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Abstract

We theoretically investigate equal-mass spin-balanced two-component Fermi gases in
which pairs of atoms with opposite spins interact via a short-range isotropic model po-
tential. We probe the distinction between two-dimensional and quasi-two-dimensional
harmonic confinement by tuning the effective range parameter within two-dimensional
scattering theory. Our approach, which yields numerically exact energetic and structural
properties, combines a correlated Gaussian basis-set expansion with the stochastic vari-
ational method. For systems containing up to six particles, we: 1) Present the ground-
and excited-state energy spectra; 2) Study non-local correlations by analysing the one-
and two-body density matrices, extracting from these the occupation numbers of natural
orbitals, the momentum distributions of atoms and pairs, and the molecular ‘condensate
fraction’; 3) Study local correlations by computing the radial and pair distribution func-
tions. This paper extends current theoretical knowledge on the properties of trapped
few-fermion systems as realised in state-of-the-art cold-atom experiments.
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1 Introduction18

Many-body quantum systems are generally intractable due to their vast complexity and nu-19

merous degrees of freedom. A few of the simplest cases — such as the Lieb–Liniger model of20

the one-dimensional Bose gas or the one-dimensional Fermi–Hubbard model — admit exact21

analytical solutions because they are integrable, but these are rare exceptions. One promising22

strategy for discerning how many-body features emerge in more realistic settings is to probe23

the underlying physics from the few-body limit. Since the two-body system is typically well24

characterised, a ‘bottom-up’ approach can be employed in which the number of particles is25

increased one by one, thereby introducing complexity in a controlled and stepwise manner. In26

this way, mesoscopic observables are often found to converge surprisingly rapidly toward the27

predictions of many-body theories, once those predictions are rescaled to account for varying28

particle number [1–9].29

An experimental bottom-up approach has been realised by the research group of Selim Jo-30

chim using a tightly focused optical microtrap (‘optical tweezer ’). By superimposing this mi-31

crotrap onto a large reservoir of ultracold fermionic atoms and gradually lowering its depth,32

a chosen small number of particles can be deterministically prepared in the ground state of a33

harmonic oscillator potential at temperatures close to zero [1,8–10]. Applying this method to34

two-component Fermi gases, their experiments have shown that in quasi-one-dimensional ge-35

ometries a many-body Fermi sea can form from only four atoms [1]. In quasi-two dimensions36

many-body ‘Cooper-like’ pairing — evidenced by a peak in the correlations between particles37

with opposing spins and momenta at the Fermi surface — has been experimentally observed38

with as few as twelve atoms [9].39

To better understand the latter experiment, in Ref. [11] we theoretically modelled an in-40

creasing number of spin-balanced two-component fermions confined in a quasi-two-dimens-41

ional harmonic trap. Our numerical approach — commonly referred to as the explicitly corre-42

lated Gaussian (ECG) method [12–15] — combined a stochastic variational framework with43

the use of ECG basis functions [16, 17], allowing us to compute experimentally measurable44

observables with very high accuracy. In particular, we calculated the lowest monopole excit-45

ation energies and ground-state opposite-spin pair correlations as functions of increasing at-46

tractive interaction strength [11]. The few-body physics was captured by applying two-dim-47

ensional scattering theory [18–20] to a finite-range Gaussian interaction potential, with the48

effective range tuned to model realistic quasi-two-dimensional scattering [21–24]. For gases49

comprising up to six equal-mass fermions, we found that time-reversed pairing in the ground50

state was predominant at momenta significantly below the Fermi momentum [11]. Together51

with experimental findings [9], this suggested that the Fermi sea — which, beneath the Fermi52

surface, Pauli-blocks the superposition of momenta required to form a paired state — must53

emerge in the transition from six to twelve particles.54

Here, we apply the ECG method to the same Fermi gases to obtain new energy spectra and55

ground-state structural properties, which are crucial for their theoretical characterisation and56
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thereby further advance our understanding of fermionic few-body systems. This paper is or-57

ganised as follows: In Section 2 we outline our model and the underlying two-body scattering58

theory. Section 3 details our results: In Subsection 3.1 we generate the energy spectra of the59

ground state and low-lying excited-state manifolds for gases containing two, four, and six par-60

ticles. We quantify non-local correlations between the trapped fermions by analysing the one-61

and two-body density matrices in Subsection 3.2. In Subsection 3.3 we analytically Fourier62

transform the density matrices to extract the momentum distributions of individual atoms and63

opposite-spin pairs. To quantify local correlations in the Fermi gases we examine the radial64

and pair distribution functions in Subsection 3.4. In Subsection 3.5 we elucidate the effect of65

the trap aspect ratio — i.e., effective range — on the energetic and structural properties men-66

tioned above. We conclude and discuss the relative merits of our approach in Section 4. Our67

work is strongly inspired by earlier, similar studies of trapped few-fermion systems subject to68

three-dimensional harmonic confinement — particularly Ref. [25], as well as Refs. [26–29].69

These publications, in turn, are partly motivated by research on bosonic 4He and fermionic70
3He droplets [30] which, although much denser than ultracold atomic gases, can be described71

using the same theoretical framework.72

2 Model73

The two-component Fermi gases considered in our analysis consist of equal-mass atoms with74

balanced spin populations, such that N = N↑ + N↓ and N↑ = N↓ = N/2, where N↑ and N↓75

denote the number of ‘spin-up’ and ‘spin-down’ fermions, respectively. Each gas is confined76

in an isotropic two-dimensional (2D) harmonic trap and in the non-interacting ground state77

only the first two harmonic oscillator shells are occupied — corresponding to particle numbers,78

N↑+ N↓ = 1+ 1, 2+ 2, and 3+ 3. Our work is inspired by recent experiments in the group of79

Selim Jochim [8,9], which show that the harmonically trapped ground state of a small number80

of fermionic 6Li atoms — ranging from 20 down to just 2 — can be prepared with very high81

fidelity.82

The effective low-energy Hamiltonian reads as follows:83

H =
N
∑

i=1

�

−
ħh2

2m
∇2

ri
+ Vext(|ri|)
�

+
N
∑

i< j

Vint(|ri − r j|) , (1)

where m is the atomic mass and ri is the 2D position vector of the i th atom measured from84

the centre of the trap. The first term corresponds to the kinetic energy, the second term to the85

external confinement,86

Vext(|ri|) =
mω2

r

2
r2
i , ri ≡ |ri| , (2)

whereωr is the radial harmonic trapping frequency, and the third term to short-range pairwise87

interactions. Note that Pauli exclusion ensures identical fermions do not interact. The interac-88

tions between distinguishable fermions are described using a finite-range Gaussian potential,89

parameterised by a width r0 (> 0) and a depth V0 (< 0):90

Vint(|r|) = V0 exp

�

−
r2

2r2
0

�

− V0
r
lr

exp

�

−
r2

2(2r0)2

�

. (3)

Here, lr =
p

ħh/(mωr) is the radial harmonic oscillator length scale in the plane. This poten-91

tial has previously been employed to model the breathing modes [24] and time-reversed pair92
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correlations [11] of a few interacting fermions in a 2D harmonic trap. In the non-interacting93

limit of V0 = 0, the eigenvalues of the Hamiltonian (1) are ϵ(0)nm = (2n+ |m|+ 1)ħhωr , where94

n= 0, 1, 2, . . . is the principal quantum number and m= 0, ±1, ±2, . . . is the quantum num-95

ber for orbital angular momentum.96

The values of r0 and V0 can be adjusted to generate potentials with different s-wave scat-97

tering properties in 2D free space [31]. We solve the s-wave radial Schrödinger equation for98

the relative motion of two elastically scattering atoms, matching the logarithmic derivatives of99

the wave functions inside and outside the range of the interaction potential (3) to obtain the100

scattering phase shift δ(k). By subsequently fitting the phase shift to the known form [18–20]101

of its low-energy expansion in two dimensions,102

cot[δ(k)] =
2
π

�

γ+ ln
�

ka2D

2

��

+
1
π

k2 r2D + . . . , (4)

we ascertain both the s-wave scattering length a2D and effective range r2D.1 Above, k ≡ |k | is103

the magnitude of the relative wave vector between the atoms in the plane and γ ≃ 0.577216104

is Euler’s constant. With this definition of a2D, the relative radial wave function has the loga-105

rithmic large-distance form ψ(r)∝ ln (a2D/r) which is characteristic of zero-energy two-di-106

mensional scattering. Importantly, the low-energy physics does not depend on the short-range107

details of the true interaction potential and is, instead, universally determined by a2D and r2D.108

