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Hierarchic superradiant phases in anisotropic Dicke model

D. K. He, Z. Song⋆

School of Physics, Nankai University, Tianjin 300071, China

⋆ songtc@nankai.edu.cn

Abstract

We revisit the phase diagram of an anisotropic Dicke model by revealing the non-analyticity
induced by underlying exceptional points. We find that, from a dynamical perspective,
the conventional superradiant phase can be further separated into three regions, in
which the systems are characterized by different effective Hamiltonians, including the
harmonic oscillator, the inverted harmonic oscillator, and their respective counterparts.
We employ the Loschmidt echo to characterize different quantum phases by analyzing
the quench dynamics of a trivial initial state. Numerical simulations for finite systems
confirm our predictions about the existence of hierarchic superradiant phases.
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1 Introduction

With the gradual development of experiments on light-matter interaction [1–4], the quantum
simulation of the Dicke model [5–8] is transitioning from theory to experiment. The Dicke
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model [9–13] is a fundamental model in the field of quantum optics, describing the interac-
tion between a single-mode light field and N two-level atoms. The Dicke model has a broad
prospect and great potential in the field of quantum batteries [14–20]. In the thermodynamic
limit (N →∞), the ground state of the Dicke model undergoes a quantum phase transition
(QPT) from the normal phase (NP) to the superradiant phase (SP) [11–13,21–24] at a certain
critical coupling strength, which is referred to as the superradiant phase transition. In addi-
tion to the QPT of the ground state demonstrated above, the Dicke model also exhibits three
distinct phase transitions, namely, the dissipative phase transition (non-equilibrium quantum
phase transition) [25–27], the excited-state quantum phase transition [28–30], and the ther-
mal phase transition [31,32].

The concept of exceptional points (EPs) [33–35], which represents the degeneracies of
non-Hermitian operators, is regarded as a unique feature of non-Hermitian systems. However,
subsequent research has shown that EPs exist not only in non-Hermitian systems but also in
Hermitian systems [36–48] . The non-analyticity induced by EPs suggests the presence of a
phase transition at this point. In previous studies, we demonstrated that the superradiant
quantum phase transition in the Dicke model can be seen as the effect of two hidden second-
order EPs [48,49]. This quantum phase transition is a dynamical phase transition, because as
the parameter varies, the effective form of the Hamiltonian changes, resulting in completely
different dynamical behaviors on either side of the transition point. This drives us to seek
a more general Dicke model to investigate its dynamical phase transitions. A more general
version of the Dicke model is called the anisotropic Dicke model [20,50–55] (ADM), in which
the strengths of the rotating-wave and counter-rotating-wave terms are different. The ADM is
being widely studied, including its applications in quantum batteries [20] and the ergodic-to-
nonergodic transition [50,51], as well as work related to quantum chaos [53].

In this work, we focus on the ADM Hamiltonian and identify the hidden EPs of this Hamil-
tonian in the thermodynamic limit. The EPs divide the parameter space into four regions. The
results show that, in addition to the existing NP to SP transition, there exists a hierarchical
structure within the SP phase. In each region, the original Hamiltonian consists of different
combinations of equivalent Hamiltonians, including the harmonic oscillator and the inverted
harmonic oscillator [56, 57]. The dynamics of such two oscilators are fundamentally differ-
ent. Therefore, starting from an initial state with only a small atomic excitation, the distinct
finite-time dynamical behaviors of the ADM can be used to demonstrate the existence of EPs
and to discriminate between different quantum phases. The finite-time guarantee ensures that
the dynamics of an ADM with a finite atom number can still be accurately described by the
thermodynamic-limit ADM, an idea akin to that proposed in [58]. We employ the Loschmidt
echo of quench dynamics to characterize these phase transitions. The Loschmidt echo can be
measured experimentally using quantum state tomography [59–61].

