
Responses to referee reports for
“Multiscale response of ionic systems
to a spatially varying electric field”.

First, I sincerely thank the referee for her/his fruitful comments. I have ad-
dressed all points made below.

1. The referee raises a very good question. It is a fundamental interesting
point to discuss when separation of variables is valid. However, to keep
the focus of the paper this is sentence is removed as it is not important
for the treatment. What is important is that the temporal part is a delta
function which is true when the system is in a steady state. The text has
been changed to highlight this, page 4.

2. The sentence is removed.

3. I see the point and I agree with the referee that a comment about the
dielectric constant (or relative permittivity) is helpful. The Debye-Hückel
regime defined by the T∞-system is a special case: The ions have no
electrostatic interactions, thus placing two interacting test charges corre-
sponds to them being placed in vacuum (or no-screening medium) thus
ε = 1 and is wavevector independent.

This cannot be inferred from the equation given in the response. In my
understanding the argument is the other way around for the screening
regime: From Hansen and McDonald (3rd edition) Eqs. (10.2.8) and
(10.2.11) we have

1

ε(k)
= 1− 4πne2

kBTk2
Szz(k)

In the perfect screening regime it is known that ε(k) → ∞. This is an
experimental fact (Hansen and McDonald, p. 297), albeit the Stillinger-
Lovett sum rules can be used in the case of perfect screening, but not
in general. This means 4πne2Szz(k)/(kBTk

2) → 1 which in turn implies
Szz(k) ∝ k2 in the k → 0 limit.

In the revised manuscript it is now stated that the relative permittivity is
unity for the T∞-system, page 6.

4. I am not sure I understand this point. Substituting Eq. (18) from the
manuscript into the equation above

1

ε(k)
= 1− 8πe2

D0k2
χ̃(k)

Notice the negative sign on the second term. D0 > 0 and χ̃(k) > 0 thus
ε(k) > 1 as expected. Is the confusion rooted in the response function
χZZ(k) = −nSzz(k)/(kBT ) introduced by Hansen and McDonald and the
(different) response function χ introduced in this work?
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5. First, the constitutive relation comes from Eq. (7). Consider are system
where the potential gradient is negative at some point z0. Here the cations
will flow (i.e., there will be a mass flux) in the positive z-direction as given
by second term in Eq. (7). If the ion is an anion it will migrate in the
opposite direction.

In Eq. (10) the ion charge q is negative for anions and positive for cations
and ñi(k) ∝ −χ̃i(k)/q. In the monovalent case we then see from Eqs.
(11) and (13) that the density profiles for the two ions oscillate around
the horizontal line n0. One profile is a mirror image of the other around
that line. This is now highlighted in the revised manuscript, page 5. Also,
additional comments on the differences between χ and Szz is given in the
conclusion section.

6. The referee is absolutely right - this has been corrected.

7. Very important point raised by the referee. The reason is a matter of
computational speed; the shifted force method is much faster than any of
the techniques based on the Ewald summation method.

First, the maximum screening length is for the T∞-system where in re-
duced units λD =

√
εT ≈ 1.6, hence, λD < 1.6 for all systems. The

cut-off is therefore around twice the screening length. The cut-off for the
van der Waals interactions is quite large (the force is in the order of 10−6

at the cut-off distance), but is simply used here to reduce the number of
simulation parameters.

Indeed the shifted-force (SF) method may be questionable for non-inform
systems. Especially, it will fail for confined systems - and so will the
standard Ewald methods. There are, however, strong indications that the
SF method applies here: (i) the same results were found by letting rc = 6
for selected situations, i.e., twice the cut-off distance. This simple check is
always carried out. (ii) Comparing the non-equilibrium (i.e non-uniform)
data with the predictions from the (uniform) linear response theory gives
good agreement, Fig 4 b, also indicating that the SF method is applicable.

This concern is raised by both referee. To ensure that the SF method
applies new simulations are carried out carefully comparing data using
this method with data using the direct Ewald summation method. In the
Ewald summation method the interaction energy is

V =
1

2

∑
n

∑
ij

qiqj
|rij + Ln|

n is an integer vector accounting for the replica systems. This direct
method is not usually applied as the convergence is slow, however, for this
particular simple and small system convergence is achieved quite quickly
as seen in figure 4; using 124 replica systems suffices. This result is not
surprising and is discussed in Refs. 16 and 17 in the manuscript; in Ref.
17 other properties are also compared.
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Figure 1: Radial distribution function for the molten salt system for the SF
method and Ewald method using a different number of replica systems, Nrep.
Also shown are the data points from Hansen and McDonald, Ref. 1 in the
manuscript. The inset shows the difference between the SF and the Ewald
method for Nrep=124 as this is not clear from the main figure.