In all our calculations, we therefore choose Gaussian widths small enough (r0 ≲ 0.1lr) that109

higher order terms in the expansion (4) are negligible in the energy range of interest. In two110

dimensions a two-body bound state always exists — even for arbitrarily weak attractive inter-111

actions — since the scattering amplitude obtained by the analytic continuation of Eq. (4) to112

negative energies always exhibits a pole. In the zero-effective-range limit, the corresponding113

binding energy ϵb is related to the 2D scattering length via ϵb = 4ħh2e−2γ/(ma2
2D). For finite114

r2D this relationship must be determined numerically from the phase shift expansion; however,115

ϵb still serves as a monotonic proxy for interaction strength [32].116

The scattering length is always positive (a2D > 0) because it enters as the argument of the117

logarithm in Eq. (4) and the phase shift must remain real at low energies. In the many-body118

limit as a2D increases, the two-component Fermi gas undergoes a crossover from a Bose–Ein-119

stein condensate (BEC) of tightly bound diatomic molecules to a Bardeen–Cooper–Schrieffer120

(BCS) superfluid of long-range Cooper pairs [32, 33]. However unlike in three dimensions,121

there is no unitary limit where the interaction strength diverges and becomes scale invariant.122

Rather, the strongly interacting regime emerges around the point ln(kF a2D) = 0, where the123

Fermi momentum kF determines the average interparticle spacing [32, 33]. In the few-body124

limit this spacing becomes ill-defined due to large fluctuations, making the regime of strong125

interactions more difficult to characterise for only a small number of atoms.126

A two-dimensional geometry is experimentally realised by applying a strong harmonic con-127

finement along the axial direction [8,9], characterised by an angular frequency ωz and a cor-128

responding length scale lz =
p

ħh/(mωz). However, in reality, the gas extends a small but fin-129

ite distance perpendicular to the plane. At low energy, when lz is small (such that klz ≪ 1) but130

still much larger than the van der Waals range of the interactions, the two-body scattering of131

distinguishable fermions can be mapped to a purely 2D scattering amplitude with an effective132

range given by [21–24]133

r2D = −l2
z ln(2) . (5)

As a result, the effect of a quasi-2D geometry on the scattering can be mimicked and probed134

by attributing a finite, negative value to the effective range in the 2D model, Eqs. (1)–(5).135

1Note that the exact definitions of the 2D scattering length and effective range are not fixed in the literature.
Our definition of r2D has units of squared length, consistent with Refs. [11,24].
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The effective range can be tuned through a wide range of negative values near a shape reso-136

nance [24, 34] which arises due to the structure of the model potential. Virtual bound states137

are supported in the attractive well associated with the first term of Eq. (3), and these can138

couple to free-space scattering states through the small repulsive barrier created by the sec-139

ond term. We restrict our calculations to the regime where this potential supports a single140

two-body s-wave bound state in two-dimensional free space [11, 24]. In Subsections 3.1–3.4141

we fix the effective range to very nearly zero, r2D/l
2
r = −0.001 ≈ 0, in order to determine142

the energetic and structural properties of the Fermi gases very close to the strictly 2D limit,143

which is of fundamental interest. Increasing |r2D|— while remaining within the regime of the144

mapping in Eq. (5) — leads to small quantitative shifts in these results but, most of the time,145

leaves them qualitatively unchanged. In Subsection 3.5 we show how our results are modified146

for r2D/l
2
r = −0.2 which was the largest negative value considered in Ref. [11].147

We note that the two-Gaussian interaction potential in Eq. (3) has been chosen for three148

reasons. First, it provides a minimal two-parameter model that both reproduces a target scat-149

tering length a2D and simultaneously allows the effective range r2D to be tuned across a broad150

interval by adjusting the relative weights of the attractive well and repulsive barrier. Second,151

it is numerically tractable when combined with the use of Gaussian basis functions. Third, this152

potential has been employed successfully in previous ECG calculations for quasi-two-dimen-153

sional few-fermion systems where it was shown to capture the relevant low-energy scattering154

properties [11, 24]. However, since the low-energy physics depends universally on only a2D155

and r2D, and not on the microscopic details of the short-range potential, the precise functional156

form we use is unimportant. This was verified in Refs. [11, 24] where the modified potential157

given in Eq. (S23) of the Supplemental Material of Ref. [24]was shown to reproduce the same158

energies at fixed binding energy ϵb and effective range.159

3 Results and Discussion160

To numerically solve the time-independent Schrödinger equation for the Hamiltonian (1) we161

employ the explicitly correlated Gaussian method discussed in detail in our earlier publica-162

tion [11] (see Appendix A therein). Other works which have also applied this technique to163

study ultracold two-component fermions include Refs. [24–29]. Our calculations are parame-164

terised in terms of the two-body binding energy ϵb ≥ 0 and the effective range r2D. Although165

ϵb was introduced in Section 2 in the context of free-space pairwise scattering, it can addi-166

tionally be defined in the presence of the harmonic trap. The two definitions coincide in the167

weak confinement limit and in both cases ϵb remains a monotonic function of the underlying168

scattering parameters, a2D and r2D. In practice, we determine the trapped value of ϵb by using169

the ECG method to compute the relative ground-state energy ϵrel for the 1+1 system described170

by Eq. (1) with specified values of r0 and V0. The total ground-state energy in the harmonic171

trap is ϵ = ϵcom + ϵrel = 2ħhωr − ϵb , and since the ground state contains no centre-of-mass172

excitations ϵcom = ħhωr , we can immediately find ϵb.173

3.1 Energy Spectra174

In two dimensions the exact energy spectrum for 1 + 1 fermions was analytically calculated175

by Busch et al. in 1998 [35]. Their approach involved modelling the interaction with a reg-176

ularised Dirac delta distribution, expanding the relative wave function in the harmonic oscil-177

lator basis, and using standard integral representations to evaluate the Schrödinger equation.178

In 2010 Liu et al. numerically computed the exact energy spectrum for 2+ 1 fermions by ex-179

tending the approach of Efimov [36] to the two-dimensional trapped case and applying the180

Bethe–Peierls boundary condition [37]. Here, we obtain numerically exact energy spectra for181
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1+1, 2+2, and 3+3 fermions at very nearly zero effective range, r2D/l
2
r = −0.001≈ 0. After182

separating off the centre-of-mass degree of freedom, we expand the eigenstates of the relative183

Hamiltonian in terms of explicitly correlated Gaussian basis functions [11–15]. These basis184

functions depend on a series of non-linear variational parameters (the Gaussian widths) which185

are optimised by energy minimisation. In Fig. 1 we plot the resultant energies as functions of186

the two-body binding energy ϵb.187

Figure 1: The monopole energy spectrum for (a) 1+ 1, (b) 2+ 2, and (c) 3+ 3 fer-
mions at very nearly zero effective range, r2D/l

2
r = −0.001≈ 0. Erel is the energy of

relative motion and ϵb is the two-body binding energy. In panels (b) and (c) the grey
dashed line indicates the energy of the first state of the next (unshown) manifold.
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The non-interacting ground state at ϵb = 0 can assume one of two configurations depend-188

ing on the total number of particles N: either all of the degenerate single-particle states of189

the highest energy level of the 2D harmonic oscillator are filled (‘closed shell’), or some of190

the degenerate states remain empty (‘open shell’). The 1+ 1 and 3+ 3 systems both feature191

a closed-shell ground state that is non-degenerate, whereas the 2 + 2 ground state is open-192

shell. We restrict our analysis to ground states characterised by zero total orbital angular mo-193

mentum. For the 2+ 2 system this means that the two highest energy opposite-spin fermions194

reside in different degenerate single-particle states. Since the Hamiltonian is rotationally sym-195

metric, only monopole excitations between states with the same (i.e., zero) total angular mo-196

mentum occur. (The m quantum numbers for all atoms sum to zero in both the ground and197

excited states.) We can see in Fig. 1 that for all three atom numbers at ϵb = 0, all monopole198

excitations have an energy of 2ħhωr . This can be attributed either to exciting a single particle199

up two harmonic oscillator shells, or to exciting a time-reversed pair of particles (n, m, ↑) and200

