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Abstract

Hadronic light-by-light scattering in the anomalous magnetic moment of the
muon aµ is one of two hadronic effects limiting the precision of the Standard
Model prediction for this precision observable, and hence the new-physics
discovery potential of direct experimental determinations of aµ. In this con-
tribution, I report on recent progress in the calculation of this effect achieved
both via dispersive and lattice QCD methods.

1 Introduction

The magnetic moment of the muon is one of the most precisely measured quantities in
particle physics. In units of e

2mµ
· ~2 , its value is given by the gyromagnetic factor g.

The prediction that g = 2 was an early success of the Dirac equation, applied to the
electron. The relative deviation of the gyromagnetic factor from the Dirac prediction is
conventionally called anomalous magnetic moment, and is denoted by aµ ≡ (g − 2)µ/2.
Remarkably, the quantity aµ has been directly measured to 0.54ppm of precision [1]. The
Standard Model (SM) prediction for aµ, see e.g. [2], is currently at a similar precision
level, 0.37ppm [3]. The precision of the SM prediction is entirely limited by the hadronic
contributions. Specifically, the hadronic vacuum polarisation, which enters at O(α2),
and the hadronic light-by-light contribution ahlblµ , which is of order α3, contribute in
comparable amounts to the absolute uncertainty; their respective depiction as Feynman
diagrams is shown in Fig. 1. The new E989 experiment at Fermilab is underway (see [4]
and the presentation of A. Driutti at this conference), with the stated goal of improving the
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Figure 1: The hadronic contributions to (g−2)µ dominating the theory uncertainty budget.
Left: the hadronic vacuum polarisation contribution. Right: the hadronic light-by-light
scattering contribution. A solid line represents the muon propagator, the wavy lines
represent photon propagators. The external magnetic field is represented by a photon line
coming in from the top.

precision of the measurement by a factor four, and the E34 experiment at J-PARC (see [5]
and the presentation of T. Mibe at this conference) plans to achieve a similar precision
with a very different technique. It is therefore essential to improve the precision of the
predictions for the hadronic contributions in order to enhance the new-physics sensitivity
of the upcoming experimental results.

In view of the observations above, the theory precision requirements for the short-
term future are the following: for the hadronic vacuum polarisation contribution, ahvpµ ≈
6900 ·10−11, the goal is to consolidate the currently quoted [6] precision of 0.35% obtained
using a dispersive representation with experimental e+e− data as input, and to approach
that level of precision in lattice calculations [7]; while for ahlblµ ≈ 100 · 10−11 a precision of

10 to 15% suffices. Clearly, both tasks are very challenging. In this talk, I focus on ahlblµ

and refer the reader to the talk of Ch. Lehner for the status of ahvpµ .
The activities linked to the determination of ahlblµ can be divided into four classes:

1. Model calculations, which constituted the only approach until 2014, are based on
pole- and loop-contributions of hadron resonances, in some cases also on constituent
quark loops.

2. Dispersive approaches allow one to identify and compute individual hadronic
contributions in terms of physical observables, such as transition form factors and
γ∗γ∗ → ππ amplitudes.

3. A dedicated experimental program is needed to provide input for the model &
dispersive approaches, e.g. (π0, η, η′) → γγ∗ at virtualities Q2 . 3 GeV2; there is in
particular an active program at BES-III on this theme, see the talk by Y. Guo at
this conference.

4. In terms of lattice calculations, two groups (RBC/UKQCD and Mainz) have been
working on formulating and carrying out a direct lattice calculation of ahlblµ .

