
SciPost Physics Submission

Non-equilibrium quasiparticles in superconducting circuits:
photons vs. phonons

G. Catelani1*, D. M. Basko2**

1 JARA Institute for Quantum Information (PGI-11),
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Université Grenoble Alpes and CNRS, 25 rue des Martyrs, 38042 Grenoble, France

* g.catelani@fz-juelich.de
** denis.basko@lpmmc.cnrs.fr

November 8, 2018

Abstract

We study the effect of non-equilibrium quasiparticles on the operation of a su-
perconducting device (a qubit or a resonator), including heating of the quasi-
particles by the device operation. Focusing on the competition between heat-
ing via low-frequency photon absorption and cooling via photon and phonon
emission, we obtain a remarkably simple non-thermal stationary solution of
the kinetic equation for the quasiparticle distribution function. We estimate
the influence of quasiparticles on relaxation and excitation rates for transmon
qubits, and relate our findings to recent experiments.
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1 Introduction

Superconducting devices have been under development for several years for applications
in detection [1], nonlinear microwave amplification [2–4], quantum information process-
ing [5], and quantum metrology [6, 7]. Intrinsic excitations in the superconductor, known
as Bogoliubov quasiparticles, can be detrimental to such devices, for example limiting the
sensitivity of detectors and causing decoherence in qubits. The devices are routinely op-
erated at temperatures so low that no quasiparticles should be present in thermal equilib-
rium. However, a significant number of residual non-equilibrium quasiparticles is typically
detected, and it is well established that their density (normalized to the Cooper pair den-
sity) can be xqp ∼ 10−5–10−8 [8–10]. Much less is known about the energy distribution of
these quasiparticles.

Many experiments involving residual quasiparticles in qubits [11–13] are successfully
described by the theory [14,15], based on the assumption of a fixed average quasiparticle
distribution which perturbs the device operation; the resulting net effect of the quasiparti-
cles is equivalent to that of a frequency-dependent resistance included in the circuit. The
fixed distribution assumption is valid in the weak signal regime, when the back-action of the
superconducting condensate excitations (resonator photons or qubit excitations, hereafter
all referred to as photons for the sake of brevity) on the quasiparticles can be neglected,
or for studying observables which are not sensitive to the quasiparticle energy distribution
function, but only to the quasiparticle density. This assumption must be reconsidered
when the probing signal is strong enough to modify the quasiparticle distribution and the
latter can affect the quantities which are measured.

Some efforts in this direction have been made. In the numerical work [16], the ex-
ternal circuit was treated classically, so it tended to heat the quasiparticles to infinite
temperature, and the distribution was stabilized by phonon emission only (see also [17]
and references therein for related experiments). In [18], the quasiparticle distribution was
assumed to be entirely determined by the external circuit (both heating by the drive and
cooling by photon emission were included at the quantum level), while phonon emission
was neglected.

Here we study analytically the competition between quasiparticle heating via absorp-
tion of low-energy photons (i. e., with energy ω0 � 2∆, twice the superconducting gap)
and cooling via both photon emission in the external circuit and phonon emission in the
material, as schematically shown in Fig. 1. We obtain a non-thermal stationary solution
of the kinetic equation for the quasiparticle distribution function. Using our solution we
estimate the influence of non-equilibrium quasiparticles on relaxation and excitation rates
for transmon qubits, and relate our findings to recent experiments.

The paper is organized as follows: we first introduce the kinetic equation and discuss
the main properties of its solution for different regimes (conditions for applicability of the
kinetic equation and detailed derivation of the solution are given in appendices). We then
discuss our results in light of recent experiments with superconducting qubits.

2 Kinetic equation

The quasiparticle distribution function f(ε) satisfies the kinetic equation that we write as

∂f(ε)

∂t
= Stt f(ε) + Stn f(ε). (1)

where we measure the energy ε from the superconducting gap and assume 0 < ε� ∆. The
two terms on the right-hand side represent collision integrals due to absorption/emission
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Figure 1: A schematic representation of the model under consideration. The quasiparticle
distribution function f(ε) (shaded areas) is affected by photon exchange with e.g. a qubit
and by the emission of phonons. As explained in the text, for “cold” quasiparticles the
width T∗∗ of the distribution function [Eq. (10)] is small compared to the photon frequency
ω0, and the distribution function has a second, smaller peak at that frequency (replicas
at higher multiples of ω0 can be neglected in the cold quasiparticle limit).

of phoTons and phoNons, respectively. The photon term can be written as [18]

Stt f(ε) = n̄Γ0

√
ω0

ε− ω0

[
f(ε− ω0)− eω0/T0f(ε)

]
+

+ n̄Γ0

√
ω0

ε+ ω0

[
eω0/T0f(ε+ ω0)− f(ε)

]
. (2)

Here the square roots approximate the density of states near the gap edge, ε � ∆; for
ε < ω0 the first term should be set to zero. n̄ is the average number of excitations in the
superconducting subsystem with transition frequency ω0; for a qubit 0 ≤ n̄ < 1, while
for a harmonic system such as a resonator any n̄ ≥ 0 is allowed; this is in contrast to
the classical approach of Ref. [16], valid only for n̄ � 1. The effective temperature T0

is defined by the relation eω0/T0 = (1 ∓ n̄)/n̄, with the upper (lower) sign for a two-level
qubit (harmonic) subsystem. Γ0 characterizes the rate of photon absorption/emission by
the quasiparticle. For a weakly-anharmonic, single-junction qubit such as the transmon it
is given by

Γ0 =
δ

2π∆

√
ω0∆

2
, (3)

with δ being the mean level spacing of the superconducting islands. For a resonator,
one should use the mean level spacing in the whole resonator volume, occupied by the
quasiparticles, while 2π∆ should be replaced by Qω0 with Q being the resonator quality
factor if the material resistivity were the same as in the normal state.