(n, −m, ↓) up one shell each.201

Our result for 1+1 fermions in Fig. 1(a) agrees with the ‘Busch spectrum’ [35] for the con-202

sidered range of binding energies, 0≤ ϵb ≤ 2ħhωr . As evident in Fig. 2 of Ref. [11], this range203

is sufficient to capture the non-monotonic dependence on ϵb of the lowest monopole excitation204

of 3+ 3 fermions [Fig. 1(c)] — a feature which is driven by coherent pair correlations [38].205

Larger basis sizes are required for the ECG method to converge at higher binding energies,206

ϵb > 2ħhωr , where the tight composite bosonic wave functions become difficult to represent207

numerically [11,25]. Currently, convergence cannot be achieved in this regime for six atoms,208

although it may be possible for four (and is certainly possible for two). It is additionally chal-209

lenging to solve for more than six particles at any binding energy due to the factorial growth210

(with N) in the number of permutations of identical fermions required to antisymmetrise the211

full wave function [11,25]. The spectra in Fig. 1 for increasing N are qualitatively similar, but212

increasingly complex due to the existence of higher degeneracies in the non-interacting limit.213

For 1+ 1 fermions [Fig. 1(a)] we choose to show the six lowest energy states, while for 2+ 2214

fermions [Fig. 1(b)]we choose to show the ground state and the first- and second-excited-state215

manifolds. For 3+3 fermions [Fig. 1(c)]we display the ground state and the first-excited-state216

manifold which, in this case, is the largest number of states that can be computed to numerical217

convergence within a reasonable time frame (on the order of months).218

3.2 Density Matrices and Occupation Numbers219

3.2.1 One-Body Density Matrix220

In the first-quantised position representation the one-body density matrix for the spin-↑ parti-221

cles is given by222

ρ↑(r, r′) =

�∫

· · ·
∫

dr↑1dr↓2 · · · dr↑N−1dr↓N

�

�

�Ψ(r↑1, r↓2, · · · , r↑N−1, r↓N )
�

�

�

2
�−1

×
∫

· · ·
∫

dr↓2 dr↑3 dr↓4 · · · dr↑N−1dr↓NΨ(r, r↓2, r↑3, r↓4, · · · , r↑N−1, r↓N )Ψ
∗(r′, r↓2, r↑3, r↓4, · · · , r↑N−1, r↓N ) ,

(6)

where Ψ is the total N-body wave function and all integrals are two-dimensional (dr ≡ d2r).223

The first line above is a normalisation constant; in the second line the density ΨΨ∗ is integrated224

over all co-ordinates except those of a single spin-↑ atom.225

The matrix elements of Eq. (6) in the explicitly correlated Gaussian basis were derived in226

our earlier work (see Appendices A, C, and D of Ref. [11]); for ease of reference, we quote the227

7



SciPost Physics Core Submission

final result below:228

[ρ↑(r, r′)]AA′ ≡ 〈φA|ρ↑(r, r′) |φA′〉= c1exp
§

−
1
2

�

cr2 + c′(r′)2 − arTr′
�

ª

, (7)

which contains the following scalars:229

c1 =
(2π)N−1

det[B+B′]
, (8a)

c = b1 − bTCb , (8b)

c ′ = b′1 − (b
′)TCb′, (8c)

a = bTCb′ + (b′)TCb . (8d)

Here, b1 = (UTAU)11 is also a scalar, b= ((UTAU)12 , . . . , (UTAU)1N ) is an (N−1)-dimension-230

al vector, B is an (N − 1)× (N − 1)-dimensional matrix given by UTAU with the first row and231

column removed, and C= (B+B′)−1. The N× N transformation matrix U (x= Uy) converts232

the single-particle co-ordinates y into relative and centre-of-mass generalised Jacobi co-ord-233

inates x (where x and y are vectors of vectors). The N×N correlation matrix A comprises non-234

linear variational parameters (the Gaussian widths) which are optimised stochastically. Oper-235

ationally, the stochastic variational procedure proposes random updates to the elements of A236

and retains them only if they lower the variational ground-state energy. The bounds of these237

random proposals are chosen to reflect the physically relevant interparticle length scales, which238

differ for distinguishable and indistinguishable fermions due to the Pauli principle. Each ECG239

basis function |φA〉 is numerically represented by a unique A matrix [11].240

Equation (6) can be expanded over a complete set of basis functions — the natural orbitals241

χnm(r)— where the expansion coefficients correspond to the occupation numbersNnm of those242

orbitals:243

ρ↑(r, r′) =
∑

nm

Nnmχ
∗
nm(r)χnm(r

′) . (9)

These components are normalised as follows:244

∫

drχ∗nm(r)χn′m′(r) = δnn′δmm′ , (10a)
∑

nm

Nnm = 1 , (10b)

where (n, m) are the harmonic oscillator quantum numbers defined below Eq. (3), and where245

the asterisk denotes complex conjugation (although in our specific case the natural orbitals246

are real). This natural-orbital decomposition of the one-body density matrix follows the stan-247

dard framework introduced by Löwdin [39] in the context of quantum chemistry, and indepen-248

dently by Penrose and Onsager [40] in the context of Bose–Einstein condensation. Yang [41]249

further developed the framework by formulating the criterion of off-diagonal long-range or-250

der. This approach has since been widely adopted in ultracold-atom physics, including anal-251

yses of interacting many-body Bose systems by DuBois and Glyde [42] and few-body studies252

of trapped Bose gases by Zöllner et al. [43]. In these applications the eigenvalues (i.e., occu-253

pation numbers) of the one-body density matrix provide a basis-independent characterisation254

of single-particle structure and condensation.255

In practice, because direct decomposition of the four-dimensional object ρ↑(r, r′) in the256

form of Eq. (9) is computationally infeasible, we first reduce the number of degrees of freedom257

by defining partial-wave projections:258

ρm
↑ (r, r ′) =

1
2π

∫ 2π

0

∫ 2π

0

dθ dθ ′e−imθρ↑(r, r′) eimθ ′, (11)

8
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with θ (′) denoting the angle associated with the vector r (′) and r (′) ≡ |r (′)|. This procedure259

mirrors that used in the few-body fermionic studies of Blume and Daily [25] where the three-260

dimensional case is addressed. The explicitly correlated Gaussian matrix elements of Eq. (11)261

are262

[ρm
↑ (r, r ′)]AA′ ≡ 〈φA|ρm

↑ |φA′〉= 2π c1 Im

�

arr ′

2

�

exp
§

−
1
2

�

c r2 + c′(r ′)2
�

ª

, (12)

where Im(x) is the modified Bessel function of the first kind, and where the scalars {c1, c, c′, a}263

have been defined in Eq. (8).264

The ground-state (‘GS’) matrix element of the projected one-body density matrix can now265

be written as266

[ρm
↑ (r, r ′)]GS ≡

〈Ψ(GS) |ρm
↑ (r, r ′) |Ψ(GS)〉

〈Ψ(GS) |Ψ(GS)〉
=

∑

i, j c∗i [ρ
m
↑ (r, r ′)]AiA j

c j
∑

i, j c∗i OAiA j
c j

. (13)

Above, the second expression is obtained from the first by inserting two complete sets of ex-267

plicitly correlated Gaussian basis states into both the numerator and denominator. The i th
268

(real) coefficient of the total ground-state wave function in this basis is ci ≡ 〈φAi
|Ψ(GS)〉, and269

the overlap matrix element is [14]270

OAiA j
≡ 〈φAi

|φA j
〉=

(2π)N

det[Ai +Aj]
. (14)

