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Abstract

We review the status of the determination of |Vus| from both flavor-breaking
finite-energy sum rules based on inclusive non-strange and strange hadronic τ
decay data and the recent lattice-based analysis of inclusive strange hadronic
τ decay data. In particular, we update the results from these analysis frame-
works taking into account recent improvements to a number of strange branch-
ing fractions reported by HFLAV at CKM2018 and this meeting. We find that
inclusive τ decay data yields results for |Vus| compatible within errors with the
expectations of three-family unitarity.
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1 Introduction

As is well known, the conventional implementation of the flavor-breaking (FB) finite-
energy sum rule (FESR) determination of |Vus|, employing (i) inclusive non-strange and
strange branching fractions (BFs) and (ii) certain assumptions about dimension D = 6
and 8 OPE contributions on the theory side of the relevant FESR [1, 2], yields results
∼ 3σ low compared to the expectations of three-family unitarity. The most recent such
determination, by the HFLAV collaboration, reported at this meeting, for example, yields
0.2195(18) [3].

Problems with the theory-side OPE assumptions in this conventional implementation
have been identified in Ref. [4], and an alternate implementation of the FB FESR frame-
work proposed, in which, rather than making assumptions about their values, the relevant
effective D > OPE condensates are obtained from fits to data. This alternate imple-
mentation was shown to resolve self-consistency problems associated with the theory-side
assumptions underlying the conventinal implementation. The results for |Vus| obtained
obtained from this improved implementation were found lie ∼ 0.0020 higher than those
obtained from the same data when conventional implement assumptions are employed.

Recently, an improved, lattice-based, method for obtaining |Vus| from inclusive hadronic
τ decay data has been proposed [5]. In this approach, high-precision lattice data for the
spin J = 0, 1 hadronic vacuum polarizations (HVPs) of the flavor us vector (V) and axial-
vector (A) current-current two-point functions is used in place of the OPE approximation
on the theory side of appropriately-weighted dispersive sum rules. Weights were shown to
exist which successfully reduce the relative importance of spectral contributions from the
region of the inclusive us V+A spectral distribution where experimental errors are large
without at the same time blowing up lattice systematic or statistical errors. The |Vus|
obtained from the version of this analysis reported in Ref. [5] have smaller errors than
those obtained using FB FESRs, and are in agreement within errors with the expectations
of three-family unitarity.

The alternate FB FESR and lattice-based analyses reported in Refs. [4, 5] were both
based on earlier versions of the HFAG/HFLAV compilation of the exclusive mode strange
BFs needed to set the overall scale for the low-multiplicity exclusive mode unit-normalized
distributions measured by BaBar and Belle. Because a non-trivial tension existed between
the HFAG 2016 result [6] and dispersively constrained expectations [7] forB

[
τ− → K−π0ντ

]
,

both of these analyses considered two cases, one based entirely on 2016 HFAG strange ex-
clusive BFs, and one in which both the 2016 HFAG exclusive-mode Kπ BFs were replaced
by the expectations for these BFs obtained in the dispersive analysis of Ref. [7].

More recently, HFLAV has updated its combined strange branching fraction fit, taking
into account new, and significantly improved, BaBar results for the BFsB

[
τ− → K− nπ0ντ

]
with n = 0, 1, 2, 3 [3]. The BaBar results resolve the tension between the HFAG 2016 re-
sults and dispersively constrained B

[
τ− → K−π0ντ

]
expectations. New versions of the

analyses of Refs. [4, 5] with an updated, now-unique set of strange BFs are thus now
possible, and we report on the results of these below.

The rest of this paper is organized as follows. In Section 2, we review the FESR ap-
proach, set notation, and specify the experimental input employed in the updated analyses.
In Section 3, we outline the conventional implementation of the FB FESR framework, the
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problems associated with the OPE assumptions it employs, and the alternate FB FESR
implementation which solves these problems, before providing the updated results of this
alternate FB FESR analysis. In Section 4, we briefly review the new lattice-based ap-
proach before providing the updated results obtained from it. Finally, in Section 5 we
present our conclusions and the discuss prospects for future improvements.

