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Abstract

We review the current status of the determination of the strong coupling
from tau decay. Using the most recent release of the ALEPH data, a very
comprehensive phenomenological analysis has been performed, exploring all
strategies previously considered in the literature and several complementary
approaches. Once their actual uncertainties are properly assessed, the results
from all adopted methodologies are in excellent agreement, leading to a very

robust and reliable value of the strong coupling, α
(nf=3)
s (m2

τ ) = 0.328 ± 0.013,

which implies α
(nf=5)
s (M2

Z) = 0.1197± 0.0015.
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Figure 1: ALEPH spectral functions for the V , A and V +A channels [8].

1 Inclusive Tau Hadronic Width

The inclusive hadronic decay width of the τ lepton is a very clean observable to determine
the strong coupling with high precision [1–4]. Considering only the dominant Cabibbo-
allowed decay modes, the ratio Rτ,V+A ≡ Γ[τ− → ντ + hadrons (S = 0)]/Γ[τ− → ντe

−νe]
can be expressed through the spectral identity

Rτ,V+A = 12π |Vud|2SEW
∫ m2

τ

0

ds

m2
τ

(
1− s

m2
τ

)2 [(
1 + 2

s

m2
τ

)
Im Π

(1)
V+A(s) + Im Π

(0)
V+A(s)

]
,

(1)

where Π
(J)
J (s) (J = V,A; J = 0, 1) are the two-point correlation functions for the vector

V µ = uγµd and axial-vector Aµ = uγµγ5d colour-singlet light-quark charged currents:

i

∫
d4x eiqx 〈0|T [J µ(x)J ν†(0)] |0〉 = (−gµνq2 + qµqν) Π

(1)
J (q2) + qµqν Π

(0)
J (q2) . (2)

The factor SEW = 1.0201 ± 0.0003 incorporates the electroweak corrections [5–7]. For

massless quarks, Π
(0)
V (s) = 0 while sΠ

(0)
A (s) is a known constant, generated by the pion

pole contribution, that cancels in Π
(0+1)
A (s).

The measured invariant-mass distribution of the final hadrons determines the spectral

functions ρJ (s) ≡ 1
π Im Π

(0+1)
J (s), shown in Fig. 1 [8]. Using the analyticity properties

of the correlators, this experimental information can be related with theoretical QCD
predictions through moments of the type [4, 9]

AωJ (s0) ≡
∫ s0

sth

ds

s0
ω(s) Im Π

(0+1)
J (s) =

i

2

∮
|s|=s0

ds

s0
ω(s) Π

(0+1)
J (s) , (3)

where ω(s) is any weight function analytic in |s| ≤ s0, sth is the hadronic mass-squared
threshold, and the complex integral in the right-hand side runs counter-clockwise around
the circle |s| = s0. For large-enough values of s0, this contour integral can be predicted as
an expansion in inverse powers of s0, using the operator product expansion (OPE) of the
current correlators:

Π
(0+1)
J (s)

∣∣∣OPE
=
∑
D

1

(−s)D/2
∑

dimO=D
CD,J (−s, µ) 〈O(µ)〉 ≡

∑
D

OD,J
(−s)D/2

. (4)

Differences between the physical values of the integrated moments AωJ (s0) and their OPE
approximations are known as quark-hadron duality violations. They are very efficiently
minimized by taking “pinched” weight functions which vanish at s = s0, suppressing in this
way the contributions from the region near the real axis where the OPE is not valid [4,9].
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2 Perturbative Contribution

The perturbative contribution (i.e., the D = 0 term in the OPE) dominates the moments
AωJ (s0), when s0 ∼ O(m2

τ ). The chiral symmetry of QCD guarantees that the vector
and the axial-vector perturbative correlators are identical for massless quarks. Their
perturbative calculation is conveniently expressed in terms of the Adler function

D(s) ≡ −s
dΠ

(0+1)
V (s)

ds
=

1

4π2

∑
n=0

K̃n(ξ)

(
αs(−ξ2s)

π

)n
. (5)

The coefficients Kn ≡ K̃n(ξ = 1) are known up to n ≤ 4. For nf = 3 flavours, they

have the values: K0 = K1 = 1, K2 = 1.63982, KMS
3 = 6.37101 and KMS

4 = 49.07570
[10]. D(s) satisfies an homogeneous renormalization-group equation, which determines
the corresponding scale-dependent parameters K̃n(ξ) [11–13].

