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Abstract

We theoretically investigate equal-mass spin-balanced two-component Fermi gases in
which pairs of atoms with opposite spins interact via a short-range isotropic model po-
tential. We probe the distinction between two-dimensional and quasi-two-dimensional
harmonic confinement by tuning the effective range parameter within two-dimensional
scattering theory. Our approach, which yields numerically exact energetic and structural
properties, combines a correlated Gaussian basis-set expansion with the stochastic vari-
ational method. For systems containing up to six particles, we: 1) Present the ground-
and excited-state energy spectra; 2) Study non-local correlations by analysing the one-
and two-body density matrices, extracting from these the occupation numbers of natural
orbitals, the momentum distributions of atoms and pairs, and the molecular ‘condensate
fraction’; 3) Study local correlations by computing the radial and pair distribution func-
tions. This paper extends current theoretical knowledge on the properties of trapped
few-fermion systems as realised in state-of-the-art cold-atom experiments.
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1 Introduction

Many-body quantum systems are generally intractable due to their vast complexity and nu-
merous degrees of freedom. A few of the simplest cases — such as the Lieb-Liniger model of
the one-dimensional Bose gas or the one-dimensional Fermi—-Hubbard model — admit exact
analytical solutions because they are integrable, but these are rare exceptions. One promising
strategy for discerning how many-body features emerge in more realistic settings is to probe
the underlying physics from the few-body limit. Since the two-body system is typically well
characterised, a ‘bottom-up’ approach can be employed in which the number of particles is
increased one by one, thereby introducing complexity in a controlled and stepwise manner. In
this way, mesoscopic observables are often found to converge surprisingly rapidly toward the
predictions of many-body theories, once those predictions are rescaled to account for varying
particle number [1-9].

An experimental bottom-up approach has been realised by the research group of Selim Jo-
chim using a tightly focused optical microtrap (‘optical tweezer’). By superimposing this mi-
crotrap onto a large reservoir of ultracold fermionic atoms and gradually lowering its depth,
a chosen small number of particles can be deterministically prepared in the ground state of a
harmonic oscillator potential at temperatures close to zero [1,8-10]. Applying this method to
two-component Fermi gases, their experiments have shown that in quasi-one-dimensional ge-
ometries a many-body Fermi sea can form from only four atoms [1]. In quasi-two dimensions
many-body ‘Cooper-like’ pairing — evidenced by a peak in the correlations between particles
with opposing spins and momenta at the Fermi surface — has been experimentally observed
with as few as twelve atoms [9].

To better understand the latter experiment, in Ref. [11] we theoretically modelled an in-
creasing number of spin-balanced two-component fermions confined in a quasi-two-dimens-
ional harmonic trap. Our numerical approach — commonly referred to as the explicitly corre-
lated Gaussian (ECG) method [12-15] — combined a stochastic variational framework with
the use of ECG basis functions [16,17], allowing us to compute experimentally measurable
observables with very high accuracy. In particular, we calculated the lowest monopole excit-
ation energies and ground-state opposite-spin pair correlations as functions of increasing at-
tractive interaction strength [11]. The few-body physics was captured by applying two-dim-
ensional scattering theory [18-20] to a finite-range Gaussian interaction potential, with the
effective range tuned to model realistic quasi-two-dimensional scattering [21-24]. For gases
comprising up to six equal-mass fermions, we found that time-reversed pairing in the ground
state was predominant at momenta significantly below the Fermi momentum [11]. Together
with experimental findings [9], this suggested that the Fermi sea — which, beneath the Fermi
surface, Pauli-blocks the superposition of momenta required to form a paired state — must
emerge in the transition from six to twelve particles.

Here, we apply the ECG method to the same Fermi gases to obtain new energy spectra and
ground-state structural properties, which are crucial for their theoretical characterisation and
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thereby further advance our understanding of fermionic few-body systems. This paper is or-
ganised as follows: In Section 2 we outline our model and the underlying two-body scattering
theory. Section 3 details our results: In Subsection 3.1 we generate the energy spectra of the
ground state and low-lying excited-state manifolds for gases containing two, four, and six par-
ticles. We quantify non-local correlations between the trapped fermions by analysing the one-
and two-body density matrices in Subsection 3.2. In Subsection 3.3 we analytically Fourier
transform the density matrices to extract the momentum distributions of individual atoms and
opposite-spin pairs. To quantify local correlations in the Fermi gases we examine the radial
and pair distribution functions in Subsection 3.4. In Subsection 3.5 we elucidate the effect of
the trap aspect ratio — i.e., effective range — on the energetic and structural properties men-
tioned above. We conclude and discuss the relative merits of our approach in Section 4. Our
work is strongly inspired by earlier, similar studies of trapped few-fermion systems subject to
three-dimensional harmonic confinement — particularly Ref. [25], as well as Refs. [26-29].
These publications, in turn, are partly motivated by research on bosonic “He and fermionic
3He droplets [30] which, although much denser than ultracold atomic gases, can be described
using the same theoretical framework.

2 Model

The two-component Fermi gases considered in our analysis consist of equal-mass atoms with
balanced spin populations, such that N = N; + N| and Ny = N| = N /2, where N; and N,
denote the number of ‘spin-up’ and ‘spin-down’ fermions, respectively. Each gas is confined
in an isotropic two-dimensional (2D) harmonic trap and in the non-interacting ground state
only the first two harmonic oscillator shells are occupied — corresponding to particle numbers,
N;+N;=1+1,2+2, and 3+ 3. Our work is inspired by recent experiments in the group of
Selim Jochim [8,9], which show that the harmonically trapped ground state of a small number
of fermionic ®Li atoms — ranging from 20 down to just 2 — can be prepared with very high
fidelity.

The effective low-energy Hamiltonian reads as follows:

N 12 N
”H:;[—%Vi+Vext(|ri|)]+ZVim(|ri—rj|), 1)

i<j

where m is the atomic mass and r; is the 2D position vector of the i" atom measured from
the centre of the trap. The first term corresponds to the kinetic energy, the second term to the

external confinement,
2
mows

2

2 —
Vext(I1;]) = ro, ri=lnl, (2)
where w,. is the radial harmonic trapping frequency, and the third term to short-range pairwise
interactions. Note that Pauli exclusion ensures identical fermions do not interact. The interac-
tions between distinguishable fermions are described using a finite-range Gaussian potential,
parameterised by a width ry (> 0) and a depth V;, (< 0):

Vie(J1]) = Vi ex (—i)—v I ex |:— r* ] 3
int 0 €Xp 27‘3 Olr p 2(27'0)2 .

Here, [, = v/li/(mw,) is the radial harmonic oscillator length scale in the plane. This poten-
tial has previously been employed to model the breathing modes [24] and time-reversed pair
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correlations [11] of a few interacting fermions in a 2D harmonic trap. In the non-interacting
limit of V, = 0, the eigenvalues of the Hamiltonian (1) are 8,(1?13 =(2n+|m|+ 1)Aw,, where
n=0,1,2,... is the principal quantum number and m =0, £1, £2, ... is the quantum num-
ber for orbital angular momentum.

