Reply to Report 2 by Referee 2:

Report: The authors compare several entropy measures for transition matrices and
conclude that the ABB entropy has a proper definition in terms of its probability inter-
pretation and LOCC-like monotonicity. They apply these entropy measures to different
models, demonstrating their ability to detect “non-Hermitian” quantum chaos and ez-
ceptional points (EPs).

Their results are interesting and could lead to future investigations of ABB entropy.
Howewver, the provided examples show that all the entropies exhibit drastic changes near
the EPs and all can detect quantum chaotic properties. This suggests that the ABB
entropy does not stand out from the others, but is simply another measure that fits the
standard quantum information perspective.

I think the paper is interesting enough to be published in SciPost Physics after some
TEVISIONS.

Authors: We are very grateful to the referee for highlighting the core results and
positive assessment of our manuscript. We have carefully revised the manuscript in
response to the referee’s comments.

Our goal is not to use the ABB entropy as a diagnostic of quantum chaos, although it
does exhibit typical behaviors for states in chaotic systems. Instead, the key advantage
of the ABB entropy is its ability to quantify information transfer and admit a clear
operational interpretation based on distillation applied to transition matrices.

All changes in our manuscript have been highlighted in blue except for those addressing
Question 5, which was also raised by another referee. For clarity, the changes corre-
sponding to Question 5 are highlighted in red. Our point-by-point responses to the
referee’s questions are given below.

1. Q: In Table 1, the normalizations for 7, T are based on the trace norm. while the
T 1s based on the post-selected maximally mixed state. The authors should clarify
this.

A: Thanks for referee’s suggestion. We add the clarification in the caption of
Table 1.

2. Q: The main reason the ABB entropy has a proper probability interpretation
appears to be that it is just the entropy measure of the post-selected maximally
entangled states under the transition matriz, rather than of the transition matriz
itself. A crucial question is : if one choose a state other than mazximally entangled
state, would this property change?

A: If one choose a general entangled state, the property that the ABB entropy
admits a proper probability interpretation remains unchanged. Any pure bipartite
state |¢) can be represented, up to normalization, as the result of applying a



transition matrix 73 to a maximally entangled state |0),
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Applying a transition matrix 7 to an arbitrary entangled state |¢) is therefore
equivalent to applying the composite transition matrix 77 to the maximally en-
tangled state |0). Consequently, replacing the maximally entangled state by a
general entangled state results in a simple transformation of the ABB entropy,

Sass[T] = Sass[TT1],

but the probability interpretation still holds.

. Q: The n = 1/2 Renyi ABB entropy is equal to twice the SVD entropy. Is it
correct?

A: No, for Renyi ABB entropy SinB)B [7], it is required n > 1. Despite this, if
n = 1/2, then
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which is different from the SVD entropy Ssyp[r] = —Tr7In7.

. Q: On Page 12 (Page 11 of the revised manuscript), the authors discuss the SVD
entropy fails to be a Schur-concave function and also point out that the (modified
) pseudo entropy coincides with the SVD entropy when the transition matriz is
Hermatian. I wonder: if the modified pseudo entropy is real but the transition
matriz s non-Hermaitian, i.e., eigenvalues are real but can be negative, can the
authors numerically demonstrate the failure of Schur-concave function along the
magorization path ¢

A: Yes, we can numerically demonstrate the modified pseudo entropy is not Schur-
concave even though some eigenvalues are negative. We give the simple example of
a 2x 2 model for PT-broken regime (4 € [0,0.5]) in Sec. 6.1. The trace-normalized
transition matrix 7 takes the following form,

1 1

315 1—4p2 0

0

->
I

1 1 )
2 9 /1-4p2

which is Hermitian but includes negative eigenvalues. The corresponding state-
normalized matrix 771 takes
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whose spectrum is denoted by plu]. For 0 < py < pe < 0.5, plu1] = plua]. So
the majorization path is the one along which p decreases. As u decreases, ABB
and SVD entropies decrease, while the modified pseudo entropy increases with p
decreasing, as shown in Fig.12. Therefore, the modified pseudo entropy is not
Schur-concave. We also have improved our discussion on Page 11 of the revised
manuscript.

In addition, we add the condition “7 is positive semi-definite” to the sentence “The
(modified) pseudo entropy coincides with SVD entropy only when 7 is Hermitian.”
on Page 11.

. Q: For Figs. 5,7, 9, 10, is there any heuristic(?) understanding of why the ABB
and SVD entropy are asymmetric ?

A: Thanks for referee’s meaningful comment. We now explain why the ensemble-
averaged SVD and ABB entropy curves are asymmetric under the exchange d; <+
dy observed in Figs.5,7,9,10. Writing the bipartite states |¢1),, and |i2),, with
subsystem dimensions (d;,ds) in matrix form as ¢ € C4*% and ¢ € Chxd2,
tracing out b yields

Ta = ¢¢T € Cledla
while tracing out a gives
Ty = (ng@/J)T € (Cd2><d2'

By the Sylvester determinant theorem, it can be verified that 7, and 7, share the
same set of nonzero eigenvalues. Consequently, the pseudo entropy and modified
pseudo entropy, both of which depend only on the spectrum of 7, are invariant
under exchanging the subsystem dimensions. After ensemble averaging, this leads
to