The perturbative contribution to AωJ (s0) can be written as a series involving the Adler

coefficients K̃n(ξ) multiplied by contour integrals that only depend on αs(ξ
2s0):

Aω,P (s0) = − 1

8π2s0

∑
n=0

K̃n(ξ)

∫ π

−π
dϕ

[
W (−s0 eiϕ)−W (s0)

] (αs(ξ2s0 eiϕ)

π

)n
, (6)

with W (s) ≡
∫ s
0 ds

′ ω(s′). These integrals can be computed with high accuracy solving the
β-function equation, up to unknown βn>5 contributions. One gets in this way a contour-
improved perturbation theory (CIPT) series [11, 14], which sums big running corrections
arising at large values of ϕ, is stable under changes of the renormalization scale ξ and has
a good perturbative convergence. A naive truncation of the integrals, to a fixed order in
αs(ξ

2s0) (fixed-order perturbation theory, FOPT) [4], results instead in a series with slower
convergence and a larger dependence on ξ.

The theoretical prediction for the ratio Rτ,V+A is given by [4]

Rτ,V+A = NC |Vud|2 SEW {1 + δP + δNP} , (7)

where δNP contains the small non-perturbative contribution, plus negligible quark-mass
corrections smaller than 10−4. The dominant perturbative component takes the form [11]

δP =
∑
n=1

KnA
(n)(αs) = aτ +5.2023 a2τ +26.3659 a3τ +127.079 a4τ +(K5+307.78) a5τ + · · · ,

(8)
with aτ = αs(m

2
τ )/π. The functions A(n)(αs) = anτ +O(an+1

τ ) are the contour-integrals in
Eq. (6) for the weight function ωRτ (x) = (1 − x)2(1 + 2x), with x = s/s0, s0 = m2

τ and
ξ = 1. Their numerical values up to n = 4 are displayed in Table 1, for different loop
approximations, exhibiting a very good perturbative convergence. Their FOPT expansion
in Eq. (8) generates instead a very slowly-converging series with coefficients much larger
than the original Kn factors.

The perturbative error associated with the unknown higher-order corrections to the
Adler function is the dominant theoretical uncertainty in the determination of the strong
coupling. For a fixed value of αs, FOPT gives a larger perturbative contribution than
CIPT and, therefore, results in a smaller fitted value of αs(m

2
τ ). In our numerical analyses

we will consider both schemes, taking the conservative range K5 = 275± 400 and varying
the renormalization scale in the interval ξ2 ∈ (0.5, 2).
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A(1)(αs) A(2)(αs) A(3)(αs) A(4)(αs) δP
βn>1 = 0 0.14828 0.01925 0.00225 0.00024 0.20578
βn>2 = 0 0.15103 0.01905 0.00209 0.00020 0.20537
βn>3 = 0 0.15093 0.01882 0.00202 0.00019 0.20389
βn>4 = 0 0.15058 0.01865 0.00198 0.00018 0.20273

O(a4τ ) 0.16115 0.02431 0.00290 0.00015 0.22665

Table 1: Exact results for A(n)(αs) (n ≤ 4) at different β-function approximations, and
corresponding values of δP =

∑4
n=1 KnA

(n)(αs), for aτ ≡ αs(m
2
τ )/π = 0.11. The last

row shows the FOPT estimates at O(a4τ ), which overestimate δP by 11% [15].

3 Sensitivity to the Strong Coupling

The high sensitivity of Rτ,V+A to αs(m
2
τ ) follows from a combination of several facts [4]:

1. The perturbative contribution is known to O(α4
s). Since αs(m

2
τ ) ∼ 0.33 is sizeable,

δP amounts to a quite large 20% effect, making Rτ,V+A more sensitive to the strong
coupling than higher-energy observables.