The values of ry and Vj, can be adjusted to generate potentials with different s-wave scat-
tering properties in 2D free space [31]. We solve the s-wave radial Schrédinger equation for
the relative motion of two elastically scattering atoms, matching the logarithmic derivatives of
the wave functions inside and outside the range of the interaction potential (3) to obtain the
scattering phase shift 6 (k). By subsequently fitting the phase shift to the known form [18-20]
of its low-energy expansion in two dimensions,

cot[5(k)]=%[y+ln(ka%)]+%kzrm+..., @

we ascertain both the s-wave scattering length a,p, and effective range rop." Above, k = |K| is
the magnitude of the relative wave vector between the atoms in the plane and y ~ 0.577216
is Euler’s constant. With this definition of a,p, the relative radial wave function has the loga-
rithmic large-distance form v(r) o< In(a,p/r) which is characteristic of zero-energy two-di-
mensional scattering. Importantly, the low-energy physics does not depend on the short-range
details of the true interaction potential and is, instead, universally determined by a,p and ryp.
In all our calculations, we therefore choose Gaussian widths small enough (ry < 0.11,) that
higher order terms in the expansion (4) are negligible in the energy range of interest. In two
dimensions a two-body bound state always exists — even for arbitrarily weak attractive inter-
actions — since the scattering amplitude obtained by the analytic continuation of Eq. (4) to
negative energies always exhibits a pole. In the zero-effective-range limit, the corresponding
binding energy ¢, is related to the 2D scattering length via &, = 4h%e27/ (ma%D). For finite
rop this relationship must be determined numerically from the phase shift expansion; however,
¢y, still serves as a monotonic proxy for interaction strength [32].

The scattering length is always positive (a,p > 0) because it enters as the argument of the
logarithm in Eq. (4) and the phase shift must remain real at low energies. In the many-body
limit as a,p increases, the two-component Fermi gas undergoes a crossover from a Bose-Ein-
stein condensate (BEC) of tightly bound diatomic molecules to a Bardeen—Cooper—Schrieffer
(BCS) superfluid of long-range Cooper pairs [32,33]. However unlike in three dimensions,
there is no unitary limit where the interaction strength diverges and becomes scale invariant.
Rather, the strongly interacting regime emerges around the point In(kpasp) = 0, where the
Fermi momentum ky determines the average interparticle spacing [32,33]. In the few-body
limit this spacing becomes ill-defined due to large fluctuations, making the regime of strong
interactions more difficult to characterise for only a small number of atoms.

A two-dimensional geometry is experimentally realised by applying a strong harmonic con-
finement along the axial direction [8,9], characterised by an angular frequency w, and a cor-
responding length scale I, = +/f/(mw,). However, in reality, the gas extends a small but fin-
ite distance perpendicular to the plane. At low energy, when [, is small (such that kl, < 1) but
still much larger than the van der Waals range of the interactions, the two-body scattering of
distinguishable fermions can be mapped to a purely 2D scattering amplitude with an effective
range given by [21-24]

I'op = _ZZZ 1n(2) . (5)

As a result, the effect of a quasi-2D geometry on the scattering can be mimicked and probed
by attributing a finite, negative value to the effective range in the 2D model, Egs. (1)-(5).

INote that the exact definitions of the 2D scattering length and effective range are not fixed in the literature.
Our definition of r,; has units of squared length, consistent with Refs. [11, 24].
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The effective range can be tuned through a wide range of negative values near a shape reso-
nance [24, 34] which arises due to the structure of the model potential. Virtual bound states
are supported in the attractive well associated with the first term of Eq. (3), and these can
couple to free-space scattering states through the small repulsive barrier created by the sec-
ond term. We restrict our calculations to the regime where this potential supports a single
two-body s-wave bound state in two-dimensional free space [11,24]. In Subsections 3.1-3.4
we fix the effective range to very nearly zero, rop/ lr2 = —0.001 ~ 0, in order to determine
the energetic and structural properties of the Fermi gases very close to the strictly 2D limit,
which is of fundamental interest. Increasing |rop| — while remaining within the regime of the
mapping in Eq. (5) — leads to small quantitative shifts in these results but, most of the time,
leaves them qualitatively unchanged. In Subsection 3.5 we show how our results are modified
for ryp/ lr2 = —0.2 which was the largest negative value considered in Ref. [11].

We note that the two-Gaussian interaction potential in Eq. (3) has been chosen for three
reasons. First, it provides a minimal two-parameter model that both reproduces a target scat-
tering length a,;, and simultaneously allows the effective range 5, to be tuned across a broad
interval by adjusting the relative weights of the attractive well and repulsive barrier. Second,
it is numerically tractable when combined with the use of Gaussian basis functions. Third, this
potential has been employed successfully in previous ECG calculations for quasi-two-dimen-
sional few-fermion systems where it was shown to capture the relevant low-energy scattering
properties [11, 24]. However, since the low-energy physics depends universally on only a,p
and ryp, and not on the microscopic details of the short-range potential, the precise functional
form we use is unimportant. This was verified in Refs. [11,24] where the modified potential
given in Eq. (S23) of the Supplemental Material of Ref. [24] was shown to reproduce the same
energies at fixed binding energy ¢, and effective range.

3 Results and Discussion

To numerically solve the time-independent Schrédinger equation for the Hamiltonian (1) we
employ the explicitly correlated Gaussian method discussed in detail in our earlier publica-
tion [11] (see Appendix A therein). Other works which have also applied this technique to
study ultracold two-component fermions include Refs. [24-29]. Our calculations are parame-
terised in terms of the two-body binding energy €, > 0 and the effective range ryp. Although
€, was introduced in Section 2 in the context of free-space pairwise scattering, it can addi-
tionally be defined in the presence of the harmonic trap. The two definitions coincide in the
weak confinement limit and in both cases ¢, remains a monotonic function of the underlying
scattering parameters, d,p, and r,p. In practice, we determine the trapped value of ¢}, by using
the ECG method to compute the relative ground-state energy &, for the 1+ 1 system described
by Eq. (1) with specified values of ry and V;,. The total ground-state energy in the harmonic
trap is € = €c.om + €1l = 2Hw, — €3, and since the ground state contains no centre-of-mass
excitations €.,, = fiw,, we can immediately find ¢,.

3.1 Energy Spectra

In two dimensions the exact energy spectrum for 1+ 1 fermions was analytically calculated
by Busch et al. in 1998 [35]. Their approach involved modelling the interaction with a reg-
ularised Dirac delta distribution, expanding the relative wave function in the harmonic oscil-
lator basis, and using standard integral representations to evaluate the Schrodinger equation.
In 2010 Liu et al. numerically computed the exact energy spectrum for 2 + 1 fermions by ex-
tending the approach of Efimov [36] to the two-dimensional trapped case and applying the
Bethe—Peierls boundary condition [37]. Here, we obtain numerically exact energy spectra for
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1+1, 242, and 3+ 3 fermions at very nearly zero effective range, ryp/ lf =—0.001 ~ 0. After
separating off the centre-of-mass degree of freedom, we expand the eigenstates of the relative
Hamiltonian in terms of explicitly correlated Gaussian basis functions [11-15]. These basis
functions depend on a series of non-linear variational parameters (the Gaussian widths) which
are optimised by energy minimisation. In Fig. 1 we plot the resultant energies as functions of
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the two-body binding energy ¢;,.