The indices i and j both run over the minimum number of (previously found) optimised basis271

states required to converge the ground-state energy at a given two-body binding energy ϵb.272

While the equations in this and later subsections are written in terms of unsymmetrised basis273

states for clarity, these must be antisymmetrised to account for particle exchange (refer to274

Appendix D of Ref. [11] for further details).275

At this point, the occupation numbers can be found by discretising the variables r and276

r ′ into grids of width ∆r and then finding the eigenvalues of
p

r [ρm
↑ (r, r ′)]GS

p
r ′∆r for a277

given partial wave m. The first such eigenvalue is Nn=0, m , the second is Nn=1, m , and so on.278

These results are shown in panels (a), (c), and (e) of Fig. 2. In the non-interacting limit of279

ϵb = 0, where the natural orbitals are the single-particle harmonic oscillator levels, they are280

straightforward to understand. Due to the antisymmetry of the wave function same-spin ferm-281

ions must occupy different single-particle levels. For 1+1 fermions the spin-up atom is in the282

n= m= 0 ground state, which has an occupation number of N0, 0 = 1 due to the normalisation283

condition (10b), while all other occupation numbers are zero. For 2+ 2 fermions the second284

spin-up atom is equally distributed between the two degenerate first excited states with n= 0285

and m = ±1 — leading to three finite occupation numbers, N0, 0 = 1/2 and N0,±1 = 1/4. In286

the 3+ 3 case, the three lowest energy states contain one spin-up fermion each and thus the287

corresponding occupation numbers become N0,0 =N0,±1 = 1/3, whereas all others vanish.288

When the binding energy increases (ϵb > 0) the finite values of N0,0 and N0,±1 decrease,289

while the occupation numbers of higher excited natural orbitals increase as one would gener-290

ally expect. However, for the range of interaction strengths covered by the energy spectra in291

Subsection 3.1 (0≤ ϵb ≤ 2ħhωr) this variation is not strong — and the one-body density matrix292

can always be decomposed with a good level of accuracy by only including up to six natur-293

al orbitals. Such an observation suggests that we are never close to the deep Bose–Einstein294

condensation regime. If we instead had a tight composite bosonic wave function, then its ex-295

pansion into effective single-particle orbitals (the natural orbitals of ρ↑) would require many296

terms [25]. In that case, many more occupation numbers would take on (small but) non-van-297

ishing values, forcing a more significant reduction in the values of N0, 0 and N0,±1 than what298

can be seen in Fig. 2.299
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Figure 2: Left panels: Ground-state occupation numbers (eigenvalues) of the one-
body density matrix Nnm (9) for (a) 1+ 1, (c) 2+ 2, and (e) 3+ 3 fermions. Right
panels: Ground-state occupation numbers of the reduced two-body density matrix
N̄nm (17) for (b) 1+ 1, (d) 2+ 2, and (f) 3+ 3 fermions. The results are plotted as
a function of the two-body binding energy ϵb for (very nearly) zero effective range,
r2D/l

2
r = −0.001≈ 0. Note in panel (b) that for any binding energy N̄0,0 = 1, while

all other occupation numbers vanish.

3.2.2 Two-Body Density Matrix300

The two-body density matrix in the first-quantised position representation is given by301

ρ(r1, r′1; r2, r′2) =

�∫

· · ·
∫

dr↑1dr↓2 · · · dr↑N−1dr↓N

�

�

�Ψ(r↑1, r↓2, · · · , r↑N−1, r↓N )
�

�

�

2
�−1

×
∫

· · ·
∫

dr↑3 dr↓4 · · · dr↑N−1dr↓NΨ(r1, r2, r↑3, r↓4, · · · , r↑N−1, r↓N )Ψ
∗(r′1, r′2, r↑3, r↓4, · · · , r↑N−1, r↓N ) ,

(15)

where the density ΨΨ∗ is integrated over all co-ordinates except those of one spin-↑ particle302

and one spin-↓ particle. In two dimensions ρ(r1, r′1; r2, r′2) is an eight-dimensional array, so303
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we again need to reduce the number of degrees of freedom prior to diagonalisation. To this304

end we follow Ref. [25], which considered the three-dimensional version of this problem, and305

transform from the co-ordinates of the individual atoms to the centre-of-mass and relative co-306

ordinates of the two spin-↑-spin-↓ pairs: R = (r1 + r2)/2 and r = r1 − r2 (and their primed307

equivalents). By setting r= r′we can then define the reduced two-body density matrix as308

ρred(R, R′) =

∫

drρ
�

R+
r
2

, R′ +
r
2

; R−
r
2

, R′ −
r
2

�

, (16)

which measures non-local correlations between pairs described by the same relative-distance309

vector.310

In analogy to the one-body density matrix, the reduced two-body density matrix can be311

expanded in terms of natural orbitals and occupation numbers:312

ρred(R, R′) =
∑

nm

N̄nm χ̄
∗
nm(R) χ̄nm(R

′) , (17)

which have the normalisations,313

∫

dR χ̄∗nm(R) χ̄n′m′(R) = δnn′δmm′ , (18a)
∑

nm

N̄nm = 1 . (18b)

We again perform partial-wave projections according to Eq. (11): ρred(R, R′) → ρm
red(R, R′)314

with R(′) ≡ |R(′)|. The derivation of the ground-state matrix element of the projected reduced315

two-body density matrix [ρm
red(R, R′)]GS then follows identically to Eqs. (12)–(13) with only316

one minor change. The vector of single-particle co-ordinates y must be replaced by y′,317

y= (r↑1, r↓2, r↑3, . . . , r↓N ) → y′ = (R, r, r↑3, . . . , r↓N ) , (19)

and therefore the transformation matrix U should be redefined appropriately, x = U′y′ [25].318

The replacement matrix U′ that takes the place of U is shown below for each of the total par-319

ticle numbers (N↑+ N↓) considered in this work; for reference, the original U matrices were320

defined in Eq. (A.2) of Ref. [11]:321

1+ 1 : U=
�

1 −1
1
2

1
2

�

→ U′ =
�

0 1
1 0

�

, (20a)

2+ 2 : U=









1 −1 0 0
0 0 1 −1
1
2

1
2 −

1
2 −

1
2

1
4

1
4

1
4

1
4









→ U′ =









0 1 0 0
0 0 1 −1
1 0 −1

2 −
1
2

1
2 0 1

4
1
4









, (20b)

3+ 3 : U=



















1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1
2

1
2 −

1
2 −

1
2 0 0

1
4

1
4

1
4

1
4 −

1
2 −

1
2

1
6

1
6

1
6

1
6

1
6

1
6



















→ U′ =



















0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 0 −1

2 −
1
2 0 0

1
2 0 1

4
1
4 −

1
2 −

1
2

1
3 0 1

6
1
6

1
6

1
6



















.

(20c)

The occupation numbers N̄nm are obtained as the eigenvalues of
p

R [ρm
red(R, R′)]GS

p
R′322

×∆R and are displayed in panels (b), (d), and (f) of Fig. 2. Although the values in the non-323

interacting limit (ϵb = 0) are less intuitive than in the one-body case, they may be verified324
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by comparing against analytically derived results. In Appendix A we detail these steps for the325

2+ 2 system as an example. For increasing binding energy (ϵb > 0) the occupation numbers326

from the reduced two-body density matrix follow the same qualitative trends as those from327

the one-body density matrix. It may initially seem counter-intuitive that the largest eigenvalue328

N̄0, 0 has a higher value in the absence of pairs (ϵb = 0) than in the presence of pairs (ϵb≫ 0).329

However, this is directly due to the procedure used to eliminate degrees of freedom and define330

the quantity ρred(R, R′)— and was similarly observed in the three-dimensional case [25].331

3.2.3 Molecular Condensate Fraction332

In a trapped one-component Bose gas the condensate fraction becomes appreciable when the333

lowest eigenvalue of the one-body density matrix becomes of order unity. In a two-component334

Fermi gas, by contrast, none of the natural orbitals of the one-body density matrix can be-335

come macroscopically occupied due to the antisymmetry of the wave function under particle336

exchange. A significant condensate fraction can only arise when bosonic pairs are formed, and337

hence, such insight must instead come from an analysis of the two-body density matrix.338

