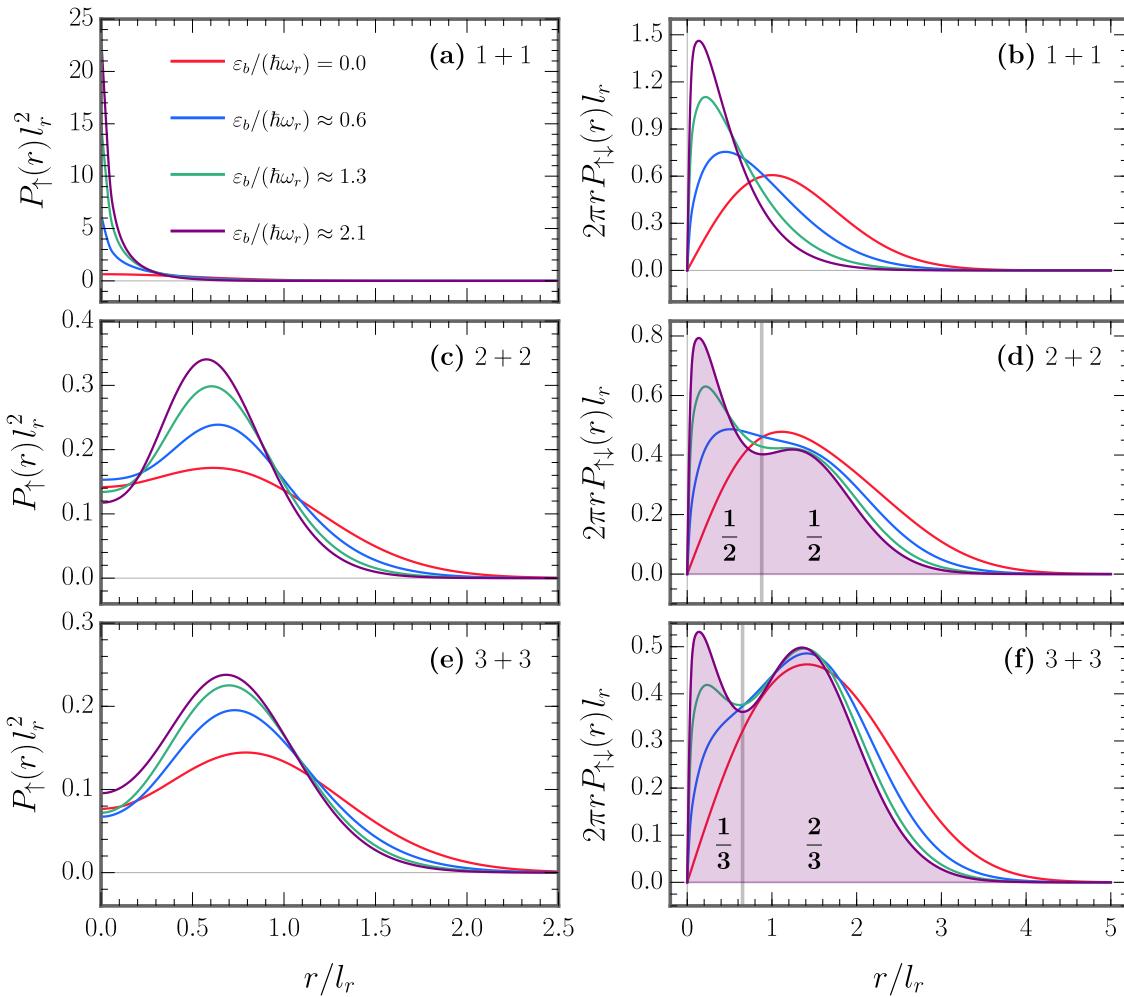


Figure 5: Left panels: The radial one-body density $P_{\uparrow}(r)$ for (a) 1 + 1, (c) 2 + 2, and (e) 3 + 3 fermions in the ground state. Right panels: The (scaled) radial pair distribution function $P_{\uparrow\downarrow}(r)$ for (b) 1 + 1, (d) 2 + 2, and (f) 3 + 3 fermions in the ground state. The results are shown for a variety of binding energies ε_b at close to zero effective range, $r_{2D}/l_r^2 = -0.001 \approx 0$. The bold fractions indicate the (approximate) shaded area under the curve on either side of the grey vertical line for $\varepsilon_b \approx 2.1 \hbar\omega_r$, as discussed in the main text.

461 Our results for the radial one-body density are shown in panels (a), (c), and (e) of Fig. 5.
 462 For the 1+1 system at $\varepsilon_b = 0$, the spin-up atom occupies the non-interacting two-dimensional
 463 harmonic oscillator ground state, so $P_\uparrow(r)$ has a Gaussian radial profile with a maximum
 464 at the trap centre. For increasing ε_b , although the centre-of-mass motion of the pair remains
 465 governed by the external confinement, the attractive interactions confine the relative motion
 466 to shorter length scales, leading to deviations from a purely Gaussian profile and increasing
 467 the peak value of $P_\uparrow(r)$ at $r = 0$. On the linear scale used in Fig. 5(a), the comparatively small
 468 peak height of the $\varepsilon_b = 0$ profile causes its Gaussian decay to appear flattened relative to the
 469 interacting cases.

470 For the 2+2 and 3+3 systems the peak value of $P_\uparrow(r)$ shifts from the centre of the trap
 471 to a finite radius on the order of the radial harmonic trap length l_r , which sets the average
 472 interparticle spacing. This shift from zero to finite r with increasing particle number reflects
 473 both the residual shell structure of the two-dimensional harmonic oscillator and the Pauli ex-
 474 clusion principle. The first harmonic oscillator shell is fully occupied for $N_\uparrow = 1$, whereas fer-
 475 mions occupy the first two shells for both $N_\uparrow = 2$ and $N_\uparrow = 3$, leading to similar behaviour in
 476 these cases: namely, $P_\uparrow(r)$ retains a single maximum that moves outward from the trap centre
 477 in order to accommodate both radial symmetry and Pauli repulsion between identical spins.