Erel/<hwr) Erel/(h’wT)

Erel/(hwr>

Figure 1: The monopole energy spectrum for (a) 1+ 1, (b) 2+ 2, and (c) 3 + 3 fer-
mions at very nearly zero effective range, rop/ lf =—0.001 ~ 0. E, is the energy of
relative motion and ¢, is the two-body binding energy. In panels (b) and (c) the grey
dashed line indicates the energy of the first state of the next (unshown) manifold.
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The non-interacting ground state at £, = 0 can assume one of two configurations depend-
ing on the total number of particles N: either all of the degenerate single-particle states of
the highest energy level of the 2D harmonic oscillator are filled (‘closed shell’), or some of
the degenerate states remain empty (‘open shell’). The 1+ 1 and 3 + 3 systems both feature
a closed-shell ground state that is non-degenerate, whereas the 2 + 2 ground state is open-
shell. We restrict our analysis to ground states characterised by zero total orbital angular mo-
mentum. For the 2 + 2 system this means that the two highest energy opposite-spin fermions
reside in different degenerate single-particle states. Since the Hamiltonian is rotationally sym-
metric, only monopole excitations between states with the same (i.e., zero) total angular mo-
mentum occur. (The m quantum numbers for all atoms sum to zero in both the ground and
excited states.) We can see in Fig. 1 that for all three atom numbers at ¢, = 0, all monopole
excitations have an energy of 2hw,. This can be attributed either to exciting a single particle
up two harmonic oscillator shells, or to exciting a time-reversed pair of particles (n, m, T) and
(n, —m, |) up one shell each.

Our result for 1+ 1 fermions in Fig. 1(a) agrees with the ‘Busch spectrum’ [35] for the con-
sidered range of binding energies, 0 < ¢, < 2hw,. As evident in Fig. 2 of Ref. [11], this range
is sufficient to capture the non-monotonic dependence on ¢, of the lowest monopole excitation
of 3 + 3 fermions [Fig. 1(c)] — a feature which is driven by coherent pair correlations [38].
Larger basis sizes are required for the ECG method to converge at higher binding energies,
€, > 2w, , where the tight composite bosonic wave functions become difficult to represent
numerically [11,25]. Currently, convergence cannot be achieved in this regime for six atoms,
although it may be possible for four (and is certainly possible for two). It is additionally chal-
lenging to solve for more than six particles at any binding energy due to the factorial growth
(with N) in the number of permutations of identical fermions required to antisymmetrise the
full wave function [11,25]. The spectra in Fig. 1 for increasing N are qualitatively similar, but
increasingly complex due to the existence of higher degeneracies in the non-interacting limit.
For 1+ 1 fermions [Fig. 1(a)] we choose to show the six lowest energy states, while for 2 + 2
fermions [Fig. 1(b)] we choose to show the ground state and the first- and second-excited-state
manifolds. For 3+ 3 fermions [Fig. 1(c)] we display the ground state and the first-excited-state
manifold which, in this case, is the largest number of states that can be computed to numerical
convergence within a reasonable time frame (on the order of months).

3.2 Density Matrices and Occupation Numbers
3.2.1 One-Body Density Matrix

In the first-quantised position representation the one-body density matrix for the spin-T parti-
cles is given by

-1
2
prte, 9= [ [ arlardarl ard ol ol

ff drédrgdri . --drITv_ldr]lV\IJ(r, rﬁ, rg, r‘l‘, e rva—p rllv)\ll*(r’, ri, rg, ri, e rITV—l’ r]lv) ,
(6)

where ¥ is the total N-body wave function and all integrals are two-dimensional (dr = d?r).
The first line above is a normalisation constant; in the second line the density ¥¥* is integrated
over all co-ordinates except those of a single spin-T atom.

The matrix elements of Eq. (6) in the explicitly correlated Gaussian basis were derived in
our earlier work (see Appendices A, C, and D of Ref. [11]); for ease of reference, we quote the
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final result below:

1
[p1(x, ) ]anr = bal 1, 1) |9} = clexp{—g[crz +c(r)? —arTr’]}, %
which contains the following scalars:
(27‘C)N_1
= =7 8
VT Qe (B+B]’ (82)
c=b;—blCb, (8b)
¢’ =b]— (v")Tcy, (8¢c)
a=b'Cb + (b)'Chb. (8d)

Here, b, = (UTAU);; is also a scalar, b= ((UTAU);,, ..., (UTAU),y) is an (N—1)-dimension-
al vector, B is an (N — 1) x (N — 1)-dimensional matrix given by UTAU with the first row and
column removed, and C = (B + B’)~'. The N x N transformation matrix U (x = Uy) converts
the single-particle co-ordinates y into relative and centre-of-mass generalised Jacobi co-ord-
inates x (where x and y are vectors of vectors). The N x N correlation matrix A comprises non-
linear variational parameters (the Gaussian widths) which are optimised stochastically. Oper-
ationally, the stochastic variational procedure proposes random updates to the elements of A
and retains them only if they lower the variational ground-state energy. The bounds of these
random proposals are chosen to reflect the physically relevant interparticle length scales, which
differ for distinguishable and indistinguishable fermions due to the Pauli principle. Each ECG
basis function |¢, ) is numerically represented by a unique A matrix [11].

Equation (6) can be expanded over a complete set of basis functions — the natural orbitals
Znm(r) — where the expansion coefficients correspond to the occupation numbers N,,,,, of those
orbitals:

P1(E ) =D N £ (1) Ham (1) )

These components are normalised as follows:
J dr () X (1) = 6y S gy (10a)
> Nom=1, (10b)

where (n, m) are the harmonic oscillator quantum numbers defined below Eq. (3), and where
the asterisk denotes complex conjugation (although in our specific case the natural orbitals
are real). This natural-orbital decomposition of the one-body density matrix follows the stan-
dard framework introduced by Lowdin [39] in the context of quantum chemistry, and indepen-
dently by Penrose and Onsager [40] in the context of Bose-Einstein condensation. Yang [41]
further developed the framework by formulating the criterion of off-diagonal long-range or-
der. This approach has since been widely adopted in ultracold-atom physics, including anal-
yses of interacting many-body Bose systems by DuBois and Glyde [42] and few-body studies
of trapped Bose gases by Zollner et al. [43]. In these applications the eigenvalues (i.e., occu-
pation numbers) of the one-body density matrix provide a basis-independent characterisation
of single-particle structure and condensation.

In practice, because direct decomposition of the four-dimensional object p4(r, ') in the
form of Eq. (9) is computationally infeasible, we first reduce the number of degrees of freedom
by defining partial-wave projections:

1 21,27
p{(r, r')= e f f do dG’e_lmepT(r, ) eim?’ (1D
TJo Jo

8
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with 8() denoting the angle associated with the vector r") and r) = [r()|. This procedure
mirrors that used in the few-body fermionic studies of Blume and Daily [25] where the three-
dimensional case is addressed. The explicitly correlated Gaussian matrix elements of Eq. (11)
are

(7 e = (Balof190) =20 T )e{ 2 [+ 0]} a2)

where Z,,(x) is the modified Bessel function of the first kind, and where the scalars {c;, c, ¢, a}
have been defined in Eq. (8).

The ground-state (‘GS’) matrix element of the projected one-body density matrix can now
be written as

(‘P(GS)|p%n(r; r/)lqj(GS)> _ Zi,jCT[P'Tn(r, r/)]AlAjcj
(weS)|w(es) 200,56 Onin s

[T (r, T)]es (13)

Above, the second expression is obtained from the first by inserting two complete sets of ex-
plicitly correlated Gaussian basis states into both the numerator and denominator. The it"
(real) coefficient of the total ground-state wave function in this basis is ¢; = (¢4, |w(G8)) and
the overlap matrix element is [14]

@m)"

 det[A;+ A1 a4

Opa; = (PalPa))

The indices i and j both run over the minimum number of (previously found) optimised basis
states required to converge the ground-state energy at a given two-body binding energy ;.
While the equations in this and later subsections are written in terms of unsymmetrised basis
states for clarity, these must be antisymmetrised to account for particle exchange (refer to
Appendix D of Ref. [11] for further details).

