SciPost logo

The complete scientific publication portal
Managed by professional scientists
For open, global and perpetual access to science

Recent publications:

Quantum Monte Carlo detection of SU(2) symmetry breaking in the participation entropies of line subsystems

David J. Luitz, Nicolas Laflorencie

SciPost Phys. 2, 011 (2017)   | published 24 March 2017

Using quantum Monte Carlo simulations, we compute the participation (Shannon-R\'enyi) entropies for groundstate wave functions of Heisenberg antiferromagnets for one-dimensional (line) subsystems of length $L$ embedded in two-dimensional ($L\times L$) square lattices. We also study the line entropy at finite temperature, i.e. of the diagonal elements of the density matrix, for three-dimensional ($L\times L\times L$) cubic lattices. The breaking of SU(2) symmetry is clearly captured by a universal logarithmic scaling term $l_q\ln L$ in the R\'enyi entropies, in good agreement with the recent field-theory results of Misguish, Pasquier and Oshikawa [arXiv:1607.02465]. We also study the dependence of the log prefactor $l_q$ on the R\'enyi index $q$ for which a transition is detected at $q_c\simeq 1$.

  • pdf

Decoherence and pointer states in small antiferromagnets: A benchmark test

Hylke C. Donker, Hans De Raedt, Mikhail I. Katsnelson

SciPost Phys. 2, 010 (2017)   | published 23 March 2017

We study the decoherence process of a four spin-1/2 antiferromagnet that is coupled to an environment of spin-1/2 particles. The preferred basis of the antiferromagnet is discussed in two limiting cases and we identify two $\it{exact}$ pointer states. Decoherence near the two limits is examined whereby entropy is used to quantify the $\it{robustness}$ of states against environmental coupling. We find that close to the quantum measurement limit, the self-Hamiltonian of the system of interest can become dynamically relevant on macroscopic timescales. We illustrate this point by explicitly constructing a state that is more robust than (generic) states diagonal in the system-environment interaction Hamiltonian.

  • pdf

Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra I

Jean Michel Maillet, Giuliano Niccoli, Baptiste Pezelier

SciPost Phys. 2, 009 (2017)   | published 28 February 2017

We study the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. The results apply as well to the spectral analysis of the lattice sine-Gordon model with integrable open boundary conditions. This spectral analysis is developed by implementing the method of separation of variables (SoV). The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations in a given class of functions. Moreover, we prove an equivalent characterization as the set of solutions to a Baxter's like T-Q functional equation and rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form. In order to explain our method in a simple case, the present paper is restricted to representations containing one constraint on the boundary parameters and on the parameters of the Bazhanov-Stroganov Lax operator. In a next article, some more technical tools (like Baxter's gauge transformations) will be introduced to extend our approach to general integrable boundary conditions.

  • pdf

Massive Corrections to Entanglement in Minimal E8 Toda Field Theory

Olalla A. Castro-Alvaredo

SciPost Phys. 2, 008 (2017)   | published 28 February 2017

In this letter we study the exponentially decaying corrections to saturation of the second R\'enyi entropy of one interval of length L in minimal E8 Toda field theory. It has been known for some time that the entanglement entropy of a massive quantum field theory in 1+1 dimensions saturates to a constant value for m1 L <<1 where m1 is the mass of the lightest particle in the spectrum. Subsequently, results by Cardy, Castro-Alvaredo and Doyon have shown that there are exponentially decaying corrections to this behaviour which are characterised by Bessel functions with arguments proportional to m1 L. For the von Neumann entropy the leading correction to saturation takes the precise universal form -K0(2m1 L)/8 whereas for the R\'enyi entropies leading corrections which are proportional to K0(m1 L) are expected. Recent numerical work by P\'almai for the second R\'enyi entropy of minimal E8 Toda has found next-to-leading order corrections decaying as exp(-2m1 L) rather than the expected exp(-m1 L). In this paper we investigate the origin of this result and show that it is incorrect. An exact form factor computation of correlators of branch point twist fields reveals that the leading corrections are proportional to K0(m1 L) as expected.

