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Abstract

We discuss sum-rule determinations of αs from non-strange hadronic τ -decay
data. We investigate, in particular, the reliability of the assumptions underly-
ing the “truncated OPE strategy,” which specifies a certain treatment of non-
perturbative contributions, and which was employed in Refs. [1–3]. Here, we
test this strategy by applying the strategy to the R-ratio obtained from e+e−

data, which extend beyond the τ mass, and demonstrate that the assumptions
underlying this strategy are not, in general, valid. We then present a brief
overview of new results on the form of duality-violating non-perturbative con-
tributions, which are conspicuously present in the experimentally determined
spectral functions. As we show, with the current precision claimed for the ex-
traction of αs, including a representation of duality violations is unavoidable
if one wishes to avoid uncontrolled theoretical errors.
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1 Introduction

As is well known, the determination of αs from finite-energy sum-rule (FESR) analyses of
hadronic τ -decay data provides one of the most precise determinations of αs. Because of
its low scale, this determination, moreover, plays an important role in testing the evolution
of the strong coupling predicted by QCD. In this paper we pull back the curtain on, and
subject to further scrutiny, certain issues and subtleties connected with the treatment of
non-perturbative effects; issues which the precision now claimed for these determinations
makes it important to understand in more quantitative detail.

In what follows, we first demonstrate that certain highly non-trivial assumptions made
in treating non-perturbative contributions in common implementations of the FESR analy-
sis framework can be tested (and shown to fail) via analogous analyses of electromagnetic
(EM) hadroproduction cross-sections, which, unlike hadronic τ -decay distributions, are
not kinematically restricted to hadronic invariant-squared-masses s ≤ m2

τ . These obser-
vations imply that τ -decay analyses cannot avoid employing weighted spectral integrals
with variable upper endpoints, s0 ≤ m2

τ . Given that significant duality violations (DVs)
are clearly observed in the experimental differential non-strange hadronic τ -decay distri-
butions, this necessitates providing estimates for the size of residual DV effects, which in
turn necessitates the use of models for the DV components of the hadronic spectral func-
tions. Recent progress in determining the form of these components expected in QCD,
relevant to carrying out such analyses, is then also reviewed.

In the Standard Model, defining

Rud;V/A ≡
Γ[τ → ντ hadronsud;V/A (γ)]

Γ[τ− → ντe−ν̄e(γ)]
, (1)

one has [4]

dRud;V/A

ds
=

12π2 |Vud|2SEW
m2
τ

[
wτ (yτ ) ρ

(0+1)
ud;V/A(s)− wL (yτ ) ρ

(0)
ud;V/A(s)

]
, (2)

where yτ = s/m2
τ , wτ (y) = (1− y)2(1 + 2y), wL(y) = 2y(1− y)2, Vud is the ud element of

the CKM matrix, SEW is a known short-distance electroweak correction [5], and ρ
(J)
ud;V/A(s)

are the spectral functions of the J = 0, 1 hadronic vacuum polarizations (HVPs), Π
(J)
ud;V/A,

of the flavor ud, vector (V ) and axial-vector (A) current-current two-point functions.

The continuum parts of ρ
(0)
ud;V/A(s) are suppressed by factors of (md ∓ mu)2, and hence

numerically negligible, leaving the well-determined pion-pole contribution to ρ
(0)
ud;A as the

only numerically relevant J = 0 contribution. The J = 0 + 1 sums ρ
(0+1)
ud;V/A(s) are thus

directly determinable from the experimental dRud;V/A/ds distributions.

The spectral function combinations ρ
(0+1)
ud;V/A(s) and s ρ

(0)
ud;V/A(s) correspond to HVP

combinations, Π
(0+1)
ud;V/A(s) and sΠ

(0)
ud;V/A(s), which are free of kinematic singularities. For

any s0 ≤ m2
τ , and any weight w analytic inside and on |s| = s0, Cauchy’s theorem, applied

to the contour in Fig. 1 then ensures the validity of the FESR relation [6]
∫ s0

0

ds

s0
w(s/s0) ρ

(0+1)
ud;V/A(s) =

−1

2πi

∮

|s|=s0

ds

s0
w(s/s0) Π

(0+1)
ud;V/A(s) . (3)

The basic idea of the τ -based determination of αs is to employ experimental results
for dRud;V/A/ds on the LHS of Eq. 3 and, for sufficiently large s0, the Operator Product