2 Background: hadronic τ decays in the Standard Model

In the Standard Model, with s the hadronic invariant mass-squared, the differential ver-
sions, dRij;V/A/ds, of the ratios

Rij;V/A ≡ Γ[τ− → ντ hadronsij;V/A (γ)]/Γ[τ− → ντe
−ν̄e(γ)] (1)

involving the widths of hadronic τ decays mediated by the flavor ij = ud, us, vector (V) or

axial-vector (A) currents, are related to the spectral functions, ρ
(J)
V/A;ij = 1

π Im Π
(J)
ij;V/A(s),

of the J = 0, 1 HVPs, Π
(J)
ij;V/A, of the corresponding current-current two-point functions,

by [8]

dRij;V/A

ds
=

12π2|Vij |2SEW
m2
τ

[
wτ (yτ )ρ

(0+1)
ij;V/A(s)− wL(yτ )ρ

(0)
ij;V/A(s)

]
≡ 12π2|Vij |2SEW

m2
τ

(1− yτ )2 ρ̃ij;V/A(s) , (2)

where Vij is the flavor ij CKM matrix element, SEW is a known short-distance electroweak
correction [9], yτ = s/m2

τ , wτ (y) = (1−y)2(1+2y), and wL(y) = 2y(1−y)2. The π and K

contributions, which are accurately known and chirally unsuppressed, dominate ρ
(0)
ud;A(s)

and ρ
(0)
us;A(s), respectively. The remaining, continuum, J = 0, ij V and A contributions,

are ∝ (mi ∓ mj)
2, and hence negligible for ij = ud. For ij = us, though not entirely

negligible, they are small, and highly constrained through associated ij = us scalar and
pseudoscalar sum rules, allowing mildly model-dependent determinations over the kine-
matically allowed range s ≤ m2

τ [10, 11]. Subtracting the contributions of the resulting
J = 0 pole-plus-continuum sums from the RHSs of Eq. (2), one obtains the J = 0 + 1

analogues, dR
(0+1)
ij;V/A/ds, of dRij;V/A/ds, and, from these, the products of the J = 0 + 1

spectral function combination and corresponding CKM factor, |Vij |2 ρ(0+1)
ij;V/A(s).

The J = 0 (longitudinal) subtraction also allows re-weighted analogues of R
(0+1)
ij;V/A,

Rwij;V/A(s0) ≡
∫ s0

0
ds

w(s)

wτ (s)

dR
(0+1)
ij;V/A(s)

ds
, (3)

to be constructed for arbitrary polynomial, w, and arbitrary s0 ≤ m2
τ . Varying s0 and w

provides useful self-consistency constraints for FESR analyses in general and for the FB
FESR analyses outlined below in particular.

The spectral function combinations ρ(s) ≡ ρ
(0+1)
ij;V/A(s) and sρ

(0)
ij;V/A(s) correspond to

HVP combinations, Π(s) ≡ Π
(0+1)
ij;V/A(s) and sΠ

(0)
ij;V/A(s), which are free of kinematic singu-

larities, and hence satisfy the FESR (Cauchy’s theorem) relation∫ s0

0
w(s)ρ(s) ds = − 1

2πi

∮
|s|=s0

w(s)Π(s) ds . (4)
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for arbitrary analytic w(s) and arbitrary s0 ≤ m2
τ . For s0 large enough, the operator

product expansion (OPE) approximation can be used for Π(s) on the RHS.
Both the FB FESR and lattice-based determinations of |Vus| require as experimental

input weighted integrals of the inclusive flavor us V+A distribution. The former also
requires weighted integrals of the inclusive flavor ud V+A distribution.

The weighted us V+A integrals are obtained using the following experimental input

• either the measured τ → Kντ BF, BK , or the more precise Standard Model (SM)
expectation for BK implied by Kµ2 for the K pole contribution;

• Belle [12] and BaBar [13] input for the K−π0 and K̄0π− contributions;

• BaBar input [14] for the K−π+π− contribution;

• Belle input [15] for the K̄0π−π0 contribution;

• a combination of BaBar [16] and Belle [17] input for the very small K̄K̄K contribu-
tion; and

• 1999 ALEPH input [18] for the combined “residual mode” contribution (the sum
over contributions from exclusive strange modes not remeasured at the B-factories).

With BaBar and Belle results for strange exclusive-mode distributions given in unit-
normalized form, measured BFs are required to set the overall scales. For these, we
employ the results of the most recent HFLAV assessment [3], which takes into account
significant recent BaBar improvements to the K− nπ0ντ BFs, reviewed at this conference
by A. Lusiani. Of particular note is the new result for B[K− nπ0ντ ], which supercedes the
earlier BaBar result for this mode, and leads to a sizeable upward shift from the earlier
2016 HFAG average.

The weighted ud V+A integrals are obtained using πµ2 and SM expectations for the π
pole contribution and 2013 ALEPH results for the continuum ud V+A distribution [19].
A small rescaling (∼ 0.5% or less) is required to the convert the older inclusive, continuum
ud V+A BF normalization used by ALEPH to the corresponding current value.