2. The OPE can be safely used at s0 = m2
τ . The integrand in Eq. (1) involves a double

zero at s = m2
τ , heavily suppressing the contribution from the region near the real

axis, where the OPE is not valid, to the corresponding contour integral.

3. The relevant Π(0+1)(s) contribution is weighted with ωRτ (x) = (1 − x)2(1 + 2x) =
1 − 3x2 + 2x3. Cauchy’s theorem implies then that the contour integral is only
sensitive to OPE corrections with D = 6 and 8, which are strongly suppressed by
the corresponding powers of the τ mass. There is in addition a strong cancellation
between the the vector and axial-vector power corrections, which have opposite signs.
This cancellation was theoretically predicted for the D = 6 contributions [4], but
the τ -data analyses show that it is also operative in the D = 8 terms [8, 16].

4. Fig. 1 shows that the inclusive V + A spectral distribution is very flat. The open-
ing of high-multiplicity hadronic thresholds dilutes very soon the prominent ρ(2π)
and a1(3π) resonance peaks. The data approaches very fast the perturbative QCD
predictions that seem to work even at surprisingly low values of s ∼ 1.2 GeV2.

The small correction δNP can be determined from the hadronic τ data, analysing spec-
tral moments more sensitive to power corrections [9]. The detailed studies performed by
ALEPH [17–21], CLEO [22] and OPAL [23] have confirmed that non-perturbative con-
tributions are below 1%, i.e., smaller than the perturbative uncertainties. The latest
and most precise experimental determination of the strong coupling, performed with the

ALEPH data, gives δNP = −0.0064± 0.0013 and α
(nf=3)
s (m2

τ ) = 0.332± 0.005exp± 0.011th
[8]. The second uncertainty takes into account the different central values obtained with
the FOPT (0.324) and CIPT (0.341) prescriptions, adding quadratically half their differ-
ence as an additional systematic error. Taking as input the small δNP correction extracted
from the ALEPH analysis, αs can be also determined directly from the total τ hadronic

width (and/or lifetime); this gives α
(nf=3)
s (m2

τ ) = 0.331± 0.013 (FOPT + CIPT) [15], in
perfect agreement with the ALEPH result.
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Method α
(nf=3)
s (m2

τ )

CIPT FOPT Average

ωkl(x) weights 0.339 +0.019
− 0.017 0.319 +0.017

− 0.015 0.329 +0.020
− 0.018

ω̂kl(x) weights 0.338 +0.014
− 0.012 0.319 +0.013

− 0.010 0.329 +0.016
− 0.014

ω(2,m)(x) weights 0.336 +0.018
− 0.016 0.317 +0.015

− 0.013 0.326 +0.018
− 0.016

s0 dependence 0.335± 0.014 0.323± 0.012 0.329± 0.013

ω
(1,m)
a (x) weights 0.328 +0.014

− 0.013 0.318 +0.015
− 0.012 0.323 +0.015

− 0.013

Average 0.335± 0.013 0.320± 0.012 0.328± 0.013

Table 2: Determinations of α
(nf=3)
s (m2

τ ) from τ decay data, in the V +A channel [16].

4 Updated Determination of αs(m
2
τ)

The previous experimental analyses have been criticized in Ref. [24], where slightly smaller
(10%) values of αs(m

2
τ ) are obtained with a different method that maximises the role of

non-perturbative effects. The uncertainties of this determination are, however, largely
underestimated. We relegate to the appendix a brief description of the conceptual and
numerical flaws that question the claimed accuracy. In view of the triggered controversy,
we have performed a complete re-analysis of the updated ALEPH data, exploring a large
variety of methodologies that include all previously considered methods (also the one
advocated in Ref. [24]), trying to uncover their potential hidden weaknesses and testing
the stability of their results under slight variations of the assumed inputs [16].

The most reliable determinations, extracted from the V +A hadronic distribution, are
summarized in Table 2. The systematic difference between the CIPT and FOPT results
is clearly manifested in the table. The values obtained from both procedures have been
conservatively combined, following the same prescription than Ref. [8]. In addition to
the perturbative errors, estimated as indicated in section 2, all quoted results include
as additional theoretical uncertainty their variations under various modifications of the
fit procedures. Similar (and consistent) results, although with larger uncertainties, are
obtained from the separate V and A distributions.