  • pdf

Transient Features in Charge Fractionalization, Local Equilibration and Non-equilibrium Bosonization

Alexander Schneider, Mirco Milletari, Bernd Rosenow

SciPost Phys. 2, 007 (2017)   | published 25 February 2017

In quantum Hall edge states and in other one-dimensional interacting systems, charge fractionalization can occur due to the fact that an injected charge pulse decomposes into eigenmodes propagating at different velocities. If the original charge pulse has some spatial width due to injection with a given source-drain voltage, a finite time is needed until the separation between the fractionalized pulses is larger than their width. In the formalism of non-equilibrium bosonization, the above physics is reflected in the separation of initially overlapping square pulses in the effective scattering phase. When expressing the single particle Green's function as a functional determinant of counting operators containing the scattering phase, the time evolution of charge fractionalization is mathematically described by functional determinants with overlapping pulses. We develop a framework for the evaluation of such determinants, describe the system's equilibration dynamics, and compare our theoretical results with recent experimental findings.

  • pdf

Analytical results for a coagulation/decoagulation model on an inhomogeneous lattice

Nicolas Crampé

SciPost Phys. 2, 006 (2017)   | published 24 February 2017

We show that an inhomogeneous coagulation/decoagulation model can be mapped to a quadratic fermionic model via a Jordan-Wigner transformation. The spectrum for this inhomogeneous model is computed exactly and the spectral gap is described for some examples. We construct our inhomogeneous model from two different homogeneous models joined by one special bond (impurity). The homogeneous models we started with are the coagulation/decoagulation models studied previously using the Jordan-Wigner transformation.

  • pdf

Nonlinear Luttinger liquid: Exact result for the Green function in terms of the fourth Painlevé transcendent

Tom Price, Dmitry L. Kovrizhin, Austen Lamacraft

SciPost Phys. 2, 005 (2017)   | published 21 February 2017

We show that exact time dependent single particle Green function in the Imambekov-Glazman theory of nonlinear Luttinger liquids can be written, for any value of the Luttinger parameter, in terms of a particular solution of the Painlev\'e IV equation. Our expression for the Green function has a form analogous to the celebrated Tracy-Widom result connecting the Airy kernel with Painlev\'e II. The asymptotic power law of the exact solution as a function of a single scaling variable $x/\sqrt{t}$ agrees with the mobile impurity results. The full shape of the Green function in the thermodynamic limit is recovered with arbitrary precision via a simple numerical integration of a nonlinear ODE.

  • pdf

Elaborating the phase diagram of spin-1 anyonic chains

Eric Vernier, Jesper Lykke Jacobsen, Hubert Saleur

SciPost Phys. 2, 004 (2017)   | published 21 February 2017

We revisit the phase diagram of spin-1 $su(2)_k$ anyonic chains, originally studied by Gils {\it et. al.} [Phys. Rev. B, {\bf 87} (23) (2013)]. These chains possess several integrable points, which were overlooked (or only briefly considered) so far. Exploiting integrability through a combination of algebraic techniques and exact Bethe ansatz results, we establish in particular the presence of new first order phase transitions, a new critical point described by a $Z_k$ parafermionic CFT, and of even more phases than originally conjectured. Our results leave room for yet more progress in the understanding of spin-1 anyonic chains.

  • pdf

Conformal field theory for inhomogeneous one-dimensional quantum systems: the example of non-interacting Fermi gases

Jérôme Dubail, Jean-Marie Stéphan, Jacopo Viti, Pasquale Calabrese

SciPost Phys. 2, 002 (2017)   | published 13 February 2017

Conformal field theory (CFT) has been extremely successful in describing large-scale universal effects in one-dimensional (1D) systems at quantum critical points. Unfortunately, its applicability in condensed matter physics has been limited to situations in which the bulk is uniform because CFT describes low-energy excitations around some energy scale, taken to be constant throughout the system. However, in many experimental contexts, such as quantum gases in trapping potentials and in several out-of-equilibrium situations, systems are strongly inhomogeneous. We show here that the powerful CFT methods can be extended to deal with such 1D situations, providing a few concrete examples for non-interacting Fermi gases. The system's inhomogeneity enters the field theory action through parameters that vary with position; in particular, the metric itself varies, resulting in a CFT in curved space. This approach allows us to derive exact formulas for entanglement entropies which were not known by other means.