At this point, the occupation numbers can be found by discretising the variables r and
r’ into grids of width Ar and then finding the eigenvalues of /7 [ p%"(r, r')]gs V1’ Ar for a
given partial wave m. The first such eigenvalue is NV, _¢ ,,, the second is V,,_; ,, and so on.
These results are shown in panels (a), (c), and (e) of Fig. 2. In the non-interacting limit of
€, = 0, where the natural orbitals are the single-particle harmonic oscillator levels, they are
straightforward to understand. Due to the antisymmetry of the wave function same-spin ferm-
ions must occupy different single-particle levels. For 1 + 1 fermions the spin-up atom is in the
n=m = 0 ground state, which has an occupation number of N = 1 due to the normalisation
condition (10b), while all other occupation numbers are zero. For 2 + 2 fermions the second
spin-up atom is equally distributed between the two degenerate first excited states with n = 0
and m = £1 — leading to three finite occupation numbers, Ny o = 1/2 and N 4; = 1/4. In
the 3 + 3 case, the three lowest energy states contain one spin-up fermion each and thus the
corresponding occupation numbers become N o =N 41 = 1/3, whereas all others vanish.

When the binding energy increases (g, > 0) the finite values of N o and N 4 decrease,
while the occupation numbers of higher excited natural orbitals increase as one would gener-
ally expect. However, for the range of interaction strengths covered by the energy spectra in
Subsection 3.1 (0 < ¢, < 2Hw,) this variation is not strong — and the one-body density matrix
can always be decomposed with a good level of accuracy by only including up to six natur-
al orbitals. Such an observation suggests that we are never close to the deep Bose-Einstein
condensation regime. If we instead had a tight composite bosonic wave function, then its ex-
pansion into effective single-particle orbitals (the natural orbitals of p;) would require many
terms [25]. In that case, many more occupation numbers would take on (small but) non-van-
ishing values, forcing a more significant reduction in the values of N ¢ and N 4; than what
can be seen in Fig. 2.
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Figure 2: Left panels: Ground-state occupation numbers (eigenvalues) of the one-
body density matrix N, (9) for (a) 1+ 1, (¢) 2+ 2, and (e) 3 + 3 fermions. Right
panels: Ground-state occupation numbers of the reduced two-body density matrix

Nym (17) for (b) 1+ 1, (d) 2+ 2, and (f) 3 + 3 fermions. The results are plotted as
a function of the two-body binding energy ¢, for (very nearly) zero effective range,
rap/ lr2 =—0.001 ~ 0. Note in panel (b) that for any binding energy /\70,0 =1, while
all other occupation numbers vanish.

300 3.2.2 Two-Body Density Matrix

301 The two-body density matrix in the first-quantised position representation is given by
571
p(ry, 11y, 1)) = [JI drldri ---drITV_ldr]lv \P(r{, ré, e r]TV_l, rllv)‘ ] X

JJ drgdri---drlt,_ldr]lv\ll(rl, Iy, rg, ri, e rITV—l’ r]lv)\ll*(r’l, 15, r:T,,, rﬁr, e rva—p l'zlv) ,
(15)

302 where the density WW* is integrated over all co-ordinates except those of one spin-1 particle
03 and one spin-| particle. In two dimensions p(ry, r{; Iy, 1) is an eight-dimensional array, so
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we again need to reduce the number of degrees of freedom prior to diagonalisation. To this
end we follow Ref. [25], which considered the three-dimensional version of this problem, and
transform from the co-ordinates of the individual atoms to the centre-of-mass and relative co-
ordinates of the two spin-T-spin-| pairs: R = (r; +r,)/2 and r = r; —r, (and their primed
equivalents). By setting r = r’ we can then define the reduced two-body density matrix as

r r r r
R,R)= | dr (R+—,R’+—;R——,R’——), 16
pred( ) f Y 2 2 2 2 ( )
which measures non-local correlations between pairs described by the same relative-distance
vector.
In analogy to the one-body density matrix, the reduced two-body density matrix can be
expanded in terms of natural orbitals and occupation numbers:

Pred®, R) = > Ny 7 (R) Zum (R, (17)
which have the normalisations,
JdRi:m(R) T (R) = 8 O 5 (18a)
> N =1. (18b)
nm

We again perform partial-wave projections according to Eq. (11): preq(R, R)) — p,(R, R')
with R() = |[R)|. The derivation of the ground-state matrix element of the projected reduced
two-body density matrix [p7 (R, R’)]gs then follows identically to Egs. (12)-(13) with only

one minor change. The vector of single-particle co-ordinates y must be replaced by y/,
y: (rli ré’ rg) MR ] r]l\[) - y/ = (R) rJ rg) M r]lv) > (19)

and therefore the transformation matrix U should be redefined appropriately, x = Uy’ [25].
The replacement matrix U’ that takes the place of U is shown below for each of the total par-
ticle numbers (N; + N|) considered in this work; for reference, the original U matrices were
defined in Eq. (A.2) of Ref. [11]:

1 —1 0 1
1+1: IU=(1 1)—>U'=( ) (20a)
(1 -1 0 0 (01 0 0
0 0 1 -1 00 1 -1
2+2: U=| 1 1 _1 _1 |->U=| 1 4 _1 _1 |, (20Db)
2 2 2 2 2 2
1 1 1 1 1 1 1
\z i 7 3 \50 i 1
[1—1 0 0 O o\ (01 0 0 O 0\
0 0 1 -1 0 O 00 1 -1 0 O
0 0 0 0 1 -1 00 0O 0 1 -1
. - 1 1 1 1 /= 1 1
3+3: U 3 + -4+ -1 0 o]0 10 -3 —3 0 O
11 1 1 _1 _1 19 1 1 _1 _1
4 3 4 4 2 2 2 3 3 2 2
1 1 1 1 1 1 1 1 1 1 1
\: 3 3 % % %) \io 1 1 1 1)

(20¢)

The occupation numbers N, are obtained as the eigenvalues of vR[ Preg(Rs R)]gs VR’
x AR and are displayed in panels (b), (d), and (f) of Fig. 2. Although the values in the non-
interacting limit (¢, = 0) are less intuitive than in the one-body case, they may be verified

11



325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

SciPost Physics Core Submission

by comparing against analytically derived results. In Appendix A we detail these steps for the
2 4+ 2 system as an example. For increasing binding energy (¢, > 0) the occupation numbers
from the reduced two-body density matrix follow the same qualitative trends as those from
the one-body density matrix. It may initially seem counter-intuitive that the largest eigenvalue
/\70’0 has a higher value in the absence of pairs (¢, = 0) than in the presence of pairs (¢, > 0).
However, this is directly due to the procedure used to eliminate degrees of freedom and define
the quantity p,.q(R, R") — and was similarly observed in the three-dimensional case [25].