An important question is ultimately, how well the findings from the different approaches fit
together. We begin by reviewing aspects of the model calculations and describing how one
can test the assumptions underlying them; carry on to describe the status of the dispersive
approaches and finally discuss in more detail several aspects of the lattice calculations of
ahlblµ .
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2 Learning from, and testing hadronic models

A recently updated estimate from the hadronic model calculations is [8]

ahlblµ = (103± 29) · 10−11. (1)

As compared to earlier estimates, the pole contribution of the axial-vector mesons has been
revised and is much smaller. Nevertheless, the central value of the estimate has changed
little since the 2009 ‘Glasgow consensus’ estimate of (105 ± 26) · 10−11 [9]. Beyond the
numerical result of the model calculations, it is worth recording some of the physics lessons
learnt from them [9]:

• A heavy (charm) quark loop makes a small contribution

ahlblµ =
(α
π

)3
NcQ4

cc4
m2
µ

m2
c

, c4 ≈ 0.62,

where Qc and mc are respectively the charm quark charge and mass, Nc = 3 is the
number of colors, mµ is the muon mass and α ≈ 1/137 is the fine-structure constant.

• For light-quarks, the most relevant degrees of freedom are the pions. The leading
contribution in chiral perturbation theory, namely the charged-pion loop calculated
in scalar QED, depends only on mµ/mπ, with

ahlblµ

mµ�mπ
===

(α
π

)3
c2
m2
µ

m2
π

, c2 ≈ −0.065. (2)

Numerically, this contribution amounts to ahlblµ ≈ −45 · 10−11 for the physical value
of mµ/mπ. Secondly, the neutral-pion exchange is positive and sensitive to the
confinement scale [10,11],

ahlblµ =
(α
π

)3 N2
c m

2
µ

48π2F 2
π

[
log2

mρ

mπ
+ O

(
log

mρ

mπ

)
+ O(1)

]
. (3)

We note that, the pion decay constant Fπ ≈ 92 MeV being of order N
1/2
c , the con-

tribution (3) is enhanced by a factor Nc relative to the pion loop, Eq. (2). On the
other hand, the latter is dominant in the limit mπ → 0 with mµ/mπ fixed. The
ρ meson mass appears as the hadronic scale regulating an ultra-violet divergence,
which appears if one assumes a virtuality-independent π0 → γ∗γ∗ coupling.

• For real-world quark masses, using form factors for the mesons is essential in obtain-
ing quantitative results, and resonances up to 1.5 GeV can still be relevant. This
makes ahlblµ sensitive to QCD at intermediate energies, which is difficult to handle
by analytic methods.

• Some information can be obtained from the operator-product expansion. Two
closeby vector currents

Vµ(x)Vν(0)
OPE∼ εµνρσ

xρ
(x2)2

Aσ(0) + . . . (4)

‘look like’ an axial current from a distance. For that reason, the doubly-virtual
transition form factors of 0−+ and 1++ mesons only fall off like 1/Q2. This singles
out the poles associated with pseudoscalar and axial-vector mesons as being partic-
ularly relevant. However, the coupling of an axial-vector meson to two real photons
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Figure 2: The subtracted forward hadronic light-by-light amplitudeMTT(−Q2
1,−Q2

2, ν)−
MTT(−Q2

1,−Q2
2, 0), multiplied by 106, computed on a 483 × 96 lattice ensemble with

mπ = 314 MeV and lattice spacing a = 0.065 fm. Left: contribution of the fully connected
class of quark contractions. Right: contribution of the (2+2) quark-contraction class [15].

is forbidden by the Yang-Landau theorem [12,13], suggesting that the pseudoscalar
mesons π0, η, η′ are the most important pole contributions in ahlblµ due to their un-
suppressed coupling to two photons, in addition to their relatively light masses.

The applicability of the hadronic model to ahlblµ can be tested by predicting the relevant
four-point correlation function of the electromagnetic current jµ =

∑
f=u,d,s,...Qf q̄γµq

and confronting the prediction with non-perturbative lattice QCD data. The Euclidean
momentum-space four-point function at spacelike virtualities can indeed be computed in
lattice QCD [14,15],

Πµ1µ2µ3µ4(P4;P1, P2) ≡
∫
X1,X2,X4

e−i
∑
a Pa·Xa

〈
Jµ1(X1)Jµ2(X2)Jµ3(0)Jµ4(X4)

〉
(5)

and projected to one of the eight forward γ∗γ∗ → γ∗γ∗ scattering amplitudes, for instance

