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Abstract

The flavor violating leptonic decays of the τ and µ leptons into three lighter
charged leptons are revisited in the framework the Standard Model with mas-
sive neutrinos. In contrast to the previous prediction, we have found strongly
suppressed rates for the τ− → µ−`+`− (` = µ, e) decays. Our results are in good
agreement with the approximation of neglecting masses and momenta of the
external particles in the loop integrals made in the first computation for the
µ− → e−e+e− decay.
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Introduction

The absence of right-handed neutrinos in the original formulation of the Standard Model
(SM) implies massless neutrinos and lepton flavor conservation at any order in perturbation
theory. Conversely, the discovery of neutrino oscillations [1] has demonstrated that lepton
flavor numbers are not conserved in the neutrino sector and claims for an extended model
with massive neutrinos.
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In the simplest scenario of three light Dirac neutrinos, the mass matrix will be nondi-
agonal in the interaction (weak) basis, as occurs in the quark sector [2], and the mixing
could be described through the 3×3 unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [3]. Thus, charged lepton flavor violation (cLFV) transitions could arise at one loop
level through charged flavor changing currents 1. Nevertheless, it turns out natural to ex-
pect unobservable low rates, just as it has been reported for BR(`− → `′−γ) ∼ O(10−55)
[4–6], BR(Z → `−i `

+
j ) ∼ O(10−54) [7] and BR(h → `−i `

+
j ) ∼ O(10−55) [8] which are far

away from the capacity of any current or foreseen experimental facility.
In contrast, the prediction for the τ− → µ−`+`− (` = µ, e) decays given by ref. [9]

report an unexpected value of BR(τ− → µ−`+`−) ≥ 10−14, but an updated evaluation
using the expression for the amplitude derived in ref. [9] and employing the latest global
fit results for neutrino mixing [10, 12] gives us a value of BR(τ− → µ−`+`−) ∼ 10−16.
Furthermore, according to the results reported in [9], a value of BR(µ− → e−e+e−) ∼
10−21 would be predicted. This latter prediction disagree with an older computation for
the µ− → e−e+e− decay in [6], where as a first approximation masses and momenta of
the external particles are equal to zero.

Even though the updated predictions in [9] are still far away for the current experimen-
tal limits2 (see for example Table 1) it is worth revisiting the two previous computation
since there are at least some thirty orders of magnitude between both computations.

Decay channel Belle (10−8) BaBar (10−8) LHCb (10−8) Belle II (10−10) FCC-ee (10−12)
τ− → µ−µ+µ− 2.1 3.3 4.6 4.7-10 5-10
τ− → e+µ−µ− 1.7 2.6 - 3.6-4.7 5-10
τ− → e−µ+µ− 2.7 3.2 - 5.9-12 5-10

Table 1: Limits for the τ− → µ−µ+µ−, τ− → e+µ−µ− and τ− → e−µ+µ− decays set by
the Belle, BaBar and LCHb collaborations. The last two columns stands for the projected
sensitivity in Belle II and a tentative circular electron-positron collider. The values of this
table have been extracted from [21].

The L− → `−`′−`′+ decays are induced through the diagrams depicted in fig. 1. Ref. [6]
found that the dominant amplitudes are those with two neutrinos propagators3, namely
the penguin diagram (d) and the box diagram (e) in fig. 1. Conversely, the author in
ref. [9] claims that only the penguin diagram (d) is relevant owing to the presence of a
logarithmic divergent term depending on the neutrino mass.

As is well known, considering the effects or processes that arise from quantum correc-
tions could involve divergent loop integrals. However, in any renormalizable theory, the
possible divergences must vanish order by order (in the loop or effective field theory expan-
sion) to be able to define (finite) observables. Furthermore, as neutrino oscillations, the
LFV amplitudes must vanish in the limit of degenerate neutrinos. Moreover, according to
the Kinoshita-Lee-Nauenberg (KLN) theorem [13], the amplitude for massless neutrinos
can go to zero, but it is impossible that it presents an IR divergence. This requirement
is satisfied by the result of Ref. [6], but it is not the case in Ref. [9] which behaves as∑

j ULjU
∗
`j log(mν/mW ) for very small neutrino masses.