The first three determinations are based on the (at least double-pinched) weights

ωkl(x) = (1− x2)2+k xl (1 + 2x) , (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)} ,
ω̂kl(x) = (1− x2)2+k xl , (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)} ,

ω(2,m)(x) = 1− (m+ 2)xm+1 + (m+ 1)xm+2 , 1 ≤ m ≤ 5 , (9)

with x = s/s0. Taking s0 = m2
τ , the functions ωkl(x) include the phase-space and spin-1

factors in Eq. (1), allowing for a direct use of the measured spectral distribution and the
precise determination of Rτ,V+A. Following the ALEPH analysis, we have performed a
global fit of αs(m

2
τ ), the gluon condensate, O6 and O8 with the five moments indicated.

The sensitivity of αs to neglected higher-order condensates (the highest moment involves
D ≤ 16 power corrections) has been estimated through a second fit including O10 and
the variation has been included as an additional uncertainty. The final results, shown
in the first line of Table 2, nicely agree with Ref. [8]. A similar fit with the modified
ω̂kl(x) weights, that eliminate from every moment the highest-D condensate contribution,
gives the results in the second line of the table, in perfect agreement with the previous
fit. Thus, the sensitivity to power corrections is quite small, which gets reflected in rather
large uncertainties of the fitted condensates.
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The optimized moments ω(2,m)(x), that only receive condensate contributions from
O2(m+2) and O2(m+3), lead to the results in the third line of Table 2. We have first made a
combined fit of five different moments (1 ≤ m ≤ 5), assuming O12 = O14 = O16 = 0, and
a second fit including O12 has been used to asses the induced uncertainty from missing
power corrections. The agreement with the previous ωkl(x) and ω̂kl(x) fits is excellent.
Similar results (not shown in the table) are obtained from a global fit to four moments,
based on the weights ω(n,0)(x) = (1− x)n, with 0 ≤ n ≤ 3.

The strong coupling can be determined with a single moment, provided all non-
perturbative corrections are neglected. Obviously, this cannot be used to extract an
accurate value of αs, but it constitutes a very interesting exercise to assess the minor
numerical role of non-perturbative effects. Thirteen separate extractions of the strong
coupling have been made in Ref. [16], with the weights ω(0,0)(x), ω(1,m)(x) = 1 − xm+1

and ω(2,m)(x) (0 ≤ m ≤ 5). Power corrections are absent with the first weight, but the
corresponding moment is very exposed to violations of quark-hadron duality. Moments
with the second type of weights are only sensitive to a single condensate, O2(m+2), while
both O2(m+2) and O2(m+3) contribute with the third type. In spite of this large disparity
of neglected non-perturbative corrections, the thirteen determinations turn out to be in
good agreement with the results given in Table 2, exhibiting an amazing stability of the
fitted value of αs(m

2
τ ).

5 Sensitivity to s0

Non-perturbative contributions leave their imprint in a distinctive dependence on s0 of
the different moments. The spectral integrals A(1,m)(s0), built with ω(1,m)(x) weights,
get a power correction that scales as 1/sm+2

0 , while using the weight functions ω(2,m)(x)
one gets 1/sm+2

0 and 1/sm+3
0 power corrections on the corresponding A(2,m)(s0) moments.

The s0 dependence of the experimental moments A(1,0)(s0) and A(2,0)(s0) is displayed in
Fig. 2, for the vector, axial-vector and 1

2 (V +A) distributions, together with their predicted
perturbative values with αs(m

2
τ ) = 0.329 +0.020

− 0.018, i.e. neglecting all non-perturbative effects.

Figure 2: Dependence on s0 of the experimental moments A(1,0)(s0) (left) and A(2,0)(s0)
(right), for the V (red), A (green) and 1

2 (V +A) (blue) channels. The orange and light-blue
regions are the CIPT and FOPT perturbative predictions for αs(m

2
τ ) = 0.329 +0.020

− 0.018 [16].