3 |Vus| from FB FESRs

The FB FESR determination of |Vus| is based on FESRs involving the FB spectral function

combination, ∆ρ(s) ≡ ρ
(0+1)
V+A;ud(s) − ρ

(0+1)
V+A;us(s) and associated HVP difference, ∆Π(s) ≡

Π
(0+1)
ud;V+A(s) − Π

(0+1)
us;V+A(s) [1,2]. Defining the w-weighted FB spectral integral differences,

δRwV+A(s0), by

δRwV+A(s0) ≡
RwV+A;ud(s0)

|Vud|2
−
RwV+A;us(s0)

|Vus|2
, (5)

taking the superallowed nuclear β decay result for |Vud| [20] as external input, and using
Eq. (4) to replace the LHS with its OPE representation, one finds, solving for |Vus| [1,2],

|Vus| =

√√√√RwV+A;us(s0)/

[
RwV+A;ud(s0)

|Vud|2
− δRw,OPEV+A (s0)

]
, (6)

a result necessarily independent of s0 and w if all input is reliable. Varying s0 and/or
w thus allows any asssumptions employed in evaluating δRw,OPEV+A (s0) to be tested for
self-consistency.
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When s0 = m2
τ and w = wτ , the spectral integrals on the RHS of Eq. (6) can be

determined using the inclusive ud and us τ BFs. In contrast, the spectral integrals for
any other choice of s0 and/or w require a knowledge of the full inclusive dRud,us;V+A/ds
distributions. The conventional implementation of the FB FESR framework, in which
a single s0 (s0 = m2

τ ) and single weight (w = wτ ), are employed [1, 2], is motivated by
this experimental simplification. The disadvantage of these restrictions is the absence of
variable-s0 and or -w self-consistency tests.

This disadvantage is relevant since, with wτ having degree three, δRwτ ,OPEV+A (m2
τ ) re-

ceives OPE contributions up to dimension D = 8. D = 2 (perturbative mass-squared-
dependent) and D = 4 contributions to δRwτ ,OPEV+A (m2

τ ) are fixed by αs and the quark
masses and condensates, all of which are known from external sources [21–25]. The ef-
fective D = 6 and 8 condensates, C6 and C8, needed to determine the D = 6 and 8
contributions, are, however, not known. With only the single s0 = m2

τ , w = wτ -weighted
spectral integral as experimental input, it is, of course, impossible to simultaneously de-
termine |Vus|, C6 and C8.

The conventional implementation proceeds by estimating the D = 6 contribution us-
ing the vacuum saturation ”approximation” (VSA) and, based on the smallness of that
estimate, assuming the D = 8 contribution can be neglected. These assumptions are po-
tentially dangerous since there is a very strong double cancellation in the FB V+A VSA
estimate1, and the VSA is known to be badly violated, in a channel-dependent manner,
from studies in the non-strange sector [26]. The reliability of these assumptions can be
tested using FESRs involving variable s0 and different weights, w(y) =

∑
n=0wny

n (with
y = s/s0), which, in general, produce unsuppressed D > 4 OPE contributions

− 1

2πi

∮
|s|=s0

dsw(y)
[
Π

(0+1)
ud−us;V+A(Q2)

]
D>4

=
∑
k=2

(−1)k wk
C2k+2

sk0
(7)

where the CD are higher dimension effective condensates defined via[
Π

(0+1)
ud−us;V+A(Q2)

]
D>4

=
∑
n=2

C2n

Q2n
, (8)

with Q2 = −s.
A particularly useful test of this type is provided by the comparison of results for |Vus|

obtained from the variable-s0 wτ (y) = 1− 3y2 + 2y3 and ŵ(y) = 1− 3y+ 3y2− y3 FESRs,
both of which receive unsuppressed OPE contributions up to D = 8. The two D = 6
contributions differ only by a sign, while the ŵ D = 8 contribution is −1/2 that of the wτ
FESR. Thus, if the VSA provides a reliable estimate of D = 6 contributions for the wτ
FESR, it must also do so for the ŵ FESR. Similarly, if D = 8 contributions are negligible
for the wτ FESR, they must be even more negligible for the ŵ FESR.

The |Vus| results obtained from these two FESRs, assuming the conventional implemen-
tation D > 4 assumptions are reliable, should thus be s0 independent, and in agreement
with one another. The results of this test are shown in the left panel of Fig. 1. Additional
evidence for the significance of the s0- and w-instability problems seen in the left panel is
provided in the right panel, which shows the difference between the |Vus| obtained from the
ŵ FESR at variable s0 and at fixed s0 = m2

τ , as a function of variable s0. These differences
should, of course, be compatible with zero within errors if the conventional implementation
assumptions underlying them are reliable. The experimental errors shown are obtained

1A factor of ∼ 3 reduction in the individual ud and us V+A sums, and a further factor of ∼ 6 reduction
when these are combined to form the FB ud− us V+A difference.
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2.5 3
s

0
 [GeV

2
]

0

0.005

0.01

0.015

0.02

0.025

δ|
V

us
|

Differences |V
us

| vs s
0
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Figure 1: Left panel: |Vus| versus s0 with conventional implementation D = 6 and 8
assumptions for the wτ and ŵ FB FESRs. Right panel: variable s0 minus s0 = m2

τ |Vus|
differences from the ŵ FB FESR, using conventional implementation assumptions.

by full propagation of the experimental covariances. The results shown in the two pan-
els clearly establish the breakdown of the conventional implementation assumptions, and
preclude the use of this implementation going forward.