The structure of this paper is as follows. In Sec. 2, we introduce the model and pointed out
the hidden EPs within it. In Sec. 3, we solve the Hamiltonian exactly and present the phase
diagram of the model. In Sec. 4, we utilize quench dynamics to calculate the Loschmidt echo
in order to identify different dynamical phases. Finally, in Sec. 5, we provide a summary and
discussion. Some details of the calculations are provided in the Appendix.
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Figure 1: Phase diagrams of the Hamiltonian in Eq. (1) on the parameter g1 g2
plane, indicating the main conclusion of this work. Different colors in the diagram
distinguish different phases of the system. (a) The traditional phase diagram of the
anisotropic Dicke model (ADM), obtained by the mean field method, shows that the
region g1+g2 <ω corresponds to the normal phase (NP), and the region g1+g2 >ω

corresponds to the superradiant phase (SP). (b) The phase diagram of the ADM, re-
vealed by the underlying exceptional points (EPs) of the effective Hamiltonian in
Eq. (4) of the system, shows that the original superradiant phase (a) can be further
divided into three distinct phases. We label these phases as SP1, SP2, and SP3, re-
spectively. The corresponding equivalent Hamiltonians of the effective Hamiltonian
in each region are indicated in the panel. Here, we assume ω =ω0.

2 Model and exceptional points

We consider a Hamiltonian of a single-mode boson coupled to N two-level atoms, where the
rotating-wave and counter-rotating-wave terms are distinct. This model is known as the ADM.

H = ωa†a+ω0Jz +
g1p
N

�
a†J− + aJ+
�

+
g2p
N

�
a†J+ + aJ−
�

. (1)

Here, a† and a represent the creation and annihilation operators of the single-mode boson,
respectively. J± and Jz are the collective atomic operators, and their commutation relations
are as follows �

a, a†
�
= 1, [Jz , J±] = ±J±, [J+, J−] = 2Jz . (2)

The first and second terms of the Hamiltonian represent the free Hamiltonians of the light field
and the N two-level atoms, respectively, with their strengths controlled byω andω0. The third
and fourth terms correspond to the rotating-wave and counter-rotating-wave coupling terms,
with coupling strengths g1 and g2, respectively. When g1 = g2, the model reduces to the Dicke
model. For convenience, in the following derivations, we assume ω = ω0, g1 > 0, g2 > 0.
The phase diagram of the ADM has been conclusively established in previous studies based on
the mean field method [51]. In the parameter plane of g1 g2, the region where g1 + g2 > ω

corresponds to the superradiant phase, while the region where g1+ g2 <ω corresponds to the
normal phase. Although the standard Dicke model in cavity QED is prohibited from exhibiting
the superradiant phase due to the no-go theorem [62, 63], recent studies have shown that
anisotropy can overcome the no-go theorem [55, 64], thus providing a theoretical basis for

3



SciPost Physics Core Submission

its potential experimental realization in platforms such as cavity QED. The phase diagram is
shown in Fig. 1(a).

In the following, we will show that the conventional superradiant phase can be further
separated into three regions, in which the systems are characterized by different effective
Hamiltonians in large N limit, including the harmonic oscillator, the inverted harmonic oscil-
lator, and their respective counterparts. We refer to these as hierarchic superradiant phases
because the same given initial state exhibits distinct dynamic behaviors.

We introduce the Holstein-Primakoff (HP) transformation to convert the spin operators
into bosonic operators b

Jz = b† b− N
2

,

J+ = (J−)† = b†
p

N − b† b, (3)

In the thermodynamic limit where N →∞ and neglecting constant terms, the Hamiltonian
can be rewritten as

Heff = ω
�
a†a+ b† b
�
+ g1

�
a† b+ ab†
�

+g2

�
a† b† + ab
�

. (4)

Heff can be regarded as a two-site Hermitian bosonic Kitaev model [48, 49, 65]. In previous
studies, we revealed that this model possesses hidden EPs. We introduce a linear transforma-
tion

d1,2 =
1p
2
(a± b), (5)

to decompose Heff into two independent subspaces Hamiltonian can be written as

Heff = H1 + H2

= ϕL

�
h1 0
0 h2

�
ϕR. (6)

The non-Hermitian Nambu spinor is defined asϕL =
�
d1,−d†

1, d2,−d†
2

�
andϕR =
�
d†

1, d1, d†
2, d2

�T
.