Due to the elimination of degrees of freedom as described above, the absolute magnitude339

of N̄0, 0 no longer corresponds directly to the number of condensed pairs. Rather, condensa-340

tion occurs when the lowest natural orbital of the reduced two-body density matrix becomes341

macroscopically occupied — in other words, when N̄0,0 greatly exceeds all other N̄nm [25].342

Accordingly, we define the condensate fraction Ncond in two dimensions as follows:343

Ncond = 1−
max
�∑

m=± ... N̄nm

�

N̄0, 0
, (n, m) ̸= (0, 0) , (21)

i.e., one minus ‘ the largest competing eigenvalue divided by the (0, 0) eigenvalue’ of the re-344

duced two-body density matrix. Notice that the sum applies to non-zero m: when m = 0 the345

physical mode is unique and its occupation is the single value N̄n, 0; when |m|> 0 the physical346

mode is the multiplet with angular momentum |m|, consisting of the two degenerate states+m347

and −m, so the relevant quantity to compare is the total occupation of that multiplet. In the348

deep molecular regime essentially all pairs occupy a single two-body natural orbital, so N̄0, 0349

becomes much larger than any other N̄nm and the ratio in Eq. (21) correspondingly becomes350

very small: Ncond → 1. In the non-interacting limit (ϵb = 0) several N̄nm have comparable351

magnitude, so the ‘largest competitor ’ in Eq. (21) is of the same order as N̄0, 0. The ratio in352

Eq. (21) is thus of order unity and Ncond becomes small: it approaches zero in the many-body353

limit, while for few-body systems it settles to a finite fraction less than one. We remark that354

Eq. (21) is directly analogous to the three-dimensional definition given in Eq. (16) of Ref. [25].355

The eigenvalues N̄nm measure the extent to which the N-body state comprises pairs with356

centres of mass occupying the two-body natural orbital labelled by (n, m). As the binding en-357

ergy ϵb is increased, the reduced two-body density matrix redistributes its fixed total spectral358

weight: the dominant eigenvalues decrease in absolute magnitude, while many additional ei-359

genvalues ‘ turn on’ from zero yet remain extremely small. These small components reflect the360

weak occupation of non-condensed and excited centre-of-mass pair configurations that appear361

as the interactions become stronger. The behaviour of the condensate fraction is determined by362

the relative evolution of the leading (N̄0, 0) and subleading eigenvalues: Ncond increases when363

N̄0, 0 falls off more slowly than the subleading eigenvalue, and decreases when the opposite364

ordering holds. Therefore, Ncond grows when the relative dominance of N̄0, 0 over the rest of365

the spectrum increases. Equation (21) permits the identity of the subleading mode to change366

as the interaction strength varies; however, as seen in Fig. 2 the same mode remains sublead-367

ing throughout the entire range of binding energies considered.368
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Figure 3: The condensate fraction Ncond (22) as a function of the two-body binding
energy ϵb for (a) 2+2 and (b) 3+3 fermions in the ground state. The effective range
is very close to zero in each panel, r2D/l

2
r = −0.001≈ 0.

In Fig. 3 we plot the condensate fractions for the 2+2 and 3+3 Fermi systems as functions369

of the interaction strength:370

Ncond = 1−
N̄0,+1 + N̄0,−1

N̄0, 0
. (22)

In both cases the behaviour is qualitatively similar. For ϵb ≳ 1.2ħhωr the condensate fraction371

shows a gentle upward trend, consistent with a gradual strengthening of pairing correlations.372

For ϵb ≲ 1.2ħhωr , however, the condensate fraction initially decreases before rising again, re-373

sulting in a weakly non-monotonic dependence over the range ϵb ≲ 2ħhωr . This behaviour ar-374

ises because at weaker binding the dominant eigenvalue decreases more rapidly than its near-375

est competitor, while at stronger binding the relative rates reverse. It is important to note that376

the total variation on the vertical axis is very small, which means that the condensate fraction377

is effectively flat on the non-molecular side of the two-dimensional crossover. This observation378

is consistent with results from a complementary three-dimensional study. In particular, Fig. 11379

of Ref. [25] shows that in the corresponding regime of negative inverse scattering length in380

three dimensions, the condensate fractions of the 2+1, 2+2, and 3+2 Fermi systems likewise381

remain very nearly constant (for the 3+3 system only two data points are available, so no ov-382

erall trend can be inferred for that case).383

We do not extend our analysis to larger binding energies ϵb where the condensate fraction384

approaches unity because, in practice, the explicitly correlated Gaussian method becomes in-385

creasingly difficult to converge in this regime. As the binding energy grows, the internal size of386

each ↑↓ pair shrinks and the relative wave function develops structure on progressively shorter387

length scales. Accurately resolving these sharper features requires Gaussians with very small388

widths, while the overall trapped state still demands basis functions with much larger spatial389

extent. For systems with more than two atoms this separation of length scales rapidly ampli-390

fies the number of basis functions required for convergence. This challenge is compounded by391

the stochastic nature of the basis-optimisation process, which involves generating and testing392

many candidate basis functions at each expansion step, further increasing the computational393

burden. In the 3+ 3 case the computational cost becomes prohibitive before a tightly bound394

molecular regime is reached, and even for 2+2 the basis sizes needed at higher ϵb are substan-395

tially larger than those required in the crossover regime. For this reason, our results focus on396
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an intermediate range of binding energies for which fully converged calculations are attain-397

able across all particle numbers considered.398

3.3 Momentum Distributions399

The momentum distribution of the spin-↑ atoms is given by the Fourier transform of the one-400

body density matrix defined in Eq. (6):401

n↑(k) =
1

(2π)2

∫ ∫

dr dr′ρ↑(r, r′) exp
�

−ikT(r − r′)
�

. (23)

It is straightforward to prove that Eq. (23) is equivalent to402

n↑(k) =
∑

nm

Nnm |eχnm(k)|2, (24)

where403

eχnm(k) =
1

2π

∫

drχnm(r) exp
�

−ikTr
�

(25)

is the Fourier transform of the natural orbitals introduced in Eq. (9). In order to obtain an404

analytical expression for the matrix elements of Eq. (23) in the explicitly correlated Gaussian405

basis, we can use the result for [ρ↑(r, r′)]AA′ shown in Eq. (7):406

[n↑(k)]AA′ =
c1

(2π)2

∫ ∫

dr dr′exp
§

−
1
2

�

cr2 + c′(r′)2 − arTr′
�

ª

exp
�

ikT(r′− r)
�

. (26)

By defining X= r′− r the equation above becomes407

[n↑(k)]AA′ =
c1

(2π)2

∫ ∫

dr dX exp
�

1
2

�

g1r2 + g2X2 + g3rTX
�

�

exp
�

ikTX
�

, (27)

involving the coefficients,408

g1 = a− c − c ′, (28a)

g2 = −c ′, (28b)

g3 = a− 2c ′. (28c)

The integral over r can be performed analytically for g1< 0:409

[n↑(k)]AA′ = −
c1

2πg1

∫

dX exp
�

1
2

g4 X2
�

exp
�

ikTX
�

, (29)

with the coefficient defined as410

g4 = g2 − g2
3/(4g1) . (30)

Subsequently, the integral over X can be analytically carried out for g4 < 0:411

[n↑(k)]AA′ ≡ [n↑(k)]AA′ =
c1

g1 g4
exp

�

1
2g4

k2

�

, k ≡ |k| , (31)

where the coefficient c1/(g1 g4) can be either positive or negative.412
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Figure 4: Left panels: The momentum distribution n↑(k) (23) associated with the
motion of spin-↑ atoms for (a) 1+ 1, (c) 2+ 2, and (e) 3+ 3 fermions in the ground
state. Right panels: The momentum distribution n(K) (32) associated with the cen-
tre-of-mass motion of spin-↑-spin-↓ pairs for (b) 1+ 1, (d) 2+ 2, and (f) 3+ 3 fer-
mions in the ground state [note the log-log scale]. The differently coloured lines
correspond to different binding energies ϵb , while the effective range is fixed for all
lines to very nearly zero, r2D/l

2
r = −0.001≈ 0. By construction the two-body results

for 1+ 1 fermions in panel (b) are the same at all values of ϵb.