We do not address photon dynamics here, assuming the photon state to be stationary
and fixed by the external circuit. In principle, one can write coupled equations for the
photon density matrix and f(ε), as in Ref. [18]; their solution in the presence of phonons
remains an open question. Also, we neglect multiphoton absorption/emission and assume
the photon system to be either strictly two-level or strictly harmonic; then each act of ab-
sorbtion/emission involves only energy ω0, and the photon state enters only via n̄. Going
beyond these assumptions would allow quasiparticles to absorb/emit multiples of ω0 or en-
ergies slightly different from ω0 due to weak anharmonicity in the resonator or broadening
of the qubit transition (we remind that the ratio between anharmonicity and broadening
determines if the photon system should be treated as two-level or harmonic [18]).
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We assume the phonons to be kept at constant low temperature Tph � ω0. Then, the
quasiparticle-phonon scattering collision integral can be written as [19–21]:

Stn f(ε) =

∞∫
0

2πF (ω) dω

1− e−ω/Tph
2ε+ ω√

2∆(ε+ ω)

[
f(ε+ ω)− e−ω/Tphf(ε)

]
+

+

ε∫
0

2πF (ω) dω

1− e−ω/Tph
2ε− ω√

2∆(ε− ω)

[
e−ω/Tphf(ε− ω)− f(ε)

]
, (4)

where we assume the quasiparticles to be non-degenerate, f(ε)� 1, so all terms quadratic
in f(ε) (in particular, quasiparticle recombination) are neglected. This approximation is
discussed in detail in Appendix A. The function F (ω) is defined as

F (ω) ≡ Ξ2ω2

8π2~vFρ0v4
s

≡ ~3Σω2

48πζ(5) νn
. (5)

Here ζ(x) is the Riemann zeta function, Ξ is the deformation potential, vF and vs are
the Fermi velocity and the speed of sound, ρ0 is the mass density of the material, νn is
the density of states at the Fermi level for the material in the normal state, taken per
unit volume and for both spin projections. These material parameters are conveniently
wrapped into the coefficient Σ, which controls energy exchange between electrons and
phonons for the material in the normal state: the power per unit volume transferred
from electrons to phonons, kept at temperatures Te and Tph, respectively, is given by
Σ(T 5

e − T 5
ph) [22]. This relationship as well as Eq. (5) are appropriate for a clean metal,

when the electron elastic mean free path due to static impurities is longer than the mean
free path due to the electron-phonon scattering. In the opposite limit, F (ω) is proportional
to a different power of ω: F (ω) ∝ ω for impurities with fixed positions [23] and F (ω) ∝ ω3

for impurities which move together with the phonon lattice deformation [24,25]. Although
at low energies, discussed here, the system is expected to be in the diffusive limit, the clean-
limit expressions usually agree better with experiments (see Ref. [26] for a review). Thus,
here we use the clean-limit formula; the diffusive limit is discussed in Appendix D where
we show that the results are qualitatively similar.

We assume the phonon temperature to be very low, much smaller than the typical
quasiparticle energy. Then the last term in Eq. (4) determines the quasiparticle relaxation
rate by phonon emission [27]:

Γph(ε) =
16

315 ζ(5)

Σε7/2

νn

√
2∆
≡ 1

τph

( ε
∆

)7/2
. (6)

When we neglect the absorption of phonons (i.e., setting Tph = 0), the phonon collision
integral simplifies:

Stn f(ε) =
105

128

∞∫
ε

f(ε′)

τph

(ε′ + ε)(ε′ − ε)2dε′√
∆7ε′

−
( ε

∆

) 7
2 f(ε)

τph
.

Some consequences of Tph > 0 are explored in Appendix C. From now on, with kinetic
equation we will mean Eq. (1) with the right hand side given by the sum of this simplified
expression plus Eq. (2). In the steady state, ∂f/∂t = 0, the kinetic equation reduces to
an integral equation for f(ε). In the next section we study the solution of this equation
and we identify two main regimes.
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3 Solution: two main regimes

3.1 Cold quasiparticle regime

The first regime occurs when there are few excitations to absorb and/or the electron-
phonon relaxation is sufficiently strong, so the quasiparticles are more likely found at
low energies, ε � ω0. From time to time, a quasiparticle absorbs a quantum ω0 and is
promoted to energies above ω0, and then quickly relaxes back to lower energies by emitting
either a quantum ω0, or a phonon. Thus, from the stationary kinetic equation we can find
the distribution at energies near ω0 by perturbation theory, neglecting the occupation at
energies larger than 2ω0:

f(ε+ ω0) ≈ f(ε)

eω0/T0 +
√
ε/ω0 Λ

, (7)

where we introduced a dimensionless parameter

Λ ≡ (ω0/∆)7/2

n̄Γ0τph
(8)

The condition eω0/T0 � 1 or Λ � 1 ensures that the perturbative approach is valid and
thus defines the cold quasiparticle regime.1

Substituting f(ε + ω0) from Eq. (7) into the kinetic equation at low energies ε � ω0,
we obtain

