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“Curvature effects on phase transitions in chiral

magnets”

First of all we thank the Editor for the efficient review process and the Referees
for their time as well as constructive criticism aimed at improving our manuscript.
Following the suggestions we have improved the paper. All revisions are indicated
in the manuscript in blue color.

Sincerely yours,
Authors.

Reply to Referee #1

Comment 1:
In the conclusion, it would be good to go beyond the calculation results and explain
in simple terms why the effect of curvature is stronger when competing with Neel
type DMI. It would be good also to have some outlook. Indeed, the paper shows that
large curvatures are required to get large effects. But when the curvature is too large,
the hedgehog structure becomes unstable. Indeed, the κ2 energy of the hedgehog
state should be compared to that of the uniform (in 3D space) magnetization, which
is 1/2 in the same units, discarding magnetostatic terms. This leads to κ < 0.707,
close to the value 0.72 often considered in the figures. From this, I reckon that the
graphs stop at κ = 0.72 because, above it, one goes to the uniform magnetization.
This would thus be the largest possible curvature.

Answer 1:
The answer on this comment we would like to split into two parts:

• Following Referee’s comment we added into the conclusions the explanation
why the curvature induced effects is stronger in the case of the Néel type of
DMI:

page 7 3rd sentence in conclusions

The curvature effects are more pronounced for the case of Néel intrinsic
DMI because the curvature-induced DMI is usually of the Néel type,
thus a direct competition takes place. Note, that for the same reason
the Néel skyrmions are more strongly affected by the curvature gradients
as compared to the Bloch skyrmions [33] and the DMI-free skyrmions
stabilized by curvature are of Néel type [45].

• Indeed, with the increase of the curvature the hedgehog state becomes unstable
and the transition to a nonuniform state takes place. This transition is denoted
by the blue solid line on the phase diagrams shown in Fig. 3. For small enough
DMI, the nonuniform state is the two-domain state (q = 1) which can be
thought of as an onion state of the tube. With the further curvature increase
the two-domain state asymptotically approaches the uniform state with m =
m0 ⊥ ẑ. This uniform state has energy 1/2 in the considered units. Note
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Energy

Two-domain state
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Figure R.1: Energies of different states of the tube for the case d = 0.

that the other uniform state with m = m0||ẑ has higher energy equal to 1.
The comparison of energies is shown in the Fig. R.1. As one can see there
is only one critical curvature value κc ≈ 0.657 (for d = 0), which separates
the hedgehog and two-domain states. This critical curvature was previously
found in Ref. [53]. There are no other critical values. The fact that the phase
diagrams in Fig. 3 are limited to κ ≈ 0.72 is just a necessary contingency (the
plots must be terminated somewhere).

Comment 2:
The paper makes a large use of analytical calculations. So the formulas should be
carefully checked. I found several mistakes in them, which costed me some time.

(a) in (B.1), line 2, the second term should have sin2(φ+ ψ)

(b) in (B.1), line 3, the cross product ∇θ× ε should be transformed to a scalar by
a dot product with the normal vector n, like in (A.5d)

(c) in (B.2), the first equalities for each line do not hold, as numerical factors are
lacking. These play no role for the second equalities, as the right-hand side is
zero. But they are important if the reader wants to rederive these formulas.
So these factors (1/2 in front of dE/dθ and dE/dφ, 1/(2κ) in front of dE/dψ)
should be restored.

(d) for (B.4), second line, same comment as for (B.1)

(e) for (B.5), same comment as for (B.2)

Answer 2:
We appreciate that the Referee has read our manuscript so carefully and we thank
him/her for the spend time. Indeed, in all cases mentioned by the Referee we made
misprints. Fortunately, these mistakes are just typos and they do not affect the
subsequent calculations. We fixed the misprints in the manuscript.

Comment 3:
The paper uses sometimes the CGS system, sometimes the SI system. This forces
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to replicate the column of Table I (with a mistake there: 1 mJ/m2 is equal to 1
erg/cm2). I suggest to follow the (not so) modern practice, namely to use SI units
throughout.

Answer 3:
Following the recommendation of the Referee we proceed to SI units. Note that the
supplementals are mainly affected, since we use the dimensionless units for the main
text.

Comment 4:
Check the English. Especially for the abstract. The ”del operator” mentionned
below (A.2) is not a standard term. Why not simply say ”gradient” ? The word
”whereas” in between (C.2d) and (C.2e) seems to stand for ”whether”. Ref. [46]
should refer to Appendix D.

Answer 4:
We thanks the Referee for his comment. In the DMI energy we have a divergence,
curl, and gradient. Therefore we used term ”del operator“. We also revised text
accordingly.

Reply to Referee #2

Comment 1:
Do the authors study the possibility of the solution corresponding to the hedgehog
state is a special case of a general solution given by Eq. (5)?

Answer 1:
No, formulas (5) and (6) describe the nonuniform multidomain state with q ≥ 1.
The uniform hedgehog state with q = 0 we consider separately. In principle, formula
(5) can be used for the hedgehog state at the limit case T →∞ (C → 0). However,
we believe that such a generalization may confuse the reader.

Comment 2:
From the analysis of Fig. 3, one can state that there are regions in which Neel DMI
and Bloch DMI coexist? If yes, it would be useful to include this discussion in the
text.

Answer 2:
The DMI strength shown in Fig. 3 is the intrinsic DMI (not curvature induced).
And in our MS we do not consider the joint action of intrinsic Bloch and Néel DMI.
In order to prevent the possible confusion we denoted it in the caption of Fig. 3:

page 5 caption of Fig. 3

... with Bloch and Néel type of intrinsic DMI ...