Expansion (OPE) representation of Π
(0+1)
ud;V/A(s) on the RHS. The OPE, of course, represents
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Re q2

Figure 1: Contour used in the derivation of Eq. (3). The cut shown on the

positive real s = q2 = −Q2 axis starts at s = 4m2
π for Π

(0+1)
ud;V and s = 9m2

π for

Π
(0+1)
ud;A . Π

(0+1)
ud;A , of course, also has a pole at s = m2

π.

only an approximation to Π
(0+1)
ud;V/A. In general, in addition to perturbative (dimension

D = 0 OPE) and higher dimension non-perturbative OPE condensate contributions,

[
Πud;V/A(s)

]NP
OPE

=
∑

D=4,6,8,···

C
V/A
D

QD
, (4)

with Q2 = −s, and the C
V/A
D effective condensates of dimension D, non-OPE, DV contri-

butions,
[
Π

(0+1)
ud;V/A(s)

]
DV

, defined by

Π
(0+1)
ud;V/A(s) ≡

[
Π

(0+1)
ud;V/A(s)

]
OPE

+ ΠDV
ud;V/A(s) , (5)

are needed to provide a full representation of Π
(0+1)
ud;V/A(s).

If m2
τ were sufficiently large that, relative to perturbative contributions, all non-

perturbative contributions (both DV and OPE) were negligible on the circle |s| = m2
τ ,

the inclusive experimental non-strange hadronic τ decay width would provide an imme-
diate determination of αs. Unfortunately, this is not the case, at the level of precision
desired (and claimed) in current τ -based analyses.

Two key qualitative points should be emphasized regarding non-perturbative con-

tributions to the RHS of Eq. (3). First, since the cut in Π
(0+1)
ud;V/A extends to s = ∞

(z = 1/Q2 = 0), the OPE (an expansion in z about z = 0) cannot be convergent. Second,

DV contributions to Π
(0+1)
ud;V/A(s), which are exponentially suppressed for large spacelike

Q2 = −s, are expected to develop an additional oscillatory behavior on the Minkowski

axis [7, 8]. Such oscillations are clearly seen in ρ
(0+1)(s)
ud;V/A = 1

π Im Π
(0+1)
ud;V/A(s) but their prop-

erties are not captured by the OPE. They reflect the incipient presence of resonances as
the energy is lowered from the parton-model regime.

The fact that the OPE is not convergent means that it is not true that higher dimen-

sion OPE contributions to the RHS of Eq. (3) scale simply as ΛDQCD/s
D/2
0 and hence form

a rapidly converging series in D for s0 ' m2
τ . Assuming, on such “dimensional” grounds,

that integrated higher-D OPE contributions in principle present for a given weight w can
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Figure 2: ALEPH spectral functions for the V , A and V + A channels [20].

AωV/A(s0):

AωV (s0) = F

s0−∆s0
2∑

si

∆NV (si)

N
ωi(si, s0)H(s0, si) , (18)

AωA(s0) = F

s0−∆s0
2∑

si

∆NA(si)

N
ωi(si, s0)H(s0, si) ,

+ F
m2
τ

s0

(
1− m2

π

m2
τ

)−2

Bπ ωi(m
2
π, s0) , (19)

where
F =

[
12π SEW |Vud|2Be

]−1
(20)

collects all normalization factors,

H(s0, si) =
m2
τ

s0

(
1− si

m2
τ

)−2(
1 +

2si
m2
τ

)−1

(21)

and ∆s0 is the bin width of the bin centered at s0 − ∆s0
2

.
In Figure 2 we show the updated spectral functions measured by the ALEPH collabo-

ration [20]. Together with the experimental data points, the figure shows the naive parton-
model expectations (horizontal green lines) and the massless perturbative QCD predictions,
using αs(m

2
τ ) = 0.329 (blue lines). This comparison shows beautifully, how the data ap-

proach the QCD predictions at the highest available energy bins, without any obvious need
for non-perturbative corrections at s = m2

τ . Resonance structures are clearly visible at
lower values of the hadronic invariant mass, specially the prominent ρ(2π) and a1(3π) peaks,
but as s increases the opening of higher-multiplicity hadronic thresholds results in much
smoother inclusive distributions, as expected from quark-hadron duality considerations [71].
The flattening of the spectral distribution is specially good in the most inclusive channel,
V + A, where perturbative QCD seems to work even at s ∼ 1.2 GeV2, a surprisingly low
value. The onset of the asymptotic perturbative QCD behaviour appears obviously later in
the semi-inclusive V and A distributions. In the vector case perturbative QCD seems to
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Figure 2: Left panel: the ud V +A spectral function, as shown in Ref. [1]. Right
panel: the same (in the normalization of [9]) but now with the αs-independent
parton-model contribution subtracted.

be neglected requires experimental justification if one wishes to avoid incurring unquan-
tifiable systematic errors.