ω0∫
ε

(ε′ + ε)(ε′ − ε)2 f(ε′) dε′√
ω7

0ε
′

+

ω0∫
0

f(ε′) dε′/ω0

eω0/T0 +
√
ε′/ω0 Λ

=

=
128

105

[ √
ε/ω0

eω0/T0 +
√
ε/ω0 Λ

+

(
ε

ω0

)7/2
]
f(ε). (9)

On the right-hand side, the first term in the brackets represents the out-scattering to the
higher levels at ε > ω0 (minus the photon emission contribution), while the second term
is due to phonon emission, when the quasiparticle is transferred to lower energies. This
second term dominates at energies

ε� T∗∗ ∼ min
{
ω0Λ−2/7, ω0e

−ω0/(3T0)
}
, (10)

and the cold quasiparticle condition can be expressed as T∗∗ � ω0. The last term on the
left-hand side of Eq. (9) represents the uniform incoming flux from the energies between
ω0 and 2ω0 (higher energies are neglected, as discussed above). This term is smaller than
the first one (incoming flux from energies below ω0) as long as ε� ω0 (see Appendix B).
In both integrals, we can push the upper integration limit to infinity if the integrand
decreases quickly enough. Then, we are left with the equation

∞∫
ε

(ε′ + ε)(ε′ − ε)2 f(ε′) dε′√
ε′

=
128

105
ε7/2f(ε), (11)

1One may worry that if the condition T0 � ω0 is not satisfied, f(ε + ω0) ≈ f(ε) for small ε, so the
perturbation theory does not work. Note, however, that if we try to find f(ε+ 2ω0) neglecting f(ε+ 3ω0),
we obtain

f(ε+ 2ω0) ≈ f(ε+ ω0)

eω0/T0 + 1/
√

3 +
√

128 Λ
,

so having just one of the conditions T0 � ω0 or T∗ � ω0 suffices to neglect f(ε+ 2ω0) and higher.
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which has a remarkably simple exact solution f(ε) = C/ε4 with an arbitrary constant C.
This power-law form justifies the change in integration limit and is valid for energies
T∗∗ � ε � ω0; it resembles the Kolmogorov spectrum of turbulence [28], and describes
a similar physical situation: the flow of probability, which is injected at high energies,
ε & ω0, and flows to lower energies, down to ε ∼ T∗∗ where it encounters an effective sink,
represented by the first term on the right-hand side of Eq. (9). In our case, the probability
is reinjected back at higher energies by absorbing a quantum ω0.

The behavior of the solution at energies ε . T∗∗ depends on the relation between the
two dimensionless parameters, eω0/T0 and Λ. While we are unable to find an analytical
solution in this region, it is possible to establish the qualitative character of the solution.
Let us drop the second term on the left-hand side of Eq. (9) and introduce new variables

x =
ε

ω0

(
Λ

eω0/T0

)2

, f(ε) = Fr(x)

(
r
√
x

1 +
√
x

+ x7/2

)−1

, (12)

where r = Λ6/e7ω0/T0 . This gives an equation for Fr(x):

Fr(x) =
105

128

∞∫
x

(x+ y)(x− y)2

r(1 +
√
y)−1 + y3

Fr(y) dy

y
. (13)

The 1/ε4 asymptotics of f(ε) translates into Fr(x) ∼ 1/
√
x at x� x∗∗ ≈ min{r2/7, r1/3},

so the integral converges at the upper limit. Fr(0) is finite, since at low energies the
integral is also well-behaved. The contribution of y � x∗∗ is suppressed by the numerator,
so Fr(0) and Fr(x∗∗) are of the same order. This qualitative analysis is supported by
numerical findings which show that to good accuracy the function Fr(x), upon rescaling
x by x∗∗, takes a form independent of r (Appendix B).

Note that because of the square root divergence of f(ε) as ε → 0, the normalization
coefficient depends weakly (logarithmically) on the phonon temperature when Tph � T∗∗.
On the other hand, Eq. (7) and the power-law decay at large energy remain valid even
when Tph > T∗∗, although the latter starts from an energy large compared to Tph, as
discussed in Appendix C.

3.2 Hot quasiparticle regime

If n̄ (and hence T0) is sufficiently large, the width T∗∗ of the distribution function may
exceed ω0. When both ω0/T0, Λ� 1, the quasiparticles can absorb many excitations and
their typical energy becomes large compared to ω0, which defines the hot quasiparticle
regime. Still, this does not mean that f(ε) becomes smooth on the scale ε ∼ ω0: the
singularity in the density of states at ε → 0 is imprinted in f(ε → ω0), f(ε → 2ω0),
etc., by photon absorption, giving rise to a series of peaks in f(ε) at integer multiples of
ω0, which were observed in the numerical results of Ref. [16]. Below we focus on large-
scale features of the distribution function, its fine structure lying beyond the scope of the
present paper. Then, if f(ε) is understood as the smooth envelope, we can approximate
the photon collision integral in Eq. (2) by a diffusion operator:

Stt f(ε) ' n̄Γ0

√
ω5

0ε
∂

∂ε

{
e−ε/T0

ε

∂

∂ε

[
eε/T0f(ε)

]}
, (14)

whose form ensures the correct steady-state solution f ∼ e−ε/T0 when phonon emission is
neglected [18]. In this approximation, it is convenient to introduce the temperature scale

T∗ ≡
[
(n̄Γ0τph)2ω5

0∆7
]1/12

= ω0Λ−1/6. (15)
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For the quasiparticle to be hot, we need T0, T∗ � ω0. When T0 � T∗, the Boltzmann-like
exponential decay f(ε) ∼ e−ε/T0 is valid up to the very high energy T∗

√
T∗/2T0, above

which the distribution function decays faster than exponentially. When T0 � T∗, the
quasiparticle distribution function is governed by T∗ rather than T0: it changes little for
ε . T∗ and decays faster than exponentially for ε > T∗.