The content of this work is the following, we first concentrate on the amplitude of the
diagram (d) We show that the seeming logarithmic divergent behavior of the LFV ampli-
tude reported in ref. [9] is not present, as the vanishing momentum transfer approximation

1There is still no evidence of cLFV, but strong constraints have been set in several channels. An
extensive list of cLFV limits can be found in [5].

2The best limit for BR(µ− → e−e+e−) ≤ 1.2 · 10−11 was set by the SINDRUM experiment [10].
3In ref. [6] the amplitudes for diagrams (d) and (e) are proportional to m2

ν log(m2
ν/m

2
W ). Note that the

presence of m2
ν in the amplitude is responsible for the strong suppression rates.
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considered in that paper lies outside the physical region. Then, in order to do a complete
comparison with the computation in [6] we review the box contributions. Finally, we
present our numerical results and conclusions.
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Figure 1: Feynman diagrams for the L− → `−`′−`′+ decays in the presence of lepton mix-
ing. Similar diagrams replacing the W boson by the respective would-be Goldstone must
be added in renormalizable Rξ gauges. Additionally, when ` = `′ similar contributions
(exchanging p↔ p1) to the amplitudes of diagrams (a) to (e) must be subtracted in order
to antisymmetrize the amplitude. On the other hand, when ` 6= `′, since the vertices of
the neutral bosons γ and Z with a pair of fermions are flavor-conserving, only a similar
(e) box diagram must be added interchanging `(p)↔ `′(p1).

Z-Penguin contribution emission from internal neutrino line

Following the convention used by the ref. [9] (see fig. 1) for masses and momenta of the
external leptons, the amplitude of the diagram (d) can be written as

Md ∼
i

m2
Z

lλL` × l`′`′λ, (1)

where l`′`′λ = −ig/(2cW )ūp1γλ(g`
′
v − g`

′
a γ5)vp2

4 is independent of the loop integration,
whereas the relevant effective ZL` transition is given as follows:

lλL` =

(−ig
4cW

)(−ig
2
√

2

)2 3∑
j=1

U∗`jULj ūpΓ
λ
j uP , (2)

where Uim are entries of the PMNS mixing matrix. In the Feynman-’t Hooft gauge, we
have

4g is the SU(2)L coupling and cW (sW ) is short for the cosine(sine) of the weak mixing angle θW . In

the SM, g`
′
v = −1/2 + 2s2W and g`

′
a = −1/2.
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Γλj =

∫
d4k

(2π)4
γρ(1− γ5)i

[
(/p+ /k) +mj

]
γλ(1− γ5)i

[
(/P + /k) +mj

]
γσ(1− γ5)(−igρσ)[

(p+ k)2 −m2
j

] [
(P + k)2 −m2

j

] [
k2 −m2

W

] .

(3)

After making the loop integration using dimensional regularization in order to deal
with the (logarithmic) UV divergences, the Lorentz structure for the Γλj factor can be
written as follows,

Γλj = Faγ
λ(1− γ5) + Fbγ

λ(1 + γ5) + Fc(P + p)λ(1 + γ5)

+ Fd(P + p)λ(1− γ5) + Feq
λ(1 + γ5) + Ffq

λ(1− γ5),
(4)

where in general Fk = Fk(q
2,m2

j ) (k = a, b..., f) with qµ = (P − p)µ the momentum
transfer by the Z boson, and mj the mass of the neutrino. Of course Fk functions will also
depend on the mass of the W gauge boson and external masses, but these have well-defined
values.