Figure 5 shows an example for the charge density profile using the SF and
Ewald methods in the non-equilibrium situation. Also, the corresponding
spectra are shown. Clearly, the agreement is satisfactory.

A paragraph justifying the application of the SF method is now included
in the simulation details section.

This reply is copied in my response to the other referee.

8. Again a very good point! The choice to remove the Coulomb interactions
rather than simply increase the temperature is a matter of numerical sta-
bility. By removing the Coulomb interactions one can be sure to have
kBT � qφ fulfilled, corresponding to a relative permittivity of unity. This
is, in principle, only achieved by letting the temperature be infinite if the
Coulomb interactions are included.

The referee is correct: It is a van der Waals fluidic system, but it responses
to an external electric field which is what the work investigates. The
justification for including this is to compare the single particle diffusion
to the electric field response.

A sentence highlighting this point is included in the manuscript, page 7.

9. Indeed! Yurukawa is changed to Yukawa throughout the manuscript.

10. I thank the referee for noticing this point. Somehow the word ’modified’
disappeared in the manuscript editing. This is now highlighted. Also, the
additional details for the model is presented as they should be.
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Figure 2: Upper figure: Charge profile results for the shifted force and Ewald
methods. Lower figure: Corresponding spectra.

11. The fitting parameter values are now included in the figure caption of Fig
1.

12. First let me stress that χ̃(k) ∝ Szz(k) only in the screening regime. In the

Debye-Hückel regime χ̃ ∝ D̃(k).

The fundamental difference is that the χ-response function relates the
mass flux to the external electric field excluding the contribution from the
concentration gradient (here modelled through the self-diffusion). The
charge-charge response function relates the charge density to the electric
field; this includes effects due to concentration gradients.

It is of course very important that this is clear in the text, and I have
rewritten the first paragraph in the conclusion and emphasized the differ-
ence on page 4 and in the conclusion.
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13. The referee raises a very interesting point! First, from my understanding
it requires extremely accurate simulation data to show that the sum rules
are fulfilled; for example, Hansen and McDonald do not show this. To
my knowledge only Ballenegger and Hansen [Mol. Phys., 102: 599 (2014)]
show the first sum rule from simulation data.

New simulations of the molten salt system are carried out using a bigger
system size, L = 20.1, such that the radial distribution function is unity
for large radii. Eq. (25) from the paper is then used to calculate the
charge-charge structure, Szz. This is plotted in Fig. 3 as a function of k2

in the limit of small k. It is seen that the expansion of Szz with respect
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Figure 3: Charge-charge structure as a function of k2.

to k follows the expected k-dependence.

Now, the first Stillinger-Lovett sum rule simply expresses charge neutral-
ity; this is trivially fulfilled in the systems studied in this work. However,
it can not be inferred from the sum rule that are based on the radial dis-
tribution functions. Ballenegger and Hansen write the charge neutrality
condition as

n

∫ ∞
0

δg(r)r2dr = 0 .

For the molten salt this integral yields approx 0.15. This is also tested
using the data presented in Hansen and McDonald, Ref. 1, giving the
same result.

It would be very interesting to investigate this problem in great detail in
future work.

14. The characteristic wavelength is given by l = 2π/kmax, where kmax is the
wavevector where χ̃ has its maximum (or peak). This is now written in
the manuscript page 9-10.
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15. I definitely agree with the referee that this is not surprising, yet it does
stress the point that in the Debye-Hückel regime the underlying processes
governing the self-diffusion (single particle property) are the same as the
processes responsible for response when applying an external field. This
also supports the discussion of Fig. 5.

Simply from the form of χ̃ for T = 1.0177 and T = 0.0177 one can imme-
diately see that such collapse is not found here, hence, different processes
govern the response. This is now stressed in the manuscript.

16. This has been corrected.

17. In this work only studies the case where the fundamental mode is excited.
For T=0.0177 only k < 12π/L is shown, for higher wavevectors higher
order modes become excited (as stated on page 10) and Eq. (14) is not
valid. This is now stressed further on pages 5 and 10.

18. Regarding Fig. 4 (b): The lines are predictions from the theory; reference
to the equation is now provided.

As it is stated in the text, Eqs. (13)-(18) do not apply, hence, for the
ionic liquid system the response function is calculated from the Fourier
coefficients for the densities and the zero wavevector diffusivity.
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