3.2.3 Molecular Condensate Fraction

In a trapped one-component Bose gas the condensate fraction becomes appreciable when the
lowest eigenvalue of the one-body density matrix becomes of order unity. In a two-component
Fermi gas, by contrast, none of the natural orbitals of the one-body density matrix can be-
come macroscopically occupied due to the antisymmetry of the wave function under particle
exchange. A significant condensate fraction can only arise when bosonic pairs are formed, and
hence, such insight must instead come from an analysis of the two-body density matrix.

Due to the elimination of degrees of freedom as described above, the absolute magnitude
of /\_/0’0 no longer corresponds directly to the number of condensed pairs. Rather, condensa-
tion occurs when the lowest natural orbital of the reduced two-body density matrix becomes
macroscopically occupied — in other words, when /\70’0 greatly exceeds all other N, [25].
Accordingly, we define the condensate fraction N,,,4 in two dimensions as follows:

max(Zm:i...Nnm)
No,o

>

Mond = 1 - > (Tl, m) 75 (03 0)5 (21)

i.e., one minus ‘the largest competing eigenvalue divided by the (0, 0) eigenvalue’ of the re-
duced two-body density matrix. Notice that the sum applies to non-zero m: when m = 0 the
physical mode is unique and its occupation is the single value Nn,O ; when |m| > 0 the physical
mode is the multiplet with angular momentum |m|, consisting of the two degenerate states +m
and —m, so the relevant quantity to compare is the total occupation of that multiplet. In the
deep molecular regime essentially all pairs occupy a single two-body natural orbital, so /\70’0
becomes much larger than any other A, and the ratio in Eq. (21) correspondingly becomes
very small: NV ,,q — 1. In the non-interacting limit (¢, = 0) several \,,, have comparable
magnitude, so the ‘largest competitor’ in Eq. (21) is of the same order as ./\_/'0,0. The ratio in
Eq. (21) is thus of order unity and N,,q becomes small: it approaches zero in the many-body
limit, while for few-body systems it settles to a finite fraction less than one. We remark that
Eq. (21) is directly analogous to the three-dimensional definition given in Eq. (16) of Ref. [25].

The eigenvalues N, measure the extent to which the N-body state comprises pairs with
centres of mass occupying the two-body natural orbital labelled by (n, m). As the binding en-
ergy €y is increased, the reduced two-body density matrix redistributes its fixed total spectral
weight: the dominant eigenvalues decrease in absolute magnitude, while many additional ei-
genvalues ‘turn on’ from zero yet remain extremely small. These small components reflect the
weak occupation of non-condensed and excited centre-of-mass pair configurations that appear
as the interactions become stronger. The behaviour of the condensate fraction is determined by
the relative evolution of the leading (./\_/'0,0) and subleading eigenvalues: N4 increases when
J\_fo,o falls off more slowly than the subleading eigenvalue, and decreases when the opposite
ordering holds. Therefore, N,,,q grows when the relative dominance of /\70,0 over the rest of
the spectrum increases. Equation (21) permits the identity of the subleading mode to change
as the interaction strength varies; however, as seen in Fig. 2 the same mode remains sublead-
ing throughout the entire range of binding energies considered.
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Figure 3: The condensate fraction N4 (22) as a function of the two-body binding
energy ¢;, for (a) 2+2 and (b) 3+ 3 fermions in the ground state. The effective range
is very close to zero in each panel, rZD/lf =—0.001~0.

In Fig. 3 we plot the condensate fractions for the 2+ 2 and 3 + 3 Fermi systems as functions
of the interaction strength:

B No, 41 +No 1
No,o

>

Neona =1 (22)

In both cases the behaviour is qualitatively similar. For ¢, 2 1.2k, the condensate fraction
shows a gentle upward trend, consistent with a gradual strengthening of pairing correlations.
For ¢, < 1.2Hw,, however, the condensate fraction initially decreases before rising again, re-
sulting in a weakly non-monotonic dependence over the range ¢, < 2fw,. This behaviour ar-
ises because at weaker binding the dominant eigenvalue decreases more rapidly than its near-
est competitor, while at stronger binding the relative rates reverse. It is important to note that
the total variation on the vertical axis is very small, which means that the condensate fraction
is effectively flat on the non-molecular side of the two-dimensional crossover. This observation
is consistent with results from a complementary three-dimensional study. In particular, Fig. 11
of Ref. [25] shows that in the corresponding regime of negative inverse scattering length in
three dimensions, the condensate fractions of the 2+ 1, 2+2, and 3+ 2 Fermi systems likewise
remain very nearly constant (for the 3 4+ 3 system only two data points are available, so no ov-
erall trend can be inferred for that case).

We do not extend our analysis to larger binding energies ¢, where the condensate fraction
approaches unity because, in practice, the explicitly correlated Gaussian method becomes in-
creasingly difficult to converge in this regime. As the binding energy grows, the internal size of
each T pair shrinks and the relative wave function develops structure on progressively shorter
length scales. Accurately resolving these sharper features requires Gaussians with very small
widths, while the overall trapped state still demands basis functions with much larger spatial
extent. For systems with more than two atoms this separation of length scales rapidly ampli-
fies the number of basis functions required for convergence. This challenge is compounded by
the stochastic nature of the basis-optimisation process, which involves generating and testing
many candidate basis functions at each expansion step, further increasing the computational
burden. In the 3 + 3 case the computational cost becomes prohibitive before a tightly bound
molecular regime is reached, and even for 242 the basis sizes needed at higher ¢, are substan-
tially larger than those required in the crossover regime. For this reason, our results focus on
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an intermediate range of binding energies for which fully converged calculations are attain-
able across all particle numbers considered.

3.3 Momentum Distributions

The momentum distribution of the spin-T atoms is given by the Fourier transform of the one-
body density matrix defined in Eq. (6):

(k) = @ JJ drdr’py(r, r') exp [—ik (r —1)]. (23)
It is straightforward to prove that Eq. (23) is equivalent to
iy (K) = > N | Zan K% 24)
nm
where
- 1 .
Fan(10= f dt Zun(x) exp(—iK'r) (25)

is the Fourier transform of the natural orbitals introduced in Eq. (9). In order to obtain an
analytical expression for the matrix elements of Eq. (23) in the explicitly correlated Gaussian
basis, we can use the result for [ py(x, 1')], o, shown in Eq. (7):

[y (K)]par = (;Tl)z ff drdr’exp{—%[cr2 +c'(r)? —arTr’:I} exp[ik"(r'—1)]. (26)

By defining X = r'—r the equation above becomes

1
[ny(K)]an = (;Tl)z JJ drdX exp |:§ (g1r2 + g, X%+ gngX)] exp(ikTX) , 27)

involving the coefficients,

g, =a—c—c/, (28a)
/

82 =—C, (28b)

gz3=a— 2¢’. (28¢)

The integral over r can be performed analytically for g, < 0:

___ G 1 2) AT
[ny(k)]pnr = mg, J dX exp(2g4X exp(lk X) , (29)

with the coefficient defined as

g4=82—83/(481). (30)

Subsequently, the integral over X can be analytically carried out for g4 < 0:

[ (K)]gar = [n1(K)]gar = eXP(LkZ) , k=lk], (31

8184 284

where the coefficient ¢, /(g;g4) can be either positive or negative.