Neglecting the momenta of the external particles in eq. (3) simplifies considerably
the computation, as the only possible contribution is given by the F 0

a function, where we
are using a superscript 0 in order to distinguish this approximation. In this simple case,
the F 0

a function will not depend on q2 and the integrals turn easily to solve analytically
using either Feynman parameters or Passarino-Veltman method. In such a way that after
making an expansion around m2

j = 0 we obtained

F 0
a =

1

2π2

[
m2
j

m2
W

log

(
m2
W

m2
j

)
−

m2
j

2m2
W

+
1

2
log

(
m2
W

µ2

)
+

1

4
+ ϑ

(
m2
j

m2
W

)2
 . (5)

From eq. (5) it turns clear that the amplitude is proportional to the neutrino mass
squared, and the dominant contribution, due to the big gap between the neutrino and W

boson mass scales, comes from the first term as it involves a relative factor log

(
m2
W

m2
j

)
compared to the second one, whereas the independent terms of neutrino masses will van-
ish by a GIM-like mechanism. Therefore, the structure of the matrix element for the
contribution of the diagram (d) in fig. 1 is given by

M0
d = −i

G2
Fm

2
WβF 0

a

4
ūpγλ(1− γ5)uP × ūp1γλ(1− γ5)vp2

+ iG2
Fm

2
W s

2
WβF 0

a
ūpγλ(1− γ5)u(P )× ūp1γλvp2 , (6)

where we have defined

βF 0
a

=
∑
j

ULjU
∗
`jF

0
a (m2

j ). (7)

Eq. (6) reproduces the result reported in ref. [6] considering only the first term in
eq. (5) and the simple case of two families.
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Returning to the general case (non-zero masses and momenta of the external particles),
we obtained the Fk functions using both Feynman parametrization and the Passarino-
Veltman (PaVe) technique denoted by FFk and FPVk , respectively. We agree with the
expressions previously reported in ref. [9] in terms of the Feynman parameters 5, namely
the FFk functions can be written as

FFk(q2,m2
j ) =

1

2π2

∫ 1

0
dx

∫ 1−x

0
fk(q

2,m2
j )dy, (8)

where

fa = 2 + log
(
Dj(q

2)/µ2
)

+
(q2 −m2)x(y − 1) +M2x(x+ y) + q2y(y − 1)

Dj
, (9)

fb =
mMx

Dj
, (10)

fc = −Mx(x+ y)

Dj
, (11)

fd = −mx(1− y)

Dj
, (12)

fe =
Mx(2− 3y − x)− 2My(y − 1)

Dj
, (13)

ff =
xm(y − 1) + 2my(y − 1)

Dj
, (14)

and Dj is defined as

Dj(q
2,m2

j ) = −(x− 1)m2
j −m2xy + xm2

W +M2x(x+ y − 1)− q2y(1− x− y). (15)

We have omitted in fa the term associated with the UV divergence since it is indepen-
dent of mj and vanishes owing to the GIM-like mechanism.

In terms of the PaVe scalar functions the Fk functions are given as follows

FPVk(q2,m2
j ) =

1

2π2
NFk

DFk

, (16)

with

DFa = 2DFb = −2λ(m2,M2, q2), DFc = DFe =
M

2
D2
Fa DFd = DFf =

m

2
D2
Fa , (17)

NFk = ξk1B0(m
2,m2

j ,m
2
W ) + ξk2B0(M

2,m2
j ,m

2
W ) + ξk3B0(q

2,m2
j ,m

2
j )

+ ξk4B0(0,m
2
j ,m

2
W ) + ξk5C0(m

2,M2, q2,m2
j ,m

2
W ,m

2
j ) + ξk0 , (18)

where λ is the Kallen function λ(x, y, z) = x2 + y2 + z2− 2(xy+ xz+ yz), and in order to
avoid lengthy expressions the ξk factors can be found in [23].