In Ref. [4] an alternate implementation of the FB FESR approach was developed to
deal with the s0- and w-instabilities encountered when conventional implementation as-
sumptions are used for the D > 4 OPE contributions. In this approach, the s0 dependence
of the weighted spectral integrals is used to provide additional experimental input, allow-
ing not just |Vus|, but also the relevant D > 4 condensates, CD, to be fit to data. The

analysis employed FESRs involving the weights wN (y) = 1− y
N−1 + yN

N−1 , with N = 2, 3, 4.
These are convenient as the wN FESR has a single unsuppressed D > 4 OPE contribu-
tion, with D = 2N + 2. |Vus| and C2N+2 are fit simultaneously using the s0 dependence of
the wN -weighted spectral integrals. Comparing the |Vus| obtained from the different wN
FESRs provides a useful self-consistency test of the weight-independence type. Excellent
agreement is observed [4].

One can also carry out an s0-independence test by taking the central fit values for C6,
C8 and C10, obtained from the w2, w3 and w4 FESRs, respectively, as input and working
out the results for |Vus| obtained from the same FESRs, as a function of s0. If the results
of the fits for C2N+2 are physically meaningful, the resulting |Vus| should be, to a good
approximation, s0-independent and the same for the different wN . The results of this
exercise are shown in Fig. 2. The solid lines show, from top to bottom, the s0-dependent
|Vus| results obtained from the w2, w3, w4 and wτ FESRs using conventional implementa-
tion assumptions for CD>4. These are obviously far from stable with respect to changing
either the choice of weight or s0. The dashed lines, in contrast, show the s0-dependent
results obtained from the w2, w3 and w4 FESRs when, rather than making conventional
implementation assumptions, the central fitted results for the CD>4 are used as input.
These results obviously display vastly improved s0-stability and extremely good weight-
independence. The dashed curve obtained from the wτ FESR is in excellent agreement
with the other three dashed curves and omitted for visual clarity 2.

In view of the very good agreement between the results of the w2, w3 and w4 FESRs, we
follow Ref. [4] and obtain final results from a combined 3-weight fit. Following Ref. [2], we
also evaluate π and K pole contributions using the more precise input implied by πµ2, Kµ2

2The agreement of the wτ curve with the other dashed curves is as expected given the extremely good
agreement of the dashed w2 and w3 curves and the fact that wτ a linear combination of w2 and w3; for
this reason, the agreement of the wτ curve with the others should not be interpreted as providing a further
independent self-consistency check on the alternate analysis.
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Figure 2: s0- and weight-stability test results. Solid lines show the s0 dependence of
|Vus| obtained from the w2, w3, w4 and wτ FESRs with the conventional implementation
assumptions C6 ' CV SA6 and C8 = 0. The dashed lines show the corresponding w2, w3

and w4 results obtained using instead the central values for C6, C8 and C10 obtained from
the alternate FB FESR fits.

and SM expectations. The updated result, employing the most recent HFLAV strange BFs
and the 3-loop-truncated fixed-order-perturbation-theory (FOPT) prescription favored by
comparisons with lattice data [4] for the D = 2 OPE series, is3

|Vus| = 0.2219(22) . (9)

This agrees well with the result, |Vus| = 0.2233(6), obtained from K`3 using the most
recent nf = 2 + 1 + 1 lattice determination of f+(0) [27], and is within ∼ 1.6σ of the
expectations of 3-family unitarity.

It is worth emphasizing that weighted us residual-mode contributions represent 5.3%,
6.0% and 6.6%, respectively, of the w2-, w3- and w4-weighted us spectral integrals for
s0 ' m2

τ . With > 25% errors on these contributions, the uncertainties in the old, low-
statistics residual-mode distribution represent a major stumbling block to any significant
improvement in the experimental error on the FB FESR determination. With current
experimental precision, as discussed in the next section, there are no obvious options
available for significantly reducing the errors on the FB FESR determination. Significant
improvement in the determination of |Vus| using hadronic τ decay data thus, at present,
requires an alternate approach. Such an approach is provided by the lattice-based analysis
reviewed in the next section.