The fact that DV effects are not, in general, negligible in hadronic τ decays is evidenced
by the size of the observed DV oscillations in the V , A and V +A spectral functions. It is
often argued [1] that DV oscillations are “small” for the V +A combination on the basis of
plots showing the size of such oscillations on the scale of the full V +A spectral function,

ρ
(0+1)
ud;V+A(s), as in the left panel of Fig. 2. Such a plot is, however, highly misleading, since

ρ
(0+1)
ud;V+A(s) contains a large parton-model contribution completely independent of αs, i.e.,

of all QCD dynamics. The FESR determination of αs is driven entirely by the dynami-
cal, αs-dependent part of the perturbative contribution to the weighted spectral integrals,
and the relevant measure of the relative size of perturbative and DV contributions to the
spectral functions entering those integrals, from the point of view of a determination of
αs, is the size of the DV oscillations relative to the αs-dependent part of the perturbative

representation of ρ
(0+1)
ud;V+A(s). The right panel of Fig. 2 shows this more relevant compar-

ison. One immediately sees, for example, that the non-parton-model part of ρ
(0+1)
ud;V+A(s)

is ' 0 for s ' 2 GeV2, indicating that DV and αs-dependent perturbative contributions
are, in fact, equal in magnitude in this region, essentially cancelling each other out. This
is also true in the vicinity of the next DV peak, where, however, the two contributions
combine constructively, as expected given the oscillatory nature of DVs. While it is true
that DV oscillations are smaller for the V +A combination than for the individual V and
A spectral functions, this rather obviously does not mean that the V +A oscillations are
small in an absolute sense.

DV contributions, though important in hadronic spectral functions, certainly for the
range of s accessible in τ decays, may be suppressed relative to perturbative contributions
when one considers the integrated quantities appearing on the RHSs of Eq. (3). From the
arguments of Ref. [10], DV contributions on |s| = s0 at intermediate s0 are expected to
be localized to the vicinity of the timelike axis. Given the asymptotic nature of the OPE,
and the oscillatory behavior of the DVs, the parametrization [11–13]

1

π
ImΠDV

ud;V/A(s) = e−δV/A−γV/As sin
(
αV/A + βV/As

)
, (6)
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for s large enough, represents a very natural choice.1 In fact, this expression has recently
been confirmed [8] under the mild assumption of an asymptotic Regge behavior for the
meson spectrum. We discuss this in more detail in section 3 below.

The contribution from ΠDV
ud;V/A(s) in Eq. (5) to the FESR (3) can be shown to take the

form [11,14]

−1

2πi

∮

|s|=s0

ds

s0
w(s/s0) ΠDV

ud;V/A(s) = −
∫ ∞

s0

ds

s0
w(s/s0)

1

π
Im ΠDV

ud;V/A(s) , (7)

and, using the parametrization (6), this form of the DV contributions on the RHS of (7)
will be very useful in the following discussion.

Because of the exponential suppression at large s in Eq. (6), and localization of DV
contributions to the vicinity of the timelike axis at intermediate and large s, the use of
“pinched weights” w (those with a zero at s = s0) in Eq. (3) is thus expected to yield
RHSs in the FESRs (3) in which residual integrated DVs play a reduced role relative to
integrated OPE contributions, with the level of suppression typically increasing with the
degree of pinching (the order of the zero at s = s0). This general expectation is confirmed
empirically [15], and can also be seen on average, over a range of s0, when one integrates
explicitly the asymptotic DV form (6) [14]. While increased pinching increasingly sup-
presses DVs on average, given the size of DV contributions to the spectral functions, and
the precision claimed for current versions of the determination of αs, it remains an open
question how large this suppression is for the doubly and triply pinched weights employed
in typical determinations of αs.