MTT(−Q 2
1 ,−Q 2

2 ,−Q1 ·Q2) =
e4

4
Rµ1µ3Rµ2µ4Πµ1µ3µ4µ2(−Q2;−Q1, Q1). (6)

In this particular case, the projectors Rµν project onto the plane orthogonal to the vectors
Q1 and Q2 and MTT thus corresponds to the amplitude involving transversely polarized
photons. Dispersive sum rules have been derived for the forward amplitudes [16,17]. With
ν = 1

2(s+Q2
1+Q2

2), a crossing-symmetric variable parametrizing the center-of-mass energy√
s, we can write a subtracted dispersion relation,

MTT(q21, q
2
2, ν)−MTT(q21, q

2
2, 0) =

2ν2

π

∫ ∞
ν0

dν ′
√
ν ′2 − q21q22

ν ′(ν ′2 − ν2 − iε)(σ0 + σ2)(ν
′), (7)

where σJ corresponds to the total cross-section for the photon-photon fusion reaction
γ∗γ∗ → hadrons with total helicity J .

While experimental data exists for the fusion of real photons into hadrons, no such
data is available for spacelike photons. In order to model the corresponding cross-section,
we note that the contribution of a narrow meson resonance is

σγ∗γ∗→resonance ∝ δ(s−M2)× Γγγ ×
[FMγ∗γ∗(Q2

1, Q
2
2)

FMγ∗γ∗(0, 0)

]2
. (8)

It is then interesting to test whether all eight forward LbL amplitudes obtained from lattice
computations can be described by such a sum of resonances via the dispersive sum rule.
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Figure 3: The five classes of quark Wick contractions contributing to the four-point
function of the vector current. From left to right: class (4), (2+2), (3+1), (2+1+1) and
(1+1+1+1). Figure by J. Green.

Essential ingredients in this parametrization of σγ∗γ∗→hadrons are the transition form factors
FMγ∗γ∗(Q2

1, Q
2
2), describing the coupling of the resonance to two virtual photons. In the

case of the neutral pion, a dedicated lattice QCD calculation of Fπ0γ∗γ∗ was performed [18],
thus allowing for a definite prediction for this contribution. For the other included hadronic
resonances, which have quantum numbers JPC = 0±+, 1++, 2++, a monopole or dipole
parametrization of the virtuality-dependence of the transition form factors was chosen and
fitted to the lattice data for the forward LbL amplitudes. In addition to the resonances, the
Born expression for σγ∗γ∗→ππ was included in the cross-section. A satisfactory description
of the data was obtained in this way; see Fig. 2.

The calculation of the four-point correlation function of a quark bilinear in lattice QCD
requires computing the Wick contractions of the quark fields, since the action is bilinear in
these fields. The major difference with perturbation theory is that the quark propagators
have to be computed in a non-perturbative gauge field background, which means inverting
the sparse matrix of typical size 108×108 representing the discretized Dirac operator, on a
source vector. The back-reaction of the quarks on the gauge field is taken into account in
the importance sampling of the gauge fields. Five classes of Wick contractions contribute
to the full four-point correlation function, as illustrated in Fig. 3. While the fully connected
class of diagrams can be computed cost-effectively using ‘sequential’ propagators, the other
classes require the use of stochastic methods. In [15], only the first two classes, denoted
by the symbols (4) and (2+2), were computed, because the other three classes (3+1),
(2+1+1) and (1+1+1+1) are expected to yield significantly smaller contributions. If this
expectation is correct, and if the LbL amplitude is dominated by resonance exchanges, one
can infer with what weight factors the isovector and the isoscalar resonances contribute
to the leading contraction topologies (4) and (2+2). The isoscalar resonances contribute
(with unit weight) to the class (2+2); the isovector resonances overcontribute with a
weight factor 34/9 to class (4), while the (2+2) contractions compensate with a weight
factor of −25/9 [19]. These counting rules have been used in describing the lattice data
in Fig. 2. In particular, the large-Nc inspired counting rules suggest that there is a large
cancellation between the isovector resonances and the isoscalar resonances in the (2+2)
class of diagrams, with the exception of the pseudoscalar mesons, due to the large mass
difference between the π0 and the η′ meson. Therefore, the contribution of the (2+2)
diagrams to the light-by-light amplitudes was modelled as the η′ contribution, minus
25
9 times the π0 contribution. Within the ∼ 30% uncertainties, the lattice data was

successfully reproduced1.