This representation has been studied in Ref. [36–38], and it can be generalized to arbitrary
quadratic bosonic systems. The forms of the two matrices are

h1,2 =
1
2
(ω± g1)σz ± i

2
g2σy , (7)

h1,2 are non-Hermitian matrices, and σz and σy are Pauli matrices, defined as

σz =

�
1 0
0 −1

�
,σy =

�
0 −i
i 0

�
. (8)

The eigenvalues of h1,2 are

λ±1 = ±1
2

Ç
(ω+ g1)

2 − g2
2 ,

λ±2 = ±1
2

Ç
(ω− g1)

2 − g2
2 . (9)

The corresponding right eigenvectors are

ϕ±1 =

� − 1
g2

�
ω+ g1 + 2λ±1
�

1

�
,

ϕ±2 =

� 1
g2

�
ω− g1 + 2λ±2
�

1

�
. (10)
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From the forms of the eigenvalues and eigenvectors, we can see that the matrices possess EPs.
h1 has a second-order EP when |ω+ g1|= |g2|, and h2 has a second-order EP when |ω− g1|= |g2|.
These EP can divide different regions in the g1− g2 parameter plane, as shown in Fig. 1(b). In
the next section, we will provide the exact solutions for the diagonalized Hamiltonian in each
region.

3 Phase diagram

The Hamiltonians H1 and H2 can be explicitly expressed as follows:

H1 = (ω+ g1) d
†
1d1 +

g2

2

�
d†

1d†
1 + d1d1

�
, (11)

and
H2 = (ω− g1) d

†
2d2 − g2

2

�
d†

2d†
2 + d2d2

�
, (12)

respectively. We note that the two Hamiltonians have the same form as

H = µβ†β +
∆

2

�
β†β† + ββ
�

, (13)

where β is the bosonic annihilation operator. In the Appendix A, we provide the derivation of
the diagonalization of the Hamiltonian H, based on which two Hamiltonians H1 and H2 can
be reduced to different simple form in the four regions in the first quadrant of g1 g2 plane.

Ignoring the energy constants, there exist three types of equivalent Hamiltonians, given by

Hho = Ωi

�
γ†

i γi +
1
2

�
, (14)

Hiho = (−1)i+1 Ωi

2

��
γ†

i

�2
+ γ2

i

�
, (15)

Haho = −Ωi

�
γ†

i γi +
1
2

�
, (16)

with i = 1, 2, where γi are bosonic annihilation operators. The positive factor Ωi is given by

Ω1 = ω

�����
√√�

1+
g1

ω

�2 − � g2

ω

�2����� , (17)

Ω2 = ω

�����
√√�

1− g1

ω

�2 − � g2

ω

�2����� . (18)

The harmonic oscillator Hamiltonian Hho is the standard form of the Hamiltonian for a har-
monic oscillator. The inverted harmonic oscillator Hamiltonian Hiho describes a system with
an inverted potential; its eigenenergies are continuous and unbounded [57], rendering the
system unstable and allowing it to tunnel toward states with higher particle numbers [66]. In
Appendix B, we present a detailed account of the dynamical characteristics of this Hamilto-
nian. The anti-harmonic oscillator Hamiltonian H aho is the negative of the standard harmonic
oscillator Hamiltonian. For H2, when |ω− g1| > g2 and ω− g1 < 0, the system diagonalizes
into such an anti-harmonic oscillator. The anti-harmonic oscillator describes a system where
the vacuum state has the highest energy, and states with higher particle numbers have lower
energies. Its dynamics under isolated conditions are oscillatory, just like those of a standard
harmonic oscillator. Each of these Hamiltonians has distinct physical properties and implica-
tions for the stability and behavior of the system. Under the dynamics of an isolated system,
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the harmonic oscillator and anti-harmonic oscillator are stable, while the inverted harmonic
oscillator is unstable. In the following, we present the explicit form of the equivalent Hamil-
tonians in each region.
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Figure 2: The plots of the decay rate λ in (a), given by Eq. (41) and frequency f in
(b), given by Eq. (42) of the effective Hamiltonian on the g1/ω-g2/ω plane. It can
be seen from the figures that there are clear distinctions between different phases in
terms of λ and f . Four representitive points in each regions are selected, indicated by
red dots at the same positions in both panels, with coordinates a(0.4,0.4), b(1.6,0.4),
c(1.2,0.8), and d(0.4,1.6). The corresponding quench dynamical behaviors of the
original ADM in finite systems at these points, obtained by numerical simulations,
are presented in Fig. 3.