Let us first assume ω0 � T∗ � T0 (more precisely, we are considering the limits ω0 → 0,
T0 → ∞, while keeping T∗ = const). Then we can replace the exponential terms in the
curly brackets of Eq. (14) with unity and introduce dimensionless variables x = ε/T∗ and
y = ε′/T∗. As a result, the steady-state equation acquires a parameter-free form:

0 =
√
x ∂x

[
x−1∂xf(x)

]
− x7/2f(x) +

105

128

∫ ∞
x

dy
√
y

(x+ y)(x− y)2 f(y). (16)

We can find approximate solutions to Eq. (16) in the low (x � 1) and high (x � 1)
energy limits; the solutions will contain unknown coefficients, which we will fix by solving
the equation numerically. In the high-energy regime, we can drop the last term, and with
the change of variable x = 41/6√z we obtain the Airy equation:

0 = ∂2
zf − zf. (17)

Thus, the high-energy part of the solution is expressed in terms of the Airy function:

f(x� 1) ≈ f∞Ai
(
x2/41/3

)
, (18)

with some coefficient f∞. At low energies x → 0, in Eq. (16) we can drop the term
proportional to x7/2 and set the lower integration limit to zero. We can then find a
solution in the form of an expansion:

f(x) ≈ f0

(
1− ax5/2 + bx7/2 + . . .

)
(19)

with

a =
21

32

∫ ∞
0

dy y5/2 f(y)

f0
, b =

5

32

∫ ∞
0

dy y3/2 f(y)

f0
, (20)

and some coefficient f0, whose relation to f∞ is in principle determined by matching the
solutions at x ∼ 1; here we find the relation accurately by comparing to numerical result.

We solve Eq. (16) numerically as follows: we discretize variables x and y, so that the
equation becomes a matrix equation and we find the vector with the smallest eigenvalue in
absolute value. We repeat this process on finer grids and then extrapolate to zero spacing;
in the extrapolation, the smallest eigenvalue tends to zero. By fitting the numerical
solution with Eq. (18) we find f∞/f0 ' 3.00, while using the definitions in Eq. (20),
numerical integration gives a ' 0.564 and b ' 0.119. With these values both the high-
and low-energy formulas, Eqs. (18) and (19), fit well the numerical solution, see Fig 2.
Finally, to find the proper normalization, we can use the numerical result∫ ∞

0

dx√
x
f(x) ' 2.1 f0. (21)

Let us briefly discuss the opposite limit, T∗ � T0 � ω0. In this regime we can use
Eq. (14), but not the simpler form that led to the first term in the right hand side of
Eq. (16). In this limit, the bulk of the distribution is f(ε) ∝ e−ε/T0 , and only at very high
energies, ε & T∞ ≡

√
T 3
∗ /(2T0), the tail is suppressed by the phonon emission:

f(ε) ∝


e−ε/T0 , ε� T∞,

e−ε/2T0−ε
2/2
√

2T0T∞ , |ε− T∞| � T∞,

e−ε/2T0Ai
(
ε2/41/3T 2

∗
)
, ε� T∞.

(22)
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Figure 2: Red solid line: numerical solution to Eq. (16). Black dashed: low energy
approximation, Eq. (19). Black dot-dashed: high energy approximation, Eq. (18).

4 Discussion: relevance to experiments

The above results for the quasiparticle distribution function are valid both for a harmonic
and a two-level (qubit) superconducting system, if the appropriate relationship between
n̄ and T0 is used. We focus henceforth on the qubit case to investigate to what extent a
qubit can heat the quasiparticles. Since T0/ω0 = 1/ ln (1/n̄− 1), the condition T0 > ω0

translates into n̄ > 1/(1 + e) ≈ 0.27. Noting that the excited state occupation n̄ of an
undriven qubit is generally below 0.3 (in most cases being between a few percent and not
much above 10%, with some qubits being much colder, n̄ ∼ 0.1% [29]), we conclude that
an undriven qubit cannot make the quasiparticles hot. For a strongly driven qubit, we
can have n̄ → 1/2− and hence T0 → ∞ [18]. In this limit, we should check if T∗ � ω0.
The largest values of T∗/ω0 are reached for low-frequency qubits made of small islands,
since the rate Γ0 is inversely proportional to the volume. Considering a typical aluminum
island of volume ∼ 0.02µm3, we have Γ0 ∼ 105 Hz [18]. For the time τph, we use the
relation in [27] and the experimental results for thin films in Refs. [30] and [31] to estimate
τph ∼ 10 ns. Then for typical qubit frequencies ω0 = 4 to 8 GHz, we find that T∗/ω0

varies between 1.2 and 0.8. Hence we conclude that even under strong driving a qubit
cannot significantly heat the quasiparticles to energies much above its frequency. This
conclusion is not too sensitive to the used parameters: for instance, increasing τph by two
orders of magnitude only doubles the calculated T∗ because of the very weak power Λ−1/6

in Eq. (15).
We can extend the considerations above to include the possibility that the quasiparti-

cles are not heated directly by the qubit, but indirectly due to the interaction of the qubit
with another mode. This mode could be a resonator mode, or a spurious (harmonic) mode
of the chip. For instance, take a resonator, coupled to the qubit with coupling strength
g; typically, the coupling strength is of order 100 MHz and the resonator-qubit detuning
δω is of order 1 GHz. This implies that the quasiparticle rate Γ0 is suppressed by about
two orders of magnitude, Γ0 → Γ0(g/δω)2. Therefore, even for a small qubit, we do not
expect significant heating unless the mode is populated with hundreds of photons.