478 Panels (b), (d), and (f) of Fig. 5 show our results for the (scaled) radial pair distribution
 479 function. At binding energies of $\varepsilon_b \gtrsim \hbar\omega_r$ and when there is more than one particle per spin
 480 state, $rP_{\uparrow\downarrow}(r)$ develops a clear two-peak structure similar to what has been observed in three
 481 dimensions [25, 26]. The peak at smaller r (around $0.1l_r$) signifies the formation of weakly
 482 bound dimers, while the peak at larger r (between $1l_r$ and $2l_r$) is set by the dimer-dimer dis-
 483 tance which is longer due to Pauli repulsion between same-spin fermions. The 2+2 system
 484 has two such small interspecies distances (the distance between a spin-up and spin-down par-
 485 ticle within a pair) and two large interspecies distances (the distance between a spin-up and
 486 spin-down particle in different pairs). Accordingly, if we integrate $P_{\uparrow\downarrow}(r)$ for $N_\uparrow = 2$ from zero
 487 up to the r value where $rP_{\uparrow\downarrow}(r)$ features a minimum, then we find that the probability of form-
 488 ing a molecule (of being at short distances) is $\sim 1/2$ [26]. On the other hand, the 3+3 system
 489 has three small interspecies distances and six large interspecies distances — and performing
 490 a similar integration confirms the probability of forming a molecule to be $\sim 1/3$. These prob-
 491 abilities are indicated in the figure. If we were to access the deep BEC regime $\varepsilon_b \gg 2\hbar\omega_r$,
 492 then the peak at smaller r would become taller and narrower, while the peak at larger r would
 493 become shorter and broader, with the pair density in between them reducing almost to zero —
 494 and the fractions mentioned above would become exactly 1/2 and 1/3 [26]. The reason why
 495 the scaled pair distribution function vanishes for $r \rightarrow 0$ is because we are using a finite-range
 496 interaction potential, such that unlike spins cannot approach each other at distances $\lesssim r_0$. If
 497 we had instead considered zero-range interactions, then the amplitude of $rP_{\uparrow\downarrow}(r)$ would have
 498 been finite at $r = 0$ [25, 44].

499 3.5 Finite Effective Range Effects

500 In this subsection we examine how the effective range influences the energetic and structur-
 501 al properties of the 3+3 Fermi system. Figures 6–9 present results for a comparatively large
 502 negative effective range, $r_{2D}/l_r^2 = -0.2$ — corresponding to the most negative value consid-
 503 ered in Ref. [11] — overlaid with our earlier results obtained for an almost vanishing effective
 504 range, $r_{2D}/l_r^2 = -0.001 \approx 0$.

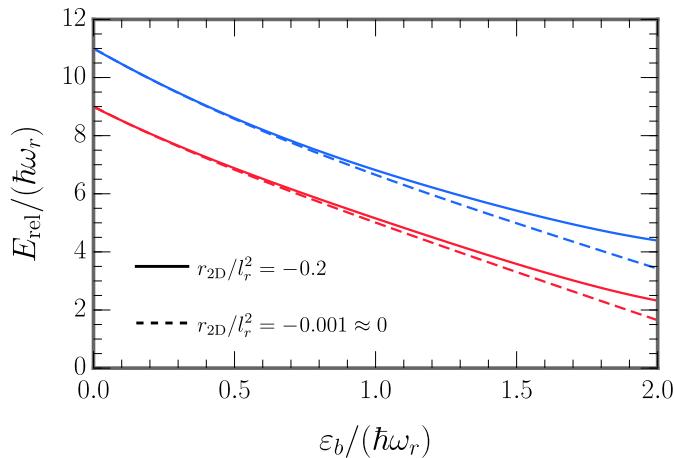


Figure 6: Energy of relative motion for the ground [red] and first excited state [blue] of the $3 + 3$ system as a function of the two-body binding energy in the monopole sector of zero total orbital angular momentum. Solid lines correspond to an effective range of $r_{2D}/l_r^2 = -0.2$ and dashed lines to $r_{2D}/l_r^2 = -0.001 \approx 0$.

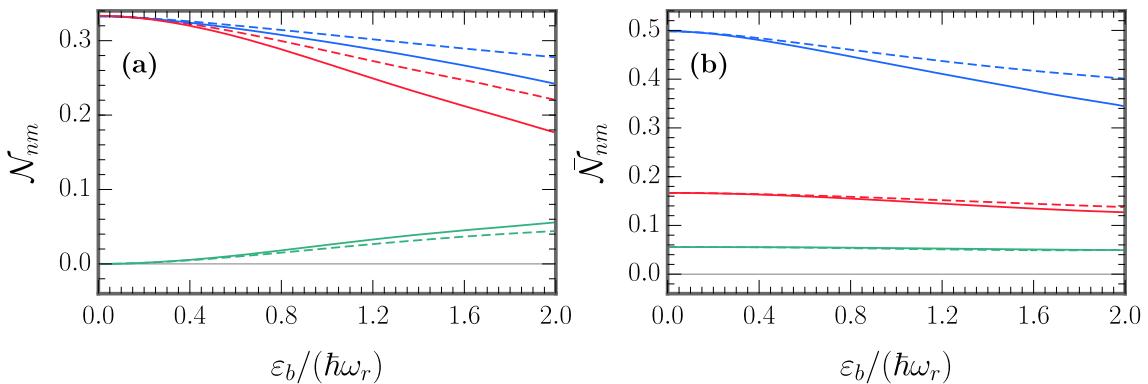


Figure 7: Occupation numbers of the one-body density matrix (a) and the reduced two-body density matrix (b) as functions of the binding energy for the $3 + 3$ fermion ground state. Results are shown for quantum numbers $n = 0$ and $|m| = 0, 1, 2$ (blue, red, and green curves, respectively). Solid lines correspond to an effective range of $r_{2D}/l_r^2 = -0.2$, while dashed lines correspond to $r_{2D}/l_r^2 = -0.001 \approx 0$, with the latter taken from the two lowest panels of Fig. 2.

505 The effective range r_{2D} quantifies the leading energy-dependent correction in the low-en-
 506 ergy description of two-dimensional scattering, entering the phase shift expansion via the term
 507 proportional to k^2 in Eq. (4). Consequently, at a given interaction strength (here parameterised
 508 by the binding energy ε_b) changes in r_{2D} predominantly affect observables when the character-
 509 istic relative momenta in the N -body state are appreciable. As the binding energy is increased,
 510 this characteristic momentum scale grows because stronger pairing localises the relative two-
 511 body wave function in real space, which by Fourier duality necessarily broadens its distribution
 512 in momentum space. The influence of the effective-range term is therefore expected to become

more pronounced at higher ε_b . In other words, the nature of the N -body state and the strength of the binding energy set the characteristic relative momentum scale relevant for the two-body interaction in the system, while the effective range determines how strongly that interaction varies with energy, or equivalently with relative momentum, at that scale. This energy dependence arises in quasi-two-dimensional geometries because the finite axial extent of the wave function introduces an additional length scale l_z into the collision process, causing the scattering amplitude to depend on the relative collision energy through the dimensionless combination kl_z . This connection is quantified by the mapping in Eq. (5), which relates r_{2D} directly to the axial confinement length l_z in the regime of strong axial confinement, $kl_z \ll 1$ [21–24].