The analyses of Refs. [1–3], all implicitly assume the scale s0 = m2
τ is high enough

that integrated DVs can be neglected for the doubly and triply pinched weights entering
those analyses. Ref. [16] also assumes integrated DVs can be neglected for the doubly
pinched weights it employs, testing this assumption for self-consistency by studying the
s0 dependence of the resulting fits. In contrast, the analysis of Ref. [17, 18] employs the
model for DV contributions to the V and A spectral functions of Eq. (6), and finds a
systematic downward shift in the αs obtained when this representation of DV effects is
included.

Of particular relevance to the results of Refs. [1,16], where attempts are made to inves-
tigate the self-consistency of the assumed neglect of DVs, are the results of Ref. [9], where
the tests employed in Ref. [1] are applied to a model based on mock data which accurately
matches the experimental ud V + A spectral function and which has, by construction, a
lower input value of αs as well as numerically relevant DV contributions at higher s. It is
found that what were hoped to be self-consistency tests in Ref. [1], applied to this model,
are unable to identify the presence of the model DV contributions and the lower input αs
value, establishing that these tests are, in general, insufficient to establish the absence of
numerically significant DVs. A comparison of the results of Refs. [16] and [17] suggests
this same caveat is relevant to assessing the results of the s0-dependence tests employed
in Ref. [16]. In fact, Refs. [9] as well as [17] and [18] contain extensive arguments for the
non-negligible influence of DVs in the extraction of αs from τ decay.

The failure of nominal self-consistency tests of Ref. [1] when applied to the model
described above still leaves open the logical possibility that DV contributions to the actual
spectral functions in the region s > m2

τ might be smaller than those in the model, leading to
smaller integrated DV contributions in the real world than in the model. This possibility
can be investigated, at least for the I = 1 V component, using e+e− hadroproduction
cross-section data [19]. The reason is that the I = 1 component of the EM current is

1Recall how renormalons give rise to a e−b/αs behavior from the asymptotic nature of perturbation
theory. Here the expansion parameter is 1/s rather than αs and αs is thus parametrically replaced by 1/s.
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related by CVC to the charged I = 1 V current acting in τ decays. The predictions of
the τ -based model of Ref. [9] for the I = 1 spectral function in the region s0 ≥ m2

τ , where
it cannot be measured in τ decays, can then be tested against the I = 1 component of
the EM spectral function obtained from a G-parity based isovector/isoscalar separation
of the I = 0 and I = 1 contributions to the EM spectral function. This separation was
carried out in the region up to s = 4 GeV2 in Ref. [20]. The result of the comparison
to the prediction shown in Fig. 5 of Ref. [20] shows good agreement: the DV oscillations
predicted by the τ -decay based model are, indeed, seen in the e+e− data.

One can also use the electroproduction R(s) data to test the “truncated OPE strategy”
which is the foundation for the analysis of Refs. [1, 2]. The problem with the truncation
of the OPE arises as follows. The spectral integral for the s0 = m2

τ version of the FESR
involving the kinematic weight wτ (y), with y ≡ s/s0, can directly be determined from the
inclusive branching fraction for hadronic τ decays. This result, however, is insufficient to
allow one to determine αs since wτ has degree 3, and the theorem of residues then implies
that the right-hand (theory) side of the wτ FESR involves OPE contributions up to D = 8.
While the D = 4 contribution is strongly suppressed by the absence of a term linear in y
in wτ (y), three OPE parameters, αs, and the D = 6 and 8 effective condensates, C6 and
C8, are still required to fix the theory side. Since C6 and C8 are not known from external
sources, the inclusive non-strange branching fraction itself cannot provide a determination
of αs.

A strategy employed to try to get around this problem [1–3] is to consider additional
s0 = m2

τ FESRs involving new, higher-degree weights, with at least the level of pinching of
wτ . The goal is to use the additional weighted spectral integrals as inputs to an extended
multi-weight analysis in which non-perturbative condensates like C6 and C8 are also fit.

This strategy, however, has a fundamental shortcoming. If one considers, for example,
using one additional FESR involving a polynomial weight of degree 4, that FESR now
receives a contribution from a new effective OPE D = 10 condensate, C10. Adding a
weight with degree 5 similarly brings into play a contribution proportional to another new
D = 12 condensate, C12, etc. As long as one aims to suppress as much as possible residual
integrated DV effects by considering spectral integrals with s0 = m2

τ with at least doubly
pinched weights only, one has, at every stage, more OPE parameters to fit than weighted
spectral integrals to use in fitting them.