Unlike the approximation made in ref. [6], the presence of masses and momenta of the
external particles in the computation complicates the way for the derivation of analytical
expressions for the integrals in eqs. (8) or (16). Nevertheless, in order to verify the equality

5We have found some irrelevant differences in the numerators of the fd and ff functions, as can be seen
comparing eqs. (12) and (14) with the corresponding expressions in ref. [9].
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between both expressions we have done a numerical cross-check, where we have employed
the Looptools package [17, 18] for the evaluation of the PaVe functions and a numerical
Mathematica [19] routine for the evaluation of the parametric integrals.

At this point, we want to stress that we disagree with the approximation in ref. [9],
where an expansion around q2 = 0 is made in eq. (9) in order to estimate the relevant
dependence on the neutrino mass of the Fa function. We highlight that the dependence
on q2 plays a crucial role in the behavior of the Fk functions. Moreover, we are studying
a process where q2 must be non-vanishing and is indeed much larger than the neutrino
squared mass. Then, taking such expansion modifies substantially the behavior of the
original functions in the interesting physical region for the neutrino masses and, as a
consequence, it gives rise to an incorrect infrared logarithmically divergent behavior of
the Fk functions when mj goes to zero, without any possible cure. We point out the
presence of a small imaginary part in the Fa function, which emerges for the physical
values 4m2

j < q2.

The q2 minimum in the L− → `−`′−`′+ decay is given by 4m2
`′ , which is much larger

than neutrinos masses. This, together with the difficulties in obtaining analytical expres-
sions directly for the Fk functions suggests employing some numerical approximation to
deal with the problem. Because of this, we approximate the Fk functions in the physical
region for the neutrinos masses by fitting the curves for the real and imaginary parts of
the Fk functions evaluated in terms of the PaVe function. We have found a reasonably
good fit of the form

Fk =
1

2π2u

(
Qk +

m2
j

m2
W

Rk

)
,

(19)

where u = 1 for k = a, b and u = M for k = c, d, e, f and tables with the respective values
for the Qk = QRk + iQRI and Rk = RRk + iRRI factors of all considered channels are
given in [23]. It is clear that the Qk factors will not contribute owing to the GIM-like
mechanism, whereas the relevant contributions are given by the Rk factors. According
to our numerical results, we find that the Rk factors of the Fb, Fc and Fd functions are
suppressed with respect to the Fa factor. On the other hand, despite the respective factors
of Fe and Ff functions are larger than those of the Fa function, when the momentum
transfer becomes smaller and smaller their helicity suppression makes them negligible.
Thus, we will concentrate on the contribution of the Fa function.

In order to check our results, we also have made an expansion for the PaVe functions
involved in eq. (18), following the same strategy that Cheng and Li for the µ → eγ
decay [4], that is: expanding the loop integrals around m2

j = 0. It must be noted that,
since neutrino masses are the smallest energy scale in the problem, this is the expansion
that is most efficient for the considered decays. Using the Package-X program [20], we
could rewrite the FPVa contribution as follows:

FPVa(q2,m2
j ) =

1

2π2

[
Qa +

m2
j

m2
W

Ra + ϑ

(
m4
j

m4
W

)]
, (20)

where

6
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Qa = −λ(m2,M2, q2)−1
[
fQa1C0(m

2,M2, q2, 0,m2
W , 0) + fQa2 log

(
m2
W

m2
W −m2

)
+ fQa3 log

(
m2
W

m2
W −M2

)
+ fQa4 log

(
m2
W

q2

)
+ fQa5

]
− 1

2
∆, (21)

Ra = −m2
Wλ(m2,M2, q2)−1

[
fRa1C0(m

2,M2, q2, 0,m2
W , 0) + fRa2 log

(
m2
W

m2
W −m2

)
+ fRa3 log

(
m2
W

m2
W −M2

)
+ fRa4 log

(
m2
W

q2

)
+ fRa5

]
, (22)

in which ∆ = 1
ε − γE + log(4π), and the fQ and fR factors can be found in [23]. We

consider the results obtained from eq. (22) for the effective vertices as our reference ones.
Finally, we can approximate the amplitude for the diagram (d) according to eq. (6)

replacing F 0
a by

Fa ≈
1

2π2
m2
j

m2
W

Ra. (23)