1In [15], it was also shown that in the SU(3) symmetric theory, similar arguments apply to the con-
tribution of the flavor-octet and singlet mesons, the octet contributing with a weight factor 3 to the
diagram-class (4) and with weight factor of (−2) to diagram-class (2+2), while the singlet only contributes
(with unit weight) to diagram-class (2+2).

5



SciPost Physics Proceedings Submission

Thus the exploratory study [15] found that the LbL tensor (5) at moderate spacelike
virtualities can be described by a set of resonance poles, much in the same way that ahlblµ

is obtained in the model calculations. It would be worth exploring this avenue further, in
particular by increasing the precision of the lattice calculation.

3 Dispersive approach to ahlbl
µ and its input

Several dispersive approaches have been proposed to handle the complicated physics of
hadronic light-by-light scattering [20–22]. Here we will mainly review aspects of the ‘Bern
approach’ [21], which is the furthest developed at this point in time. It was shown that
the full hadronic light-by-light tensor can be decomposed into 54 Lorentz structures [23],

Πµνλσ(q1, q2, q3) = i3
∫
x,y,z
e−i(q1x+q2y+q3z)〈0|T{jµx jνy jλz jσ0 }|0〉 =

54∑
i=1

Tµνλσi Πi. (9)

The Lorentz-invariant coefficients Πi are entirely determined by seven functions of the in-
variants qi ·qj combined with crossing symmetry. The 54 Lorentz structures are redundant,
but they allow one to avoid kinematic singularities.

The HLbL contribution to (g − 2)µ is then computed using the projection technique,
i.e. directly at q = 0:

ahlblµ = −e6
∫

d4q1
(2π)4

d4q2
(2π)4

∑12
i=1 T̂i(q1, q2; p) Π̂i(q1, q2,−q1 − q2)

q21 q
2
2 (q1 + q2)2 [(p+ q1)2 −m2

µ] [(p− q2)2 −m2
µ]

(10)

The Π̂i are linear combinations of the Πi appearing in Eq. (9).
Performing all “kinematic” integrals using the Gegenbauer-polynomial technique after

performing a Wick rotation, the expression can be reduced to a three-dimensional integral,

ahlblµ =
2α3

3π2

∫ ∞
0
d|Q1| |Q1|3

∫ ∞
0
d|Q2| |Q2|3

∫ 1

−1
dτ
√

1− τ2
12∑
i=1

Ti(|Q1|, |Q2|, τ) Π̄i(|Q1|, |Q2|, τ),

(11)
the master relation in this approach (τ = Q1 ·Q2/(|Q1| |Q2|)).

The contribution of the pole contributions associated with pseudoscalar mesons was
worked out explicitly and clarified the way that the corresponding transition form factors
are to be applied in this framework; see subsection 3.1 below. As a further result obtained
as part of this approach, it was shown [24] that certain contributions in the dispersive
approach to the pion loop could be handled rather accurately,

aπ box
µ + aππ,π−poleLHC

µ,J=0 = −24(1) · 10−11. (12)

The rescattering effects of the pions are being worked out for partial waves ` ≤ 2 [25]; first
results by the Bern group for the s-wave were presented at the (g − 2) Theory Initiative
Workshop [26]. An independent analysis of the γγ∗ → ππ process has also appeared very
recently [27].