Comment 3:
There are some parts of the text that are confusing. For instance, the presentation
of hedgehog and inhomogeneous solutions are presented without proper separation.
This fact can bring some difficulties in the understanding of the results. I recom-
mend the authors to perform a revision in the text to better present their results.
For instance, there are some parameters that are not presented immediately after
appearing in the equations, as the integration constant C.

Answer 3:
We thanks the referee for his comment. The homogeneous hedgehog state is trivial,
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therefore we did not consider it in a subsection. Following the Referee’s recommen-
dation we highlighted words “homogeneous” and “inhomogeneous” in the main text.
We insert the following text before formula (5)

page 5 before Eq. (5)

... normal magnetization component of the inhomogeneous state ...

And we add the description of constant C:

page 5 after Eq. (5)

... C is an integration constant ...

Comment 4:
The text should be revised. There are some problems with English. For instance:
“one obtains”, “is reads”, and others.

Answer 4:
We proofread the text.

Comment 5:
What do the authors mean with the “simultaneous action of DMI and curvature”?

Answer 5:
We reformulate it as follows:

page 6 before formula (7)

... for the case κ > 0 and d2 > 0 the DW width decreases as compared to the
case κ = 0 (planar film) or d = 0.

And as follows:

page 7 before formula (11)

... due to non-zero DMI and curvature the width of the well separated Néel
DWs is increased. This behavior is opposite to the case of the Bloch DWs.

Comment 6:
I call the attention of the authors for some interesting results regarding curvature
effects in nanomagnets with DMI. Some of them were developed by authors of this
paper: Phys. Rev. B 102, 014432 (2020); https://doi.org/10.1038/s42005-020-0387-
2; Phys. Rev. B 102, 024444 (2020); Nanotechnology 31, 125707 (2020); J. Appl.
Phys. 108, 033917 (2010); https://doi.org/10.1038/s41598-019-45553-w; and others.

Answer 6:
We thank the Referee’s for his comment. We added the corresponding citations in
the introduction with Refs. [33, 34] and Ref. [23] into the discussion about magne-
tostatic interaction.
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Abstract

Periodical equilibrium states of magnetization exist in chiral ferromag-
netic films, if the constant of antisymmetric exchange (Dzyaloshinskii–
Moriya interaction) exceeds some critical value. Here, we demonstrate
that this critical value can be significantly modified in curved film. The
competition between symmetric and antisymmetric exchange interactions
in a curved film can lead to a new type of domain wall which is inclined
with respect to the cylinder axis. The wall structure is intermediate
between Bloch and Néel ones. The exact analytical solutions for phase
boundary curves and the new domain wall are obtained.
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4 DMI of Néel type 6

5 Conclusions 7

A Introduction of the curvilinear basis and magnetic interactions
on a curvilinear shell 8

B DMI induced periodical solution for a cylindrical surface 9
B.1 DMI of Bloch type 9
B.2 DMI of Néel type 10
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1 Introduction

Magnetic nanostructure with arbitrary curvilinear shapes can acquire a multitude of
ground-state configurations [1–4] under the twisting influence of the Dzyaloshinskii–
Moriya interaction (DMI) and the effect of the curved surfaces/interfaces. Modu-
lated states arise, if a nanomagnet has typical lengths comparable to the twisting
length [5–7] which is determined by the material parameters and can be influenced
by the curvature. The magnetic phase-diagram of curvilinear ferromagnets becomes
much richer as compared to a flat specimen. Among simple curvilinear shapes,
hollow cylindrical tubes or wires are very promising for a broad range of biomedi-
cal [8–11] and technological [12, 13] applications, also see Review [14]. Nanotubes
can also be assembled into interconnected networks [15] which makes them attractive
for advanced hardware concepts in neuromorphic computing [16]. It is important
to note that magnetic nanotubes can be produced experimentally with different
techniques [17–22].

Magnetic nanotubes belong to the simplest magnetic systems with pattern-
induced chirality breaking [1, 23]: two energetically equivalent vortex domain walls
(DWs) with opposite chiralities possess different dynamical properties, leading to a
suppression of the Walker breakdown [24] and Cherenkov-like radiation of magnons
for fast DWs [25, 26]. Additionally, tubular geometry results in the asymmetric
spin-wave dispersion relation in azimuthally magnetized tubes [27, 28], similarly to
systems with intrinsic DMI [29,30]. In this context, an interrelation between effects
due to intrinsic DMI and curvature-induced chirality is expected. An important
question is, how the curvature modifies the critical DMI d0 [5, 7], which separates
homogeneous and periodic magnetization structures. This is important for assessing
the stability of skyrmions [31] and their motion [32] along the tubes and other curvi-
linear surfaces [33, 34]. Here, we present a detailed study of equilibrium states of
the ferromagnetic nanotubes with intrinsic DMI of different symmetries. We show
that: (i) The curvature modifies the critical DMI strength. (ii) New types of DWs
appear in the periodic phase.