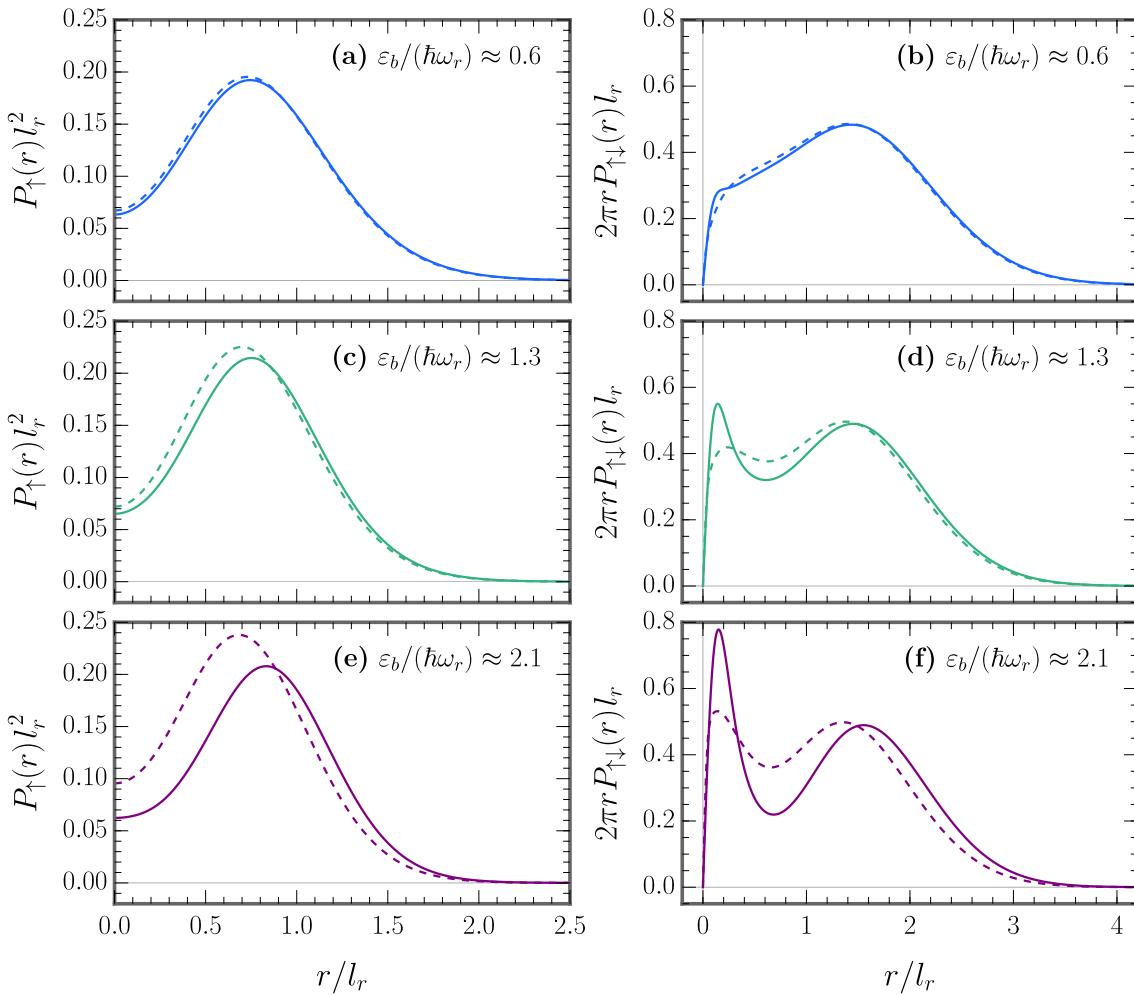


Figure 8: The radial one-body density [panels (a), (c), (e)] and the (scaled) radial pair distribution function [panels (b), (d), (f)] for the $3 + 3$ fermion ground state at three binding energies. Solid lines correspond to an effective range of $r_{2D}/l_r^2 = -0.2$ and dashed lines to $r_{2D}/l_r^2 = -0.001 \approx 0$, with the latter taken from the two lowest panels of Fig. 5.

Figure 6 shows the shifts in the low-lying energy levels of the $3 + 3$ system induced by a finite effective range r_{2D} as a function of the binding energy ε_b . Consistent with the physical interpretation outlined above, these energetic shifts are smallest at low binding energy and be-

525 come larger as the binding energy increases, reflecting the growing importance of the $k^2 r_{2D}$
 526 correction at higher characteristic relative momenta. At a given ε_b these shifts are larger for
 527 the first excited state than for the ground state. The ground state has the smoothest real-space
 528 structure (i.e., the fewest spatial oscillations) compatible with the antisymmetry requirements
 529 and is therefore dominated by long length scales and a relatively narrow momentum distribu-
 530 tion. By contrast, the first excited state must be orthogonal to the ground state and therefore
 531 exhibits additional spatial structure in the relevant relative co-ordinates, such as extra nodes
 532 and more rapid oscillations. These larger gradients in the wave function correspond to a bro-
 533 ader momentum distribution with increased weight at higher relative momenta, rendering the
 534 excited state more sensitive to the $k^2 r_{2D}$ effective-range correction.