For this strategy to work in practice, one thus needs to make the strong additional
assumption that, for a set of weights whose maximum degree is N , and which, therefore,
requires knowledge of OPE condensates up to dimension D = 2N + 2, the OPE can be
truncated at a dimension smaller than 2N + 2 sufficiently low to leave the number of
OPE fit parameters less than the number of spectral integrals to be used in fitting them.
Though this truncation leads to a proper fit in the statistical sense, it is really only justified
if the asymptotic OPE series behaves, at the scales of the analysis, as if it were convergent.
This approach to determining αs from hadronic τ -decay data, which we refer to as the
“truncated OPE strategy,” has been employed, for example, in Refs. [1–3].

The truncated OPE strategy is therefore predicated on the assumptions that s0 = m2
τ

is large enough that (i) integrated DV contributions can be neglected for FESRs involving
doubly and triply pinched weights and (ii) the OPE, though asymptotic at best, behaves
as if it were rapidly convergent for dimensions up to 2N + 2, where N is the degree of the
highest-degree weight entering the analysis in question.

It is important to stress that integrated DV contributions are expected to be expo-
nentially damped with increasing s0, and that integrated higher-dimension D = 2k OPE
contributions scale as 1/sk0 and hence also decrease, relative to the leading D = 0 per-

6
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turbative contributions, with increasing s0.2 It therefore follows that, if the assumptions
of the truncated OPE strategy were valid for s0 = m2

τ , they would be even more so
for higher s0. The kinematic restriction s0 ≤ m2

τ unfortunately prevents this prediction
from being tested using τ -decay data but, fortunately, the R-ratio data obtained from
e+e− → hadrons allow for such tests.

Analogous EM FESRs, employing results for R(s) obtained in Ref. [19], thus allow us
to investigate the reliability of the assumptions underlying the truncated OPE strategy
by applying the same fits to the correspondingly weighted s0 = m2

τ versions of the EM
spectral integrals, and then testing whether the resulting OPE fit results provide a good
representation of the actual EM spectral integrals for s0 > m2

τ . This investigation will be
the subject of the next section.

2 e+e−-based tests of the truncated-OPE FESR strategy

In this section we focus our investigation of the assumptions underlying the truncated OPE
strategy on two of the sets of weights employed in the nominal self-consistency studies of
Ref. [1], namely the conventional “(kl) spectral weight” set,

wkl(y) = yl(1− y)k wτ (y) , (8)

with (kl) = (00), (10), (11), (12) and (13), and the set of so-called “optimal weights”,

w(2n)(y) = 1− (n+ 2)yn+1 + (n+ 1)yn+2 , (9)

with n = 1, · · · , 5.
The (00) spectral weight is doubly pinched and the remainder of the (kl) spectral

weights triply pinched, while the optimal weights are all doubly pinched. Since both
the (kl) spectral weight and optimal weight sets include weights up to degree 7, the
corresponding sets of FESRs involve, in principle, OPE contributions, unsuppressed by
additional factors of αs, up to D = 16. In order to leave one more s0 = m2

τ spectral integral
than OPE parameter in the corresponding multi-weight fits, spectral-weight analyses fit
αs, C4, C6 and C8 and assume contributions proportional to C10, C12, C14 and C16 can
be neglected. The absence of a term linear in y in the weights w(2n)(y) means that
contributions proportional to C4 are strongly suppressed. The five s0 = m2

τ optimal-
weight-set spectral integrals are then used to fit the four OPE parameters, αs, C6, C8 and
C10, with contributions proportional to C12, C14 and C16 assumed negligible.

We consider spectral-weight and optimal-weight FESRs, in which the ud V or A spec-
tral functions and HVPs appearing in Eq. (3) are replaced by the corresponding spectral
function, ρEM (s), and HVP, ΠEM (s), of the three-flavor EM current. The spectral func-
tion, ρEM (s), is related to the well-known R(s) ratio by

ρEM (s) =
1

12π2
R(s) . (10)

We employ the results and covariances for R(s) provided by the authors of Ref. [19]. Full
details of our own implementation of such EM FESRs may be found in Ref. [20].