(i) For g1 + g2 <ω, in this region, the two Hamiltonians have the form

H1 = Ω1

�
γ†

1γ1 +
1
2

�
− 1

2
(ω+ g1) , (19)

and

H2 = Ω2

�
γ†

2γ2 +
1
2

�
− 1

2
(ω− g1) , (20)

respectively. Here, γ1 and γ2 are bosonic annihilation operators, given by

γi = sinh (θi) d
†
i + cosh (θi) di , (21)

with
tanh (θ1) =

ω+ g1 −Ω1

g2
, (22)

and

tanh (θ2) =
ω− g1 −Ω2

g2
, (23)

respectively. This part corresponds to the NP region in Fig. 1(b).
(ii) For g1 + g2 >ω and g2 < g1 −ω, in this region, two Hamiltonians have the form

H1 = Ω1

�
γ†

1γ1 +
1
2

�
− 1

2
(ω+ g1) , (24)

and

H2 = −Ω2

�
γ†

2γ2 +
1
2

�
− 1

2
(ω− g1) , (25)
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respectively. Here, γ1, γ2, tanh (θ1) and tanh (θ2) have the same forms in Eqs. (21),(22) and
(23). This part corresponds to the SP1 region in Fig. 1(b).

(iii) For g1+ g2 >ω and g1−ω< g2 < g1+ω, in this region, two Hamiltonians have the
form

H1 = Ω1

�
γ†

1γ1 +
1
2

�
− 1

2
(ω+ g1) , (26)

and

H2 = i
Ω2

2

��
γ†

2

�2
+ (γ2)

2
�− 1

2
(ω− g1) , (27)

respectively. Here, γ1 and γ2 have the same forms in Eq. (21), but with

tanh (θ1) =
(ω+ g1)−Ω1

g2
, (28)

and

tanh (θ2) =
g2 − iΩ2

ω− g1
. (29)

This part corresponds to the SP2 region in Fig. 1(b).
(iv) For g1 + g2 >ω and g1 +ω< g2, in this region, two Hamiltonians have the form

H1 = −i
Ω1

2

��
γ†

2

�2
+ (γ2)

2
�− 1

2
(ω+ g1) , (30)

and

H2 = i
Ω2

2

��
γ†

2

�2
+ (γ2)

2
�− 1

2
(ω− g1) , (31)

respectively. Here, γ1 and γ2 have the same forms in Eq. (21), but with

tanh (θ1) =
g2 + iΩ1

ω+ g1
, (32)

and

tanh (θ2) =
g2 − iΩ2

ω− g1
, (33)

respectively. This part corresponds to the SP3 region in Fig. 1(b). The corresponding equiv-
alent Hamiltonians are indicated in the phase diagram shown in Fig. 1(b). It shows that the
configurations of the equivalent Hamiltonians are different in each region. The whole super-
radiant phase is separated three sub-phases, which are refered to as hierarchic superradiant
phases. Here, we would like to emphasize that the phase diagram presented here is not a
zero-temperature phase diagram. Different equivalent Hamiltonians exhibit different dynam-
ics, which cannot be captured by mean-field theory. These phases have to be detected by the
measurement of information in the excited state. Building upon this insight, we will propose
a dynamic demonstration of the phase diagram.

4 Quench dynamics

In this section, we investigate the dynamic behavior of the phase diagram, including the hier-
archical superradiant phases. We consider the quench dynamics under the postquench Hamil-
tonian H. We conduct numerical simulations for the Loschmidt echo, defined as