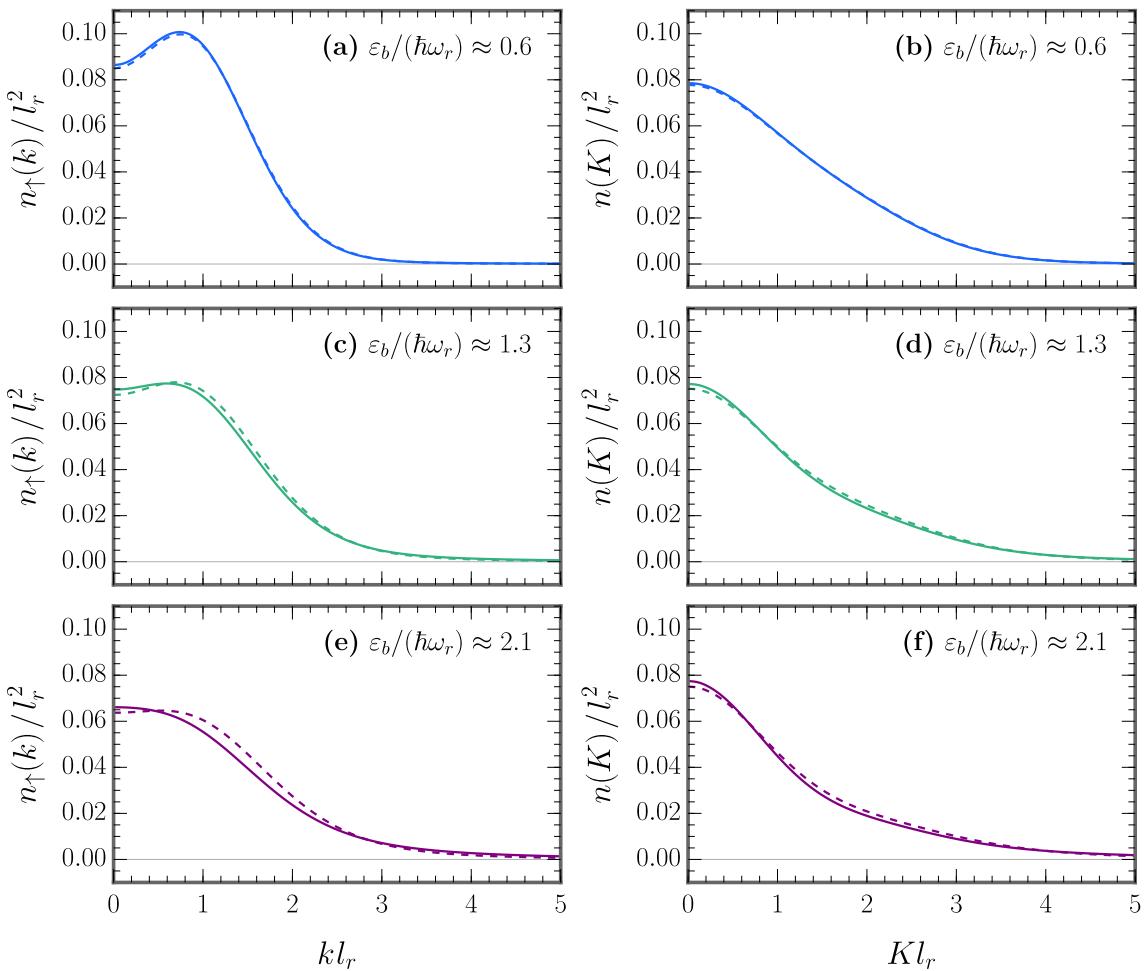


Figure 9: Ground-state momentum distribution for the motion of spin- \uparrow atoms [panels (a), (c), (e)] and the centre-of-mass motion of spin- \uparrow -spin- \downarrow pairs [panels (b), (d), (f)] in the 3 + 3 Fermi system at three binding energies. Solid lines correspond to an effective range of $r_{2D}/l_r^2 = -0.2$ and dashed lines to $r_{2D}/l_r^2 = -0.001 \approx 0$, with the latter taken from the two lowest panels of Fig. 4.

535 Structurally, a more negative effective range reduces the occupation of the lowest domi-
 536 nant natural orbitals of the one-body density matrix shown in Fig. 7, implying a redistribution

537 of spectral weight into higher excited orbitals. The representation of a tightly bound composite
 538 bosonic wave function using effective single-particle states (the natural orbitals) requires
 539 significantly more terms than the description of a weakly correlated antisymmetric fermionic
 540 wave function. This change in occupation therefore suggests that increasing the magnitude of
 541 the negative effective range drives the system closer to the BEC limit. The (scaled) radial pair
 542 distribution function displayed in Fig. 8 supports this interpretation: increasing $|r_{2D}|$ enhances
 543 the weight of the short-range peak at small r , indicating an increased probability of molecu-
 544 lar pair formation. A complementary aspect of this behaviour appears in the one-body radial
 545 densities shown in the same figure. Tuning the effective range to more negative values at fixed
 546 binding energy shifts the density maximum outward and slightly reduces its height. In a har-
 547 monic trap the natural orbitals possess distinct radial structures and peak at different radii.
 548 Increasing $|r_{2D}|$ transfers a small amount of weight away from the most centrally peaked (low-
 549 est) orbitals and redistributes it among other higher orbitals with less central weight, so that
 550 the resulting superposition produces a density profile with an outward-shifted maximum. The
 551 effective-range dependence of these structural properties becomes more pronounced with in-
 552 creasing ϵ_b , reflecting the same underlying mechanism that governs the energetic shifts. On-
 553 ce the binding energy sets a characteristic relative momentum scale, a more negative effective
 554 range causes the interaction to act more strongly on the high-momentum components of the
 555 relative two-body wave function, thereby stabilising more compact molecule-like correlations
 556 and driving the system toward the BEC regime.

557 Figure 9 shows that the single-particle and pair momentum distributions are only weakly
 558 affected by changes in the effective range. This is expected because the effective range enters
 559 as an energy-dependent correction that primarily modifies short-distance opposite-spin corre-
 560 lations, which are governed by high relative momenta. Although making r_{2D} more negative in-
 561 creases the influence of the interaction on these high-momentum components, the associated
 562 spectral weight is confined to the tails of the momentum distributions. These tails contain very
 563 little probability compared with the low- and intermediate-momentum sectors that dominate
 564 the distributions, leaving the overall profiles essentially unchanged.

565 4 Conclusions

566 In this work we reported a numerically exact study of the energetic and structural properties
 567 of harmonically trapped, spin-balanced two-component Fermi gases in two dimensions, con-
 568 taining up to six particles. Using the explicitly correlated Gaussian method within a stochastic
 569 variational framework, we computed ground- and low-lying excited-state energy spectra, anal-
 570 ysed non-local correlations through the one- and two-body density matrices, extracted atomic
 571 and pair momentum distributions, and characterised local structure via radial and pair distri-
 572 bution functions. We further examined how these observables are modified by a finite effective
 573 range, thereby connecting strictly two-dimensional and quasi-two-dimensional geometries rel-
 574 evant to current experiments.