3.1 The transition form factor of the pion

The field-theoretic definition of the transition form factor of the pion involves a time-
ordered product of two vector currents,

Mµν(p, q1) ≡ i
∫

d4x eiq1x 〈Ω|T{jµ(x)jν(0)}|π0(p)〉 = εµναβ q
α
1 q

β
2 Fπγ∗γ∗(q21, q

2
2), (13)
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with p = q1 + q2. A detailed dispersive analysis of the π0 → γ∗γ∗ transition form factor
has recently been carried out [28], leading to the rather accurate result

aHLbL,π0

µ = 62.6+3.0
−2.5 · 10−11. (14)

In addition to experiments, important input for the dispersive approaches can be pro-
vided by lattice QCD. A first calculation of Fπγ∗γ∗(q21, q

2
2) was carried out in lattice QCD

with the two lightest quark flavors [18] and used to calculate aHLbL,π0

µ , obtaining the re-
sult (65.0± 8.3) · 10−11. A model parametrization of the transition form factor was used
here which incorporates known constraints at asymptotically large virtualities2. A second
calculation in QCD, including also the dynamical effects of the strange quark, and using a
more model-independent conformal-mapping parametrization of Fπγ∗γ∗(q21, q

2
2), obtained

the preliminary result ahlblµ |π0 = (60.4±3.6) ·10−11 [29]. The lattice and dispersive results
are thus in excellent agreement, and comparable in precision. It is somewhat surprising
how close the central values are to older estimates based on the simplest vector-meson
dominance model of the form factor, e.g. ahlblµ |π0,VMD = 57.0 · 10−11 [10]; however, the
uncertainty of the result is now much better known.

4 The direct lattice calculation of HLbL in (g − 2)µ

The idea to directly calculate ahlblµ in lattice QCD was pioneered in [30]. At first, the task
was thought of as a combined QED + QCD calculation. Today’s viewpoint is that the
calculation amounts to a QCD four-point function, to be integrated over with a weight-
ing kernel which represents all the QED parts, i.e. muon and photon propagators. Two
collaborations have so far embarked on this challenging endeavour [7].

The RBC/UKQCD collaboration has performed calculations of ahlblµ using a coordinate-
space method in the muon rest-frame. The photon and muon propagators are either com-
puted on the same L×L×L× T torus as the QCD fields – this approach goes under the
name of QEDL and was first published in [31]; or they are computed in infinite volume in
a method called QED∞ [32].

The Mainz group has used a manifestly Lorentz-covariant QED∞ coordinate-space
strategy, presented in [33], averaging over the muon momentum using the Gegenbauer
polynomial technique. This technique relies on the anomalous magnetic moment of the
muon being a Lorentz scalar quantity; a fact that has been used extensively in the phe-
nomenology community.

A theoretical advantage of using the QED∞ formulation is that no power-law finite-
volume effects appear, which arise in QEDL due to the massless photon propagators3.
Specifically, in the (Euclidean) notation used by the Mainz group, the master equation for
computing ahlblµ is

ahlblµ =
me6

3

∫
d4y︸ ︷︷ ︸

=2π2|y|3d|y|

[ ∫
d4x L̄[ρ,σ];µνλ(x, y)︸ ︷︷ ︸

QED

iΠ̂ρ;µνλσ(x, y)︸ ︷︷ ︸
= QCD “blob”

]
, (15)

iΠ̂ρ;µνλσ(x, y) = −
∫
d4z zρ

〈
jµ(x) jν(y) jσ(z) jλ(0)

〉
. (16)

The QED kernel L̄[ρ,σ];µνλ(x, y) is computed in the continuum and in infinite-volume; it
consists of the muon and photon propagators depicted in Fig. 4. Once the two tensors

2No use was made of the experimentally accurately known normalization, Fπγ∗γ∗(0, 0), from the π0

width.
3Instead, the leading finite-size effects are expected to be of order exp(−mπL/2).
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QED kernel L̄[ρ,σ];µνλ(x, y)

⇒

Figure 4: Coordinate-space Feynman diagram for ahlblµ , where the QED part, on the left,
can be computed (semi-)analytically and treated as a kernel weighting the vertex positions
of the QCD four-point function of the vector current.