  • pdf

QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains

Phillip Weinberg, Marin Bukov

SciPost Phys. 2, 003 (2017)   | published 13 February 2017

We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon) chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary) time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet) systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i) Standard exact diagonalisation of XXZ chain (ii) adiabatic ramping of parameters in the many-body localised XXZ model, (iii) heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv) quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.

  • pdf

Non-gaussianity of the critical 3d Ising model

Slava Rychkov, David Simmons-Duffin, Bernardo Zan

SciPost Phys. 2, 001 (2017)   | published 10 February 2017

We discuss the 4pt function of the critical 3d Ising model, extracted from recent conformal bootstrap results. We focus on the non-gaussianity Q - the ratio of the 4pt function to its gaussian part given by three Wick contractions. This ratio reveals significant non-gaussianity of the critical fluctuations. The bootstrap results are consistent with a rigorous inequality due to Lebowitz and Aizenman, which limits Q to lie between 1/3 and 1.

  • pdf

Nonlinear modes disentangle glassy and Goldstone modes in structural glasses

Luka Gartner, Edan Lerner

SciPost Phys. 1, 016 (2016)   | published 31 December 2016

One outstanding problem in the physics of glassy solids is understanding the statistics and properties of the low-energy excitations that stem from the disorder that characterizes these systems' microstructure. In this work we introduce a family of algebraic equations whose solutions represent collective displacement directions (modes) in the multi-dimensional configuration space of a structural glass. We explain why solutions of the algebraic equations, coined nonlinear glassy modes, are quasi-localized low-energy excitations. We present an iterative method to solve the algebraic equations, and use it to study the energetic and structural properties of a selected subset of their solutions constructed by starting from a normal mode analysis of the potential energy of a model glass. Our key result is that the structure and energies associated with harmonic glassy vibrational modes and their nonlinear counterparts converge in the limit of very low frequencies. As nonlinear modes never suffer hybridizations, our result implies that the presented theoretical framework constitutes a robust alternative definition of `soft glassy modes' in the thermodynamic limit, in which Goldstone modes overwhelm and destroy the identity of low-frequency harmonic glassy modes.

  • pdf

Exact correlations in the Lieb-Liniger model and detailed balance out-of-equilibrium

Jacopo De Nardis, Miłosz Panfil

SciPost Phys. 1, 015 (2016)   | published 30 December 2016

We study the density-density correlation function of the 1D Lieb-Liniger model and obtain an exact expression for the small momentum limit of the static correlator in the thermodynamic limit. We achieve this by summing exactly over the relevant form factors of the density operator in the small momentum limit. The result is valid for any eigenstate, including thermal and non-thermal states. We also show that the small momentum limit of the dynamic structure factors obeys a generalized detailed balance relation valid for any equilibrium state.

  • pdf

Universal front propagation in the quantum Ising chain with domain-wall initial states

Viktor Eisler, Florian Maislinger, Hans Gerd Evertz

SciPost Phys. 1, 014 (2016)   | published 30 December 2016

We study the melting of domain walls in the ferromagnetic phase of the transverse Ising chain, created by flipping the order-parameter spins along one-half of the chain. If the initial state is excited by a local operator in terms of Jordan-Wigner fermions, the resulting longitudinal magnetization profiles have a universal character. Namely, after proper rescalings, the profiles in the noncritical Ising chain become identical to those obtained for a critical free-fermion chain starting from a step-like initial state. The relation holds exactly in the entire ferromagnetic phase of the Ising chain and can even be extended to the zero-field XY model by a duality argument. In contrast, for domain-wall excitations that are highly non-local in the fermionic variables, the universality of the magnetization profiles is lost. Nevertheless, for both cases we observe that the entanglement entropy asymptotically saturates at the ground-state value, suggesting a simple form of the steady state.

  • pdf

Symmetric Wilson Loops beyond leading order

Xinyi Chen-Lin

SciPost Phys. 1, 013 (2016)   | published 21 December 2016

We study the circular Wilson loop in the symmetric representation of U(N) in $\mathcal{N} = 4$ super-Yang-Mills (SYM). In the large N limit, we computed the exponentially-suppressed corrections for strong coupling, which suggests non-perturbative physics in the dual holographic theory. We also computed the next-to-leading order term in 1/N, and the result matches with the exact result from the k-fundamental representation.