575 A limitation of our approach — which is shared by Ref. [25], a related investigation car-
 576 ried out in three dimensions — arises in the treatment of the reduced two-body density matrix.
 577 Owing to the large number of degrees of freedom involved, we restrict our analysis to corre-
 578 lations between spin- \uparrow and spin- \downarrow fermions evaluated at the same relative-distance vector. As a
 579 consequence, correlations that are non-local in the relative co-ordinate are neglected. This ap-
 580 proximation affects the extracted occupation numbers \bar{N}_{nm} , the pair momentum distribution
 581 $n(K)$, and the molecular condensate fraction $\mathcal{N}_{\text{cond}}$.

582 Across all observables, our results consistently reveal the emergence and gradual strength-
 583 ening of pair correlations as the two-body binding energy is increased. Despite this clear en-
 584 hancement of pairing, we do not observe the onset of a deep BEC regime in which the system
 585 crosses over to a description in terms of tightly bound composite bosons. Physically, even for
 586 small particle numbers such a regime can be defined by the presence of a clear separation of
 587 length and energy scales: the size of the molecular bound state is much smaller than any ex-
 588 ternal length scale, such as the trap length, while the molecular binding energy is much larger
 589 than all other relevant energy scales, including the trap level spacing. In the first paragraph
 590 of Section 3 we describe how we obtain the binding energy ϵ_b by solving the 1+1 problem
 591 for given conditions (interaction and trapping potentials). In principle, for an $N_\uparrow + N_\downarrow$ system
 592 under the same conditions, subtracting $N_\uparrow \times \epsilon_b$ from the total energy would isolate the resid-
 593 ual contribution arising from molecule-molecule interactions and trap-induced effects. This
 594 residual energy could be compared to that of N_\uparrow interacting bosons in the same trap with an
 595 effective interaction strength g_{mol} . If such a mapping consistently and quantitatively captures
 596 the low-energy properties of the system, it would signal the existence of a well-defined sepa-
 597 ration of length and energy scales characteristic of the BEC limit. As discussed in the last para-
 598 graphs of Subsections 3.1 and 3.2.3, this separation of scales necessitates the use of basis func-
 599 tions spanning extremely small to very large spatial extents, resulting in a rapid growth of the
 600 explicitly correlated Gaussian basis required for convergence. Our results therefore emphasise
 601 an intermediate binding-energy regime in which fully converged calculations are feasible for
 602 all particle numbers considered.

603 In addition to the binding energy, the range of accessible particle numbers is limited by nu-
 604 matical considerations. At any interaction strength the dominant contribution to the runtime
 605 arises from enforcing the antisymmetry of the N -body wave function, which involves summing
 606 over all permutations of identical fermions. The number of such permutations grows factori-
 607 ally with particle number, leading to a rapid increase in computational time [11]. As a result,
 608 evaluating matrix elements for 4+4 or more fermions becomes prohibitively time-consuming,
 609 and even computing the first several excited states for 3+3 fermions at $\epsilon_b \lesssim 2\hbar\omega_r$ requires
 610 very long runtimes. This implies that the explicitly correlated Gaussian method would not be
 611 well suited to performing calculations at finite temperature (where the density matrix becomes
 612 a sum over the ground and excited states, weighted by the Boltzmann factor) or to performing
 613 time dynamics (where the original wave function is projected onto a new time-evolved basis,
 614 potentially acquiring non-zero excited-state components).

615 Acknowledgements

616 The authors would like to thank Xiangyu (Desmond) Yin for writing the initial version of the C
 617 code used to diagonalise the Hamiltonian within the explicitly correlated Gaussian framework.

618 **Funding Information** This research was supported by the Australian Research Council Cen-
 619 tre of Excellence in Future Low-Energy Electronics and Technologies, also known as ‘FLEET’
 620 (Project No. CE170100039). Emma Laird received funding from a Women-in-FLEET research
 621 fellowship.

622 A Analytical Results in the Non-Interacting Limit

623 In this appendix we analytically derive all the occupation numbers of the projected one-body
 624 density matrix \mathcal{N}_{nm} and the projected reduced two-body density matrix $\bar{\mathcal{N}}_{nm}$ for the trapped,

625 non-interacting $2+2$ atomic Fermi gas in the ground state. In two-dimensional position space
 626 the ground-state wave function is

$$\Psi_{2+2}^{(\text{GS})}(\mathbf{r}_1^\uparrow, \mathbf{r}_2^\downarrow, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow) = \frac{1}{\sqrt{2\pi^2 l_r^6}} \exp\left[-\sum_{i=1}^4 \frac{(\mathbf{r}_i^\sigma)^2}{2l_r^2}\right] (\mathbf{r}_1^\uparrow - \mathbf{r}_3^\uparrow)^T (\mathbf{r}_2^\downarrow - \mathbf{r}_4^\downarrow), \quad (\text{A.1})$$

627 with $\sigma = \uparrow, \downarrow$. It can readily be confirmed that Eq. (A.1) is normalised and correctly gives a
 628 total ground-state energy of $E_{\text{com}} + E_{\text{rel}} = 6\hbar\omega_r$. As defined in Eq. (6) the corresponding one-
 629 body density matrix is

$$\begin{aligned} [\rho_{\uparrow}(\mathbf{r}, \mathbf{r}')]_{\text{GS}} &= \int \cdots \int d\mathbf{r}_2^\downarrow d\mathbf{r}_3^\uparrow d\mathbf{r}_4^\downarrow \Psi_{2+2}^{(\text{GS})}(\mathbf{r}, \mathbf{r}_2^\downarrow, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow) \Psi_{2+2}^{(\text{GS})*}(\mathbf{r}', \mathbf{r}_2^\downarrow, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow) \\ &= \frac{1}{2\pi} \exp\left\{-\frac{1}{2} [\mathbf{r}^2 + (\mathbf{r}')^2]\right\} (1 + \mathbf{r}^T \mathbf{r}'). \end{aligned} \quad (\text{A.2})$$