L (t) = |〈ψ (0) |ψ (t)〉|2 , (34)
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Figure 3: The plots of D(t), given by Eq. (39), and their characteristics for the orig-
inal ADM, given by Eq. (1) and effective Hamiltonian Heff given by Eq. (4) in finite
systems at the represented points indicated in Fig. 2. The plots in (a1)-(d1) are ob-
tained by numerical simulations, the solid black line represents the numerical results
obtained from the full ADM, whereas the red dashed line corresponds to the analyti-
cal result obtained from Eq. (36). The corresponding decay rates λ and frequencies
f , plotted in (a2)-(d2), are extracted from the plots of D(t)/ω. The number of atoms
in the system is N = 100, and the bosonic Hilbert space is truncated at nmax = 140.
Employing a larger bosonic cutoff nmax or increasing the number of atoms N does not
alter the system’s dynamical behavior over any finite time interval. These results are
in accordance with the predictions from the analysis of the effective Hamiltonians.
The time in the figure is in units of ω−1

which is a measure of the revival for the initial state |ψ (0)〉. It allows us to characterize the
properties of a system, provided that a proper initial state is chosen. We choose the empty
state as the initial state |ψ (0)〉= |⇓〉 |0〉 and calculate its evolved state

|ψ (t)〉= exp (−iH t) |ψ (0)〉 , (35)

where states |⇓〉 and |0〉 are defined by Jz |⇓〉 = −N/2 |⇓〉 and a |0〉 = 0, respectively. Before
the computation for the finite ADM system, we would like to estimate the possible result.

We start with the investigation for the effective Hamiltonian Heff, which can be dealt with
analytically. The corresponding initial state becomes |ψ (0)〉 = |0〉a |0〉b and evolved state is
|ψ (t)〉 = exp (−iHeff t) |ψ (0)〉, correspondingly. Note that the initial state can also be writ-
ten in the form |ψ (0)〉 = |0〉d1

|0〉d2
, satisfying d1 |ψ (0)〉 = d2 |ψ (0)〉 = 0, which allows the

product form of L (t). In the thermodynamic limit, the Loschmidt echo has the following
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approximate expressions in each regions

L (t)≈


�
1− 2A2 sin2 (Ω1 t)

� �
1− 2B2 sin2 (Ω2 t)

�
, NP�

1− 2A2 sin2 (Ω1 t)
� �

1− 2B2 sin2 (Ω2 t)
�

, SP1�
1− 2A2 sin2 (Ω1 t)

�
[cosh (Ω2 t)]−1 , SP2

[cosh (Ω1 t)]−1 [cosh (Ω2 t)]−1 , SP3

, (36)

where the parameters A and B are given explicitly as

A=
2

1+ 2 tanh−2 θ1
=

2(ω+ g1 − sgn(ω+ g1)Ω1)
(ω+ g1 −Ω1)2 + 2g2

2

, (37)

and

B =
2

1+ 2 tanh−2 θ2
=

2(ω− g1 − sgn(ω− g1)Ω1)
(ω− g1 −Ω2)2 + 2g2

2

, (38)

respectively. The details of the calculation can be found in Appendix B. In each region, L (t) is
the product of two functions, which take different configurations. For the SP1 region, it is the
product of two periodic functions. For the SP2 region, it is the product of a periodic function
and a decaying function. For the SP3 region, it is the product of two decaying functions.
The reason why the product of the two functions adopts distinct configurations in different
regions is that the underlying Hamiltonians are combined differently: whenever the effective
Hamiltonian contains a harmonic or anti-harmonic oscillator, it supplies the periodic factor,
whereas the presence of an inverted harmonic oscillator provides the decaying factor. We refer
these phases to as hierarchic superradiant phases. It is noteworthy that the phase structure
revealed by the Loschmidt echo exhibits considerable robustness with respect to the choice
of initial states. We further investigate an intriguing special case where the system is initially
prepared with all atoms in the excited state and the optical field in the vacuum state. Through
a global SU(2) spin rotation transformation Jz →−Jz , J±→ J∓, the dynamical behavior under
this initial condition can be rigorously mapped to the case with the ground state as the initial
condition [41,67,68], which constitutes the main focus of this work. This symmetry operation
leads to an important physical consequence: the effective phase diagram measured from this
initial state becomes a mirror image of the phase diagram shown in Fig. 1(b) specifically
manifesting as an exchange between the SP1 and SP3 regions, while the SP2 region remains
unchanged.