2 Model

We consider the tubular shell as a ribbon of thickness h and width w, close-coiled
upon the rod of radius R, see Fig. 1. The central line of the ribbon makes angle
π/2− ψ with the cylinder axis. The ribbon width is determined as w = 2πR sinψ,
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Figure 1: (Color online) Schematic presentation of the geometry: (a),(b) The tubu-
lar shell is presented as a ribbon [gray in (a) and colored surfaces in (b)] of thickness h
and width w which is tightly (without gaps) rolled up around the rod (yellow) of radius
R; (c) unrolled ribbon. Thick blue line ς (x1, 0) corresponds to the ribbon center, dashed
lines ς (x1,−w/2) and ς (x1, w/2) with w = 2πR sinψ correspond to the ribbon side edges.
Color scheme corresponds to the normal magnetization component.

this results in a closed cylindrical surface, i.e. without a bordering rim along the axis.
The surface of the ribbon ς can be parameterized in the following way: ς (x1, x2) =
R cos (ρs/R) x̂ + R sin (ρs/R) ŷ + ρzẑ, where ρs = x1 cosψ − x2 sinψ and ρz =
x1 sinψ + x2 cosψ, x1 ∈ [0, L] and x2 ∈ [−w/2, w/2] are coordinates within the
ribbon surface, see Fig. 1. Such a nontrivial parametrization of the cylinder surface
is useful for description of DWs which may be arbitrarily oriented along the tube
axis, i.e. ψ defines the angle between the DW and ẑ axis. Parametrization ς(x1, x2)
induces the natural tangential basis eα = ∂ας with the corresponding Euclidean
metric tensor elements gαβ = eα · eβ = δαβ. Here, α, β = 1, 2 and ∂α ≡ ∂xα . Note
that in our particular case eα are orthogonal vectors of unit length. This enables
us to introduce the orthonormal basis {e1, e2,n}, where n = e1 × e2 is a normal
vector to the surface, see Fig. 1.

Assuming small thickness of the coiled film (h � R), we consider the magneti-
zation as a continuous function of two variables M = M(x1, x2), which obeys the
periodic boundary condition M (x1, w/2) = M (x1 + T,−w/2) with T = 2πR cosψ.
Such constraint for M is a requirement of continuity of the magnetization for the
used parameterization of the cylinder surface. The energy of the system is modelled
by the functional

E = h

∫ ∫ [
AEx + K

(
1−m2

n

)
+ DEd

]
dx1dx2, (1)

where three contributions are taken into account. The first term in (1) is the ex-
change energy density with Ex =

∑
i=x,y,z (∂im)2, where A is the exchange constant.

Here m = M/Ms is the unit magnetization vector with Ms the saturation magneti-
zation. The second term is the easy-normal anisotropy, where K> 0 and mn = m·n
is the normal magnetization component. The competition between exchange and
anisotropy results in the magnetic length ` =

√
A/K, which determines a length

scale of the system. The last term in (1) represents DMI contribution Ed with D the
DMI constant. We consider two types of DMI: (i) E b

d = m · [∇×m] is applicable
for systems with T and O symmetries [30]. In the following this is called DMI of
Bloch type, since for planar films it results in DWs and skyrmions of Bloch type.
(ii) E n

d = mn∇ ·m −m ·∇mn is valid for ultrathin films [35, 36], bilayers [37] or
materials belonging to Cnv crystallographic group. In the following we call this DMI
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Figure 2: (Color online) Parameters of periodical state in tubular shells: (a) and
(b) show the angles φb0, ψb, and period Tb as functions of DMI for κ ≈ 0.72. In (a), lines
are plotted by means of (3); in (b), solid line is Tb/T0 = | cosψb|. Symbols correspond
to numerical simulations: “AN” – spin-lattice simulations with the effectively reduced
anisotropy constant [see Appendix C]; and “OOMMF Sim.” – full-scale micromagnetic
simulations [see Appendix D].

of Néel type. Here and below the indices b and n correspond to the Bloch and Néel
DMI types, respectively.

In our model, we assume that the magnetostatic contribution is negligibly small
as compared with the anisotropy contribution, i.e. we consider systems with quality
factor Q = 2K/ (µ0M

2
s )� 1 [38]. Examples of chiral magnets which satisfies these

condition were recently studied in [32,39]. Additionally, for thin stripes the magneto-
static contribution can be reduced to an effective easy-surface anisotropy [23,40–43],
which simply results in a shift of the anisotropy constant K→ K− µ0M

2
s /2. This

approximation is widely used for the description of equlibrium states on toroidal
nanoshells [44], statics and dynamics of skyrmions [32,45–47] and DWs [48] in curved
nanoshells.

Using a curvilinear reference frame we parametrize the magnetization in the
following way m = sin θ cosφ e1 + sin θ sinφ e2 + cos θn. Expressions for Ex, E b

d ,
and E n

d for a general case of a local curvilinear basis were previously obtained in
Refs. [49], [50], and [45], respectively (also see Appendix A). In the following we
look for the equilibrium magnetization states. To this end we minimize energy (1)
with respect to functions θ(x1, x2), φ(x1, x2) and constant ψ.

3 DMI of Bloch type

First, we consider the case of Bloch DMI Ed = E b
d . For such kind of DMI we find

two solutions, see Appendix B.1. The homogeneous (in the curvilinear reference
frame) solution corresponds to the hedgehog state (m = ±n), its total energy
normalized by E0 = hwLK is

Eun
b = κ2, (2)

where κ = `/R is the dimensionless curvature. Additionally an inhomogeneous
solution is found with

tanφb
0 = − tan 2ψb =

d

κ
, (3)

where d = D/
√
AK is DMI strength. It is important that angle φb

0, which defines
orientation of the tangential magnetization component, is a coordinate independent
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Figure 3: (Color online) Equilibrium states in tubular shells: (a) and (b) show
phase diagrams of equilibrium states in tubular shell with Bloch and Néel type of intrin-
sic DMI, respectively. Symbols display the results from numerical simulations: circles
– normal (hedgehog) magnetization distribution (m = ±n); other symbols – periodic
states (gray stars correspond to states with q ≥ 5). Blue solid lines in (a) and (b) are
analytical critical lines determined by Eqs. (8) and (12), respectively; dashed lines in (a)
and (b) mark transitions, where the periodic equilibrium states change their number of
DWs, as determined by numerical solution of energies equality E

per
b (q) = E

per
b (q + 1) and

E
per
n (q) = E

per
n (q+ 1): q = 1 corresponds to red dashed line, q = 2 – green, q = 3 – purple,

q = 4 – gray. Dashed black horizontal lines correspond to critical DMI parameter in a flat
systems d0 = ±4/π. Symbol ⊕ in (a) corresponds to the boundary between the hedgehog
and periodic states obtained by means of micromagnetic simulations in Ref. [32].