630 Writing $\mathbf{r}^T \mathbf{r}' = rr' \cos(\theta - \theta')$ and then applying Eq. (11) yields

$$[\rho_{\uparrow}^{m=0}(r, r')]_{\text{GS}} = \exp\left\{-\frac{1}{2} [r^2 + (r')^2]\right\}, \quad (\text{A.3a})$$

$$[\rho_{\uparrow}^{m=\pm 1}(r, r')]_{\text{GS}} = \frac{1}{2} \exp\left\{-\frac{1}{2} [r^2 + (r')^2]\right\} rr', \quad (\text{A.3b})$$

$$[\rho_{\uparrow}^{m \geq 2}(r, r')]_{\text{GS}} = 0. \quad (\text{A.3c})$$

631 Finding the eigenvalues of $\sqrt{r} [\rho_{\uparrow}^m(r, r')]_{\text{GS}} \sqrt{r'} \Delta r$ affords $\mathcal{N}_{0,0} = 1/2$ and $\mathcal{N}_{0,\pm 1} = 1/4$ (with
 632 all other occupation numbers zero), consistent with the left middle panel of Fig. 2.

633 Similarly, the relevant two-body density matrix is

$$\begin{aligned} [\rho(\mathbf{r}_\uparrow, \mathbf{r}'_\uparrow; \mathbf{r}_\downarrow, \mathbf{r}'_\downarrow)]_{\text{GS}} &= \int \cdots \int d\mathbf{r}_3^\uparrow d\mathbf{r}_4^\downarrow \Psi_{2+2}^{(\text{GS})}(\mathbf{r}_\uparrow, \mathbf{r}_\downarrow, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow) \Psi_{2+2}^{(\text{GS})*}(\mathbf{r}'_\uparrow, \mathbf{r}'_\downarrow, \mathbf{r}_3^\uparrow, \mathbf{r}_4^\downarrow) \\ &= \frac{1}{4\pi^2} \exp\left\{-\frac{1}{2} [\mathbf{r}_\uparrow^2 + (\mathbf{r}'_\uparrow)^2 + \mathbf{r}_\downarrow^2 + (\mathbf{r}'_\downarrow)^2]\right\} \left\{1 + \mathbf{r}_\uparrow^T \mathbf{r}'_\uparrow + \mathbf{r}_\downarrow^T \mathbf{r}'_\downarrow + 2(\mathbf{r}_\uparrow^T \mathbf{r}_\downarrow)[(\mathbf{r}'_\uparrow)^T \mathbf{r}'_\downarrow]\right\}, \end{aligned} \quad (\text{A.4})$$

634 as defined in Eq. (15). By transforming to the centre-of-mass and relative co-ordinates of the
 635 two spin- \uparrow -spin- \downarrow pairs, we arrive at

$$\begin{aligned} [\rho(\mathbf{R}, \mathbf{R}'; \mathbf{r}, \mathbf{r}')]_{\text{GS}} &= \frac{1}{32\pi^2} \exp\left\{-[\mathbf{R}^2 + (\mathbf{R}')^2] - \frac{1}{4} [\mathbf{r}^2 + (\mathbf{r}')^2]\right\} \times \\ &\quad \left\{8 + 16\mathbf{R}^T \mathbf{R}' + 4\mathbf{r}^T \mathbf{r}' + (4\mathbf{R}^2 - \mathbf{r}^2)[4(\mathbf{R}')^2 - (\mathbf{r}')^2]\right\}. \end{aligned} \quad (\text{A.5})$$

636 Setting $\mathbf{r} = \mathbf{r}'$ and subsequently integrating over \mathbf{r} leads to

$$[\rho_{\text{red}}(\mathbf{R}, \mathbf{R}')]_{\text{GS}} = \frac{1}{2\pi} \exp\left\{-[\mathbf{R}^2 + (\mathbf{R}')^2]\right\} [3 + 2\mathbf{R}^2(\mathbf{R}')^2 - (\mathbf{R} - \mathbf{R}')^T(\mathbf{R} - \mathbf{R}')]. \quad (\text{A.6})$$

637 At this point, we can expand $(\mathbf{R} - \mathbf{R}')^T(\mathbf{R} - \mathbf{R}') = R^2 + (R')^2 - 2RR' \cos(\phi - \phi')$ and perform
 638 partial-wave projections in analogy to Eq. (11) to find that

$$[\rho_{\text{red}}^{m=0}(R, R')]_{\text{GS}} = \exp\left\{-[R^2 + (R')^2]\right\} \left\{3 + 2(RR')^2 - [R^2 + (R')^2]\right\}, \quad (\text{A.7a})$$

$$[\rho_{\text{red}}^{m=\pm 1}(R, R')]_{\text{GS}} = \exp\left\{-[R^2 + (R')^2]\right\} RR', \quad (\text{A.7b})$$

$$[\rho_{\text{red}}^{m \geq 2}(R, R')]_{\text{GS}} = 0, \quad (\text{A.7c})$$

639 where $\phi^{(\prime)}$ is the angle associated with the vector $\mathbf{R}^{(\prime)}$. The occupation numbers can now be
 640 obtained as the eigenvalues of $\sqrt{R} [\rho_{\text{red}}^m(R, R')]_{\text{GS}} \sqrt{R'} \Delta R$. The first of the above relations (A.7a)
 641 gives $\tilde{\mathcal{N}}_{0,0} = 0.625$ and $\tilde{\mathcal{N}}_{1,0} = 0.125$, and the second (A.7b) gives $\tilde{\mathcal{N}}_{0,\pm 1} = 0.125$, while all
 642 other occupation numbers vanish — in agreement with the right middle panel of Fig. 2.

643 **References**

644 [1] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe and S. Jochim, *From few to*
645 *many: Observing the formation of a Fermi sea one atom at a time*, *Science* **342**, 457–460
646 (2013), doi:[10.1126/science.1240516](https://doi.org/10.1126/science.1240516).

647 [2] N. T. Zinner, *Few-body physics in a many-body world*, *Few-Body Systems* **55**, 599–604
648 (2014), doi:[10.1007/s00601-014-0802-x](https://doi.org/10.1007/s00601-014-0802-x).

649 [3] T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musiał, R. Moszynski, M. Lewenstein
650 and P. Massignan, *Crossover between few and many fermions in a harmonic trap*,
651 *Physical Review A* **92**, 061601 (2015), doi:[10.1103/PhysRevA.92.061601](https://doi.org/10.1103/PhysRevA.92.061601).