We note that the function [cosh (Ωi t)]
−1 ≈ 2e−Ωi t , decaying exponentially with rate Ωi ,

after long time scale. Then, the oscillating frequency and the decay rate can be the dynamic
characters of the hierarchic SPs. In order to characterize the hierarchy of the phases, we focus
on the quantity

D(t) =
∂

∂ t
ln L (t) , (39)

because we have
∂

∂ t
ln e−Ωi t = −Ωi . (40)

It is expected that D(t) is the sum of two simple functions, which take different configurations
in each region of superradiant phases. Therefore, the factors Ω1 and Ω2 can be extracted from
the long-time behavior of D(t). For the SP1 region, D(t) oscillates around zero, from which
two frequencies f1 = Ω1/π and f2 = Ω2/π can be extracted. In the SP2 region, it oscillates
around a constant, from which the oscillating frequency f1 and the balance point −Ω2 can be
extracted. In the SP3 region, it decays to a constant, from which the decay rate λ = − (Ω1 +Ω2)
can be extracted. What is shown in Fig. 2 is the analytical result of the decay rate

λ = − (Ω1 +Ω2)/ω, (41)
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and the sum of frequencies
f = ( f1 + f2)/ω, (42)

which can be extracted from the echo of the evolved state of the effective Hamiltonian Heff.
We can see the non-analytical behaviors of the plots at the phase boundaries.

Now, we turn to the computation of the corresponding quantities for the original ADM
Hamiltonian. For a system with a finite number of atoms, the dimension of the Hilbert space
is infinite. Therefore, the time evolution of the initial state is computed using exact diag-
onalization under the truncation approximation. The computations are performed using a
uniform mesh in the time discretization for the truncated matrix. We selected four represen-
tative points in the four phases of the ADM to perform quench dynamics verification, and the
results are shown in Fig. 3. Within the time scales of our numerical simulations, our results
do not depend on the matrix size. The extracted decay rate λ and frequency f correspond to
those in Fig. 2. The results are in accordance with the predictions from the analysis of the
effective Hamiltonians. This demonstrates that there indeed exist hierarchical superradiant
phases within the traditional superradiant phase of the ADM.

5 Summary

In summary, we have demonstrated that the conventional superradiant phase can be further
separated into three regions. The underlying mechanism is the existence of the exceptional
points in the effective Hamiltonians in the thermodynamic limit. Unlike traditional quan-
tum phase transitions that typically occur in the ground state of the system, this constitutes
a dynamical phase transition where the phase separations arise from sudden changes in the
complete set of eigenstates. In this sense, the proposed phase diagram is not merely a math-
ematical concept, but definitely results in evident observations. Numerical simulations have
been performed to compute the Loschmidt echo for finite systems. The results indicate that
such observables are sufficient to characterize the hierarchical superradiant phases.
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A Diagonalization of the Hamiltonians

In this appendix, we provide the derivation of the diagonalization of the Hamiltonian H, which
is equivalent to the two Hamiltonians H1 and H2 given in the main text. The Hamiltonian reads

H = µβ†β +
∆

2

�
β†β† + ββ
�

, (A1)

where β is the bosonic annihilation operator. Here, we do not restrict the range of µ and ∆,
and H naturally satisfies

H1 = H (µ=ω+ g1,∆ = g2) ,

H2 = H (µ=ω− g1,∆ = g2) . (A2)

We assume that there exists a Bogoliubov transformation

γ= sinh (θ )β† + cosh (θ )β , (A3)

10
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that allows for the diagonalization of the Hamiltonian H. Here, γ is also the bosonic annihi-
lation operator and the inverse transformation is

β = cosh (θ )γ− sinh (θ )γ†. (A4)

The coefficient θ is determined by the following process. Substituting the transformation into
H we have

H =
1
2
[∆ cosh (2θ )−µ sinh (2θ )]

��
γ†
�2
+ γ2
�

+
�
µ cosh2 (θ )− ∆

2
sinh (2θ )
�
γ†γ

+
�
µ sinh2 (θ )− ∆

2
sinh (2θ )
��

1+ γ†γ
�

. (A5)

We consider the following two cases respectively.
(i) |µ|> |∆|, the Hamiltonian can be written as the diagonalized form

H = sgn(µ)[
Æ
µ2 −∆2

�
γ†γ+

1
2

�
]− µ

2
, (A6)

when we take

tanh (θ ) =
µ− sgn(µ)
p
µ2 −∆2

∆
. (A7)