Despite being only protected by a single pinch factor, the measured A(1,0)(s0) agrees
with its pure perturbative prediction in all channels (V , A and V + A), following the
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Figure 3: αs(m
2
τ ) determinations with FOPT (left) and CIPT (right), at different values

of s0 and from different (V + A) A(2,m)(s0) moments (0 ≤ m ≤ 5), ignoring all non-
perturbative effects [16]. Only experimental uncertainties are displayed.

CIPT central values above s0 ∼ 2 GeV2. This moment can only get power corrections
from O4 that are approximately equal for the V and A correlators, but they turn out to
be too small to become visible within the much larger perturbative errors indicated by the
broad shaded areas. The V and A experimental curves split at smaller s0 values, signaling
the presence of duality violations; however, these effects compensate to a large extent in
V +A, leaving an astonishingly flat distribution that remains within the 1σ perturbative
range even at s0 ∼ 1 GeV. A similar behaviour is observed for the non-protected moment
A(0,0)(s0), which does not receive any OPE corrections [16].

The experimental A(2,0)(s0) curves suggest the presence of a power correction with
different signs for V and A, which largely cancels in V + A. This nicely matches the
behaviour expected from the O6,V/A contribution. However, the numerical size of this
correction seems to be tiny at s0 ∼ m2

τ because the V , A and V + A distributions join
above s0 ∼ 2.2 GeV2.

Six different determinations of the strong coupling from A(2,m)(s0) (0 ≤ m ≤ 5) mo-
ments, neglecting all non-perturbative corrections, are shown in Fig. 3 as function of s0.
Similar results have been also obtained from seven A(1,m)(s0) integrals (0 ≤ m ≤ 6) [16].
The missing non-perturbative corrections to all these moments are very different, span-
ning a broad variety of inverse powers of s0. However, this diversity of power corrections
does not show up in the figure: all curves cluster and display a similar s0 dependence,
suggesting very small power corrections for V + A. Notice that only experimental errors
have been shown in the figure. The fluctuations of the different determinations remain
always within the much larger perturbative uncertainties indicated in Fig. 2.

From the s0 dependence of a single A(2,m)(s0) moment, one can extract the values of
αs(m

2
τ ) and the power corrections O2(m+2) and O2(m+3). Fitting the V + A distribution

in a range of s0 above some ŝ0 ≥ 2.0 GeV2, one finds a quite poor sensitivity to power
corrections, as expected, but a surprising stability in the extracted values of αs(m

2
τ ) at

different ŝ0. Including the information from three different moments (m = 0, 1, 2), and
adding as an additional theoretical error the fluctuations with the number of fitted bins,
one gets the αs(m

2
τ ) values given in the fourth line of Table 2. This determination is much

more sensitive to potential violations of quark-hadron duality because the s0 dependence
of consecutive bins feels the local structure of the spectral function. The agreement with
the determinations in the first three lines of Table 2 corroborates the small size of duality-
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violation effects in the fitted region, thanks to their very efficient suppression in the doubly-
pinched moments A(2,m)(s0) and the flat shape of the V +A hadronic distribution above
s0 = 2.0 GeV2.

A different sensitivity to power corrections and duality-violation effects can be achieved

with the exponentially-suppressed moments ω
(1,m)
a (x) = (1 − xm+1) e−ax that nullify the

region of high invariant-mass values, strongly reducing any violations of quark-hadron
duality, at the price of being exposed to all condensates. The OPE corrections become
independent of m when a� 1, while at a = 0 one recovers the non-exponential moments
A(1,m)(s0) that are only affected by O2(m+2). Thus, in a purely perturbative determination
of the strong coupling, the neglected OPE corrections should manifest in a larger instability
under variations of s0 at a 6= 0. Moreover, at fixed s0 the splitting among moments should
increase with the Borel parameter a, before converging at a→∞. However, the detailed

analysis performed in Ref. [16], with seven different ω
(1,m)
a (x) moments (0 ≤ m ≤ 6), finds

stable results for a broad range of values of both s0 and a, where the power corrections do
not appear to be numerically relevant. Including the information from all moments, one
gets the values of αs(m

2
τ ) in the fifth line of Table 2.