appearing in Eq. (15) are contracted, the integrand is a Lorentz scalar, and the integrals
over x and y reduce to an integral over three invariant variables, e.g. (x2, x · y, y2). In
this sense, Eq. (15) is the coordinate-space analogue of Eq. (11). In practical lattice
calculations, one may carry out the four-dimensional summation over one of the vertices
(say x) in full, because this tends to have a beneficial averaging effect. For fixed vertex
position y, the four-dimensional summation over x can be arranged to be performed exactly
on every gluon field configuration with an affordable number of operations for the most
important Wick contraction classes (4) and (2+2). Sampling all values of the vertex
position y would be computationally too costly; reducing instead the integral over y to a
one-dimensional integral [33] allows one to sample the integrand reliably.

In order to get an idea of the length scales involved in the problem, one can inspect the
coordinate-space dependence of the integrand for the pion pole [34]. An example is shown
in the left panel of Fig. 5 for the physical pion mass. The curves correspond to different
kernels, which are equivalent in infinite volume. They differ by x- or y-independent terms
which do not contribute to the integral, but modify the integrand. In [32], where these
subtraction terms were first introduced, it was shown that they can drastically reduce
lattice discretization errors by forcing the kernel to vanish when some of the vertices
coincide. From the left panel of Fig. 5, it is clear that the integrand is rather long-range
in all three cases shown.

4.1 Status of lattice results

The calculation of hadronic light-by-light scattering in (g − 2)µ is still work in progress.
The most recent refereed publication by the RBC/UKQCD collaboration [35] uses the
QEDL formulation and presents results for the Wick-contraction classes (4) and (2+2) on
a 483× 96 lattice at the physical pion mass with a lattice spacing of a−1 = 1.73 GeV. The

contribution of the fully connected class of diagrams is a
HlbL (4)
µ = (116.0 ± 9.6) × 10−11,

while the (2+2) diagrams yields a
HlbL (2+2)
µ = (−62.5±8.0)×10−11. Together, they amount

to [35]
ahlblµ = (53.5± 13.5) · 10−11, (17)

where the quoted error is statistical. This represents the first lattice result for the two
leading Wick-contraction topologies. However, the authors acknowledge that “The finite-
volume and finite lattice-spacing errors could be quite large and are the subject of ongoing
research.” We note that the total is about a factor two lower than the model estimates. A
possible explanation is that in the latter, neglected contributions could be more important
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Figure 5: Left: Continuum, infinite-volume integrand of the final integral over |y| to obtain the
π0 pole contribution to ahlblµ at the physical mass mπ = 135 MeV, assuming the VMD form of
the transition form factor. The integrand differs, depending on the precise choice of QED kernel,
without changing the result of the integral. The L(i) correspond to subtracting different sets of
x- or y-independent terms from the QED kernel. Right: The integrand of the fully connected
Wick-contraction diagrams yielding ahlblµ as a function of the integration variable |y|, obtained
on a 483 × 96 lattice at a pion mass of mπ = 340 MeV and lattice spacing a = 0.064 fm. The
kernel used is L(2), which vanishes by construction whenever x or y vanishes. The integrals over
the vertices in x and z (see Fig. 4) have already been performed at this stage. For comparison,
the corresponding (continuum, infinite-volume) integrand for the π0 pole contribution to ahlblµ is
displayed, multiplied by an enhancement factor of 3 (lower edge of the band) and 34/9 (upper edge
of the band) to account for the absence of the disconnected diagrams; see the end of section 2 for
an explanation of these weight factors.

than so far expected; or, since the QEDL method has O(1/L2) finite-size effects, the latter
could be responsible for a large systematic error. It was noted [15] that, based on the model

estimate and large-Nc inspired arguments, one would expect a
HlbL (2+2)
µ to be dominated

by the (π0, η, η′) exchange and approximately −150 · 10−11 in size; the fully connected
diagrams would then have to amount to about 250 · 10−11 in order to recover the model
result ahlblµ ≈ 100 · 10−11 discussed in section 2.