constant. The relation (3) can be interpreted as follows: for given d and κ, there is a
curvilinear frame of reference determined by the angle ψb in which the magnetization
angle φb is constant. Angles φb

0 and ψb as functions of DMI strength are plotted in
Fig. 2(a). For both types of DMI angle θ(x1), which defines the magnitude of the
normal magnetization component of the inhomogeneous state, depends on only one
coordinate x1, oriented along the stripe, see Fig. 1. It is determined by the common
“DW” equation

θξ1ξ1 − λ sin θ cos θ = 0 (4)

with the solution

θ(ξ1) = am

(√
C ξ1,−

λ

C

)
, (5)

where am(•, •) is Jacobi’s amplitude [51, 52], C is an integration constant, and
ξ1 = x1/` is the dimensionless coordinate. The solution (5) describes the sequence
of DWs oriented along the x2 coordinate (perpendicularly to the ribbon, see Fig. 1).
For each type of DMI, parameter λ = λ(κ, d) is a function of curvature and DMI

strength. For well separated DWs, λ defines the DW width ∆ = 1/
√
λ. The

integration constant C determines the period θ (ξ1 + T ) = θ (ξ1)

T =
4√
C

K

(
− λ
C

)
= T0| cosψ|/q, (6)

with K(•) is the complete elliptic integral of the first kind [51,52]. On the other hand,
period T = T0| cosψ|/q is predetermined by the periodical boundary conditions
discussed above. Here q ∈ N determines the number of DWs N = 2q on the tube
and T0 = 2π/κ. N is even due to the periodical boundary conditions enforced by
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the tubular geometry. For the case of Bloch DMI constant C ≡ Cb is determined by
the equation (6) with ψ = ψb taken from (3) and λ ≡ λb = 1+κ

(√
d2 + κ2 − κ

)
/2.

One should note that for the case κ > 0 and d2 > 0 the DW width decreases as
compared to the case κ = 0 (planar film) or d = 0. For the corresponding period
we use the notation T ≡ Tb. Period Tb as a function of the DMI strength is plotted
in Fig. 2(b). The normalized energy of periodic states per period (T = Tb) is

Eper
b = Eun

b +
κq

cosψb

[
4

π

√
Cb(q)E

(
− λb
Cb(q)

)
−
(
κ+
√
κ2 + d2

)
−Cb(q)

cosψb

qκ

]
, (7)

where E(•) is the complete elliptic integral of the second kind [51,52]. For a planar
film, the transition between the homogeneous and periodical state is characterized
by infinite increase of period of the spiral state [7]. Although, for the cylindrical
surface the period is finite in the transition point, for the limit case κ → 0 one has
T → ∞. Using that C → 0 in this limit, we obtain from the equality E

per
b = Eun

b

the analytical expression for the critical DMI

dbc = ±d0

√
1− κ2 − κ

2

π2 − 4

π2

[
κ +

√
κ2 + π2 (1− κ2)

]
, (8)

where d0 = 4/π is a critical DMI parameter for flat systems, which separates homo-
geneous and periodic magnetization distributions [5,7]. Although the expression (8)
is obtained in the small curvature limit, it describes very well the existence region
of the homogeneous state for the whole range of curvatures, see Fig. 3(a). The
boundary (8) is also in a good agreement with results obtained by means of mi-
cromagnetic simulations in Ref. [32], see symbol ⊕ in Fig. 3(a). The equality of
energies E

per
b (κ, dc, q) = E

per
b (κ, dc, q + 1) determines the boundary between states

with different number of DWs. The resulting phase diagram is plotted in Fig. 3(a).
In the limit case of very small curvature (κ � 1), the boundary curve (8) has the
asymptotic behavior dbc ≈ ±d0 ∓ (1− 4/π2)κ. Thus the curvature decreases the
critical magnitude of the DMI strength. The boundary curve (8) intersects the ab-
scissa with κb

0 = 2/π. For κ > κb
0 the periodical state with two DWs exists even

without intrinsic DMI, see Fig. 3. This effect is analogous to the effect of sponta-
neous formation of the onion state in nanorings when curvature exceeds some critical
value [53].

4 DMI of Néel type

Let us now consider the case of Néel DMI Ed = E n
d . The energy of the homogeneous

hedgehog state (m = ±n) reads

Eun
n = κ (d+ κ) . (9)

Similarly to the case of Bloch DMI, there is an inhomogeneous solution in form
of periodical modulation. As well as in the previous case, the angle φ takes the
constant value (for details see Appendix B.2):

cosφn
0 = −sgn(d+ 2κ). (10)

However, in contrast to the previous case, DWs are always aligned along the cylinder.
This corresponds to the equilibrium value ψn = 0 (or equivalently ψn = π). As
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previously, the normal magnetization component is described by the same Eq. (5)
with C ≡ Cn determined by (6) with ψ = ψn and λ ≡ λn = 1 − κd. Note that
due to non-zero DMI and curvature the width of the well separated Néel DWs is
increased. This behavior is opposite to the case of the Bloch DWs. The normalized
energy of the modulated state per period (T = Tn = T0/q) is

Eper
n = Eun

n + κq
[

4

π

√
Cn(q)E

(
− λn
Cn(q)

)
− |2κ + d| − Cn(q)

qκ

]
. (11)