6 Summary

Table 2 displays a very consistent set of results, obtained with different numerical ap-
proaches that have different sensitivities to potential non-perturbative corrections. They
are rooted in solid theoretical principles and exhibit a good stability under small variations
of the fit procedures. The excellent overall agreement, and the many complementary tests
successfully performed, demonstrate their robustness and reliability. Combining the CIPT
and FOPT averages, we get our final determination of the strong coupling

α
(nf=3)
s (m2

τ ) = 0.328± 0.013 . (10)

After evolution up to the scale MZ , the strong coupling decreases to

α
(nf=5)
s (M2

Z) = 0.1197± 0.0015 , (11)

in excellent agreement with the direct measurement at the Z peak from the Z hadronic
width, αs(M

2
Z) = 0.1196 ± 0.0030 [25]. The comparison of these two determinations,

performed at completely different energy scales, provides a beautiful test of the predicted
QCD running:

α
(nf=5)
s (M2

Z)
∣∣∣
τ
− α

(nf=5)
s (M2

Z)
∣∣∣
Z

= 0.0001± 0.0015τ ± 0.0030Z . (12)

The αs(m
2
τ ) determination could benefit from future high-precision measurements of

the τ spectral functions, specially in the higher kinematically-allowed energy bins. An
improved understanding of higher-order perturbative corrections is also needed in order
to improve the theoretical accuracy.
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A Use and Misuse of Spectral Ansatzs

Ref. [24] advocates to use observables that maximize the violations of quark-hadron duality.
While this could be an interesting approach to study those uncontrollable effects, it is not
the right way to perform a precise determination of the QCD coupling. The duality-
violation correction to a given moment is estimated with the formal identity [26–29]

i

2

∮
|s|=s0

ds

s0
ω(s)

{
ΠV/A (s)−ΠOPE

V/A (s)
}

= −π
∫ ∞
s0

ds

s0
ω(s) ∆ρDV

V/A(s) . (13)

The differences ∆ρDV
V/A(s) between the physical spectral functions and their OPE approxi-

mations are first parametrized through a functional ansatz to be fitted with the available
low-energy data. This parametrization is then used to estimate the right-hand-side integral
in Eq. (13), which unavoidably introduces some degree of model dependence.

We can consider the slightly generalized ansatz (in GeV units)

∆ρDV
V/A(s) = sλV/A e−(δV/A+γV/As) sin (αV/A + βV/As) , s > ŝ0 , (14)

which coincides with the model assumed in Ref. [24] for λV/A = 0 . This functional form
is expected to reasonably describe the fall-off of duality violations at very high invariant
masses. However, it is not theoretically compelling at low energies and must only be
regarded as an exploratory tool.

Ref. [24] assumes the ansatz to be valid above ŝ0 ∼ 1.5 GeV2 and performs a fit, bin by

bin, to the s0 dependence of A
(0,0)
V (s0), i.e., to the integral of ρV (s) without any weighting.

This is equivalent to a direct fit of the vector spectral function in the interval ŝ0 < s0 < m2
τ ,

plus the moment A
(0,0)
V (ŝ0) at the lowest invariant-mass ŝ0 (

√
ŝ0 ∼ 1.2 GeV) [16]. This

moment does not receive OPE corrections, but it is very exposed to duality violations.
The fitted value of αs is then mainly driven by the information at ŝ0, the lower end of
the fitted range, where perturbation theory is less reliable. The higher energy bins are
used to determine the spectral ansatz parameters. The assumed parametrization modifies

A
(0,0)
V (ŝ0), through Eq. (13), introducing an unwanted correlation with the extracted value

of αs. Thus, one loses theoretical control and gets at best an effective model description
with unclear relation to QCD.