Contributions of the box diagrams

Unlike the penguin diagram (d), which involves two neutrino propagators of the same
mass state, the box diagram (e) can involve two neutrino propagators with different mass
states. Thus, in full generality, the amplitude can be written as follows

Me =

(−ig
2
√

2

)4∑
i,j

ULjU
∗
ljU`′iU

∗
`′iTσσ′I

σσ′ , (24)

where we defined

Tσσ′ = 4 ūpγµγσγν(1− γ5)uP × ūp1γνγσ′γµ(1− γ5)vp2 , (25)

and the relevant loop integral is given by (see fig. 1 (e))

Iσσ
′

=

∫
d4k

(2π)4
(P + k)σ(k + p1)

σ′

(k2 −m2
W )[(p1 + p2 + k)2 −m2

W ][(P + k)2 −m2
j ][(k + p1)2 −m2

i ]
. (26)

Since we have written the eq. (26) in terms of the momenta P , p1 and p2, the integral
must take the form

Iσσ
′

= i
(
gσσ

′
Ha + P σP σ

′
Hb + P σpσ

′
1 Hc + P σpσ

′
2 Hd + pσ1P

σ′He + pσ1p
σ′
1 Hf

+ pσ1p
σ′
2 Hg + pσ2P

σ′Hh + pσ2p
σ′
1 Hi + pσ2p

σ′
2 Hj

)
. (27)

In general Hk = Hk(s12, s13,m
2
i ,m

3
j ), where s12 = (p1 + p2)

2 = q2, s13 = (p1 + p)2. Again,
in the approximation where momenta of the external particles are neglected in eq. (26),
the things go easily, since the only contribution is given by the H0

a function, which will

7
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not depend either on s12 or s13. In this case, after solving analytically the loop integrals
and making a double Taylor expansion, first around m2

i = 0 and then around m2
j = 0, we

obtained that

H0
a(m2

i ,m
2
j ) =

1

64π2m4
W

[(
m2
i +m2

j

)(
log

(
m2
W

m2
j

)
− 1

)
+
m2
im

2
j

m2
W

(
2 log

(
m2
W

m2
j

)
− 1

)

− m2
W + ϑ

(
m4
i

m2
W

)
+ ϑ

(
m4
j

m2
W

)]
. (28)

Using that Tσσ′g
σσ′ = 16ūpγλ(1 − γ5)uP × ūp1γ

λ(1 − γ5)vp2 , the amplitude in this
approximation is given by

M0
e = i8G2

Fm
4
WβH0

a
ūpγλ(1− γ5)uP × ūp1γλ(1− γ5)vp2 , (29)

with

βH0
a

=
∑
j,i

ULjU
∗
`jU`′iU

∗
`′iH

0
a(m2

i ,m
2
j ). (30)

Taking the first term in eq. (28) and considering only two families, the eq. (29) repro-
duces the expression reported in ref. [6]. Furthermore, this result is consistent with the
previous expression reported in Ref. [22] for the box contribution associated with the ef-
fective K+ → π+ν`ν̄` decay in the quark sector, where the approximation of taking masses
and momenta of the external particles equal to zero is excellent, owing to the presence of
the heavy top quark inside the loop.