14
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Figure 4: Left panels: The momentum distribution ny(k) (23) associated with the
motion of spin-T atoms for (a) 1+ 1, (c) 2+ 2, and (e) 3 + 3 fermions in the ground
state. Right panels: The momentum distribution n(K) (32) associated with the cen-
tre-of-mass motion of spin-T-spin-| pairs for (b) 1+ 1, (d) 2+ 2, and (f) 3 + 3 fer-
mions in the ground state [note the log-log scale]. The differently coloured lines
correspond to different binding energies ¢;, while the effective range is fixed for all
lines to very nearly zero, rop/ lr2 = —0.001 ~ 0. By construction the two-body results
for 1+ 1 fermions in panel (b) are the same at all values of ¢.

Analogously, the momentum distribution corresponding to the centre-of-mass motion of
spin-T-spin-| pairs is given by the Fourier transform of the reduced two-body density matrix
defined in Eq. (16):

1
(2m)?

n(K) = JJ dR AR peq(R, R") exp[—iK"(R — R")]. (32)
Here, we use the symbol K instead of k to distinguish the momentum vector associated with a
pair from that of an atom. As with the calculation of the occupation numbers, the derivation
of an analytical expression for [n(K)],,s follows identically to the one above for [n(k)]aa/
with a single minor adjustment. The transformation matrix U used to compute {c;, c, ¢, a} in
Eq. (26) should be replaced by U’ as explained in the text around Egs. (19)-(20). Note that
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the analysis in this subsection has been inspired by the corresponding three-dimensional cal-
culation of Ref. [25] (see Appendix A therein).

In Fig. 4 we present the momentum distributions [n;(k)]gs and [n(K)]gs for the ground
state which were calculated by replacing [ p%”(r, )] Ach; with [ny(k)]4, A and [n(K)],, A in
Eq. (13). In the non-interacting thermodynamic limit the momentum distribution for a single
spin component features a ‘step’ at the Fermi momentum. However, when there are only very
few atoms this step becomes ‘smeared out’ with a width determined by the radial harmonic
trapping frequency k., ~ 1/l = y/mw,/h, as shown in panels (a), (c), and (e). Interestingly
ny(k) adopts a distinct shape for each number of fermions, with the non-monotonicity in the
3+ 3 case likely resulting from finite-size effects of the trap. By contrast, the distribution n(K)
displayed in panels (b), (d), and (f) varies little with either particle number or binding en-
ergy. For the particular case of 1+ 1 fermions [Fig. 4(b)] n(K) shows no dependence on the
binding energy, mirroring the behaviour of the occupation numbers in Fig. 2(b). In three di-
mensions [25] n(K) was found to exhibit two distinct features in the limit of small positive
scattering length that could be associated with the condensation of pairs: a feature at smaller K
corresponding to the momentum distribution of non-interacting composite bosons of mass 2m,
and a feature at larger K corresponding to the internal structure of the bosons. For our largest
considered binding energy ¢;, ~ 2.1hw, we begin to see a ‘shoulder’ emerging at larger K that
resembles this phenomenon, however it is much less pronounced. This suggests — consistent
with the previous subsections — that we remain far from the deep BEC regime.

3.4 Radial and Pair Distribution Functions

As well as density matrices, any local structural property P(r) of the N-body system — such
as a density profile or pair distribution function — can be calculated from the wave function
as follows [25, 26, 28]:

P(r)= J a2 =) f d2Nx 5(r —x) [T (x)[2 (33)
2nr!

Above, 1’ and x are ‘dummy’ integration variables used to perform the radial projection and
many-body integration, with x representing a set of generalised co-ordinates such as the N
Jacobi position vectors described in Appendix A of Ref. [11]. The scalar r denotes the radial
distance associated with the chosen local observable. We define the averaged radial one-body
density Py(r) by setting r = |r;| in Eq. (33),% and also the averaged radial pair distribution
function Py () by setting r = |r; — r,|. These quantities are normalised such that

o0 o0
27'5[ drrPy(r)=1 and ZHJ drrPy(r)=1. (34)
0 0

The value of 27trPy(r)dr therefore equals the probability of locating a particle at a distance
between r and r + dr from the centre of the trap. Likewise, the value of 27tr P, (r) dr equates
to the probability of locating a spin-up particle and a spin-down particle at a distance between
r and r + dr from each other.

We compute the ground-state matrix element [P, (r)]gs (0 =T or T]) in a similar manner
to Eq. (13). In the explicitly correlated Gaussian basis, the matrix elements for arbitrary one-
and two-body operators are respectively given by

b 1
(B V@ I$n) = O, 25 J arveexp( 30, (35)

2Because the Fermi gases of interest are spin-balanced, the radial one-body densities for the spin-up and spin-
down atoms are equal, P;(r) = P|(r). In addition, since we consider only the sector of zero total orbital angular
momentum, P;(r) is radially (circularly) symmetric.
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(¢Ai|V(rk—1'1) |¢Aj) = (O)AIAJ, % J drV(r) exp(—%bklﬂ) , (35b)

453 where
£Z=DJ”fMH+AJ4w®: [0®] = W)y, (36a)
é%:{wwﬂ%&+Aﬂ4wWL [0] =), = (U™, (36b)

as9 and p=1,..., N [11,14]. Correspondingly, we substitute V(r;) = 6(r —r}) into Eq. (35a) to
a0 evaluate [Pp(r)]y, A and V(ry —r1;) = 6(r — 1, —17) into Eq. (35Db) to determine [Py (r)],, A
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Figure 5: Left panels: The radial one-body density PT(r) for (a) 1+1, (¢) 2+ 2, and
(e) 3+ 3 fermions in the ground state. Right panels: The (scaled) radial pair distri-
bution function Py (r) for (b) 1+ 1, (d) 2+ 2, and (f) 3 + 3 fermions in the ground
state. The results are shown for a variety of binding energies ¢; at close to zero ef-
fective range, rop/ Zf = —0.001 ~ 0. The bold fractions indicate the (approximate)
shaded area under the curve on either side of the grey vertical line for ¢, ~ 2.1Hw,,
as discussed in the main text.
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Our results for the radial one-body density are shown in panels (a), (c), and (e) of Fig. 5.
For the 1+1 system at ¢, = 0, the spin-up atom occupies the non-interacting two-dimension-
al harmonic oscillator ground state, so P;(r) has a Gaussian radial profile with a maximum
at the trap centre. For increasing ¢;, although the centre-of-mass motion of the pair remains
governed by the external confinement, the attractive interactions confine the relative motion
to shorter length scales, leading to deviations from a purely Gaussian profile and increasing
the peak value of Py(r) at r = 0. On the linear scale used in Fig. 5(a), the comparatively small
peak height of the ¢, = 0 profile causes its Gaussian decay to appear flattened relative to the
interacting cases.

For the 2 + 2 and 3 + 3 systems the peak value of P;(r) shifts from the centre of the trap
to a finite radius on the order of the radial harmonic trap length [,., which sets the average
interparticle spacing. This shift from zero to finite r with increasing particle number reflects
both the residual shell structure of the two-dimensional harmonic oscillator and the Pauli ex-
clusion principle. The first harmonic oscillator shell is fully occupied for Ny = 1, whereas fer-
mions occupy the first two shells for both Ny = 2 and N; = 3, leading to similar behaviour in
these cases: namely, P(r) retains a single maximum that moves outward from the trap centre
in order to accommodate both radial symmetry and Pauli repulsion between identical spins.