Taking λV = 0, we have reproduced the results of Ref. [24]. The left panel in Fig. 4
shows the extracted values of αs(m

2
τ ) at different ŝ0, with FOPT (CIPT gives a similar

behaviour). The p-values of the different fits, given in the right, have a very poor statistical
quality for all ŝ0 values. The αs determination of Ref. [24] is just taken from the point
ŝ0 = 1.55 GeV2, where αs(m

2
τ ) is smaller, with the argument that it has the larger (but still

too small) p-value.1 This procedure does not have any solid justification.2 The p-value falls
dramatically when one moves from this magic point, becoming worse at higher ŝ0 where
the model should work better. The impact of this unaccounted systematic uncertainty on

1Using the same prescription in the axial channel, we find a better local maximum (p = 16%) for

ŝ0 = 1.3 GeV2 that corresponds to α
(nf=3)
s (m2

τ ) = 0.332 ± 0.011 (FOPT) [30,31].
2If the bad convergence to the data below ŝ0 is ignored, one can find sets of model parameters (with

λV = 0) at higher ŝ0 that give better fits (p-values) with completely different values of αs [30, 31].
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Figure 4: FOPT determination of α
(nf=3)
s (m2

τ ) from the s0 dependence of A
(00)
V (s0),

fitting all s0 bins with s0 > ŝ0, as function of ŝ0, using the approach of Ref. [24].

Figure 5: Vector spectral function ρV (s), fitted above 1.55 GeV2 with the ansatz (14), for
different values of λV = 0, 4, 8, compared with the data points [16]

the strong coupling becomes clear when one observes that the fitted value of αs(m
2
τ ) is

very unstable under small variations of ŝ0. Just removing from the fit one of the 20 fitted
points, results in fluctuations of the order of 1σ.

The assumed model strongly deviates from the data, outside the region where the
spectral function has been fitted. Fig. 5 compares the experimental spectral function with

the fitted ansatz, for three different values of λV = 0, 4, 8. All models reproduce well ρV (s)
in the fitted region (s ≥ 1.55 GeV2), but they fail badly below it. The worse behaviour is
obtained with the default model (λV = 0) assumed in Ref. [24]. Increasing λV , the ansatz
slightly approaches the data below the fitted range, while the exponential parameters δV
and γV adapt themselves to compensate the growing at high values of s with the net
result of a smaller duality-violation correction. The statistical quality of the fit improves
also with growing values of λV , as shown in Table 3 that gives the fitted parameters for
different models (0 ≤ λV ≤ 8), taking always the reference point ŝ0 = 1.55 GeV2.

Table 3 exhibits a strong correlation between αs(m
2
τ ) and the assumed ansatz. Since

we are just fitting models to data without any solid theoretical basis (the OPE is not
valid in the real axis), the strong coupling has been converted into one additional model
parameter. In spite of all caveats, one gets still quite reasonable values of αs, but the
actual uncertainties are much larger than the very naive fit errors shown in the table, which
totally ignore the strong instabilities appearing as soon as one moves from the selected

10



SciPost Physics Proceedings Submission

λV α
(nf=3)
s (m2

τ ) δV γV αV βV p-value (% )

0 0.298± 0.010 3.6± 0.5 0.6± 0.3 −2.3± 0.9 4.3± 0.5 5.3
1 0.300± 0.012 3.3± 0.5 1.1± 0.3 −2.2± 1.0 4.2± 0.5 5.7
2 0.302± 0.011 2.9± 0.5 1.6± 0.3 −2.2± 0.9 4.2± 0.5 6.0
4 0.306± 0.013 2.3± 0.5 2.6± 0.3 −1.9± 0.9 4.1± 0.5 6.6
8 0.314± 0.015 1.0± 0.5 4.6± 0.3 −1.5± 1.1 3.9± 0.6 7.7

Table 3: Fitted values of α
(nf=3)
s (m2

τ ), in FOPT, and the spectral ansatz parameters in
Eq. (14) with ŝ0 = 1.55 GeV2, for different values of the power λV [16]

point ŝ0 = 1.55 GeV2. For the default λV = 0 model, for instance, the fluctuations of
αs(m

2
τ ) in the interval ŝ0 ∈ [1.15, 1.75] GeV2 increase by a factor of three the error quoted

in Table 3 [16]. As the fit quality improves with growing values of λV , the fitted central
values of αs(m

2
τ ) approach also the much more solid determinations quoted in Table 2.

Thus, the fitted values of αs(m
2
τ ) obtained with this method strongly depend on the

assumed spectral function model and, therefore, are unreliable. The claimed result in
Ref. [24] is just a consequence of the particular choice of model adopted and the quoted
uncertainties are largely underestimated.
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