652 [4] L. Rammelmüller, W. J. Porter and J. E. Drut, *Ground state of the two-dimensional*
653 *attractive Fermi gas: Essential properties from few to many body*, *Physical Review A* **93**,
654 033639 (2016), doi:[10.1103/PhysRevA.93.033639](https://doi.org/10.1103/PhysRevA.93.033639).

655 [5] J. Levinsen, P. Massignan, S. Endo and M. M. Parish, *Universality of the unitary Fermi*
656 *gas: A few-body perspective*, *Journal of Physics B: Atomic, Molecular and Optical Physics*
657 **50**, 072001 (2017), doi:[10.1088/1361-6455/aa5a1e](https://doi.org/10.1088/1361-6455/aa5a1e).

658 [6] S.-J. Ran, A. Piga, C. Peng, G. Su and M. Lewenstein, *Few-body systems capture*
659 *many-body physics: Tensor network approach*, *Physical Review B* **96**, 155120 (2017),
660 doi:[10.1103/PhysRevB.96.155120](https://doi.org/10.1103/PhysRevB.96.155120).

661 [7] M. Schiulaz, M. Távora and L. F. Santos, *From few- to many-body quantum systems*,
662 *Quantum Science and Technology* **3**, 044006 (2018), doi:[10.1088/2058-9565/aad913](https://doi.org/10.1088/2058-9565/aad913).

663 [8] L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S. M. Reimann, G. M. Bruun,
664 P. M. Preiss and S. Jochim, *Observing the emergence of a quantum phase transition shell*
665 *by shell*, *Nature* **587**, 583–587 (2020), doi:[10.1038/s41586-020-2936-y](https://doi.org/10.1038/s41586-020-2936-y).

666 [9] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter, C. Heintze, P. Lunt, P. M. Preiss
667 and S. Jochim, *Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas*,
668 *Nature* **606**, 287–291 (2022), doi:[10.1038/s41586-022-04678-1](https://doi.org/10.1038/s41586-022-04678-1).

669 [10] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz and S. Jochim,
670 *Deterministic preparation of a tunable few-fermion system*, *Science* **332**, 336–338
671 (2011), doi:[10.1126/science.1201351](https://doi.org/10.1126/science.1201351).

672 [11] E. K. Laird, B. C. Mulkern, J. Wang and M. J. Davis, *When does a Fermi puddle become a*
673 *Fermi sea? Emergence of pairing in two-dimensional trapped mesoscopic Fermi gases*,
674 *SciPost Physics* **17**, 163–200 (2024), doi:[10.21468/SciPostPhys.17.6.163](https://doi.org/10.21468/SciPostPhys.17.6.163).

675 [12] K. Varga and Y. Suzuki, *Precise solution of few-body problems with the stochastic*
676 *variational method on a correlated Gaussian basis*, *Physical Review C* **52**, 2885–2905
677 (1995), doi:[10.1103/PhysRevC.52.2885](https://doi.org/10.1103/PhysRevC.52.2885).

678 [13] K. Varga and Y. Suzuki, *Stochastic variational method with a correlated Gaussian basis*,
679 *Physical Review A* **53**, 1907–1910 (1996), doi:[10.1103/PhysRevA.53.1907](https://doi.org/10.1103/PhysRevA.53.1907).

680 [14] Y. Suzuki and K. Varga, *Stochastic Variational Approach to Quantum Mechanical*
681 *Few-Body Problems*, Springer Publishing, ISBN 978-3-5404-9541-3 (1998).

682 [15] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz,
683 J. Komasa, D. Blume and K. Varga, *Theory and application of explicitly correlated*
684 *Gaussians*, *Reviews of Modern Physics* **85**, 693–749 (2013),
685 doi:[10.1103/RevModPhys.85.693](https://doi.org/10.1103/RevModPhys.85.693).

686 [16] S. F. Boys, *The integral formulae for the variational solution of the molecular*
687 *many-electron wave equation in terms of Gaussian functions with direct electronic*
688 *correlation*, *Proceedings of the Royal Society of London A* **258**, 402–411 (1960),
689 doi:[10.1098/rspa.1960.0195](https://doi.org/10.1098/rspa.1960.0195).

690 [17] K. Singer, *The use of Gaussian (exponential quadratic) wave functions in molecular*
691 *problems — I. General formulae for the evaluation of integrals*, *Proceedings of the Royal*
692 *Society of London A* **258**, 412–420 (1960), doi:[10.1098/rspa.1960.0196](https://doi.org/10.1098/rspa.1960.0196).

693 [18] B. J. Verhaar, J. P. H. W. van den Eijnde, M. A. J. Voermans and M. M. J. Schaffrath,
694 *Scattering length and effective range in two dimensions: Application to adsorbed hydrogen*
695 *atoms*, *Journal of Physics A: Mathematical and General* **17**, 595–598 (1984),
696 doi:[10.1088/0305-4470/17/3/020](https://doi.org/10.1088/0305-4470/17/3/020).

697 [19] S. K. Adhikari, *Quantum scattering in two dimensions*, *American Journal of Physics* **54**,
698 362–367 (1986), doi:[10.1119/1.14623](https://doi.org/10.1119/1.14623).

699 [20] S. K. Adhikari, W. G. Gibson and T. K. Lim, *Effective-range theory in two dimensions*,
700 *Journal of Chemical Physics* **85**, 5580–5583 (1986), doi:[10.1063/1.451572](https://doi.org/10.1063/1.451572).

701 [21] J. Levinsen and M. M. Parish, *Bound states in a quasi-two-dimensional Fermi gas*,
702 *Physical Review Letters* **110**, 055304 (2013), doi:[10.1103/PhysRevLett.110.055304](https://doi.org/10.1103/PhysRevLett.110.055304).

703 [22] T. Kirk and M. M. Parish, *Three-body correlations in a two-dimensional SU(3) Fermi gas*,
704 *Physical Review A* **96**, 053614 (2017), doi:[10.1103/PhysRevA.96.053614](https://doi.org/10.1103/PhysRevA.96.053614).

705 [23] H. Hu, B. C. Mulkerin, U. Toniolo, L. He and X.-J. Liu, *Reduced quantum anomaly in a*
706 *quasi-two-dimensional Fermi superfluid: Significance of the confinement-induced effective*
707 *range of interactions*, *Physical Review Letters* **122**, 070401 (2019),
708 doi:[10.1103/PhysRevLett.122.070401](https://doi.org/10.1103/PhysRevLett.122.070401).