The equality of energies Eun
n (κ, dc) = E

per
n (κ, dc) determines the boundary between

homogeneous and periodic states. In the small curvature limit we obtain

dnc = ±d0

[√
1 + 2κ2

(
1 +

2

π2

)
∓ κ

(
2

π
+
π

2

)]
. (12)

As in the case of Bloch type DMI, the expression (12) describes the boundary of the
homogeneous state in the phase diagram for a wide range of curvatures. The equality
of energies E

per
n (κ, dc, q) = E

per
n (κ, dc, q+1) determines the boundary between states

with different number of DWs. The resulting phase diagram is plotted in Fig. 3(b).
In the limit case of very small curvature (κ � 1), the boundary curve (12) has the
linear asymptotic behavior dnc ≈ ±d0−2 (1 + 4/π2)κ. Thus, due to the curvature the
absolute value of the critical DMI can be decreased as well as increased depending
on the sign of the DMI. Similarly to the case of Bloch type DMI, the boundary
curve (12) intersects the abscissa with κn

0 = κb
0 = 2/π and for the case κ > κn

0 the
periodical state exists even without intrinsic DMI, see Fig. 3.

5 Conclusions

At the example of cylindrical thin tubes, we show that curvature modifies the value of
critical DMI for curved systems, see Eqs. (8) and (12), which separates the hedgehog
state with homogeneous magnetization normal to the film from the inhomogenous
modulated states. For the case of Néel type of DMI this effect is much stronger (in
the limit case κ � 1) as compared to the case of the Bloch DMI. The curvature
effects are more pronounced for the case of Néel intrinsic DMI because the curvature-
induced DMI is usually of the Néel type, thus a direct competition takes place.
Note, that for the same reason the Néel skyrmions are more strongly affected by
the curvature gradients as compared to the Bloch skyrmions [33] and the DMI-
free skyrmions stabilized by curvature are of Néel type [45]. We found an exact
solution for equilibrium states on the cylindrical surface for two different types of
DMI and plotted the corresponding phase diagrams, see Fig. 3. The presence of
the Néel DMI does not modify the structure of DWs, i.e. DWs are oriented along
the cylinder axis (ψn = 0) and they are of Néel type. For the case of Bloch DMI,
the DWs are of a type intermediate between Bloch and Néel due to competition of
intrinsic DMI and geometry-induced DMI of Néel type. These DWs are inclined
by the angle ψb ∈ (−π/4;π/4), see Eq. (3) and Fig. 3. The direction of DWs
inclination (sign of the angle ψb) is defined by the sign of the DMI parameter. This
effect is similar (i) to the field-induced inclined DWs in flat stripes [54]. In our case
the role of the external field is played by the geometry-induced easy-axis anisotropy
along the cylinder axis. And it also resembles (ii) the DMI-induced chiral twist
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of domains separated by the head-to-head (tail-to-tail) DWs in nanotubes [48]. In
both cases, the periodical boundary conditions, enforced by the closed cylindrical
geometry, result in even number of domains on the cylinder.
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A Introduction of the curvilinear basis and magnetic inter-
actions on a curvilinear shell

The surface parametrization ς(x1, x2) induces the natural tangential basis gα = ∂ας
with the corresponding metric tensor elements gαβ = gα · gβ. Here, α, β = 1, 2 and
∂α ≡ ∂xα . As the vectors gα are orthogonal, one can introduce the orthonormal
basis {e1, e2,n} with

eα =
gα√
gαα

, n = e1 × e2. (A.1)

Using the Gauß-Godazzi formula and Weingarten’s equation [55,56] one can obtain
the following differential properties of the basis vectors

∇αeβ = hαβn− Ωαεβγeγ, ∇αn = −hαβeβ. (A.2)

Here, ∇α ≡ (gαα)−1/2 ∂α (no summation over α) are components of the surface del
operator and ‖hαβ‖ is a modified second fundamental form. The second fundamental
form determines the Gauß curvature K = det ‖hαβ‖ and the mean curvature H=
tr‖hαβ‖. Components of the spin connection vector Ω are determined by the relation

Ωγ =
1

2
εαβeα · ∇γeβ.

Using curvilinear reference frame (A.1), we introduce the following magnetization
parametrization

m = sin θ ε+ cos θn, ε = cosφ e1 + sinφ e2, (A.3)

where θ and φ are magnetic angles, and ε is a normalized projection of the vector
m on the tangential plane.

The first term in (1) is the exchange density Ex =
∑

i=x,y,z (∂im)2 with A the ex-
change constant. In the curvilinear reference frame exchange energy can be written
as [45,49,53]

Ex =∇αmβ∇αmβ +∇αmn∇αmn

+2hαβ (mβ∇αmn −mn∇αmβ) + 2εαβΩγmβ∇γmα

+
(
hαγhγβ + Ω2δαβ

)
mαmβ +

(
H2 − 2K

)
m2
n + 2εαγhγβΩβmαmn.

(A.4a)
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Using the angular parametrization (A.3) one can obtain [45,49,53]

Ex = [∇θ − Γ]2 + [sin θ (∇φ−Ω)− cos θ∂φΓ]2 , (A.4b)

where Γ = ‖hαβ‖ · ε.
The second term in (1) corresponds to the Dzyaloshinskii–Moriya interaction (DMI)

Ed, with D being the DMI constant. In the curvilinear frame of reference the Néel
type DMI E n

d = mn∇ ·m−m ·∇mn can be written as [45]

E n
d = mn∇αmα −mα∇αmn − εαβΩβmαmn −Hm2

n. (A.5a)

Using the angular parametrization (A.3) one can obtain (up to the boundary terms) [45,
46]

E n
d = 2 (∇θ · ε) sin2 θ −Hcos2 θ + boundary terms, (A.5b)

while, for the Bloch type DMI symmetry E b
d = m · [∇×m] this interaction in the

curvilinear reference frame reads as [50]

E b
d = εαβ (mn∇αmβ −mβ∇αmn) + εαβhβγmαmγ − Ωαmαmn. (A.5c)

Substituting the angular parametrization (A.3) into (A.5c) results in the expression
(up to the boundary terms) [50]

E b
d = sin2 θ [(2∇θ − Γ)× ε] · n. (A.5d)

The last term in (1) corresponds to the uniaxial anisotropy Ea = sin2 θ, with
K> 0 the easy-normal anisotropy constant.

