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Abstract

These proceedings present the differential decay rates and the branching ratios of the tau
and muon decays τ → ``′`′νν̄ (with `, `′ = µ, e) and µ → eeeνν̄ in the Standard Model
at NLO. These five-body leptonic decays are a tool to study the Lorentz structure of
weak interactions and to test lepton flavour universality. They are also a source of SM
background to searches for the lepton-flavour-violating decays µ→ eee and τ → ``′`′.

Even if the shift in the branching ratios induced by radiative corrections turns out to
be small and of order 1% — mainly due to a running effect of the fine structure constant
— locally in the phase space these corrections can reach the 5 - 10% level, depending on
the applied cuts. We found for instance that in the phase space region where the neutrino
energies are small, and the momenta of the three charged leptons have a similar signature
as in µ → eee and τ → ``′`′, the NLO corrections decrease the leading-order prediction
by about 10 - 20%.
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1 Introduction

About 35% of the times the tau lepton decays only into electrons, muons and neutri-
nos. These leptonic decays of the tau (together with muon decay) constitute one of the
more powerful tools to study precisely the structure of the weak interaction and possi-
ble contributions beyond the V –A coupling of the Standard Model (SM) via the Michel
parameters [1–4]. Michel parameters can be studied not only in three-body decays like
τ → `νν̄ and µ→ eνν̄, but also in muon and tau radiative modes [5–8],

µ→ eνν̄γ, (1)

τ → `νν̄γ, with ` = µ, e, (2)

and in the rare five-body decays [9]

µ→ eeeνν̄, (3)

τ → ``′`′νν̄, with `, `′ = µ, e. (4)

A study of five-body leptonic decays at Belle is ongoing with a data sample of about
0.91×109 τ+τ− pairs [10,11]. The measurement of the branching fractions and constraints
on the Michel parameters will be presented soon. Precise data on radiative and rare tau
leptonic decays offer also the opportunity to probe the electromagnetic properties of the
tau and they may allow to determine its anomalous magnetic moment [12–14] which, in
spite of its precise SM prediction [15], has never been measured.

Radiative and five-body decays of the tau and the muon constitute an important
source of SM background to the searches for Charged Lepton Flavour Violation (CLFV)
in µ→ eγ, τ → eγ, µ→ eee and τ → ``′`′ conversions. These CLFV processes have been
studied in the framework of the Standard Model Effective Field Theory (SMEFT) [16]
to constraint in a model independent way possible sources of physics beyond the SM,
violation of charged lepton flavour and lepton universality [17–19]. Radiative decays are
an important source of background to µ → eγ and τ → `γ searches, while the five-
body muon decay (3) is the main source of background to the search of the µ → eee
conversion (forbidden in the SM) at the Mu3e experiment at PSI [20]. Indeed they are
indistinguishable from the signal except for the energy carried out by neutrinos. Secondly,
these decays can be employed as a tool for calibration, normalization and quality check of
the experiments [21,22].

The muon and tau leptonic decays can be predicted perturbatively in the SM since no
low-energy QCD effect is involved. The Next-to-Leading Order (NLO) and Next-to-Next-
to Leading Order (NNLO) corrections to the muon lifetime were calculated in [23–26],
together with the final state electron’s energy spectrum [27] at NNLO, and the tree-level
corrections induced by the W -boson propagator [28, 29]. Concerning the radiative and
the rare muon and tau decays, many tree-level calculations were presented in the last
decades [9,14,26,30–33], but only recently a complete calculation of the NLO corrections
to the muon and tau radiative decays [34,35] and the rare muon five-body decays [36,37]
were published.

These proceedings review the theoretical developments in the calculation of the NLO
corrections for the muon decay (3) in refs. [36, 37] and their impact on CLFV searches.
Moreover, we also report the NLO prediction of the branching ratios for the tau five-body
leptonic decays, that were omitted in the original publications [36,37].