709 [24] X. Y. Yin, H. Hu and X.-J. Liu, *Few-body perspective of a quantum anomaly in*
710 *two-dimensional Fermi gases*, *Physical Review Letters* **124**, 013401 (2020),
711 doi:[10.1103/PhysRevLett.124.013401](https://doi.org/10.1103/PhysRevLett.124.013401).

712 [25] D. Blume and K. Daily, *Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction*, *Comptes Rendus*
713 *Physique* **12**, 86–109 (2011), doi:[10.1016/j.crhy.2010.11.010](https://doi.org/10.1016/j.crhy.2010.11.010).

715 [26] J. von Stecher, C. H. Greene and D. Blume, *Energetics and structural properties of*
716 *trapped two-component Fermi gases*, *Physical Review A* **77**, 043619 (2008),
717 doi:[10.1103/PhysRevA.77.043619](https://doi.org/10.1103/PhysRevA.77.043619).

718 [27] K. M. Daily and D. Blume, *Energy spectrum of harmonically trapped two-component*
719 *Fermi gases: Three- and four-particle problem*, *Physical Review A* **81**, 053615 (2010),
720 doi:[10.1103/PhysRevA.81.053615](https://doi.org/10.1103/PhysRevA.81.053615).

721 [28] C. J. Bradley, B. C. Mulkerin, A. M. Martin and H. M. Quiney, *Coupled-pair approach for*
722 *strongly interacting trapped fermionic atoms*, *Physical Review A* **90**, 023626 (2014),
723 doi:[10.1103/PhysRevA.90.023626](https://doi.org/10.1103/PhysRevA.90.023626).

724 [29] X. Y. Yin and D. Blume, *Trapped unitary two-component Fermi gases with up to ten*
725 *particles*, Physical Review A **92**, 013608 (2015), doi:[10.1103/PhysRevA.92.013608](https://doi.org/10.1103/PhysRevA.92.013608).

726 [30] D. S. Lewart, V. R. Pandharipande and S. C. Pieper, *Single-particle orbitals in*
727 *liquid-helium drops*, Physical Review B **37**, 4950–4964 (1988),
728 doi:[10.1103/PhysRevB.37.4950](https://doi.org/10.1103/PhysRevB.37.4950).

729 [31] J. J. Sakurai and J. Napolitano, *Modern Quantum Mechanics*, Addison–Wesley
730 Publishing, 2nd Edition, ISBN 978-0-8053-8291-4 (2010).

731 [32] J. Levinsen and M. M. Parish, *Chapter 1: Strongly interacting two-dimensional Fermi*
732 *gases*, Annual Review of Cold Atoms and Molecules **3**, 1–75 (2015),
733 doi:[10.1142/9789814667746_0001](https://doi.org/10.1142/9789814667746_0001).

734 [33] W. Zwerger, ed., *Lecture Notes in Physics* (vol. 836): *The BCS–BEC Crossover and the*
735 *Unitary Fermi Gas*, Springer Publishing, ISBN 978-3-642-21977-1 (2012).

736 [34] E. Braaten and H.-W. Hammer, *Universality in few-body systems with large scattering*
737 *length*, Physics Reports **428**, 259–390 (2006), doi:[10.1016/j.physrep.2006.03.001](https://doi.org/10.1016/j.physrep.2006.03.001).

738 [35] T. Busch, B.-G. Englert, K. Rzażewski and M. Wilkens, *Two cold atoms in a harmonic*
739 *trap*, Foundations of Physics **28**, 549–559 (1998), doi:[10.1023/A:1018705520999](https://doi.org/10.1023/A:1018705520999).

740 [36] V. Efimov, *Weakly bound states of three resonantly interacting particles*, Soviet Journal of
741 Nuclear Physics **12**, 589–601 (1971).

742 [37] X.-J. Liu, H. Hu and P. D. Drummond, *Exact few-body results for strongly correlated*
743 *quantum gases in two dimensions*, Physical Review B **82**, 054524 (2010),
744 doi:[10.1103/PhysRevB.82.054524](https://doi.org/10.1103/PhysRevB.82.054524).

745 [38] J. Bjerlin, S. M. Reimann and G. M. Bruun, *Few-body precursor of the Higgs mode in a*
746 *Fermi gas*, Physical Review Letters **116**, 155302 (2016),
747 doi:[10.1103/PhysRevLett.116.155302](https://doi.org/10.1103/PhysRevLett.116.155302).

748 [39] P.-O. Löwdin, *Quantum theory of many-particle systems. I. Physical interpretations by*
749 *means of density matrices, natural spin-orbitals, and convergence problems in the method*
750 *of configurational interaction*, Physical Review **97**, 1474–1489 (1955),
751 doi:[10.1103/PhysRev.97.1474](https://doi.org/10.1103/PhysRev.97.1474).

752 [40] O. Penrose and L. Onsager, *Bose–Einstein condensation and liquid helium*, Physical
753 Review **104**, 576–584 (1956), doi:[10.1103/PhysRev.104.576](https://doi.org/10.1103/PhysRev.104.576).

754 [41] C. N. Yang, *Concept of off-diagonal long-range order and the quantum phases of liquid He*
755 *and of superconductors*, Reviews of Modern Physics **34**, 694–704 (1962),
756 doi:[10.1103/RevModPhys.34.694](https://doi.org/10.1103/RevModPhys.34.694).

757 [42] J. L. DuBois and H. R. Glyde, *Natural orbitals and Bose–Einstein condensates in traps: A*
758 *diffusion Monte Carlo analysis*, Physical Review A **68**, 033602 (2003),
759 doi:[10.1103/PhysRevA.68.033602](https://doi.org/10.1103/PhysRevA.68.033602).

760 [43] S. Zöllner, H.-D. Meyer and P. Schmelcher, *Correlations in ultracold trapped few-boson*
761 *systems: Transition from condensation to fermionization*, Physical Review A **74**, 063611
762 (2006), doi:[10.1103/PhysRevA.74.063611](https://doi.org/10.1103/PhysRevA.74.063611).

763 [44] Y. Yan and D. Blume, *Incorporating exact two-body propagators for zero-range*
764 *interactions into N-body Monte Carlo simulations*, Physical Review A **91**, 043607
765 (2015), doi:[10.1103/PhysRevA.91.043607](https://doi.org/10.1103/PhysRevA.91.043607).