Parameterization ς (x1, x2) = R cos (ρs/R) x̂+R sin (ρs/R) ŷ+ρzẑ results in the
following first and modified second fundamental forms

gαβ = δαβ, ‖hαβ‖ =
1

R

∥∥∥∥ − cos2 ψ cosψ sinψ
cosψ sinψ − sin2 ψ

∥∥∥∥ , (A.6)

respectively. Tubular geometry has zero Gauß curvature K = 0, nonzero mean
curvature H= −R−1 (here minus is related to the direction of the normal vector),
and zero components of spin connection vector Ω = 0.

B DMI induced periodical solution for a cylindrical surface

B.1 DMI of Bloch type

In this section we consider DMI in form Ed = Eb
d which is defined in (A.5d). The

total energy density in (1) reads as

E

K
=
(
∇̃θ
)2

+
(
∇̃φ
)2

sin2 θ + 2κ cos (φ+ ψ) ∇̃θ · η

−2κ sin θ cos θ sin (φ+ ψ) ∇̃φ · η + κ2
[
1− sin2 θ sin2 (φ+ ψ)

]
+ sin2 θ

+d sin2 θ
[
2 (θξ1 sinφ− θξ2 cosφ) +

κ

2
sin 2 (φ+ ψ)

]
, η = e1 cosψ − e2 sinψ,

(B.1)

where κ = `/R is a reduced curvature with ` =
√

A/K being the magnetic length,

the operator ∇̃ acts on the dimensionless curvilinear coordinates ξα = xα/`, and

9
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d = D/
√
AK is a reduced DMI strength. The equilibrium values of θ, φ, and ψ are

determined by the equations

1

2

δE

δθ
= −∆̃θ + sin θ cos θ

[(
∇̃φ
)2

+ 1

]
+ 2κ sin2 θ sin (φ+ ψ) ∇̃φ · η

−κ2 sin θ cos θ sin2 (φ+ ψ)− d
[
sin2 θ ∇̃φ · ε− 1

4
κ sin 2θ sin 2 (φ+ ψ)

]
= 0,

1

2

δE

δφ
= −∇̃ ·

[
sin2 θ ∇̃φ

]
− 2κ sin (φ+ ψ) sin2 θ ∇̃θ · η − κ2 sin2 θ sin (φ+ ψ) cos (φ+ ψ)

+d sin2 θ
[
∇̃θ · ε+

κ
2

cos 2 (φ+ ψ)
]

= 0,

1

2κ
δE

δψ
= −θξ1 sin (φ+ 2ψ)− θξ2 cos (φ+ 2ψ)− 1

2
sin 2θ [φξ1 cos (φ+ 2ψ)− φξ2 sin (φ+ 2ψ)]

−κ sin2 θ sin (φ+ ψ) cos (φ+ ψ) +
d

2
sin2 θ cos 2 (φ+ ψ) = 0.

(B.2)

Here ∇̃α = `∇α ≡ ∂ξα and ∆̃ = ∇̃2.
Equations (B.2) have a trivial solutions θ ≡ 0 and θ ≡ π, which corresponds

to the uniform magnetization distribution in the curvilinear reference frame, i.e.
m = ±n, with energy (2).

We also found an inhomogeneous solution (3) with φ = φb
0 = const:

cosφb
0 = − κ sgn(d)√

κ2 + d2
, sinψb = − d√

2
[
d2 + κ

(
κ +
√
κ2 + d2

)] . (B.3)

Note that for the case d > 0 one has −π/4 ≤ ψb ≤ 0 and φb
0 = π − 2ψb. While

for the case d < 0 one has 0 ≤ ψb ≤ π/4 and φb
0 = −2ψb. The magnetic angle θ is

defined by the equation (4) with the solution (5).
Energy as a function of DMI strength for Bloch DMI for different q is plotted in

Fig. 4(a).

B.2 DMI of Néel type

Here we consider DMI in form Ed = En
d which is defined in Eqs. (A.5a) and (A.5b).

The total energy density in (1) reads as

E

K
=
(
∇̃θ
)2

+
(
∇̃φ
)2

sin2 θ + 2κ cos (φ+ ψ) ∇̃θ · η − 2κ sin θ cos θ sin (φ+ ψ) ∇̃φ · η

+κ2
[
1− sin2 θ sin2 (φ+ ψ)

]
+ d

[
2
(
∇̃θ · ε

)
sin2 θ + κ cos2 θ

]
+ sin2 θ.

(B.4)

10
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Figure 4: (Color online) Energies of the cylinder with κ = 0.25 for Bloch (a) and Néel (b)
DMI types.