3For completeness, we note that, if one employs instead the 3-loop-truncated contour-improved-
perturbation-theory (CIPT) prescription for the integrated D = 2 series, one obtains |Vus| = 0.2218(22).
Similarly, if one uses the less precise single-prong τ → π(K)ντ BFs to evaluate the π and K pole contri-
butions, one obtains |Vus| = 0.2212(23) using the FOPT and 0.2211(23) using the CIPT prescription. The
latter results lie 0.0017 higher than the conventional implementation results obtained using the identical
input data [3].
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4 A lattice-based determination of |Vus| from strange hadronic
τ decay data

With the still-significant errors on the us residual-mode distribution representing a sig-
nificant impediment to reducing the experimental errors on the FB FESR determination,
it is useful to attempt to find alternate determinations in which contributions from the
high-s part of the us distribution play a reduced role. The only easy way to accomplish
this reduction within the FB FESR framework would be to consider weights containing
additional powers of 1−y, which would further suppress contributions from the upper part
of the spectrum, near y = s/s0 = 1. However, adding additional powers of 1− y increases
the degree of the weights, and forces one to fit additional higher D OPE condensates.
The current us data is insufficiently precise to allow progress to be made in reducing the
experimental errors on |Vus| via this strategy.

An alternate method for reducing the relative role of residual-mode contributions is
provided by the lattice-based approach of Ref. [5]. The basic idea is to consider general-
ized dispersion relations for the us V+A HVP combination, Π̃us;V+A(Q2), with Q2 = −s,
whose spectral function is the linear combination, ρ̃us;V+A(s), defined in Eq. (2). Explic-
itly,

Π̃us;V+A(Q2) ≡
(

1− 2
Q2

m2
τ

)
Π

(1)
us;V+A(s) + Π

(0)
us;V+A(s) . (10)

The product |Vus|2ρ̃us;V+A(s) is directly determinable from dRus;V+A/ds and grows as ∼ s
as s→∞. Defining weights

ωN (s) ≡ 1∏N
k=1

(
s+Q2

k

) , (11)

with 0 < Q2
k < Q2

k+1, which have, by construction, poles at spacelike s = −Q2
k, it follows

that, for N ≥ 3, Π̃us;V+A(Q2) satisfies the convergent dispersion relation

∫ ∞
0

ρ̃us;V+A(s)ωN (s)ds =

N∑
k=1

Res
s=−Q2

k

[
Π̃us;V+A(−s)ωN (s)

]
=

N∑
k=1

Π̃us;V+A(Q2
k)∏

j 6=k

(
Q2
j −Q2

k

) ≡ F̃ωN . (12)

Choosing a uniform spacing ∆ of the pole locations, the weights ωN can be characterized by
the spacing, ∆, the number of poles, N , and the pole-interval midpoint, C = (Q2

1+Q2
N )/2.

With results for |Vus| found to be insensitive to modest changes of ∆, we choose to employ
∆ = 0.2/(N−1) GeV2, ensuring ωN with different N but the same C have poles spanning
the same Q2 range. C and N were varied to minimize the error on |Vus|.

For large enough N , and keeping all Q2
k below ∼ 1 GeV2, spectral integral contributions

from the higher-s, larger-error part of the experimental distribution as well as from s > m2
τ

can be strongly suppressed. Increasing N lowers the error of the LHS in Eq. 12, but,
through increased cancellation, increases the relative error on the RHS. Discretization
errors also grow with increasing C. For N = 4, for example, they become the largest
source of lattice error beginning at C ∼ 0.8 GeV2 [5].

The RHS of Eq. (12) is determined by the values of the HVP combination Π̃us;V+A at
the Euclidean locations Q2 = Q2

k, and can be measured on the lattice, obviating the need
for the OPE approximation, while dRus;V+A/ds can used to fix, up to the unknown factor

8
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|Vus|2, the spectral integral contributions to the LHS for s up to s = m2
τ . With s > m2

τ

contributions approximated using pQCD, one has,

|Vus| =

√√√√R̃us;wN /

(
F̃ωN −

∫ ∞
m2
τ

ρ̃pQCD
us (s)ωN (s)ds

)
. (13)

where R̃wN ≡
m2
τ

12π2SEW

∫m2
τ

0
1

(1−yτ )2
dRus;V+A(s)

ds ωN (s)ds.

The us V+A HVPs which determine F̃ωN in Eq. (13) have been evaluated using results
from the two near-physical quark-mass, nf = 2+1, 483×96 and 643×128 Möbius domain
wall fermion ensembles of Ref. [28]. Slight mistunings of the u, d and s quark masses were
corrected by measuring HVPs with partially quenched physical valence masses. All-mode
averaging [29] was used throughout to reduce costs.

From studies of finite volume (FV) effects in the lattice determination of the analogous
electromagnetic current HVP entering the lattice calculation of the light-quark contribu-
tion to the anomalous magnetic moment of the muon [30,31], one expects FV effects to be
very small in the present analysis so long as Q2

1 is kept greater than ∼ 0.2 GeV2. A further
suppression of FV effects is also expected here since the mass of the Kπ state expected to
dominate FV effects for the us V+A HVP is much larger than that of the 2π state which
dominates FV effects for the electromagnetic HVP. The impact of Kπ-induced FV effects
on |Vus| is estimated using ChPT [5], and found to be ∼ 0.1% for the optimized version
of the lattice analysis.