We stress that (i) in the isospin limit, CVC implies that the I = 1 part of ΠEM (s),

ΠI=1
EM is equal to 1

2 Π
(0+1)
ud;V (s), where the 1/2 is a trivial Clebsch-Gordon factor, and (ii) the

I = 0 part of ΠEM (s) is, up to a factor of 1/3, the SU(3)F hypercharge partner of the

2 Although the asymptotic nature of the OPE leads to the expectation of a rapid increase of the
condensate contribution with its dimension D.
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Figure 3: EM FESR tests of the optimal weight version of the truncated OPE
strategy. Comparisons of differences between general s0 and s0 = m2

τ versions
of the OPE and spectral integrals, with OPE results corresponding to OPE pa-
rameter values obtained from the optimal-weight implementation of the trun-
cated OPE strategy using s0 = m2

τ only in the fits. Top left: w(21); top right:
w(22); middle left: w(23); middle right: w(24); bottom: w(25).
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I = 1 component. Higher dimension I = 0 EM OPE condensate contributions to ΠEM (s)
should thus be ∼ 1/3 of the corresponding I = 1 EM OPE condensate contributions, up
SU(3)F breaking effects. If I = 1 condensates of a given dimension yielded contributions
which are negligible, relative to perturbative contributions, for s0 ≥ m2

τ , this should be
equally true of the corresponding I = 0 contributions. It follows that, if the truncated-
OPE-strategy assumptions were reliable at s0 = m2

τ for τ -decay-based FESRs, they should
be similarly reliable at s0 = m2

τ for the corresponding EM FESRs, and they should then
be even more reliable for s0 > m2

τ , though this expectation can only be tested in the EM
case.

Of course, the EM case allows us to consider only the V channel, whereas Ref. [1]
considers V+A to be the optimal choice for the truncated OPE strategy. We note, however,
that (i) there is not a vast difference between the amplitude of the DV oscillations in the
V and V + A channels, relative to the parton model, and (ii), that, in particular for the
optimal weights, the results for αs obtained in Ref. [1] on the basis of the truncated OPE
strategy are in excellent agreement between fits to the V and V + A channels, while the
corresponding agreement for the spectral weights is also very good. So, while we recognize
that the e+e− channel is different from the τ -decay one, we believe it is very instructive
to check the hypotheses which are at the foundation of the truncated-OPE strategy even
with the e+e− data. Therefore, we will turn our attention to these checks next.

We test the truncated OPE strategy by first performing truncated-OPE-strategy fits
to the s0 = m2

τ versions of either the five wkl-weighted EM spectral integrals or the five
w(2n)-weighted EM integrals, and then comparing the weighted EM spectral integrals and
OPE integrals obtained using the resulting fitted OPE parameters at s0 > m2

τ .
Very strong correlations exist between weighted spectral integrals for different s0, as

well as between weighted OPE integrals for different s0. In order to take these correlations
into account in assessing, visually, how successful the resulting s0 > m2

τ OPE integrals
are in predicting the actual values of the corresponding EM spectral integrals, it is useful
to plot not the spectral and OPE integrals themselves, but rather the difference between
their values at general s0 and s0 = m2

τ . Both the OPE and spectral integral differences
are thus zero, by definition, at s0 = m2

τ . The errors on the spectral integral differences
are straightforwardly obtainable from the covariance matrix of the R(s) data provided by
the authors of Ref. [19].

The results of this test are shown in Fig. 3, for the optimal-weight set of Ref. [1].3

The OPE integral differences produced using the truncated-OPE-strategy fit assumptions
obviously provide an, in general, very poor representation of the corresponding spectral
integral differences in the region above s0 = m2

τ . For the sake of brevity, the OPE-spectral
integral matches of the analogous spectral-weight test, which are similarly bad above
s0 = m2

τ , are not shown here.
From these results it is clear that the assumptions underlying the truncated OPE

strategy are, simply, not valid, and thus that results obtained from the truncated OPE
strategy are unreliable. Since the weights involved in these tests are doubly and/or triply
pinched, and hence expected to have suppressed integrated DV contributions, especially
above s0 = m2

τ , the poor OPE-spectral integral matches imply a breakdown of the as-
sumption that the OPE can be truncated as it would were the OPE a rapidly converging
expansion up to at least D = 16.