Analogously, the momentum distribution corresponding to the centre-of-mass motion of413

spin-↑-spin-↓ pairs is given by the Fourier transform of the reduced two-body density matrix414

defined in Eq. (16):415

n(K) =
1

(2π)2

∫ ∫

dR dR′ρred(R, R′) exp
�

−iKT(R − R′)
�

. (32)

Here, we use the symbol K instead of k to distinguish the momentum vector associated with a416

pair from that of an atom. As with the calculation of the occupation numbers, the derivation417

of an analytical expression for [n(K)]AA′ follows identically to the one above for [n↑(k)]AA′418

with a single minor adjustment. The transformation matrix U used to compute {c1, c, c′, a} in419

Eq. (26) should be replaced by U′ as explained in the text around Eqs. (19)–(20). Note that420
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the analysis in this subsection has been inspired by the corresponding three-dimensional cal-421

culation of Ref. [25] (see Appendix A therein).422

In Fig. 4 we present the momentum distributions [n↑(k)]GS and [n(K)]GS for the ground423

state which were calculated by replacing [ρm
↑ (r, r ′)]AiA j

with [n↑(k)]AiA j
and [n(K)]AiA j

in424

Eq. (13). In the non-interacting thermodynamic limit the momentum distribution for a single425

spin component features a ‘step’ at the Fermi momentum. However, when there are only very426

few atoms this step becomes ‘smeared out’ with a width determined by the radial harmonic427

trapping frequency kr ∼ 1/lr =
p

mωr/ħh, as shown in panels (a), (c), and (e). Interestingly428

n↑(k) adopts a distinct shape for each number of fermions, with the non-monotonicity in the429

3+3 case likely resulting from finite-size effects of the trap. By contrast, the distribution n(K)430

displayed in panels (b), (d), and (f) varies little with either particle number or binding en-431

ergy. For the particular case of 1+ 1 fermions [Fig. 4(b)] n(K) shows no dependence on the432

binding energy, mirroring the behaviour of the occupation numbers in Fig. 2(b). In three di-433

mensions [25] n(K) was found to exhibit two distinct features in the limit of small positive434

scattering length that could be associated with the condensation of pairs: a feature at smaller K435

corresponding to the momentum distribution of non-interacting composite bosons of mass 2m,436

and a feature at larger K corresponding to the internal structure of the bosons. For our largest437

considered binding energy ϵb ≈ 2.1ħhωr we begin to see a ‘shoulder’ emerging at larger K that438

resembles this phenomenon, however it is much less pronounced. This suggests — consistent439

with the previous subsections — that we remain far from the deep BEC regime.440

3.4 Radial and Pair Distribution Functions441

As well as density matrices, any local structural property P(r) of the N-body system — such442

as a density profile or pair distribution function — can be calculated from the wave function443

as follows [25,26,28]:444

P(r) =

∫

dr′
δ(r − r ′)

2πr ′

∫

d2Nxδ(r′ − x) |Ψ(x)|2. (33)

Above, r′ and x are ‘dummy’ integration variables used to perform the radial projection and445

many-body integration, with x representing a set of generalised co-ordinates such as the N446

Jacobi position vectors described in Appendix A of Ref. [11]. The scalar r denotes the radial447

distance associated with the chosen local observable. We define the averaged radial one-body448

density P↑(r) by setting r = |r1| in Eq. (33),2 and also the averaged radial pair distribution449

function P↑↓(r) by setting r = |r1 − r2 |. These quantities are normalised such that450

2π

∫ ∞

0

dr r P↑(r) = 1 and 2π

∫ ∞

0

dr r P↑↓(r) = 1 . (34)

The value of 2πrP↑(r) dr therefore equals the probability of locating a particle at a distance451

between r and r + dr from the centre of the trap. Likewise, the value of 2πrP↑↓(r) dr equates452

to the probability of locating a spin-up particle and a spin-down particle at a distance between453

r and r + dr from each other.454

We compute the ground-state matrix element [Pσ(r)]GS (σ ≡ ↑ or ↑↓) in a similar manner455

to Eq. (13). In the explicitly correlated Gaussian basis, the matrix elements for arbitrary one-456

and two-body operators are respectively given by457

〈φAi
|V (rk) |φA j

〉= OAiA j

bk

2π

∫

dr V (r) exp
�

−
1
2

bkr2
�

, (35a)

2 Because the Fermi gases of interest are spin-balanced, the radial one-body densities for the spin-up and spin-
down atoms are equal, P↑(r) = P↓(r). In addition, since we consider only the sector of zero total orbital angular
momentum, P↑(r) is radially (circularly) symmetric.
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〈φAi
|V (rk − rl) |φA j

〉= OAiA j

bkl

2π

∫

dr V (r) exp
�

−
1
2

bkl r
2
�

, (35b)

where458

1
bk
=
�

ω(k)
�T
(Ai +A j)

−1ω(k) ,
�

ω(k)
�

p = (U
−1)kp , (36a)

1
bkl
=
�

ω(kl)
�T
(Ai +A j)

−1ω(kl) ,
�

ω(i j)
�

p = (U
−1)ip − (U−1) jp , (36b)

and p = 1, . . . , N [11,14]. Correspondingly, we substitute V (rk) = δ(r− rk) into Eq. (35a) to459

evaluate [P↑(r)]AiA j
and V (rk − rl) = δ(r− rk − rl) into Eq. (35b) to determine [P↑↓(r)]AiA j

.460

Figure 5: Left panels: The radial one-body density P↑(r) for (a) 1+1, (c) 2+2, and
(e) 3+ 3 fermions in the ground state. Right panels: The (scaled) radial pair distri-
bution function P↑↓(r) for (b) 1+ 1, (d) 2+ 2, and (f) 3+ 3 fermions in the ground
state. The results are shown for a variety of binding energies ϵb at close to zero ef-
fective range, r2D/l

2
r = −0.001 ≈ 0. The bold fractions indicate the (approximate)

shaded area under the curve on either side of the grey vertical line for ϵb ≈ 2.1ħhωr ,
as discussed in the main text.
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Our results for the radial one-body density are shown in panels (a), (c), and (e) of Fig. 5.461

For the 1+1 system at ϵb = 0, the spin-up atom occupies the non-interacting two-dimension-462

al harmonic oscillator ground state, so P↑(r) has a Gaussian radial profile with a maximum463

at the trap centre. For increasing ϵb, although the centre-of-mass motion of the pair remains464

governed by the external confinement, the attractive interactions confine the relative motion465

to shorter length scales, leading to deviations from a purely Gaussian profile and increasing466

the peak value of P↑(r) at r = 0. On the linear scale used in Fig. 5(a), the comparatively small467

peak height of the ϵb = 0 profile causes its Gaussian decay to appear flattened relative to the468

interacting cases.469

For the 2+ 2 and 3+ 3 systems the peak value of P↑(r) shifts from the centre of the trap470

to a finite radius on the order of the radial harmonic trap length lr , which sets the average471

interparticle spacing. This shift from zero to finite r with increasing particle number reflects472

both the residual shell structure of the two-dimensional harmonic oscillator and the Pauli ex-473

clusion principle. The first harmonic oscillator shell is fully occupied for N↑ = 1, whereas fer-474

mions occupy the first two shells for both N↑ = 2 and N↑ = 3, leading to similar behaviour in475

these cases: namely, P↑(r) retains a single maximum that moves outward from the trap centre476

in order to accommodate both radial symmetry and Pauli repulsion between identical spins.477