Sp [Ta(dl; d2)] = Sp [Ta(dQ; dl)], Smp [Ta(dl; dQ)] = Swup [Ta(dQ; d1)]-

In contrast, the SVD and ABB entropies depend on the spectra of 771 and related
normalized operators. In general, 7,7/ and Tbrg do not share the same nonzero
spectra, leading to that 7, and 7, , as well as 7,7/ and 7~'b7~'bT generally do not have
the same spectra. As a result,

SasB [Ta(d1; d2)] # Sass [Ta(d2; dv)],  Ssvp [Ta(dr; da)] # Ssvp [Ta(da; di)],

which explains the asymmetry of ensemble-averaged ABB and SVD entropy ob-
served in Fig.5. The detailed proof can be seen in App. C. In addition, we have
included the explanations of why the (modified) pseudo entropy are symmetric
on Page 20 and why the SVD and ABB entropies are asymmetric on Page 21
for the case of two independent Haar random states. And also, we have added a
statement on the asymmtry of the SVD and ABB entropies and symmetry of the
(modified)pseudo entropy on Page 24 for the case of the Ginibre ensemble.
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6.

10.

Q: For Fig. 12, the SVD and ABB entropies are flat in the PT symmetric region.
Why do these entropies not vary as a function of u ? Is 771 independent of p in
the PT-symmetric region ¢

A: Yes. For the PT-symmetric region of the two-qubit system in Sec.6.1, 777
is independent of p . More precisely, 7 has the form of diag(%ew‘, %e‘i“). Con-
sequently, 7 = 771 = 1/2. Thus, the SVD and ABB entropies do not vary as a
function of p in the PT-symmetric regime for the two-qubit system.

Q: For Fig. 12, in the PT-broken region p € [0,0.5], do the real parts of pseudo
and modified pseudo entropies coincide? The colors in Fig. 12 appear to overlap.
A Yes, the real parts of the pseudo and modified pseudo entropies coincide in the
PT-broken region. To be more specific, in PT-broken region, the pseudo entropy
takes complex values while the modified pseudo entropy takes real values, but the
real part of the pseudo entropy coincides with the modified pseudo entropy. We
add the clarification in the caption of Fig. 12.

. Q: In the non-Hermitian SYK example, the authors claim that the SVD and ABB

entropies are sensitive to non-Hermitian chaos. Their reasoning is that ¢ = 2 has
smaller value of than q = 4. I don’t think it is a strong evidence of sensitivity to
non-Hermitian chaos. Am I missing something ¢

A: Thank the referee for pointing out that our argument was vague. Our evidence
of non-Hermitian chaos is based on a parallel phenomenon in the subsystem en-
tropies of eigenstates in Hermitian SYK models: the entropy in the chaotic SYKy
takes the Page value given by Haar random states (the eigenstates of Hermitian
random matrices) and the entropy in the free SYKj; takes a lower value governed
by the Wachter law for free fermions. We have clarified this argument on Page 26.

Q: Comparing Figs. 7 and 9, the SVD and ABB entropies for both examples look
almost the same. Are they the same?

A: Their values are not exactly identical. Nevertheless, we are not surprised
by their close agreement, since the nSYK,; model exhibits behavior consistent
with non-Hermitian chaos, and its eigenstate entanglement diagnostics are well
described by non-Hermitian random matrix ensembles. We have clarified this
point on Page 25.

Q: All the examples show that the ABB entropy is bounded by SVD entropy. Is
it accidental, or can one prove this inequality, ABB < SVD?
A: Yes, the inequality Sapg[7] < Ssyp[7] can be proved rigorously. Recall that

SABB [T] = Svon(p)7 Ssvp [T] = SVOn(Q)a

where Syon(p) = — >, pi Inp;, and the two probability distributions are defined as

49 = —g7 pz:d—27 izl?"'7d7

Zj:l Zj Zj:l <j
with z; given in Eq.(4). We can show that ¢ is majorized by p, i.e., ¢ < p. Writing
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both distributions in non-increasing order,

G1>2q 2" 2qd P1=D22° " 2 Pd,

the majorization relation taks the form

k k
=1 =1

Since the von Neumann entropy is Schur-concave, the majorization ¢ < p directly
implies Syon(p) < Syon(q), namely

Sass[7] < SsvplT],

with the equality holding iff all z; are equal.
Now we give the detailed proof of ¢ < p. Let Z; = Zle 2y Loy = Zle 2 and

(2
arrange z; in non-increasing order as z; > - -+ > z4. For any k € {1,---  d}, define

Ak I:;q@'—;pizzg%—z;z?.

Multiplying Z1Zs by Ay yields

k k d k
2 2 2
1 Z9\y, = Zy g 2z — E z; = E g (zjzZ zjzz)
i=1 i=1 j=1 i=1
k Ed
:E:E:ZZZJ(ZJ_Zi)+§: E:ZZZJ(Z]_Z1)7
i=1 j=1 =1 j=k+1

where we split the sum over j into the parts of 7 < k and j > k. The contribution
of 7 < k vanishes because the summand is anti symmetric under the exchange of
¢ and j. Thus, only the term with 7 > k survives:

k d
ZlZQAk = Z Z Zizj (Zj — Zz) S O,

i=1 j=k+1

with the equality holding when k = d. Thus, A <0, i.e.,

k k
2GSy pi k=1-d
i=1 i=1

In addition, we add this proof in App. A, and also add one statement about this
general inequality below Eq.(19). We also stress that due to the majorization
q < p ensemble-averaged SVD entropy is greater than ABB entropy on Page 21
and 23.