L. Jin presented an update of the RBC/UKQCD calculation at this year’s lattice
conference. An extrapolation to infinite volume and zero lattice spacing based on several

ensembles yielded the results a
HlbL (4)
µ = (282 ± 40) · 10−11 and a

HlbL (2+2)
µ = (−163 ±

34) · 10−11, resulting in the sum ahlblµ = (119 ± 53) · 10−11. These values are much more
in line with the expectation from the model calculations, but the extrapolation, and the
cancellation between the two Wick-contraction topologies, enhances the relative error on
the final result.

Both the RBC/UKQCD collaboration and the Mainz group have started generating
lattice results with their respective QED∞ method. As a very recent development, the
RBC/UKQCD collaboration has performed a calculation of the three leading diagram
topologies (4), (2+2) and (3+1) on a coarse lattice at the physical pion mass; see Fig. 6.
The (3+1) topology is found to make a negligible contribution [36]. The Mainz group has
computed and analyzed the fully connected set of diagrams (4) [37]. It uses rather fine
lattices, with a typical lattice spacing of a = 0.064 fm, on the other hand the simulated
pion masses (mπ & 200 MeV) lie above the physical value. The integrand obtained at
mπ = 340 MeV is displayed in the right panel of Fig. 5, and compared to the prediction
corresponding to the neutral pion pole, including the appropriate enhancement weight
factor, as discussed at the end of section 2. The pion-pole integrand, predicted with a VMD
transition form factor, provides a surprisingly good approximation to the lattice data.
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Figure 6: Recent results by the RBC/UKQCD collaboration [36] obtained on a 243 × 64
lattice at the physical pion mass and a−1 = 1.015 GeV. The integral yielding ahlblµ as a
function of its upper limit, the integration variable being the maximum distance between
any two internal vertices. The QED∞ formulation including subtractions [32] was used.
Separately (from left to right) for the Wick-contraction classes (4), (2+2) and (3+1). In
the latter case, only those Wick-contractions are included in which the external photon is
attached to the loop containing three vertices.

Tests of the systematic errors on the fully connected set of diagrams at mπ = 280 MeV are
shown in Fig. 7: finite-size effects and discretization effects appear to be under control.
It remains to be seen how well controlled the extrapolation in the pion mass will be.
Restricting the sums over the vertex positions in a systematically controlled way to the
regions that contribute appreciably is likely to reduce the statistical noise.

5 Conclusion

The hadronic light-by-light scattering contribution is, along with the hadronic vacuum
polarization contribution, the leading source of uncertainty in the Standard Model predic-
tion for the anomalous magnetic moment of the muon, (g−2)µ. For decades, a framework
which offers a systematically improvable prediction was lacking. This has now changed,
with significant progress having been made in the dispersive as well as lattice QCD ap-
proaches. Even though model calculations will soon become superseded, valuable lessons
have been learnt from them, which can help control the systematic errors in the ab initio
approaches.

Given that the quantity ahlblµ involves three spacelike and one quasi-real photon, lattice
QCD is in a good position to provide a first-principles prediction – no analytic continuation
is required. At the same time, dealing with the four-point function of the vector current is
pushing the field into a territory on which the community has little prior experience, hence
dealing with the statistical and the systematic errors, such as the finite lattice spacing
and finite-volume errors, requires special attention. A cross-check between at least two
independent lattice collaborations is hence extremely valuable, as is a comparison of the
lattice results with the results of the dispersive approaches. In the latter case, it will be
especially interesting to see how the dispersive treatment of ππ intermediate states differs
quantitatively from previous estimates based on a narrow (scalar and tensor) resonance
exchange approximation.
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Figure 7: Mainz group: the integral yielding ahlblµ as a function of the upper limit of the
integration variable |y| at a pion mass of mπ = 280 MeV. The integrals over the vertices
in x and z have already been performed at this stage. The kernel used is L(2), which
vanishes by construction whenever x or y vanishes. The left panel compares results from
two different lattice volumes; the right panel compares two different lattice spacings.
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