  • pdf

One step replica symmetry breaking and extreme order statistics of logarithmic REMs

Xiangyu Cao, Yan V. Fyodorov, Pierre Le Doussal

SciPost Phys. 1, 011 (2016)   | published 19 December 2016

Building upon the one-step replica symmetry breaking formalism, duly understood and ramified, we show that the sequence of ordered extreme values of a general class of Euclidean-space logarithmically correlated random energy models (logREMs) behave in the thermodynamic limit as a randomly shifted decorated exponential Poisson point process. The distribution of the random shift is determined solely by the large-distance ("infra-red", IR) limit of the model, and is equal to the free energy distribution at the critical temperature up to a translation. the decoration process is determined solely by the small-distance ("ultraviolet", UV) limit, in terms of the biased minimal process. Our approach provides connections of the replica framework to results in the probability literature and sheds further light on the freezing/duality conjecture which was the source of many previous results for log-REMs. In this way we derive the general and explicit formulae for the joint probability density of depths of the first and second minima (as well its higher-order generalizations) in terms of model-specific contributions from UV as well as IR limits. In particular, we show that the second min statistics is largely independent of details of UV data, whose influence is seen only through the mean value of the gap. For a given log-correlated field this parameter can be evaluated numerically, and we provide several numerical tests of our theory using the circular model of $1/f$-noise.

  • pdf

Finite-size corrections for universal boundary entropy in bond percolation

Jan de Gier, Jesper Lykke Jacobsen, Anita Ponsaing

SciPost Phys. 1, 012 (2016)   | published 19 December 2016

We compute the boundary entropy for bond percolation on the square lattice in the presence of a boundary loop weight, and prove explicit and exact expressions on a strip and on a cylinder of size $L$. For the cylinder we provide a rigorous asymptotic analysis which allows for the computation of finite-size corrections to arbitrary order. For the strip we provide exact expressions that have been verified using high-precision numerical analysis. Our rigorous and exact results corroborate an argument based on conformal field theory, in particular concerning universal logarithmic corrections for the case of the strip due to the presence of corners in the geometry. We furthermore observe a crossover at a special value of the boundary loop weight.

  • pdf

Detecting a many-body mobility edge with quantum quenches

Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

SciPost Phys. 1, 010 (2016)   | published 27 October 2016

The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations) to "localized" (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  • pdf

A conformal bootstrap approach to critical percolation in two dimensions

Marco Picco, Sylvain Ribault, Raoul Santachiara

SciPost Phys. 1, 009 (2016)   | published 27 October 2016

We study four-point functions of critical percolation in two dimensions, and more generally of the Potts model. We propose an exact ansatz for the spectrum: an infinite, discrete and non-diagonal combination of representations of the Virasoro algebra. Based on this ansatz, we compute four-point functions using a numerical conformal bootstrap approach. The results agree with Monte-Carlo computations of connectivities of random clusters.

  • pdf

Role of fluctuations in the phase transitions of coupled plaquette spin models of glasses

Giulio Biroli, Charlotte Rulquin, Gilles Tarjus, Marco Tarzia

SciPost Phys. 1, 007 (2016)   | published 25 October 2016

We study the role of fluctuations on the thermodynamic glassy properties of plaquette spin models, more specifically on the transition involving an overlap order parameter in the presence of an attractive coupling between different replicas of the system. We consider both short-range fluctuations associated with the local environment on Bethe lattices and long-range fluctuations that distinguish Euclidean from Bethe lattices with the same local environment. We find that the phase diagram in the temperature-coupling plane is very sensitive to the former but, at least for the $3$-dimensional (square pyramid) model, appears qualitatively or semi-quantitatively unchanged by the latter. This surprising result suggests that the mean-field theory of glasses provides a reasonable account of the glassy thermodynamics of models otherwise described in terms of the kinetically constrained motion of localized defects and taken as a paradigm for the theory of dynamic facilitation. We discuss the possible implications for the dynamical behavior.

  • pdf

SciPost Physics is published by the SciPost Foundation under the journal doi: 10.21468/SciPostPhys and ISSN 2542-4653.