Further details of the evaluation of the lattice HVP combinations F̃ωN , together with
a detailed error budget, may be found in Ref. [5]. Here we provide only an update of that
analysis, employing the recently updated HFLAV us BF input reported by A. Lusiani
at this meeting [3]. Currently, statistical errors dominate at lower C and discretization
errors at larger C. Using, as in Ref. [5], the HFLAV BK result to evaluate the K pole
contribution, the optimized version of this update, obtained for N = 4 and C ' 0.7 GeV2,
is

|Vus| = 0.2240 (13)exp (13)latt . (14)

Employing Kµ2+SM expectation for BK yields instead 0.2254 (10)exp (13)latt. The lattice
error is comparable to the current experimental error, and straightforwardly improvable
should future experimental improvements warrant it.

In Fig. 3, we present results for |Vus|, now as a function of C, for N = 3, 4, 5. We in-
clude some low C points, where estimated FV effects reach ∼ 0.2%, and some points with
C near 1 GeV2, where, for N = 3, residual-mode and pQCD contributions are less strongly
suppressed. The dashed horizontal lines show, for comparison, the band corresponding to
the result for |Vus| obtained using the same BK together with the RBC/UKQCD deter-
mination of fK .

The results of the inclusive lattice analysis for different N are in excellent agreement
for intermediate C, and, moreover, show very good C independence in this region. The
falloff at higher C for N = 3 is exactly what one would expect, given the less effective
suppression of contributions from the large-s residual-mode and pQCD regions, were there
to be missing strength in the old low-statistics, 1999 ALEPH results in the high-multiplicity
region. Such missing strength would similarly lower the results obtained from FB FESR
analyses. The N = 3 lattice results make it very likely this is the case. The results also
show that the more efficient suppression of contributions from the high-multiplicity region
obtained at higher C for N = 4 and 5 can be accomplished without blowing up lattice
errors. This represents a major advantage of the lattice approach.
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Figure 3: Lattice-based results for |Vus| as a function of C for N = 3, 4 and 5. The dashed
lines show, for comparison, the bounds on |Vus| obtained using the measured single-prong
τ BF BK together with the RBC/UKQCD lattice result for fK .

5 Conclusions

We have shown that, even after taking into account the most recent updates of the results
for exclusive strange BFs, the assumptions for the effective D = 6 and 8 OPE conden-
sates underlying the conventional implementation of the FB FESR framework still produce
results for |Vus| displaying unphysical s0- and weight-dependence. The conventional im-
plementation assumptions must therefore be abandoned going forward. The alternate FB
FESR implementation [4], in which the s0 dependence of weighted spectral integrals is
used to fit not just |Vus| but also the relevant D > 4 OPE condensates in the same analy-
sis was shown to cure these problems and produce results for |Vus| which, as when earlier
versions of the BF input were used, are once more ∼ 0.0020 higher than those obtained
from the same data using conventional implementation assumptions.

We have also outlined an alternate lattice-based dispersive approach to determining
|Vus| which requires as input only strange hadronic τ decay data. This approach employs
precision lattice data, rather than the OPE approximation, as theoretical input. We have
shown that weights exist which strongly reduce the relative role of contributions to the
weighted spectral integrals from the regions where data errors are large without at the
same time blowing up the associated lattice statistical and systematic errors. The lattice
approach yields experimental errors on |Vus| considerably smaller than those obtained from
the alternate FB FESR framework, and has theory errors that can be straightforwardly
reduced through higher statistics and larger volume lattice studies once improved experi-
mental data warrants these improvements. The lattice-based results for |Vus| are in good
agreement with those of determinations from other sources, including the expectations of
3-family unitarity.

10



SciPost Physics Proceedings Submission

Acknowledgements

We thank the RBC/UKQCD Collaboration for fruitful discussion and support and the
Centro de Ciencias de Benasque Pedro Pascual for hospitality at the workshop “High-
precision QCD at low energy”, where this project was initiated.