(ii) |µ|< |∆|, the Hamiltonian can be written as the anti-diagonalized form

H = sgn(∆)
1
2
{Æ∆2 −µ2[
�
γ†
�2
+ γ2]} − µ

2
, (A8)

when we take

tanh (θ ) =
∆− sgn(∆)
p
∆2 −µ2

µ
. (A9)

B Calculation of the Loschmidt echos

In this appendix, we present the derivations of the evolved states |ψ (t)〉, given in Eqs. (B.2)
and (B.6), respectively, and the corresponding Loschmidt echo L j , given in Eq. (B.7), respec-
tively, for the initial state |0〉d j

, which is the vacuum state of the operator d j (where j = 1,2).
The driven Hamiltonians are Hho, Haho, and Hiho, given in Eqs. (14), (15) and (16), respec-
tively.

The initial state |0〉d j
can be spanned by the common eigenstates

�|l〉 j , l ∈ [0,∞)	 of the
Hamiltonians Hho, Haho and Hiho, in the form

|0〉d j
=
∞∑
l=0

�
tanh(θ j)
�l

Al |2l〉 j , (B.1)

where |l〉 j = 1p
l!

�
γ†

j

�l |0〉γ j
and |0〉γ j

is the vacuum state of the operator γ j . The coefficients
tanhθ j is defined in Eqs. (A7) and (A9) , and given explicitly in the main text in Eqs. (22),
(23), (28), (29), (32) and (33). Al obey the iteration relation Al+1

p
2l + 2 = Al

p
2l + 1,

where A0 is a constant determined by normalization. Hence, the evolved states |ψ(t)〉 j for the
Hamiltonians Hho and Haho can be directly obtained as

|ψ(t)〉 j =
(

exp (−iHho t) |0〉d j
=
∑∞

l=0 exp
�−i2lΩ j t
� �

tanh(θ j)
�l

Al |2l〉d j
,

exp (−iHaho t) |0〉d j
=
∑∞

l=0 exp
�
i2lΩ j t
� �

tanh(θ j)
�l

Al |2l〉d j
,

. (B.2)
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However, the set of states
�|l〉 j	 are no longer the eigenstates of Hiho. We have to take an-

other approach to derive the corresponding |ψ(t)〉 j . We note that the time evolution operator
U(t) = exp (−iHiho t) is nothing but the squeezing operator in quantum optics [56, 66]. This
allows us to establish the relation

H(t)U(t) |0〉γ j
=H(t) |ψ(t)〉 j = 0, (B.3)

with
H(t) = γ j cosh
�
Ω j t
�
+ γ†

j i(−1) j+1 sinh
�
Ω j t
�

. (B.4)

This indicates that the evolved state |ψ(t)〉 j is the instantaneous zero-energy eigenstate of the
auxiliary time-dependent Hamiltonian H(t). The evolved state can be obtained as

U(t) |0〉γ j
=
Ç

sech
�
Ω j t
� ∞∑

l=0

p
(2l)!
l!2l

�
(−1) j i tanh(
��Ω j

�� t)�l |2l〉γ j
, (B.5)

by using the series method. If the initial state is the vacuum state |0〉d j
of the operator d j , then

the evolved state can be expressed as

|ψ(t)〉 j =
∞∑
l=0

1p
2l!

H(t)2l
�
tanh(θ j)
�l

Al U(t) |0〉γ j
. (B.6)

Then the corresponding L j (t)are obtained as

L j (t)≈



���〈0|d j
exp (−iHho t) |0〉d j

���2 = 1− 8 tanh2(θ j)
[2+tanh2(θ j)]2

sin2
�
Ω j t
�

,���〈0|d j
exp (−iHiho t) |0〉d j

���2 = �cosh
�
Ω j t
��−1

,���〈0|d j
exp (−iHaho t) |0〉d j

���2 = 1− 8 tanh2(θ j)
[2+tanh2(θ j)]2

sin2
�
Ω j t
�

,

. (B.7)

This corresponds to Eqs. (36), (37), and (38) in the main text.
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[29] M. Kloc, P. Stránskỳ and P. Cejnar, Monodromy in Dicke superradiance, Jour-
nal of Physics A: Mathematical and Theoretical 50(31), 315205 (2017),
doi:https://doi.org/10.1088/1751-8121/aa7a95.
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