Panels (b), (d), and (f) of Fig. 5 show our results for the (scaled) radial pair distribution
function. At binding energies of €, 2 ficw, and when there is more than one particle per spin
state, Py (r) develops a clear two-peak structure similar to what has been observed in three
dimensions [25,26]. The peak at smaller r (around 0.1l,) signifies the formation of weakly
bound dimers, while the peak at larger r (between 1l, and 21,) is set by the dimer-dimer dis-
tance which is longer due to Pauli repulsion between same-spin fermions. The 2 + 2 system
has two such small interspecies distances (the distance between a spin-up and spin-down par-
ticle within a pair) and two large interspecies distances (the distance between a spin-up and
spin-down particle in different pairs). Accordingly, if we integrate Py (r) for Ny = 2 from zero
up to the r value where rP;(r) features a minimum, then we find that the probability of form-
ing a molecule (of being at short distances) is ~ 1/2 [26]. On the other hand, the 3+ 3 system
has three small interspecies distances and six large interspecies distances — and performing
a similar integration confirms the probability of forming a molecule to be ~ 1/3. These prob-
abilities are indicated in the figure. If we were to access the deep BEC regime ¢, > 2hw,,
then the peak at smaller » would become taller and narrower, while the peak at larger r would
become shorter and broader, with the pair density in between them reducing almost to zero —
and the fractions mentioned above would become exactly 1/2 and 1/3 [26]. The reason why
the scaled pair distribution function vanishes for r — 0 is because we are using a finite-range
interaction potential, such that unlike spins cannot approach each other at distances S ry. If
we had instead considered zero-range interactions, then the amplitude of rP;(r) would have
been finite at r = 0 [25,44].

3.5 Finite Effective Range Effects

In this subsection we examine how the effective range influences the energetic and structur-
al properties of the 3 + 3 Fermi system. Figures 6—9 present results for a comparatively large
negative effective range, rop/ lf = —0.2 — corresponding to the most negative value consid-
ered in Ref. [11] — overlaid with our earlier results obtained for an almost vanishing effective
range, rZD/lf =—0.001~ 0.
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Figure 6: Energy of relative motion for the ground [red] and first excited state [blue]
of the 3 + 3 system as a function of the two-body binding energy in the monopole
sector of zero total orbital angular momentum. Solid lines correspond to an effective
range of r2D/lr2 = —0.2 and dashed lines to rzD/er =—0.001~0.
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Figure 7: Occupation numbers of the one-body density matrix (a) and the reduced
two-body density matrix (b) as functions of the binding energy for the 3 + 3 fermion
ground state. Results are shown for quantum numbers n =0 and |m| =0, 1, 2 (blue,
red, and green curves, respectively). Solid lines correspond to an effective range of
o/ lf = —0.2, while dashed lines correspond to r,p/ lf = —0.001 ~ 0, with the lat-
ter taken from the two lowest panels of Fig. 2.

The effective range ryp, quantifies the leading energy-dependent correction in the low-en-
ergy description of two-dimensional scattering, entering the phase shift expansion via the term
proportional to k2 in Eq. (4). Consequently, at a given interaction strength (here parameterised
by the binding energy ;) changes in ryp, predominantly affect observables when the character-
istic relative momenta in the N-body state are appreciable. As the binding energy is increased,
this characteristic momentum scale grows because stronger pairing localises the relative two-
body wave function in real space, which by Fourier duality necessarily broadens its distribution
in momentum space. The influence of the effective-range term is therefore expected to become
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more pronounced at higher £;. In other words, the nature of the N-body state and the strength
of the binding energy set the characteristic relative momentum scale relevant for the two-body
interaction in the system, while the effective range determines how strongly that interaction
varies with energy, or equivalently with relative momentum, at that scale. This energy depen-
dence arises in quasi-two-dimensional geometries because the finite axial extent of the wave
function introduces an additional length scale [, into the collision process, causing the scatter-
ing amplitude to depend on the relative collision energy through the dimensionless combina-
tion kl,. This connection is quantified by the mapping in Eq. (5), which relates r,, directly to
the axial confinement length [, in the regime of strong axial confinement, kl, < 1 [21-24].
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Figure 8: The radial one-body density [panels (a), (c), (e)] and the (scaled) radial
pair distribution function [panels (b), (d), (f)] for the 3 + 3 fermion ground state at
three binding energies. Solid lines correspond to an effective range of rop/ lf =-0.2
and dashed lines to ryp/ lf = —0.001 ~ 0, with the latter taken from the two lowest
panels of Fig. 5.

Figure 6 shows the shifts in the low-lying energy levels of the 3 + 3 system induced by a fi-
nite effective range r,p as a function of the binding energy £;,. Consistent with the physical in-
terpretation outlined above, these energetic shifts are smallest at low binding energy and be-
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s25 come larger as the binding energy increases, reflecting the growing importance of the k?r,p,
s26 correction at higher characteristic relative momenta. At a given ¢, these shifts are larger for
527 the first excited state than for the ground state. The ground state has the smoothest real-space
s2s  structure (i.e., the fewest spatial oscillations) compatible with the antisymmetry requirements
s20 and is therefore dominated by long length scales and a relatively narrow momentum distribu-
s30 tion. By contrast, the first excited state must be orthogonal to the ground state and therefore
531 exhibits additional spatial structure in the relevant relative co-ordinates, such as extra nodes
532 and more rapid oscillations. These larger gradients in the wave function correspond to a broa-
533 der momentum distribution with increased weight at higher relative momenta, rendering the
s34 excited state more sensitive to the k?r,p, effective-range correction.
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Figure 9: Ground-state momentum distribution for the motion of spin-T atoms [pan-

els (a), (c), (e)] and the centre-of-mass motion of spin-T-spin-| pairs [panels (b), (d),

(f)] in the 3 + 3 Fermi system at three binding energies. Solid lines correspond to an

effective range of ryp/1? = —0.2 and dashed lines to ryp/1? = —0.001 ~ 0, with the

latter taken from the two lowest panels of Fig. 4.

535 Structurally, a more negative effective range reduces the occupation of the lowest domi-

53 nant natural orbitals of the one-body density matrix shown in Fig. 7, implying a redistribution
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of spectral weight into higher excited orbitals. The representation of a tightly bound compos-
ite bosonic wave function using effective single-particle states (the natural orbitals) requires
significantly more terms than the description of a weakly correlated antisymmetric fermionic
wave function. This change in occupation therefore suggests that increasing the magnitude of
the negative effective range drives the system closer to the BEC limit. The (scaled) radial pair
distribution function displayed in Fig. 8 supports this interpretation: increasing |r,p| enhances
the weight of the short-range peak at small r, indicating an increased probability of molecu-
lar pair formation. A complementary aspect of this behaviour appears in the one-body radial
densities shown in the same figure. Tuning the effective range to more negative values at fixed
binding energy shifts the density maximum outward and slightly reduces its height. In a har-
monic trap the natural orbitals possess distinct radial structures and peak at different radii.
Increasing |ryp| transfers a small amount of weight away from the most centrally peaked (low-
est) orbitals and redistributes it among other higher orbitals with less central weight, so that
the resulting superposition produces a density profile with an outward-shifted maximum. The
effective-range dependence of these structural properties becomes more pronounced with in-
creasing ¢, reflecting the same underlying mechanism that governs the energetic shifts. On-
ce the binding energy sets a characteristic relative momentum scale, a more negative effective
range causes the interaction to act more strongly on the high-momentum components of the
relative two-body wave function, thereby stabilising more compact molecule-like correlations
and driving the system toward the BEC regime.