Section 2 summarizes the methods employed in [36] to calculate the NLO prediction of
the differential decay rate and branching ratios, which are presented in section 3. Section 4
is dedicated to discuss the importance of these radiative corrections in CLFV searches.
Conclusions are drawn in section 5.
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2 Technical Ingredients

In this section we describe the methods employed in [36] for the calculation of the differ-
ential rate and the new development required in the evaluation of the five-body leptonic
tau decays. We adopted the Fermi V –A effective theory of weak interactions:

L = LQED + LQCD + LFermi. (5)

The Fermi Lagrangian for the muon decays is

LFermi = −4GF√
2

(ψ̄νµγ
αPLψµ) · (ψ̄eγαPLψνe) + h.c. , (6)

while for the tau leptonic decays we used

LFermi = −4GF√
2

(ψ̄ντγ
αPLψτ ) · (ψ̄`γαPLψν`) + h.c. , (7)

with ` = µ, e and where ψτ , ψµ, ψe, ψντ , ψνµ , ψνe denote the fields of tau, muon, electron and
their associated neutrinos, respectively; PL = (1 − γ5)/2 denotes the left-hand projector.
Under this approximation tiny term of O(m2

µ/M
2
W ) ∼ 2×10−6 and O(m2

τ/M
2
W ) ∼ 5×10−4

due to the finite W -boson mass are neglected.
A Fierz rearrangement of the four-fermion interaction (6) and (7) allows us to factorize

the amplitudes of virtual and real corrections into the product of spinor chains depending
either on the neutrino momenta or on the muon and electron ones (see Appendix A.3
in [36]). Since the neutrino’s phase space is integrated analytically, the residual phase
space integration that must be performed numerically depends on a smaller number of
integration variables.

The amplitudes for virtual corrections are reduced to tensor integrals and subsequently
decomposed into their Lorentz-covariant structure by means of the algebra manipulation
program Form [38] and the Mathematica package FeynCalc [39, 40]. The matrix ele-
ments for one-loop and real emission diagrams are then exported as a Fortran code for
the numerical integration. Our code depends for the numerical evaluation of the tensor-
coefficient functions on the LooopTools [41, 42] and Collier [43] Fortran libraries,
which can be both employed and compared. The numerical integrations were performed
with Monte Carlo methods by means of the Vegas [44] algorithm as implemented in the
Cuba library [45].

Ultraviolet (UV) divergences are regularized via dimensional regularization; UV-finite
results are obtained by renormalizing the theory (5) in the on-shell scheme. A small
photon mass λ is introduced to regularize the infrared (IR) divergences, while the finite
electron and muon masses regularize the collinear ones.

The virtual corrections to the muon and tau five-body decays depends marginally on a
non-perturbative contribution due the presence of the hadronic vacuum polarization in the
off-shell photon propagator that converts into a `

′+`
′− pair. This effect is not calculable at

low energy in perturbative QCD but can be taken into account by expressing the hadronic
vacuum polarization, Πhad(q2), in terms of e+e− → hadrons cross section data:

Rhad(s) = σ(e+e− → hadrons)/
4πα(s)2

3s
. (8)

The normalization factor 4πα(s)2/(3s) is the tree-level cross section of e+e− → µ+µ−

in the limit s � 4m2
µ — note that σ(e+e− → hadrons) does not include initial state
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radiation or vacuum polarization corrections. The optical theorem connects Rhad(s) to
the imaginary part of hadronic vacuum polarization:

Im Πhad(s) =
α(s)

3
Rhad(s). (9)

The full vacuum polarization function can be then obtained by means of the dispersion
relation. Our code employs the package alphaQED [46–49] for the evaluation of the
functions Rhad and Πhad.

In order to handle the IR divergences, we adopted in the original paper [36] on the
muon decay a phase-space slicing method. This method consists in the introduction of a
small photon energy cut-off ω0 that divides the real emission contribution into a soft and
a hard part. In the soft part, containing the IR singularity, the photon’s phase space is
integrated analytically adopting the Eikonal approximation for the matrix element. The
process-independent results was derived in [50] (see also ref. [51]). The hard part, i.e.
the contribution to the rate due to photons with energy greater than ω0, is integrated
numerically and later merged with the result of the soft contribution. Since the result of
this procedure is correct only up to O(ω0/mµ) or O(ω0/mτ ), a precise prediction requires
a rather small value of ω0.