Let us now consider an undriven qubit; as discussed above, for the experimentally
observed range of n̄ the quasiparticles are cold. However, for small-island qubits the
distribution function width T∗∗ is given by ω0e

−ω0/(3T0), while for larger qubits (3D trans-
mon [9,11], Xmon [32]) with electrode volume of order 103–104 µm3, it is given by ω0Λ−2/7,

8
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see Eq. (10). The different regimes for T∗∗ lead to different behaviors for the quasiparticle-
induced excitation rate. In both cases, since T∗∗ � ω0 the relaxation rate is approximately
given by [15]

Γqp
10 =

2ω0

π

∫ ∞
0

f(ε)√
ε(ε+ ω0)

dε ≈ ω0

π

√
2∆

ω0
xqp, (23)

where

xqp =

∫ ∞
0

f(ε)

√
2∆

ε

dε

∆
=

nqp

νn∆
(24)

is the quasiparticle volume density nqp normalized by the Cooper pair density. For the
excitation rate, we use Eq. (7) to write

Γqp
01 =

2ω0

π

∫ ∞
0

f(ε+ ω0)√
ε(ε+ ω0)

dε ≈ 2ω0

π

∫ ∞
0

f(ε)√
ε(ε+ ω0)

dε

eω0/T0 +
√
ε/ω0Λ

(25)

with the integral dominated by contributions from energies ε . T∗∗ For small qubits,
e−ω0/(3T0) < Λ−2/7, in the relevant energy range the last denominator is approximately
eω0/T0 and therefore

Γqp
01

Γqp
10

≈ e−ω0/T0 =
n̄

1− n̄
(26)

This ratio has the detailed balance form; note, however, that it is determined by the qubit
occupation rather than the energy scale of the quasiparticles, which are not in thermal
equilibrium. For large qubits, e−ω0/(3T0) > Λ−2/7, we cannot neglect the term proportional
to Λ in the denominator, and therefore we conclude Γqp

01/Γ
qp
10 � n̄/(1 − n̄). We should

point out that for large qubits we estimate T∗∗ . Tph: not surprisingly, in a large device
the quasiparticles should be close to thermal equilibrium with the phonon bath. However,
the found inequality for the ratio of quasiparticle rates still holds, since it is based on the
use of Eq. (7). This inequality, together with Eq. (23), validates the use of the density xqp

as the relevant dynamical variable affecting qubit relaxation. The dynamics of xqp in the
presence of traps has been studied in recent works [33,34], where possible ways to improve
qubits performance are analyzed.

Some recent experiments [12,35] with large qubits report that at low temperatures the
main relaxation mechanism is a “residual” (non-quasiparticle) one, Γr

10 & Γqp
10 . Then, if

we assume that the qubit is the main source of quasiparticle non-equilibrium, the above
considerations imply Γqp

01/Γ
qp
10 � n̄ ≈ (Γqp

01 + Γr
01)/Γr

10. This inequality can be satisfied
only if Γqp

01 � Γr
01, whereas experiments indicate that the opposite inequality holds [29,35].

This discrepancy could indicate that one should account for a (currently unknown) energy-
dependent source of pair breaking photons and/or phonons generating hot quasiparticles;
in other words, the source of the quasiparticles should be identified, possibly via experi-
ments with resonators [36]. Alternatively, a more detailed modeling of the systems under
investigation might be necessary, for example by including details about the geometry of
the superconducting electrodes or properties of the substrate and interfaces that have been
neglected so far.

5 Conclusion

In summary, we have studied the distribution function for quasiparticles interacting with
photons of frequency ω0 and a low-temperature phonon bath. We have identified the
dimensionless parameters that control whether the quasiparticles are cold (i.e., mostly
occupying states with energy below ω0) or hot, see Eqs. (8) and (15) and the text following
them; those parameters are determined by the average number of photon excitations n̄, the
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product Γ0τph characterizing the relative strengths of quasiparticle coupling to photons and
phonons, and the ratio between photon frequency and superconducting gap ∆. Applying
our results to transmon qubits, we conclude that the qubit itself cannot overheat the
quasiparticles. The extension of our findings to other systems, such as resonators and
multi-junction circuits (arrays [37,38], fluxonium qubit [13]), will be presented elsewhere.
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A Neglected terms in the kinetic equation

Besides quasiparticle-phonon scattering, phonon absorption can result in production of a
pair of quasiparticles, and a pair of quasiparticles can recombine by emitting a phonon.
In the absence of extrinsic processes, the balance between these two processes determines
the quasiparticle density (that is, the normalization of the distribution function), since the
scattering processes considered in the main text redistribute the quasiparticle energy but
do not change their number. However, if the generation/recombination rates are small
compared to the rates of the scattering processes, the latter determine the shape of the
distribution function. The generation rate is proportional to e−2∆/Tph and is therefore
negligibly small. To estimate the importance of recombination, we note that it can be
included in the kinetic equation (1) by adding a term

Strec f(ε) = − 4πF (2∆)

∫ ∞
0

√
∆

2ε′
f(ε) f(ε′) dε′ ≡ −Γrecf(ε), (27)

where the recombination rate can be expressed using Eq. (24):

Γrec = πF (2∆)
2nqp

νn
=

315
√

2

96

xqp

τph
. (28)

The combination 2nqp/νn has the meaning of the normal-state level spacing in a volume
occupied by one quasiparticle.