The equilibrium values of θ, φ, and ψ determined by the equations

1

2

δE

δθ
= −∆̃θ + sin θ cos θ

[(
∇̃φ
)2

+ 1

]
+ 2κ sin2 θ sin (φ+ ψ) ∇̃φ · η

−κ2 sin θ cos θ sin2 (φ+ ψ)− d
[
sin2 θ ∇̃φ · ∂ε

∂φ
+ κ sin θ cos θ

]
= 0,

1

2

δE

δφ
= −∇̃ ·

[
sin2 θ ∇̃φ

]
− 2κ sin (φ+ ψ) sin2 θ ∇̃θ · η − κ2 sin2 θ sin (φ+ ψ) cos (φ+ ψ)

+d sin2 θ ∇̃θ · ∂ε
∂φ

= 0,

1

2κ
δE

δψ
= −θξ1 sin (φ+ 2ψ)− θξ2 cos (φ+ 2ψ)− 1

2
sin 2θ [φξ1 cos (φ+ 2ψ)− φξ2 sin (φ+ 2ψ)]

−κ sin2 θ sin (φ+ ψ) cos (φ+ ψ) = 0.
(B.5)

Equations (B.5) have a trivial solutions θ ≡ 0 and θ ≡ π, which corresponds to the
hedgehog state m = ±n, i. e. the homogeneous magnetization distribution in the
curvilinear reference frame; the energy of the hedgehog state is described by Eq. (9).

We also found an inhomogeneous solution with φ = φn
0 = const, see (10), and

magnetic angle θ defined in (5).
Energy as a function of DMI strength for Néel DMI for different q is plotted in

Fig. 4(b).
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C Details of the spin-lattice simulations

In order to verify our analytical calculations we perform a set numerical simulations
for a ferromagnetic cylindrical surface. We consider a cylindrical surface as a square
lattice with lattice constant a. Each node is characterized by a magnetic moment
mp(t) which is located at the position rp(t). Here p = (i, j) is a two dimensional
vector which defines the magnetic moment and its position on the lattice with size
N1 × N2 (i ∈ [1, N1] and j ∈ [1, N2]). Magnetic moments are ferromagnetically
coupled. We are interested in the case when the system is a closed cylindrical
surface, hence we impose the periodical boundary conditions m(N1+1,j) = m(1,j) and
r(N1+1,j) = r(1,j). The dynamics of magnetic system is govern by discrete Landau–
Lifshitz–Gilbert equations

dmp

dτ
= mp ×

∂H

∂mp

+ αmp ×
[
mp ×

∂H

∂mp

]
, (C.1)

where τ = ω0t is a reduced time with ω0 = µ0|γ0|Ms, α is a dimensionless damping
coefficients, and H is a dimensionless energy normalized by µ0M

2
s . We consider

four contributions to the energy of the system

H = Hx + Ha + Hd + Hddi. (C.2a)

The first term in (C.2a) is the exchange energy

Hx = −1

2

`2
x

a2

∑
p,δ

mp ·mp+δ, (C.2b)

where δ runs over nearest neighbours of the square lattice and `x =
√

A/ (µ0M2
s ).

The second term in (C.2a) is the anisotropy energy

Ha = −Q
2

∑
p

(mp · np)2 , (C.2c)

where np is easy-normal axis vector at node with coordinate rp, andQ = 2K/ (µ0M
2
s )

is a quality factor [38].
The third term in Eq. (C.2a) is a DMI energy

Hd =
d

2

`x

a

√
Q− Λ

2

∑
p,δ

dp,δ · [mp ×mp+δ] , (C.2d)

where dp,δ is a DMI vector. For the case of Néel DMI dp,δ = np × up,δ with
up,δ = (rp+δ − rp) /a being a unit vector which connects two nearest neighbors. For
Bloch DMI symmetry we have dp,δ = up,δ. Parameter Λ = {0, 1} defines whether
long range dipole-dipole interaction is present or not, i.e. Λ = 0 corresponds to
simulations without dipole-dipole interaction and Λ = 1 vice versa.

The last term in Eq. (C.2a) is a long range dipole-dipole interaction

Hddi = Λ
a3

8π

∑
p,b
p6=b

[
mp ·mb

|rpb|3
− 3

(mp · rpb) (mb · rpb)
|rpb|5

]
, (C.2e)
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Figure 5: (Color online) Equilibrium states in tubular shells with dipole-dipole
interaction: (a) and (b) show phase diagrams of equilibrium states in tubular shell with
Bloch and Néel type DMI, respectively. Symbols display the results of spin-lattice simula-
tions: circles – normal (hedgehog) magnetization distribution (m = ±n); other symbols
– periodic states (purple diamond correspond to states with q ≥ 3). Blue solid lines in (a)
and (b) are analytical critical lines determined by Eqs. (8) and (12), respectively; dashed
lines in (a) and (b) mark transitions between the periodic equilibrium states with different
number of DWs, as determined by numerical solution of equations E

per
b (q) = E

per
b (q + 1)

and E
per
n (q) = E

per
n (q + 1): q = 1 corresponds to red dashed line, q = 2 – green. Dashed

black horizontal lines correspond to critical DMI parameter in a flat systems d0 = ±4/π.

where rpb = rp − rb.
For analytical calculations the dipole-dipole effects can be approximated by a

simple redefinition of the anisotropy constants, leading to a new magnetic length,

K→Keff = K− Λµ0M
2
s /2,

`→ `eff =

√
A

Keff
= `x

√
2

Q− Λ
,

d→ deff =
D√
AKeff

.

(C.3)

The dynamical problem is considered as a set of 3N1N2 ordinary differential
equations (C.1) with respect to 3N1N2 unknown functions mx

p(τ), my
p(τ), mz

p(τ).
For given initial conditions, the set of time evolution equations (C.1) is integrated
numerically using Runge–Kutta method in Python. During the integration process,
the condition |mp(τ)| = 1 is controlled.