Panels (b), (d), and (f) of Fig. 5 show our results for the (scaled) radial pair distribution478

function. At binding energies of ϵb ≳ ħhωr and when there is more than one particle per spin479

state, rP↑↓(r) develops a clear two-peak structure similar to what has been observed in three480

dimensions [25, 26]. The peak at smaller r (around 0.1lr) signifies the formation of weakly481

bound dimers, while the peak at larger r (between 1lr and 2 lr) is set by the dimer-dimer dis-482

tance which is longer due to Pauli repulsion between same-spin fermions. The 2+ 2 system483

has two such small interspecies distances (the distance between a spin-up and spin-down par-484

ticle within a pair) and two large interspecies distances (the distance between a spin-up and485

spin-down particle in different pairs). Accordingly, if we integrate P↑↓(r) for N↑ = 2 from zero486

up to the r value where rP↑↓(r) features a minimum, then we find that the probability of form-487

ing a molecule (of being at short distances) is ∼ 1/2 [26]. On the other hand, the 3+3 system488

has three small interspecies distances and six large interspecies distances — and performing489

a similar integration confirms the probability of forming a molecule to be ∼ 1/3. These prob-490

abilities are indicated in the figure. If we were to access the deep BEC regime ϵb ≫ 2ħhωr ,491

then the peak at smaller r would become taller and narrower, while the peak at larger r would492

become shorter and broader, with the pair density in between them reducing almost to zero —493

and the fractions mentioned above would become exactly 1/2 and 1/3 [26]. The reason why494

the scaled pair distribution function vanishes for r → 0 is because we are using a finite-range495

interaction potential, such that unlike spins cannot approach each other at distances ≲ r0. If496

we had instead considered zero-range interactions, then the amplitude of rP↑↓(r) would have497

been finite at r = 0 [25,44].498

3.5 Finite Effective Range Effects499

In this subsection we examine how the effective range influences the energetic and structur-500

al properties of the 3+ 3 Fermi system. Figures 6–9 present results for a comparatively large501

negative effective range, r2D/l
2
r = −0.2 — corresponding to the most negative value consid-502

ered in Ref. [11]— overlaid with our earlier results obtained for an almost vanishing effective503

range, r2D/l
2
r = −0.001≈ 0.504
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Figure 6: Energy of relative motion for the ground [red] and first excited state [blue]
of the 3 + 3 system as a function of the two-body binding energy in the monopole
sector of zero total orbital angular momentum. Solid lines correspond to an effective
range of r2D/l

2
r = −0.2 and dashed lines to r2D/l

2
r = −0.001≈ 0.

Figure 7: Occupation numbers of the one-body density matrix (a) and the reduced
two-body density matrix (b) as functions of the binding energy for the 3+3 fermion
ground state. Results are shown for quantum numbers n= 0 and |m|= 0, 1, 2 (blue,
red, and green curves, respectively). Solid lines correspond to an effective range of
r2D/l

2
r = −0.2, while dashed lines correspond to r2D/l

2
r = −0.001 ≈ 0, with the lat-

ter taken from the two lowest panels of Fig. 2.

The effective range r2D quantifies the leading energy-dependent correction in the low-en-505

ergy description of two-dimensional scattering, entering the phase shift expansion via the term506

proportional to k2 in Eq. (4). Consequently, at a given interaction strength (here parameterised507

by the binding energy ϵb) changes in r2D predominantly affect observables when the character-508

istic relative momenta in the N-body state are appreciable. As the binding energy is increased,509

this characteristic momentum scale grows because stronger pairing localises the relative two-510

body wave function in real space, which by Fourier duality necessarily broadens its distribution511

in momentum space. The influence of the effective-range term is therefore expected to become512
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more pronounced at higher ϵb. In other words, the nature of the N-body state and the strength513

of the binding energy set the characteristic relative momentum scale relevant for the two-body514

interaction in the system, while the effective range determines how strongly that interaction515

varies with energy, or equivalently with relative momentum, at that scale. This energy depen-516

dence arises in quasi-two-dimensional geometries because the finite axial extent of the wave517

function introduces an additional length scale lz into the collision process, causing the scatter-518

ing amplitude to depend on the relative collision energy through the dimensionless combina-519

tion klz . This connection is quantified by the mapping in Eq. (5), which relates r2D directly to520

the axial confinement length lz in the regime of strong axial confinement, klz ≪ 1 [21–24].521

Figure 8: The radial one-body density [panels (a), (c), (e)] and the (scaled) radial
pair distribution function [panels (b), (d), (f)] for the 3+ 3 fermion ground state at
three binding energies. Solid lines correspond to an effective range of r2D/l

2
r = −0.2

and dashed lines to r2D/l
2
r = −0.001 ≈ 0, with the latter taken from the two lowest

panels of Fig. 5.

Figure 6 shows the shifts in the low-lying energy levels of the 3+3 system induced by a fi-522

nite effective range r2D as a function of the binding energy ϵb. Consistent with the physical in-523

terpretation outlined above, these energetic shifts are smallest at low binding energy and be-524
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come larger as the binding energy increases, reflecting the growing importance of the k2 r2D525

correction at higher characteristic relative momenta. At a given ϵb these shifts are larger for526

the first excited state than for the ground state. The ground state has the smoothest real-space527

structure (i.e., the fewest spatial oscillations) compatible with the antisymmetry requirements528

and is therefore dominated by long length scales and a relatively narrow momentum distribu-529

tion. By contrast, the first excited state must be orthogonal to the ground state and therefore530

exhibits additional spatial structure in the relevant relative co-ordinates, such as extra nodes531

and more rapid oscillations. These larger gradients in the wave function correspond to a broa-532

der momentum distribution with increased weight at higher relative momenta, rendering the533

excited state more sensitive to the k2 r2D effective-range correction.534

Figure 9: Ground-state momentum distribution for the motion of spin-↑ atoms [pan-
els (a), (c), (e)] and the centre-of-mass motion of spin-↑-spin-↓ pairs [panels (b), (d),
(f)] in the 3+3 Fermi system at three binding energies. Solid lines correspond to an
effective range of r2D/l

2
r = −0.2 and dashed lines to r2D/l

2
r = −0.001 ≈ 0, with the

latter taken from the two lowest panels of Fig. 4.

Structurally, a more negative effective range reduces the occupation of the lowest domi-535

nant natural orbitals of the one-body density matrix shown in Fig. 7, implying a redistribution536
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of spectral weight into higher excited orbitals. The representation of a tightly bound compos-537

ite bosonic wave function using effective single-particle states (the natural orbitals) requires538

significantly more terms than the description of a weakly correlated antisymmetric fermionic539

wave function. This change in occupation therefore suggests that increasing the magnitude of540

the negative effective range drives the system closer to the BEC limit. The (scaled) radial pair541

distribution function displayed in Fig. 8 supports this interpretation: increasing |r2D| enhances542

the weight of the short-range peak at small r, indicating an increased probability of molecu-543

lar pair formation. A complementary aspect of this behaviour appears in the one-body radial544

densities shown in the same figure. Tuning the effective range to more negative values at fixed545

binding energy shifts the density maximum outward and slightly reduces its height. In a har-546

monic trap the natural orbitals possess distinct radial structures and peak at different radii.547

Increasing |r2D| transfers a small amount of weight away from the most centrally peaked (low-548

est) orbitals and redistributes it among other higher orbitals with less central weight, so that549

the resulting superposition produces a density profile with an outward-shifted maximum. The550

effective-range dependence of these structural properties becomes more pronounced with in-551

creasing ϵb , reflecting the same underlying mechanism that governs the energetic shifts. On-552

ce the binding energy sets a characteristic relative momentum scale, a more negative effective553

range causes the interaction to act more strongly on the high-momentum components of the554

relative two-body wave function, thereby stabilising more compact molecule-like correlations555

and driving the system toward the BEC regime.556

Figure 9 shows that the single-particle and pair momentum distributions are only weakly557

affected by changes in the effective range. This is expected because the effective range enters558

as an energy-dependent correction that primarily modifies short-distance opposite-spin corre-559

lations, which are governed by high relative momenta. Although making r2D more negative in-560

creases the influence of the interaction on these high-momentum components, the associated561

spectral weight is confined to the tails of the momentum distributions. These tails contain very562

little probability compared with the low- and intermediate-momentum sectors that dominate563

the distributions, leaving the overall profiles essentially unchanged.564

4 Conclusions565

In this work we reported a numerically exact study of the energetic and structural properties566

of harmonically trapped, spin-balanced two-component Fermi gases in two dimensions, con-567

taining up to six particles. Using the explicitly correlated Gaussian method within a stochastic568

variational framework, we computed ground- and low-lying excited-state energy spectra, anal-569

ysed non-local correlations through the one- and two-body density matrices, extracted atomic570

and pair momentum distributions, and characterised local structure via radial and pair distri-571

bution functions. We further examined how these observables are modified by a finite effective572

range, thereby connecting strictly two-dimensional and quasi-two-dimensional geometries rel-573

evant to current experiments.574

A limitation of our approach — which is shared by Ref. [25], a related investigation car-575

ried out in three dimensions — arises in the treatment of the reduced two-body density matrix.576