Funding information Research leading to the results reported here was supported
by funding from the European Research Council under the European Union’s Seventh
Framework Programme (Grant No. FP7/2007-2013)/ERC Grants No. 279757 and No.
STFC ST/P000711/1. Computing time granted through the STFC-funded DiRAC fa-
cility (Grants No. ST/K005790/1, No. ST/K005804/1, No. ST/K000411/1, and No.
ST/H008845/1) is also gratefully acknowledged. Software used includes the CPS QCD
code, supported in part by the U.S. DOE SciDAC program, and the BAGEL assembler
kernel generator for high-performance optimized kernels and fermion solvers [32]. This
work was also supported by resources provided by the Scientific Data and Computing
Center (SDCC) at Brookhaven National Laboratory, a DOE Office of Science User Fa-
cility supported by the Office of Science of the U.S. Department of Energy and by JSPS
KAKENHI Grants No. 17H02906 and No. 17K14309. HO is supported in part by RIKEN
Special Postdoctoral Researcher program, Nara Women’s University Intramural Grant for
Project Research and RJH, RL, and KM by grants from the Natural Science and Engi-
neering Research Council of Canada. CL acknowledges support through a DOE Office of
Science Early Career Award and by U.S. DOE Contract No. DESC0012704 (BNL). AP
is supported in part by UK STFC Grants No. ST/L000458/1 and No. ST/P000630/1.
The work of JZ was supported by Australian Research Council grants FT100100005 and
DPI140103067.

References

[1] E. Gamiz et al., JHEP, 0301, 060 (2003) doi:10.1088/1126-6708/2003/01/060; Phys.
Rev. Lett., 94, 011803 (2005) doi:10.1103/PhysRevLett.94.011803.

[2] E. Gamiz et al., PoS, KAON (2008), 008 (2008) doi:10.22323/1.046.0008.

[3] See A. Lusiani’s contribution to these proceedings.

[4] R.J. Hudspith, R. Lewis, K. Maltman and J.M. Zanotti, Phys. Lett. B781, 206
(2018) doi:10.1016/j.physletb.2018.03.074.

[5] P.A. Boyle, et al., “Novel |Vus| determination using inclusive strange τ decay and
lattice HVPs”, arXiv:1903.07228 [ehp-lat], Phys. Rev. Lett. , in press.

[6] Y. Amhis, et al. (HFAG Collaboration, Eur. Phys. J. C77, 895 (2017)
doi:10.1140/epjc/s10052-017-5058-4.

[7] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, JHEP 1310, 070 (2013)
doi:10.1007/JHEP10(2013)070.

[8] Y.-S. Tsai, Phys. Rev., D4, 2821 (1971) doi:10.1103/PhysRevD.13.771.

[9] J. Erler, Rev. Mex. Fis. 50, 200 (2004).

11

http://dx.doi.org/10.1088/1126-6708/2003/01/060
http://dx.doi.org/10.1103/PhysRevLett.94.011803
http://dx.doi.org/10.22323/1.046.0008
http://dx.doi.org/10.1016/j.physletb.2018.03.074
http://dx.doi.org/10.1140/epjc/s10052-017-5058-4
http://dx.doi.org/10.1007/JHEP10(2013)070
http://dx.doi.org/10.1103/PhysRevD.13.771


SciPost Physics Proceedings Submission

[10] M. Jamin, J.A. Oller and A. Pich, Nucl. Phys., B587, 331 (2000) doi:10.1016/S0550-
3213(00)00479-X; ibid., B622, 279 (2002) doi:10.1016/S0550-3213(01)00605-8; Phys.
Rev., D74, 074009 (2006) doi:10.1103/PhysRevD.74.074009.

Thanks to Matthias Jamin for providing the results of the most recent of these anal-
yses.

[11] K. Maltman and J. Kambor, Phys. Rev., D65, 074013 (2002)
doi:10.1103/PhysRevD.65.074013.

[12] D. Epifanov, et al. (Belle Collaboration), Phys. Lett., B654, 65 (2007)
doi:10.1016/j.physletb.2007.08.045.

For the Ksπ
− invariant mass spectrum see belle.kek.jp/belle/preprint/2007-

28/tau kspinu.dat. Thanks to Denis Epifanov for providing access to this data.

[13] See, e.g., T. Lück’s presentation at ICHEP 2018.

[14] I.M. Nugent, et al. (BaBar Collaboration), Nucl. Phys. Proc. Suppl., 253-255, 38
(2014) doi:10.1016/j.nuclphysbps.2014.09.010.

Thanks to Ian Nugent for the providing the unfolded K−π−π+ distribution and co-
variances.

[15] S. Ryu, et al. (Belle Collaboration), Nucl. Phys. Proc. Suppl., 253-255, 33
(2014) doi:10.1016/j.nuclphysbps.2014.09.009; Phys. Rev., D89, 072009 (2014)
doi:10.1103/PhysRevD.89.072009.

[16] B. Aubert, et al. (BaBar Collaboration), Phys. Rev. Lett 100, 011801 (2008)
doi:10.1103/PhysRevLett.100.011801.

[17] M.J. Lee, et al., (Belle Collaboration), Phys. Rev. D81, 113007 (2010)
doi:10.1103/PhysRevD.81.113007.

[18] R. Barate, et al. (ALEPH Collaboration), Eur. Phys. J., C11, 599 (1999)
doi:10.1007/s100520050659.