For ω0 → 0, the numerical integration result grows like logω0, and therefore lots of
CPU time is spent in the calculation of this known singular term that cancel out in the
final result eventually. This issue turned out to be particularly severe in the calculation of
the tau branching ratios. For this reason, for the five-body leptonic decays of the tau we
employed the dipole subtraction method, originally developed in QCD [52, 53] and later
extended to QED in [54]. The idea is to carry out the phase-space integral of the real-
emission matrix element, |Mreal|2, without performing singular numerical integrations.
To this end one subtracts and add an appropriate subtraction function, |Msub|2, when
integrating the (n+ 1)-particle phase space of the real emission:∫

dΦn+1|Mreal|2 =

∫
dΦn+1

(
|Mreal|2 − |Msub|2

)
+

∫
dΦn+1|Msub|2. (10)

The subtracted term |Msub|2 has the form:

|Msub|2 = −
∑
f 6=f ′

QfσfQf ′σf ′g
(sub)
ff ′ (pf , pf ′ , k)|MBorn|2, (11)

where the sum runs over all charged fermions of the process, Qf and σf are the charge and

the charge flow related to the fermion f and f ′, and the g
(sub)
ff ′ are process-independent

functions that possess the same asymptotic behaviour as |Mreal|2 in the soft and collinear
limit. They depends on the photon momentum k and on the fermionic ones pf and
pf ′ . The momenta inserted inside the Born matrix element |MBorn|2, which depends on
n external momenta, are obtained by mapping the n + 1 phase space into a n particle
phase space, respecting all mass-shell conditions. In this way, the first term in (10) can
be performed numerically without regulators while the second term, containing the IR
singular contribution, is integrated analytically and then added to the contribution of
virtual diagrams in order to cancel the IR poles. Since the part of the phase-space integral
connected to the photon is process independent, its analytic integration can performed
once and for all (see [54]).
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BLO δBlep δBhad δB/B
τ → eeeνν̄ 4.2488 (4)× 10−5 −4.2 (1)× 10−8 −1.0× 10−9 −0.1%
τ → µeeνν̄ 1.989 (1)× 10−5 4.4 (1)× 10−8 −6.6× 10−10 0.2%
τ → eµµνν̄ 1.2513 (6)× 10−7 2.70 (1)× 10−9 −3.6× 10−10 1.8%
τ → µµµνν̄ 1.1837 (1)× 10−7 2.276 (2)× 10−9 −3.5× 10−10 1.6%

µ→ eeeνν̄ 3.6054 (1)× 10−5 −6.69 (5)× 10−8 −1.8× 10−11 0.2%

Table 1: LO and NLO branching ratios of τ → ``′`′νν̄ (with `, `′ = e, µ) and µ→ eeeνν̄.
The NLO correction due to photons and leptons only is denoted by δBlep, while the non-
perturbative contribution given by the hadronic vacuum polarization is denoted by δBhad.
The last column report the ratio between the NLO correction and the LO branching ratio.
The uncertainties are the error due to numerical integration.

3 Branching ratios

The LO branching ratios and the NLO corrections for the decays (3) and (4) are presented
in Tab. 1. All the branching ratios were computed keeping into account the full dependence
on the lepton masses. The second column shows the branching fraction at LO, while the
third and the fourth columns report separately the NLO contributions due to photons
and leptons only (the dominant part) and the correction given by the hadronic vacuum
polarization. The last column display the shift of the LO branching ratio induced by
radiative corrections. The uncertainties reported in Tab. 1 are the error of the numerical
integration. We remind the reader that on top of the quoted uncertainties one must take
into account for the tau lepton’s decays also the error due to the tau lifetime; at present
this error corresponds to a fractional uncertainty δττ/ττ = 1.7× 10−3 [55], which is of the
same order of magnitude as the NLO corrections for the first two modes in Tab. 1. For
the rare muon decay the error due to the lifetime is negligible.

The NLO corrections to the branching ratios are of order 0.1% for the tau decays
involving at least two electrons (the first two modes in Tab. 1) and the five-body decay of
the muon. Radiative corrections are one order of magnitude larger for the tau decays into
at least two muons (the third and fourth modes in Tab. 1). Such difference is caused by
the running of the fine structure constant α. In the decays τ → eµµνν̄ and τ → µµµνν̄
the off-shell photon that converts into µ+µ− is forced to acquire an invariant mass of
at least twice the muon mass and therefore the electron’s contribution to the photon
vacuum polarization generates the logarithmic enhancement α

3π log(4m2
µ/m

2
e), which can

be reabsorbed into the redefinition of α by substituting α→ α(4m2
µ). Note indeed that the

shift induced by the running of α is 2×∆α(4m2
µ) = 1.2%, of the same order as the NLO

corrections for the two modes with at least two muons in the final state. This does not
contradict the Kinoshita-Lee-Nauenberg theorem [56,57], which guarantees that radiative
corrections are free from mass singularities except for those that can be reabsorbed into
the running of coupling constant.