The consequences of this observation for τ -based analyses are (i) that the truncations
in dimension of the OPE employed in the truncated OPE strategy are completely unsafe

3We would like to emphasize that, as we already said above, because we are plotting differences, the
numerical values on the vertical axis are not meaningful in an absolute sense. What is relevant is that the
black OPE curves for s0 > m2

τ do not agree within errors with the red experimental data points.
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and (ii) that, in order to have fewer OPE parameters than spectral integrals required to
fit them, one must consider also spectral integrals involving whatever set of weights one
is employing at s0 different from m2

τ , which, for analyses of τ -decay data, means s0 < m2
τ .

Since quite sizeable DV oscillations about perturbation theory are observed in the spectral
functions in this region, even when one considers the ud V +A sum, it becomes important
to use some representation of DV contributions to estimate the impact of possible residual
DV effects, even in FESRs involving doubly and triply pinched weights.

3 Duality Violations and Hyperasymptotics: The Regge
Connection

Although one expects DVs to behave as in Eq. (6) for large s on general grounds, it
would be nice to derive an expression such as Eq. (6) from QCD. Regrettably, this is still
not possible from first principles but, recently, in Ref. [8], progress has been made under
two plausible assumptions: (i) that the radial spectrum of QCD shows a leading Regge
behavior in the vector channel for asymptotically large excitation number n, i.e.,

M2(n) = Λ2
QCD n+ b log n+ c+O

(
1

n
,

1

log n

)
, (11)

F (n)

F0
= 1 +O

(
1

n
,

1

log n

)
, (n� 1) ,

where M(n) is the spectrum of masses and F (n) are the corresponding decay constants
appearing in the vector two-point function, in the large-Nc limit; and (ii) that the ratio of
the width over the mass goes to a constant also in the same asymptotic limit, i.e.,

Γ

M(n)
=

a

Nc

(
1 +O

(
1

Nc
,

1

n

))
, (n� 1) . (12)

The scale ΛQCD is related to the string tension and is expected to be of order 1 GeV (see
also below). The scale F0 sets the normalization of the two-point function.

Both assumptions are supported by the solution of two-dimensional QCD [21], the
string picture of hadrons [22] and phenomenology [23]. The picture that emerges is the
following.

Starting from the dispersive representation obeyed by the Adler function, it is conve-
nient to express it as a Borel–Laplace transform

A(q2) = −q2dΠ(q2)

dq2
= − q2

∫ ∞

0
dt ρ(t)

∫ ∞

0
dσ σ e−σ(t−q

2) (13)

= − q2

∫ ∞

0
dσ eσq

2
σB[ρ](σ) ,

where

B[ρ](σ) =

∫ ∞

0
dt ρ(t) e−σt (14)

is the Laplace transform of the spectral function. The OPE corresponds to an expansion
of B[ρ](σ) around σ = 0. We see that B[ρ](σ) is well-defined for Re σ > 0, since ρ(t) (i.e.,
the spectral function) must go to a constant as t→∞, for finite Nc. Any singularities of
B[ρ](σ) thus have to reside in the half-plane Re σ ≤ 0. This representation of the Adler
function in terms of B[ρ](σ) is valid for Re(σq2) < 0, and for σ > 0 this means q2 < 0.

10
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Figure 4: Schematic representation of the connection between the singularities
in the q2 and σ complex planes. The thick gray arrow in the right panel depicts
the initial path taken in the sigma integral in Eq. (13).

This is the key point: as one rotates σ in the complex plane from Reσ > 0 to Reσ < 0,
one is analytically continuing in the q2 complex plane from q2 < 0 to q2 > 0. This is what
we want.

If the spectrum ρ(t) were to vanish for t > t0, the function B[ρ](σ) would be analytic in
the whole complex plane, and the above rotation in σ would produce an OPE convergent
for |q2| > t0. Of course, the spectrum goes all the way to infinity, as Eq. (11) clearly
shows. The existence of an infinite number of poles of Π(q2) on the Minkowski axis for
Nc =∞ produces singularities for B[ρ](σ) on the imaginary axis in the σ plane which, for
the spectrum in Eq. (11), are branch points [8]. As Nc evolves from infinity down to 3,
the location of these poles recedes into the next Riemann sheet an angle given by

ϕNc = − Γ

M(n)
= − a

Nc

(
1 +O

(
1

Nc
,

1

n

))
, (15)

turning what were poles on the real q2 > 0 axis into resonance peaks. Since σ and q2 are
locked together, through Eq. (13), to satisfy Re(σq2) < 0, this forces all branch points in
the σ plane off the imaginary axis, with the one closest to the origin moving to a position
given by