Figure 9 shows that the single-particle and pair momentum distributions are only weakly
affected by changes in the effective range. This is expected because the effective range enters
as an energy-dependent correction that primarily modifies short-distance opposite-spin corre-
lations, which are governed by high relative momenta. Although making r,, more negative in-
creases the influence of the interaction on these high-momentum components, the associated
spectral weight is confined to the tails of the momentum distributions. These tails contain very
little probability compared with the low- and intermediate-momentum sectors that dominate
the distributions, leaving the overall profiles essentially unchanged.

4 Conclusions

In this work we reported a numerically exact study of the energetic and structural properties
of harmonically trapped, spin-balanced two-component Fermi gases in two dimensions, con-
taining up to six particles. Using the explicitly correlated Gaussian method within a stochastic
variational framework, we computed ground- and low-lying excited-state energy spectra, anal-
ysed non-local correlations through the one- and two-body density matrices, extracted atomic
and pair momentum distributions, and characterised local structure via radial and pair distri-
bution functions. We further examined how these observables are modified by a finite effective
range, thereby connecting strictly two-dimensional and quasi-two-dimensional geometries rel-
evant to current experiments.

A limitation of our approach — which is shared by Ref. [25], a related investigation car-
ried out in three dimensions — arises in the treatment of the reduced two-body density matrix.
Owing to the large number of degrees of freedom involved, we restrict our analysis to correla-
tions between spin-T and spin-| fermions evaluated at the same relative-distance vector. As a
consequence, correlations that are non-local in the relative co-ordinate are neglected. This ap-
proximation affects the extracted occupation numbers N, the pair momentum distribution
n(K), and the molecular condensate fraction N ypq.
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Across all observables, our results consistently reveal the emergence and gradual strength-
ening of pair correlations as the two-body binding energy is increased. Despite this clear en-
hancement of pairing, we do not observe the onset of a deep BEC regime in which the system
crosses over to a description in terms of tightly bound composite bosons. Physically, even for
small particle numbers such a regime can be defined by the presence of a clear separation of
length and energy scales: the size of the molecular bound state is much smaller than any ex-
ternal length scale, such as the trap length, while the molecular binding energy is much larger
than all other relevant energy scales, including the trap level spacing. In the first paragraph
of Section 3 we describe how we obtain the binding energy ¢; by solving the 1 + 1 problem
for given conditions (interaction and trapping potentials). In principle, for an Ny + N| system
under the same conditions, subtracting N; x &, from the total energy would isolate the resid-
ual contribution arising from molecule-molecule interactions and trap-induced effects. This
residual energy could be compared to that of N; interacting bosons in the same trap with an
effective interaction strength g...;- If such a mapping consistently and quantitatively captures
the low-energy properties of the system, it would signal the existence of a well-defined sepa-
ration of length and energy scales characteristic of the BEC limit. As discussed in the last para-
graphs of Subsections 3.1 and 3.2.3, this separation of scales necessitates the use of basis func-
tions spanning extremely small to very large spatial extents, resulting in a rapid growth of the
explicitly correlated Gaussian basis required for convergence. Our results therefore emphasise
an intermediate binding-energy regime in which fully converged calculations are feasible for
all particle numbers considered.

In addition to the binding energy, the range of accessible particle numbers is limited by nu-
merical considerations. At any interaction strength the dominant contribution to the runtime
arises from enforcing the antisymmetry of the N-body wave function, which involves summing
over all permutations of identical fermions. The number of such permutations grows factori-
ally with particle number, leading to a rapid increase in computational time [11]. As a result,
evaluating matrix elements for 4 +4 or more fermions becomes prohibitively time-consuming,
and even computing the first several excited states for 3 4+ 3 fermions at ¢, < 2w, requires
very long runtimes. This implies that the explicitly correlated Gaussian method would not be
well suited to performing calculations at finite temperature (where the density matrix becomes
a sum over the ground and excited states, weighted by the Boltzmann factor) or to performing
time dynamics (where the original wave function is projected onto a new time-evolved basis,
potentially acquiring non-zero excited-state components).
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A Analytical Results in the Non-Interacting Limit

In this appendix we analytically derive all the occupation numbers of the projected one-body
density matrix )V, and the projected reduced two-body density matrix N, for the trapped,
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non-interacting 2 + 2 atomic Fermi gas in the ground state. In two-dimensional position space
the ground-state wave function is

(GS) 1 L () T Nl ol
W, (rl,rz, r3, r4)— NPT exp| — E e (r;— 1) (r;—r2), (A.1)
r r

i=1

with o =1, |. It can readily be confirmed that Eq. (A.1) is normalised and correctly gives a
total ground-state energy of E.,, + E,o; = 6hiw,. As defined in Eq. (6) the corresponding one-
body density matrix is

GS GS
[oy(r, 1 Vs = J f dr, br! dr4 \If§+2)(r, ri, rg, ri) \I/§+2)*(r', rﬁ, rg, r‘l‘)

=5 exp{ 5 [ 24 (r’)z]}(l +r'r). (A.2)
Writing v’ = rr’cos(6 — 0”) and then applying Eq. (11) yields
m= / _ 1 /
Lo =00, s = exp{ =3 [+ ]} (A3a)
_ , 1 1 / /
Lo =1 1as = g exp =3 [+ 2] oo (A.35)
[pT Z2(r,1")]es =0. (A.30)

Finding the eigenvalues of ﬁ[p%“(r, r')]gs V1 Ar affords Ny o = 1/2 and Ny 4; = 1/4 (with
all other occupation numbers zero), consistent with the left middle panel of Fig. 2.
Similarly, the relevant two-body density matrix is

GS GS
[p(rT’ T’ rla l) GS — J f dr dr4 ‘I"g+2)(1‘T’ r,L: rg,, 1'4) "Pé_;,_z)*(rT: la 3’ r4)

= 2exp{ 2[ +(rT)2+rl+(rl) ]}{1+rTT /T+rlrl+2(rTTrl)[(r/T)Tr/l]}’ (A.4)

as defined in Eq. (15). By transforming to the centre-of-mass and relative co-ordinates of the
two spin-T-spin-| pairs, we arrive at

321 5 exp{—[R2 + (R’)z] — %[rz + (r’)z]} X

{8 +16R"R’ + 41"t + (4R? —r?)[4(R))? - (r’)z]}. (A.5)

[p(R, R; 1, 1')]gs

Setting r =t/ and subsequently integrating over r leads to
1
[Prea(R, R)gs = 5~ exp{—[R2 + (R’)Z]} [3+2R?R)?—(R—-R)T(R-R)]|. (A6)
i

At this point, we can expand (R—R’)"(R—R’) = R? + (R")?2 — 2RR’cos(¢ — ¢’) and perform
partial-wave projections in analogy to Eq. (11) to find that

[ops °(R, R)]Gs—exp{ [R2+(R’)Z]}{3+2(RR')2—[R2+(R')z]}, (A.72)
[p™=*1(R, R)]gs —exp{ [R2+(R’)2]}RR’, (A.7b)
[plZ*(R,R)]es =0, (A.70)

where ¢ is the angle associated with the vector R). The occupation numbers can now be
obtained as the eigenvalues of v/R[ Preq(R, R")]gs VR’ AR. The first of the above relations (A.7a)
gives ./\_/'0,0 = 0.625 and /\_/'1,0 = 0.125, and the second (A.7b) gives -/\_[O,il = 0.125, while all
other occupation numbers vanish — in agreement with the right middle panel of Fig. 2.
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