Owing to the large number of degrees of freedom involved, we restrict our analysis to correla-577

tions between spin-↑ and spin-↓ fermions evaluated at the same relative-distance vector. As a578

consequence, correlations that are non-local in the relative co-ordinate are neglected. This ap-579

proximation affects the extracted occupation numbers N̄nm, the pair momentum distribution580

n(K), and the molecular condensate fraction Ncond.581
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Across all observables, our results consistently reveal the emergence and gradual strength-582

ening of pair correlations as the two-body binding energy is increased. Despite this clear en-583

hancement of pairing, we do not observe the onset of a deep BEC regime in which the system584

crosses over to a description in terms of tightly bound composite bosons. Physically, even for585

small particle numbers such a regime can be defined by the presence of a clear separation of586

length and energy scales: the size of the molecular bound state is much smaller than any ex-587

ternal length scale, such as the trap length, while the molecular binding energy is much larger588

than all other relevant energy scales, including the trap level spacing. In the first paragraph589

of Section 3 we describe how we obtain the binding energy ϵb by solving the 1+ 1 problem590

for given conditions (interaction and trapping potentials). In principle, for an N↑+ N↓ system591

under the same conditions, subtracting N↑× ϵb from the total energy would isolate the resid-592

ual contribution arising from molecule-molecule interactions and trap-induced effects. This593

residual energy could be compared to that of N↑ interacting bosons in the same trap with an594

effective interaction strength gmol. If such a mapping consistently and quantitatively captures595

the low-energy properties of the system, it would signal the existence of a well-defined sepa-596

ration of length and energy scales characteristic of the BEC limit. As discussed in the last para-597

graphs of Subsections 3.1 and 3.2.3, this separation of scales necessitates the use of basis func-598

tions spanning extremely small to very large spatial extents, resulting in a rapid growth of the599

explicitly correlated Gaussian basis required for convergence. Our results therefore emphasise600

an intermediate binding-energy regime in which fully converged calculations are feasible for601

all particle numbers considered.602

In addition to the binding energy, the range of accessible particle numbers is limited by nu-603

merical considerations. At any interaction strength the dominant contribution to the runtime604

arises from enforcing the antisymmetry of the N-body wave function, which involves summing605

over all permutations of identical fermions. The number of such permutations grows factori-606

ally with particle number, leading to a rapid increase in computational time [11]. As a result,607

evaluating matrix elements for 4+4 or more fermions becomes prohibitively time-consuming,608

and even computing the first several excited states for 3+ 3 fermions at ϵb ≲ 2ħhωr requires609

very long runtimes. This implies that the explicitly correlated Gaussian method would not be610

well suited to performing calculations at finite temperature (where the density matrix becomes611

a sum over the ground and excited states, weighted by the Boltzmann factor) or to performing612

time dynamics (where the original wave function is projected onto a new time-evolved basis,613

potentially acquiring non-zero excited-state components).614
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A Analytical Results in the Non-Interacting Limit622

In this appendix we analytically derive all the occupation numbers of the projected one-body623

density matrix Nnm and the projected reduced two-body density matrix N̄nm for the trapped,624
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non-interacting 2+2 atomic Fermi gas in the ground state. In two-dimensional position space625

the ground-state wave function is626

Ψ
(GS)
2+2 (r

↑
1, r↓2, r↑3, r↓4) =

1
p

2π2l6
r

exp

�

−
4
∑

i=1

(rσi )
2

2l2
r

�

(r↑1 − r↑3)
T (r↓2 − r↓4) , (A.1)

with σ = ↑, ↓. It can readily be confirmed that Eq. (A.1) is normalised and correctly gives a627

total ground-state energy of Ecom+ Erel = 6ħhωr . As defined in Eq. (6) the corresponding one-628

body density matrix is629

[ρ↑(r, r′)]GS =

∫

· · ·
∫

dr↓2 dr↑3 dr↓4 Ψ
(GS)
2+2 (r, r↓2, r↑3, r↓4) Ψ

(GS)∗
2+2 (r

′, r↓2, r↑3, r↓4)

=
1

2π
exp
§

−
1
2

�

r2 + (r′)2
�

ª

(1+ rTr′) . (A.2)

Writing rTr′ = r r ′cos(θ − θ ′) and then applying Eq. (11) yields630

[ρm= 0
↑ (r, r ′)]GS = exp

§

−
1
2

�

r2 + (r ′)2
�

ª

, (A.3a)

[ρm= ±1
↑ (r, r ′)]GS =

1
2

exp
§

−
1
2

�

r2 + (r ′)2
�

ª

r r ′, (A.3b)

[ρm≥ 2
↑ (r, r ′)]GS = 0 . (A.3c)

Finding the eigenvalues of
p

r [ρm
↑ (r, r ′)]GS

p
r ′∆r affords N0, 0 = 1/2 and N0,±1 = 1/4 (with631

all other occupation numbers zero), consistent with the left middle panel of Fig. 2.632

Similarly, the relevant two-body density matrix is633

[ρ(r↑, r′↑; r↓, r′↓)]GS =

∫

· · ·
∫

dr↑3 dr↓4 Ψ
(GS)
2+2 (r↑, r↓, r↑3, r↓4) Ψ

(GS)∗
2+2 (r

′
↑, r′↓, r↑3, r↓4)

=
1

4π2
exp
§

−
1
2

�

r2
↑ + (r

′
↑)

2 + r2
↓ + (r

′
↓)

2
�

ª§

1+ rT
↑ r
′
↑ + rT

↓ r
′
↓ + 2(rT

↑ r↓)
�

(r′↑)
T r′↓
�

ª

, (A.4)

as defined in Eq. (15). By transforming to the centre-of-mass and relative co-ordinates of the634

two spin-↑-spin-↓ pairs, we arrive at635

[ρ(R, R′; r, r′)]GS =
1

32π2
exp
§

−
�

R2 + (R′)2
�

−
1
4

�

r2 + (r′)2
�

ª

×
§

8+ 16RT R′ + 4rTr′ +
�

4R2 − r2
��

4(R′)2 − (r′)2
�

ª

. (A.5)

Setting r= r′ and subsequently integrating over r leads to636

[ρred(R, R′)]GS =
1

2π
exp
§

−
�

R2 + (R′)2
�

ª

�

3+ 2R2 (R′)2 − (R−R′)T(R−R′)
�

. (A.6)

At this point, we can expand (R−R′)T(R−R′) = R2 + (R′)2 − 2RR′cos(φ −φ′) and perform637

partial-wave projections in analogy to Eq. (11) to find that638

[ρm= 0
red (R, R′)]GS = exp

§

−
�

R2 + (R′)2
�

ª§

3+ 2(RR′)2 −
�

R2 + (R′)2
�

ª

, (A.7a)

[ρm= ±1
red (R, R′)]GS = exp

§

−
�

R2 + (R′)2
�

ª

RR′, (A.7b)

[ρm≥ 2
red (R, R′)]GS = 0 , (A.7c)

where φ(′) is the angle associated with the vector R(′). The occupation numbers can now be639

obtained as the eigenvalues of
p

R [ρm
red(R, R′)]GS

p
R′∆R. The first of the above relations (A.7a)640

gives N̄0, 0 = 0.625 and N̄1, 0 = 0.125, and the second (A.7b) gives N̄0,±1 = 0.125, while all641

other occupation numbers vanish — in agreement with the right middle panel of Fig. 2.642
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