In the general case, we obtained the Hk (k = a, b, ..., j) functions in terms of both Feyn-
man parameters integrals, HFk , and PaVe functions, HPVk . Using Feynman parametriza-
tion these functions read

HFk(s12, s13,m
2
i ,m

2
j ) =

1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
hkdz ,

(31)

where

ha = − 1

2M2
F

, hb =
z(z − 1)

M4
F

, hc = −(z − 1)(x+ z)

M4
F

, hd =
y(z − 1)

M4
F

(32)

he = −z(x+ z − 1)

M4
F

, hf =
(x+ z − 1)(x+ z)

M4
F

, hg = −y(x+ z − 1)

M4
F

, (33)

hh =
yz

M4
F

hi = −y(x+ z)

M4
F

, hj =
y2

M4
F

, (34)

where we have defined M2
F as follows

M2
F = −m2

j (x+ y − 1) +m2
`′(x+ y − 1)(x+ y) +m2

W (x+ y)− s12xy
+ z2

(
2m2

`′ +m2 +M2 − s12 − s13
)

+ z
[
m2
i −m2

j + (x+ y)
(
3m2

`′ − s12 − s13
)
− 2m2

`′

+ m2(x− 1) +M2(y − 1) + s12 + s13
]
. (35)

8
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Expressions are rather lengthy in terms of the PaVe functions so that here we only
present the expression for the dominant Ha function, which can be written as

HPVa(s12, s13,m
2
j ,m

2
i ) =

1

16π2
NHa

DHa

, (36)

with

DHa = 4
(
m4m2

`′ −m2
[
M2
(
2m2

`′ − s12
)

+ s12
(
m2
`′ + s13

)]
+M4m2

`′ −M2s12
(
m2
`′ + s13

)
+ s12

(
− 2s13m

2
`′ +m4

`′ + s13
(
s12 + s13

)))
, (37)

and

NHa = χk1C0(m
2,M2, s12,m

2
W ,m

2
i ,m

2
W ) + χk2C0(m

2
`′ ,m

2
`′ , s12,m

2
W ,m

2
j ,m

2
W )

+ χk3C0(M
2,m2

`′ ,m
2 +M2 + 2m2

`′ − s12 − s13,m2
i ,m

2
W ,m

2
j )

+ χk4C0(m
2,m2

`′ ,m
2 +M2 + 2m2

`′ − s12 − s13,m2
i ,m

2
W ,m

2
j )

+ χk5D0(m
2,M2,m2

`′ ,m
2
`′ , s12,m

2 +M2 + 2m2
`′ − s12 − s13,m2

W ,m
2
i ,m

2
W ,m

2
j ),

(38)

again χk factors are reported in [23].
We can see that although there are additional contributions associated with the Hk

functions, with k = b, c, d, . . . j; they are expected to be suppressed, as they correspond to
higher-dimensional operators, with respect to the Ha function associated with a (V −A)×
(V −A) operator. Therefore, we will concentrate on the Ha function in order to estimate
the box diagram contribution. We also have done a numerical cross-check between the
expressions for the Ha function given in terms of the Feynman parameters eq. (31) and
the PaVe functions eq. (36). In this case, it turns very complicated and far away of the
purpose of this work to obtain an analytical expression for the Ha function in eq. (38)
making an expansion for the respective scalar PaVe functions, owing to the number of
propagators involved and the dependence on two different neutrino masses. However, we
can expect a good approximation through our numerical results, as it happens with the
penguin contribution.

We estimate the relevant dependence on the neutrino mass for the Ha function taking
several points evaluated and fitting the curve for the real and imaginary parts of the Ha

function evaluated in terms of the PaVe functions considering fixed values for the mi, s12,
and s13 parameters. We obtained a good fit of the form

Ha =
1

16π2

(
QHa +

m2
j

m4
W

RHa

)
, (39)

where RHa ≈ 1.5 + i0.007, for all different τ → `−`′−`′+ channels, whereas RHa ≈ 1.5, for
the µ− → e−e−e+ channel. These numbers were obtained considering that ∆m2

ij = 10−3

eV2, and representative values for s12 and s13 within the corresponding phase space.