The branching ratio of (3) was measured long time ago by the Sindrum experi-
ment [58],

Bexp(µ− → e+e−e−νµν̄e) = 3.4 (4)× 10−5, (12)

while for the tau five-body decays, the Cleo experiment measured [59]

Bexp(τ → ee−e+νν̄) = 2.8 (1.5)× 10−5, (13)
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and established for τ → µeeνν̄ the upper bound

Bexp(τ → µe−e+νν̄) < 3.2× 10−5 at 90% C.L. . (14)

All available experimental measurements are in good agreement with the results in Tab. 1.
The Belle experiment is expected to present soon new measurements of the branching
fractions for τ → eeeνν̄ and τ → µeeνν̄, a to report first upper bounds for the modes
τ → eµµνν̄ and τ → µµµνν̄ [10, 11,60].

4 Impact on CLFV Searches.
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Figure 1: The branching ratio of µ→ eeeνν̄ at NLO as a function of the invariant mass of
the three electrons m123 (left) and the cut on the invisible energy /Emax (right). The ratio
between the NLO and LO predictions is depicted in the lower part of each panel. The
error band (magnified 10 times) represents the assigned theoretical error. Figures taken
from [36].

Branching ratios are protected from large logarithmic corrections by the Kinoshita-
Lee-Nauenberg theorem. However selection cuts on the final state can enhance the role
of radiative corrections even up to 10%. As an example, we discuss here the size of these
corrections in the specific final-state configuration of (3) where the neutrino missing energy
(/E) is very small and the visible energy (Evis) is close to mµ. This region is particularly
important for the Mu3e experiment. Indeed, in this phase-space point the muon decay (3)
becomes a source of time- and space-correlated background for the CLFV three-body decay
µ→ eee.

Figure 1a displays the normalized NLO differential rate as function of the three-electron
invariant mass m123, close to the end point m123 = mµ. The local K-factor is shown
in the lower part. The rate, evaluated at fixed value of m123, is fully inclusive in the
bremsstrahlung photon contribution.

Figure 1b shows the branching ratio BNLO(/Emax) versus the cut on the missing energy
(upper panel) and its relative magnitude with respect to the LO prediction (lower panel).
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The branching ratio B(/Emax) is calculated with a cut on the missing energy

/E = mµ − Evis ≤ /Emax. (15)

Both distributions in figure 1 evince that radiative corrections decrease the LO prediction
by about 10 - 20%, depending on the cut applied on the missing energy. Hence, the
background events for µ→ eee due to the decay (3) are fewer than what is expected from
a tree-level calculation.

The authors of ref. [33] fit the LO missing energy spectum at the end point with the
ansatz:

B(/Emax) = κ

(
/Emax

me

)6

, with κLO = 2.99× 10−19. (16)

We performed a similar fit for the NLO branching ratios for /Emax = 1, 2, . . . , 10me.
Taking into account the numerical error of B(/Emax), we obtained the following value for
the constant κ at NLO accuracy:

κNLO = 2.5117 (6)× 10−19. (17)

The exponent of /Emax is assumed to be fixed in [33]; relaxing such constraint and assuming
also the exponent γ to be a free parameter, i.e.

B(/Emax) = κ′
(
/Emax

me

)γ
, (18)

we obtain κ
′NLO = 2.217 (2)× 10−19 and γNLO = 6.0768 (4). Our ansatz (18) is equivalent

to a linear fit in a double logarithmic scale, lnB = lnκ′ + γ ln(/Emax/me), while (16)
represents a straight line with fixed slope: lnB = lnκ+ 6 ln(/Emax/me).

5 Conclusion

We have reviewed the NLO predictions for the decay µ→ eeeνν̄ and we have presented the
NLO branching ratios for the tau five-body leptonic decays τ → ``′`′νν̄, with `, `′ = e, µ.
Radiative corrections shift the branching ratio of about 0.1%, for the decay modes with
at least two electrons, and 1% for the modes with at least two muons. These corrections
are small because of cancellation of mass singularities in inclusive observables. The only
logarithmic enhancement appearing in the modes τ → eµµνν̄ and τ → µµµνν̄ is due too
the running of the fine structure constant α.

Detector acceptances and selection cuts can augment the magnitude of radiative correc-
tions up to 10% level. In these proceedings we presented the case of µ→ eeeνν̄ differential
rate in the configuration where the total visible energy is close to the muon mass. In this
corner of the phase space — of particular importance for the Mu3e experiment since the
decay mimics the CLFV decay µ → eee — these QED radiative corrections decrease the
LO prediction by about 10 - 20 %.
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