For quasiparticles excited by photons to energy of order ω0, we can consider the con-
dition Γrec � Γph(ω0), which translates into

xqp � (ω0/∆)7/2. (29)

For typical values ω0 & 5 GHz, ∆ ∼ 50 GHz, and xqp . 10−5, this condition is satisfied.
For quasiparticles near the gap edge, the relevant process is that of photon absorption with
rate n̄Γ0, see the last term in Eq. (2); then the condition n̄Γ0 � Γrec sets a lower bound
on n̄. For qubits with small aluminum islands, assuming at most a few quasiparticle in the
islands we find xqp ∼ 10−5 and hence n̄ > 10−2, which is typically satisfied, as discussed
in the main text; of course if there is only one quasiparticle in an island, recombination
cannot take place, and there is evidence that in systems with several islands the average
number of quasiparticles in each island is less than one [10] or it can be suppressed to
less than one [39]. For large volume qubits, even assuming xqp ∼ 10−8, we would find
the requirement n̄ > 1, which cannot be met. On one hand, this means that in large
qubits we cannot neglect the effect of generation/recombination in determining the energy
dependence of the distribution function; on the other hand, since Eq. (29) is satisfied,
Eq. (7) is still valid and our considerations about transition rates are unaffected.

10
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Figure 3: Solid line: deviation of the ratio F0/F∞ from unity as obtained from numerical
solutions to Eqs. (30) and (31). The dashed line is the analytic prediction given by the
next-to-leading asymptotic terms [see text after Eq. (31)]; the agreement between the two
curves at large x further validates our numerical procedure.

B Solution to Eq. (13)

As discussed in the main text, at x � x∗∗ ≈ min{r2/7, r1/3}, the asymptotic solution to
Eq. (13) takes the form Fr(x) ∼ 1/

√
x for any r. That equation can be solved numerically

by iteration; that is, starting with a trial function with the correct asymptotic behavior,
we calculate the (n + 1)th iteration by inserting the nth iteration into the right hand
side of Eq. (13). Numerically, the integral is evaluated by splitting it into a “low” energy
region, extending from x to about 10x∗∗, and a high energy one; the contribution of the
low-energy region is then obtained by discretizing the integral on an equally-spaced grid
with steps of order 0.02x∗∗, while the high-energy part is estimated analytically by using
the leading asymptotic form of the solution. The calculation is stopped when the desired
accuracy is reached; typically, the maximum relative change in the numerical solution
becomes less than 10−6 after a small number (. 8) of iterations. We have checked that
the solution thus found is only weakly sensitive (relative deviations at most of order 10−3)
to e.g. doubling the value of the splitting point of the integral or the resolution. The exact
form of the initial trial function is unimportant: as long as we set it proportional to 1/

√
x

for x > x∗∗, it can be represented for x < x∗∗ by an array of random numbers between
0 and 1. Interestingly, as we show next, the dependence of Fr on r is, to a good degree,
accounted for with an appropriate rescaling.

Let us consider the limiting cases r → 0 and r →∞; by further rescaling variables by
r1/3 and r2/7, respectively, we find the equations

F0(x) =
105

128

∞∫
x

(x+ y)(x− y)2

y3 + 1

F0(y) dy

y
(30)

and

F∞(x) =
105

128

∞∫
x

(x+ y)(x− y)2

y3 + 1/
√
y

F∞(y) dy

y
. (31)

Their asymptotic solutions at large x are, up to an overall coefficient, F0(x) ∝ 1/
√
x(1−

25/858x3 + . . .) and F∞(x) ∝ 1/
√
x(1 − 11/512x7/2 + . . .), respectively. At arbitrary x,
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Figure 4: Solid line: F̄ = (F0 + F∞)/2 as obtained from numerical solutions to Eqs. (30)
and (31); on this scale, the approximate formula in Eq. (32) is indistinguishable from the
numerics. Dashed line: the asymptotic formula 0.5927/

√
x, as obtained from Eq. (32) at

large x, is a good approximation for x > 1.

we solve these equation numerically, as explained at the beginning of this section, and
normalize the results so that F0(x)/F∞(x) → 1 as x → ∞. Then the ratio between the
two functions deviates from unity by less than 1 % at all x, as shown in Fig. 3. This result
suggests that it should be possible to express Fr for any r in terms of a single function
with good accuracy. Indeed, let us define the average function F̄(x) = [F0(x) +F∞(x)]/2,
and normalize it so that F̄(0) = 1; our numerical result for this function is shown in Fig. 4
and it is accurately fit (within 0.1 %) by the Padé-like expression

F̄(x) ≈
√

1 + 1.292x+ 1.811x2

1 + 2.271x+ 3.786x2 + 5.155x3
. (32)

For arbitrary value of r, we then find (within ∼ 1 %)

Fr(x) ≈ F̄(α(r)x)Fr(0) (33)

with
α(r) ≈ 1/r1/3 + 1/r2/7 − 0.7345/r1/6+1/7 (34)

Here the power of the last term in the right hand side is arbitrarily set as the average
between the powers of the first two, asymptotic terms, and the numerical factor is obtained
by comparison with numerical solutions in the range r from 10−3 to 103. A more precise
definition of the energy scale T∗∗ of Eq. (10) can be given as

T∗∗
ω0

=

(
eω0/T0

Λ

)2
1

α(r)
. (35)

The above considerations were based on neglecting the second term in Eq. (9) in com-
parison to the first. To check this assumption, we note that using Eq. (11), at ε� T∗∗ using
the definitions in Eq. (12) we estimate the first term to be (eω0/T0Fr(0)/r

√
α(r)Λ2)

√
ω0/ε.