C.1 Simulations of tubes without dipole-dipole interaction (Λ = 0)

We considered cylinders with N1 = 300a and N2 = 900a, quality factor Q = 2 (cor-
respond to ` = `x), the magnetic length ` ∈ [4.5a, 34.5a] with ∆` = 3a, and DMI
constant d ∈ [−2, 2] with ∆d = 0.1. We simulate numerically Landau–Lifshitz–
Gilbert equations (C.1) in the overdamped regime (α = 0.1) during a long-time
interval ∆τ � (αω0)−1.
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Figure 6: (Color online) Phase diagrams of equilibrium states in nanotube with
Bloch type DMI. (a), (b), and (c) are phase diagrams of equilibrium states in nanotube
with Bloch type DMI: (a) and (d) FeGe epitaxial film with Q ≈ 26.3; (b) and (e) ar-
tificial material with Q = 2; (c) and (f) Pt/Co/AlOx layer structure with Q ≈ 1.71.
In (a)-(c) symbols display the results of full-scale micromagnetic simulations: circles
– normal (hedgehog) magnetization distribution (m = ±n); other symbols – periodic
states (purple diamond correspond to states with q ≥ 3). Blue solid line is analytical
critical line determined by Eq. (8); dashed lines mark transitions between periodic equi-
librium states with different number of DWs, as determined by numerical solution of
energies equality E

per
b (q) = E

per
b (q + 1): q = 1 corresponds to red dashed line, q = 2 –

green. Dashed black horizontal lines correspond to critical DMI parameter in a flat sys-
tems d0 = ±4/π. (d)-(e) are periods Tb/T0 = | cosψb| of mgnetization structure in tube
with κ ≈ 0.72, κ ≈ 0.71, and κ ≈ 0.78, respectively.

We performed a set of simulations for various ranges of magnetic and geometri-
cal parameters. We simulate Eqs. (C.1) as described above for eight different initial
states, namely, the normal, q-domain walls with q = {2, 4, 6, 8, 10}, and two random
states. The final static state with the lowest energy is considered to be the equilib-
rium magnetization state. We present simulation data in Figs. 2 and 3 by symbols
together with theoretical results (plotted by lines).

C.2 Simulations of tubes with dipole-dipole interaction (Λ = 1)

We considered cylinders with N1 = 200a and N2 = 600a, quality factor Q = 3 (cor-
respond to `eff = `x), the magnetic length `eff ∈ [3a, 23a] with ∆`eff = 4a, and DMI
constant deff ∈ [−1.2, 1.2] with ∆deff = 0.2. The simulations are performed in the
same way as described in Sec. C.1.

We present simulation data in Fig. 5 by symbols together with theoretical results
(plotted by lines).
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D Details of full-scale micromagnetic simulations

The micromagnetic simulations were performed with the OOMMF code [57] sup-
plemented with the extension for the DMI in cubic crystals [58]. Four magnetic
interactions were taken into account, namely exchange, magnetostatic, DMI, and
uniaxial anisotropy contributions. We used the parameters for the epitaxial FeGe
film [39, 59]: exchange constant A = 8.78 × 10−12 J/m, saturation magnetization
Ms = 1.1× 105 A/m, easy-normal anisotropy K= 2× 105 J/m3, and DMI constant
D ∈ [−1.5, 1.5] × 10−3 J/m2. This material parameters results in a quality factor
Q ≈ 26.3 and effective magnetic length `eff ≈ 6.76 nm. We considered magnetic
nanotubes with fixed length L̃ = 500 nm and thickness h = 4 nm. The inner radius
of tubes was in the range R ∈ [7, 66] nm, which results in the dimensionless curva-
ture κ = `eff/ (R + h/2) ≈ [0.1, 0.73] (we considered surface between the outer and
inner radii). The mesh size of 0.5× 0.5× 0.5 nm3 is used in our simulations.

The simulations are performed in the same way as described in Sec. C.1. Results
of numerical simulations are presented in Fig. 2 and Fig. 6(a),(d) by symbols.

D.1 Full-scale micromagnetic simulations with small quality factor

Additionally we performed simulations for systems with small quality factor:

• We used the following artificial material parameters: exchange constant A =
5π × 10−12 J/m, saturation magnetization Ms = 5 × 105 A/m, easy-normal
anisotropy K = π × 105 J/m3, and DMI constant D ∈ [−1.9, 1.9] × 10−3

J/m2. This material parameters results in a quality factor Q = 2 and effective
magnetic length `eff = 10 nm. We considered magnetic nanotubes with fixed
length L̃ = 500 nm and thickness h = 4 nm. The inner radius of tubes
was in the range R ∈ [12, 48] nm, which results in the dimensionless curvature
κ = `eff/ (R + h/2) ≈ [0.2, 0.71] (for the mid-cylinder surface between the outer
and inner radii). The mesh size of 1× 1× 1 nm3 is used in our simulations.

Results of numerical simulations are presented in Fig. 6(b),(e) by symbols.

• We used the material parameters of Pt/Co/AlOx layer structure [45]: exchange
constant A = 1.6 × 10−11 J/m, saturation magnetization Ms = 1.1 × 106

A/m, easy-normal anisotropy K = 1.3 × 106 J/m3, and DMI constant D ∈
[−3.6, 3.6] × 10−3 J/m2. These material parameters result in a quality factor
Q ≈ 1.71 and effective magnetic length `eff ≈ 5.44 nm. We considered magnetic
nanotubes with fixed length L̃ = 500 nm and thickness h = 2 nm. The
inner radius of tubes was in the range R ∈ [6, 25] nm, which results in the
dimensionless curvature κ = `eff/ (R + h/2) ≈ [0.21, 0.78] (for the mid-cylinder
surface between the outer and inner radii). The mesh size of 0.5 × 0.5 × 0.5
nm3 is used in our simulations.

Results of numerical simulations are presented in Fig. 6(c),(f) by symbols.
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