Thanks to Shaomin Chen for providing access to the mode-by-mode distributions and
covariances.

[19] M. Davier, A. Hoecker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J., C74,
2803 (2014) doi:10.1140/epjc/s10052-014-2803-9.

[20] J.C. Hardy and I.S. Towner, Phys. Rev. C91, 025501 (2015)
doi:10.1103/PhysRevC.91.025501; PoS CKM2016, 028 (2017)
doi:10.22323/1.291.0028; and “Nuclear β decays and CKM unitarity”,
arXiv:1807.01146 [nucl-ex].

[21] S. Aoki, et al., Eur. Phys. J., C77, 112 (2017) doi:10.1140/epjc/s10052-016-4509-7.

[22] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Phys. Rev. Lett., 95, 012003 (2005)
doi:10.1103/PhysRevLett.95.012003.

[23] K.G. Chetyrkin and A. Kwiatkowski, Z. Phys., C59, 525 (1993) and hep-ph/9805232
doi:10.1007/BF01498634.

[24] M. Tababashi, et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018)
doi:10.1103/PhysRevD.98.030001.

12

http://dx.doi.org/10.1016/S0550-3213(00)00479-X
http://dx.doi.org/10.1016/S0550-3213(00)00479-X
http://dx.doi.org/10.1016/S0550-3213(01)00605-8
http://dx.doi.org/10.1103/PhysRevD.74.074009
http://dx.doi.org/10.1103/PhysRevD.65.074013
http://dx.doi.org/10.1016/j.physletb.2007.08.045
http://dx.doi.org/10.1016/j.nuclphysbps.2014.09.010
http://dx.doi.org/10.1016/j.nuclphysbps.2014.09.009
http://dx.doi.org/10.1103/PhysRevD.89.072009
http://dx.doi.org/10.1103/PhysRevLett.100.011801
http://dx.doi.org/10.1103/PhysRevD.81.113007
http://dx.doi.org/10.1007/s100520050659
http://dx.doi.org/10.1140/epjc/s10052-014-2803-9
http://dx.doi.org/10.1103/PhysRevC.91.025501
http://dx.doi.org/10.22323/1.291.0028
http://dx.doi.org/10.1140/epjc/s10052-016-4509-7
http://dx.doi.org/10.1103/PhysRevLett.95.012003
http://dx.doi.org/10.1007/BF01498634
http://dx.doi.org/10.1103/PhysRevD.98.030001


SciPost Physics Proceedings Submission

[25] C. McNeile, et al., Phys. Rev., D87, 034503 (2013) doi:10.1103/PhysRevD.87.034503.

[26] D. Boito, et al., Phys. Rev., D85, 093015 (2012) doi:10.1103/PhysRevD.85.093015;
ibid., D91, 034003 (2015) doi:10.1103/PhysRevD.91.034003.

[27] A. Bazavov, et al., (FNAL/MILC), “|Vus| from K`3 and four-flavor lattice QCD”,
arXiv:1809.02827 [hep-lat].

[28] T. Blum, et al. (RBC and UKQCD Collaborations), Phys. Rev. D93, 074505 (2016)
doi:10.1103/PhysRevD.93.074505.

[29] T. Blum, T. Izubuchi and E. Shintani, Phys. Rev. D88, 094503 (2013)
doi:10.1103/PhysRevD.88.094503; E. Shintani, et al., Phys. Rev. D91, 114511 (2015)
doi:10.1103/PhysRevD.88.094503.

[30] C. Aubin, T. Blum, P. Chau, M. Golterman, S. Peris and C. Tu, Phys. Rev. D93,
054508 (2016) doi:10.1103/PhysRevD.93.054508

[31] J. Bijnens and J. Relefors, J. High Energy Phys. 12, 114 (2017)
doi:10.1007/JHEP12(2017)114

[32] P. A. Boyle, Comput. Phys. Commun. 180, 2739 (2009)
doi:10.1016/j.cpc.2009.08.010.

13

http://dx.doi.org/10.1103/PhysRevD.87.034503
http://dx.doi.org/10.1103/PhysRevD.85.093015
http://dx.doi.org/10.1103/PhysRevD.91.034003
http://dx.doi.org/10.1103/PhysRevD.93.074505
http://dx.doi.org/10.1103/PhysRevD.88.094503
http://dx.doi.org/10.1103/PhysRevD.88.094503
http://dx.doi.org/10.1103/PhysRevD.93.054508
http://dx.doi.org/10.1007/JHEP12(2017)114
http://dx.doi.org/10.1016/j.cpc.2009.08.010

	Introduction
	Background: hadronic  decays in the Standard Model
	"026A30C Vus"026A30C  from FB FESRs
	A lattice-based determination of "026A30C Vus"026A30C  from strange hadronic  decay data
	Conclusions
	References