For the second term, using again those definitions and introducing the change of variable
x = t2/α(r), we find the approximate upper bound 2(eω0/T0Fr(0)/r

√
α(r)Λ2). Therefore

we can indeed neglect the second term when ε� ω0.

12
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C Effect of finite phonon temperature

Most of the arguments given in this paper lead to finite results when the phonon tem-
perature Tph → 0, so that only phonon emission is allowed. However, a problem arises
when one tries to normalize the distribution function in Eq. (12) according to Eq. (24):
the integral diverges logarithmically at low energies. This divergence should be cut off at
ε ∼ Tph � T∗∗:

xqp =

∫ ∞
Tph

dε

∆

√
2∆

ε
f(ε) ∼ F(0)

√
2ω0

∆

e5ω0/T0

Λ5

[
eω0/T0 ln

T∗∗
Tph

+ Λ

√
T∗∗
ω0

]
. (36)

Let us check what happens if Tph is not the smallest scale. If T∗∗ . Tph � ω0, Eq. (7)
remains valid. Thus, while at energies ε ∼ Tph the in-scattering part of the collision
integral is dominated by the phonon absorption, resulting in the thermal distribution
f(ε) = f0 e

−ε/Tph , at energies Tph � ε� ω0 we still have Eq. (11) and the distribution has
therefore the power-law form f(ε) = f∞/ε

4. To relate the normalization constants f0 and
f∞ and estimate the crossover energy ε̃ between exponential and power-law behavior, we
note that the net probability current from small ε to ε > ω0 due to absorption/emission
of a quantum ω0 is given by

J =

ε̃∫
0

dε

∆

√
2∆

ε
f0 e

−ε/Tph n̄Γ0Λ
√
ε/ω0

eω0/T0 + Λ
√
ε/ω0

∼

∼ f0

∆τph

Tph(ω0/∆)3

eω0/T0 + (n̄Γ0τph)−1ω3
0

√
Tph/∆7

, (37)

where in the last estimate we assumed that ε̃ is at least a few times larger than Tph, so that
the upper integration limit can be replaced with infinity; this assumption will be verified
below.

The same current should be carried by the distribution function f(ε) = f∞/ε
4 at

Tph � ε� ω0, which corresponds to the phonon emission:

J =

ε̃∫
0

dε′′

∆

√
2∆

ε′′
105

128

∞∫
ε̃

dε′

τph

f∞
(ε′)4

(ε′ + ε′′)(ε′ − ε′′)2

√
∆7ε′

=
599

105
√

2

f∞
τph∆4

. (38)

Equating the two expressions for J , we find f∞/f0. Thus, the equilibrium distribution
f0 e

−ε/Tph crosses over to the power-law tail f∞/ε
4 at the energy ε̃ determined by the

following equation:

Tphω
3
0

eω0/T0 + (n̄Γ0τph)−1ω3
0

√
Tph/∆7

∼ ε̃4e−ε̃/Tph . (39)

The right-hand side of this equation has a maximum larger than T 4
ph at ε̃ = 4Tph, while

the left-hand side is smaller than T 4
ph by virtue of the condition Tph & T∗∗. Therefore

the crossover energy ε̃ exceeds 4Tph by a logarithmic factor. On one hand, this verifies
the assumption used in Eq. (37); on the other hand, the presence of the power-law tail
requires ε̃� ω0, which is a stronger condition than just Tph � ω0.

D Electron-phonon interaction in the diffusive regime

The results presented in the main text are based on Eq. (5), which is valid for a clean
metal, where the electron elastic mean free path due to static impurities is longer than

13
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the mean free path due to the electron-phonon scattering. Let us consider the opposite
(diffusive) limit, when F (ω) is proportional to a different power of ω. Here we analyze
the case F (ω) ∝ ω, relevant for impurities with fixed positions [23] and show that the
results are qualitatively similar. For impurities which move together with the phonon
lattice deformation, F (ω) ∝ ω3 [24,25]; this case is also briefly discussed in the end of this
section.