σ = σ̂ ≈ 2π

Λ2
QCD

eiΦ0 ,

Φ0 ≈ π

2
+ |ϕNc | . (16)

The position of the branch point is signaled by a blue arrow in Fig. 4.
In this situation, as the path in the σ plane is rotated in the integral (13) from arg σ = 0

to arg σ = π, one sweeps through the blue line in Fig. 4, picking up a contribution given
by

Im ΠDV (q2) ∼ e
−2π a

Nc

q2

Λ2
QCD sin

[
2π

Λ2
QCD

(
q2 − c− b log

q2

Λ2
QCD

)](
1 +O

(
1

Nc
,

1

q2
,

1

log q2

))
.

(17)
This expression can be parametrized as in Eq. (6), up to a small logarithmic corrections
(since, for large q2, q2 � b log q2). In fact, QCD Regge phenomenology is consistent with
this term b being absent.

Besides the branch point (16), in principle there may be other branch points located
in the same quadrant further away from the origin but, since the exponent in Eq. (17)

11
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is governed by the radial distance of these points to the origin, their contribution to
Im ΠDV will correspondingly contain a stronger exponential suppression. In this way, the
expansion at large q2 of Im ΠDV becomes a combined series in 1/q2 and exponentials e−q

2
,

of decreasing importance, as in the Theory of Hyperasymptotics [25].
Equation (17) connects the parameters from the radial Regge trajectories (11) to the

parameters αV , βV , γV and δV of Eq. (6), which were obtained from fits involving the
vector spectral function in τ decay. On the other hand, fits to meson spectroscopy give [23]4

Λ2
QCD = 1.35(4) GeV2 ,

Γ

M
= 0.12(8) , (18)

which translate into

βV =
2π

Λ2
QCD

= 4.7(2) GeV2 , γV =
2π

Λ2
QCD

a

Nc
= 0.6(4) GeV−2 . (19)

These numbers are to be compared to the results from the fit involving τ data [17]:

βV = 4.2(5) GeV−2 , γV = 0.7(3) GeV−2 . (20)

The agreement is rather satisfactory. Notice in particular the importance of having the
factors of 2π in Eq. (19). It would be interesting to find an independent determinations
also of the other two parameters, αV and δV , to compare with, but, to the best of our
knowledge, those are not available in the literature.

4 Conclusion

We have argued that the mass of the τ lepton is not high enough to be able to dismiss the
DV term (5) in the FESR (3) and that, because of that, one has to use a parametrization
of the DV term which is physically sound, such as that given in Eq. (6). Attempts to
work only at s0 = m2

τ , assuming integrated DVs are negligible at this s0 for doubly and
triply pinched weights, run into the problem that the number of OPE parameters to be
fit exceeds the number of spectral integrals available as input, unless, as in the truncated
OPE strategy, one neglects sufficiently many higher-D OPE contributions present in the
analysis. We tested the reliability of the truncated OPE strategy, which neglects such
higher-D contributions, using EM FESRs employing recent R(s) data as input, and found
that this strategy, and the assumptions underlying it, fail badly. This leads us to the
conclusion that one must take advantage of the s0 dependence of τ -based spectral integrals
to have enough input to fit all relevant OPE parameters which, in turn, forces us to work
at lower scales, where it becomes more important to take DVs into account. We conclude
that an accurate extraction of αs using τ -decay data not subject to uncontrolled systematic
errors requires a reasonable description of the DVs.

These conclusions stand in sharp contrast to what is stated in Ref. [1]. The authors of
Ref. [1] assert that DVs are sufficiently suppressed in the ud V +A two-point function to
be able to neglect them altogether when using doubly or triply pinched weights, and when
working at the highest available scale, s0 = m2

τ . The use of such weights, with their higher
degrees, however, forces the authors of Ref. [1] to make strong assumptions about the
behavior of the (asymptotic) OPE series, in particular, that contributions from higher-D
condensates present in the FESRs they employ can be neglected. These assumptions have
been tested in the analogous case of the EM FESRs and found to fail badly there. This
raises serious questions about their reliability, and hence the reliability of the truncated
OPE strategy, as a method for use in the determination of αs from hadronic τ decay data.

4For example, in the case of the ρ, one finds Γ/M ' 0.19.
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