Numerical results

In order to evaluate the respective branching fractions for the L− → `−`′−`′+ decays we
considered the state of the art best-fit values of the three neutrino oscillation parameters
[10, 12]. Without loss of generality, we assume the CP -conserving scenario, and we use
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the following values reported for the mixing angles sin2 θ12 = 0.307(13), sin2 θ23 = 0.51(4),
and sin2 θ13 = 0.0210(11), whereas the neutrino mass squared differences are taken as
∆m2

32 = 2.45(5)× 10−3eV2 and ∆m2
21 = 7.53(18)× 10−5eV2 6.

Our final results, where the dominant penguin and box contributions are considered,
are collected in table 2, where they are compared to those obtained using Petcov’s re-
sults [6] with updated input. Our predictions are smaller owing to the way of the ex-
pansion considered and as a consequence of keeping external masses and momenta in our
computations.

Decay channel Our Result Ref. [6]

µ− → e−e+e− 7.4 · 10−55 8.5 · 10−54

τ− → e−e+e− 3.2 · 10−56 1.4 · 10−54

τ− → µ−µ+µ− 6.4 · 10−55 3.2 · 10−53

τ− → e−µ+µ− 2.1 · 10−56 9.4 · 10−55

τ− → µ−e+e− 5.2 · 10−55 2.1 · 10−53

Table 2: Branching ratios including all contributions (interferences are not neglected),
which are obtained using the current knowledge of the PMNS matrix. The last column
values correspond to the approximation where external masses and momenta are neglected
[6]. Our results are smaller than those by around one (two) orders of magnitude for the µ
(τ) decays.

Conclusion

Opposed to the previous calculation reported in ref. [9], we found that all the different
amplitudes for the L− → `−`′−`′+ decays are strongly suppressed (as they are propor-
tional to the neutrino mass squared). In the particular case of the penguin contribution
with two neutrino propagators, we highlight that it is crucial to maintain the dependence
on the momentum transfer in the Feynman integrals in order to evaluate the amplitude
in the physical region for the neutrino masses. This fact avoids the incorrect logarithmic
divergent behavior in the amplitude claimed in ref. [9]. As far as the box contribution is
concerned, we found that the dominant term comes from Ha function that is associated
with a (V-A)×(V-A) operator. The most important result of our analysis is the confir-
mation (in agreement with ref. [6]) that any future observation of L− → `−`′−`′+ decays
would imply the existence of New Physics.
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P. Roig in this work. I acknowledge financial support from Conacyt through projects
FOINS-296-2016 (Fronteras de la Ciencia), and 236394 and 250628 (Ciencia Básica).

6We considered the normal hierarchy (m1 < m2 < m3).

10



SciPost Physics Proceedings Submission

References

[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998);
Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001);

[2] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531; doi:10.1103/PhysRevLett.10.531

[3] B. Pontecorvo, Sov. Phys. JETP 10 (1960) 1236 [Zh. Eksp. Teor. Fiz. 37 (1959) 1751];
Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[4] T. P. Cheng and L. F. Li, “Gauge Theory Of Elementary Particle Physics,” Oxford,
Uk: Clarendon (1984) 536 P. (Oxford Science Publications)

[5] L. Calibbi and G. Signorelli, Riv. Nuovo Cim. 41, 1 (2018)

[6] S. T. Petcov, Sov. J. Nucl. Phys. 25, 340 (1977) [Yad. Fiz. 25, 641 (1977)] Erratum:
[Sov. J. Nucl. Phys. 25, 698 (1977)] Erratum: [Yad. Fiz. 25, 1336 (1977)].

[7] J. I. Illana and T. Riemann, Phys. Rev. D 63, 053004 (2001).

[8] E. Arganda, A. M. Curiel, M. J. Herrero and D. Temes, Phys. Rev. D 71, 035011
(2005).

[9] X. Y. Pham, Eur. Phys. J. C 8, 513 (1999).

[10] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016).

[11] Sw. Banerjee et al [HFLAV-Tau group], available at
http://www.slac.stanford.edu/xorg/hflav/tau/spring-2017/tau-report-web.pdf
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