We write the function F (ω) appearing in the electron-phonon collision integral, Eq. (4),
in the form [23]

F (ω) = β
ω

ωD
(40)

where the dimensionless slope β depends in general on the electronic mean free path and
ωD is the Debye frequency. Assuming again low phonon temperature, we find for the
relaxation rate

Γph(ε) =
16π

5

βε5/2

ωD
√

2∆
≡ 1

τph

( ε
∆

)5/2
, (41)

where the last expression redefines the characteristic electron-phonon time τph in the
diffusive regime [cf. Eq (6)]. The kinetic equation (neglecting phonon absorption) has
now the form

∂f

∂t
= n̄Γ0

√
ω0

ε− ω0

[
f(ε− ω0)− eω0/T0f(ε)

]
+ n̄Γ0

√
ω0

ε+ ω0

[
eω0/T0f(ε+ ω0)− f(ε)

]
+

+
5

8

∞∫
ε

f(ε′)

τph

(ε′ + ε)(ε′ − ε)dε′√
∆5ε′

−
( ε

∆

)5/2 f(ε)

τph
. (42)

Proceeding as in the main text, we find that for cold quasiparticles Eq. (9) becomes

ω0∫
ε

(ε′ + ε)(ε′ − ε) f(ε′) dε′√
ω5

0ε
′

+

ω0∫
0

f(ε′) dε′/ω0

eω0/T0 +
√
ε′/ω0 Λ

=

=
8

5

[ √
ε/ω0

eω0/T0 +
√
ε/ω0 Λ

+

(
ε

ω0

)5/2
]
f(ε), (43)

where Λ is now defined as

Λ =
(ω0/∆)5/2

n̄Γ0τph
. (44)

The equation can be simplified for energies [cf. Eq. (10)]

ε� T∗∗ ∼ min
{

∆(n̄Γ0τ̃ph)2/5, ω0e
−ω0/(2T0)

}
, (45)

in which case it reduces to

ε5/2f(ε) =
5

8

∞∫
ε

(ε′ + ε)(ε′ − ε) f(ε′) dε′√
ε′

. (46)

The solution to this equation is f(ε) = C/ε3: although the power of this tail is different
from that found for the clean metal case, the qualitative behavior of the distribution
function is the same. Next, we show that the qualitative similarities between clean and
diffusive cases persist also for hot quasiparticles.
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For hot quasiparticles we approximate again the photon collision integral via a diffusion
operator, Eq. (14), and the kinetic equation becomes

∂f

∂t
= n̄Γ0

√
ω5

0ε
∂

∂ε

{
e−ε/T0

ε

∂

∂ε

[
eε/T0f(ε)

]}
+

5

8

∞∫
ε

f(ε′)

τ̃ph

(ε′ + ε)(ε′ − ε)dε′√
∆5ε′

−
( ε

∆

)5/2 f(ε)

τ̃ph
.

(47)
The temperature scale T∗ should be now defined as T∗ = ω0Λ−1/5, so for T∗ � T0, using
dimensionless variables, we obtain the steady-state equation as

0 =
√
x ∂x

[
x−1∂xf(x)

]
− x5/2f(x) +

5

8

∫ ∞
x

dy
√
y

(y + x)(y − x) f(y). (48)

At high energies, x� 1 (but still x� T0/T∗), we can neglect the last term, and with the
change of variable x = 41/5√z we arrive at the generalized Airy equation

0 = ∂2
zf − z1/2f , (49)

whose solution can be written in terms of the modified Bessel function of the second kind
to give

f(x� 1) ≈ f∞xK2/5

(√
4

5
x5/2

)
(50)

with asymptotic behavior

f(x� 1) ∼ f∞

√
5π

2
√

4x
e−
√
4
5
x5/2 . (51)

The solution for x→ 0 can be found in the form of a power series [cf. Eq. (19)]

f(x) ≈ f0

(
1− ax5/2 + bx9/2 + . . .

)
(52)

where

a =
1

2

∫ ∞
0

dy y3/2 f(y)

f0
, b =

1

18

∫ ∞
0

dy y−1/2 f(y)

f0
. (53)

Note that proper normalization can be found if b is known. As in Sec 3.2, using the
numerical solution to Eq. (48) in these definitions we find a ≈ 0.468 and a ≈ 0.121.
Fitting the numerical solution we also obtain f∞ ≈ 0.53f0. The numerical solution and
the analytical approximations are plotted in Fig. 5.

In the regime T∗ � T0, we find again that the distribution function takes the Boltzmann
form up to high energies:

f(ε) ∝


e−ε/T0 , ε� T∞,

e−ε/2T0−
√

3ε2/4T0T∞ , |ε− T∞| � T∞,

e−ε/2T0 ε
2T0

K2/5

[
2
5

(
ε
T∗

) 5
2

]
, ε� T∞,

(54)

where T∞ = 21/3T∗(T∗/2T0)2/3.
Finally, we briefly discuss the case F (ω) ∝ ω3, which corresponds to the cooling power

in the normal state proportional to T 6 − T 6
ph, also observed in experiments [40]. All steps

are fully analogous. Writing F (ω) = β(ω/ωD)3, we obtain the relaxation rate

Γph(ε) =
128π

63

βε9/2

ω3
D

√
2∆

. (55)
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Figure 5: Red solid line: numerical solution to Eq. (48). Black dashed: low energy
approximation, Eq. (52). Black dot-dashed: high energy approximation, Eq. (50).

The numerical coefficient in front of the integral in Stn f(ε) is 63/64. In the cold quasi-
particle regime, the power-law solution at

ε� T∗∗ ∼ min
{

∆(n̄Γ0τ̃ph)2/9, ω0e
−ω0/(4T0)

}
is f(ε) ∝ 1/ε5. Here Λ and T∗ should be defined as

Λ =
(ω0/∆)9/2

n̄Γ0τph
, T∗ = ω0Λ−1/7.

In the hot regime, the generalized Airy equation obtained at high energies after the sub-
stitution x = 41/5√z is

0 = ∂2
zf − z3/2f, (56)

whose solution is expressed in terms of the modified Bessel function K2/7.
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