
A Toy Model of the Information Paradox in Empty Space

Suvrat Raju
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Shivakote, Bengaluru 560089, India.

A sharp version of the information paradox involves a seeming violation of the monogamy of
entanglement during black hole evaporation. We construct an analogous paradox in empty anti-
de Sitter space. In a local quantum field theory, Bell correlations between operators localized in
mutually spacelike regions are monogamous. We show, through a controlled calculation, that this
property can be violated by an order-1 factor in a theory of gravity. This example demonstrates
that what appears to be a violation of the monogamy of entanglement may just be a subtle violation
of locality in quantum gravity.

INTRODUCTION

In this paper, we present a toy model that captures
key aspects of the information paradox in a setting that
facilitates clean calculations. In a local quantum field
theory, Bell correlations between different spatial regions
are monogamous. We show that this monogamy is vio-
lated dramatically in a theory of quantum gravity, even
in empty anti-de Sitter space. This produces a “para-
dox” that is analogous to the “cloning” and “monogamy”
paradoxes for evaporating black-holes. This construction
provides strong evidence that these paradoxes can be re-
solved by recognizing that degrees of freedom cannot be
localized in quantum gravity and information that ap-
pears to be present in one region of space can also be
extracted from another region.

The cloning paradox arises because it is possible to
draw nice slices in the evaporating black hole spacetime
so that a single spacelike slice intersects both the in-
falling matter and captures a large fraction of the out-
going Hawking radiation. This makes it appear that the
same information is present at two points on the slice,
violating no-cloning theorems in quantum mechanics. A
related, and sharper paradox was constructed in [1] and
elaborated in [2]. A consideration of the Hawking pro-
cess reveals that, for an old black hole, the near-horizon
region must be entangled with the interior of the black-
hole and also with the early Hawking radiation that may
have traveled far from the horizon. This appears to vio-
late information-theoretic inequalities on the monogamy
of entanglement and again suggests that information in
the interior has been “cloned” in the exterior.

The papers [3] proposed a resolution to these para-
doxes relying on the idea that, in quantum gravity, de-
grees of freedom in one region can sometimes be equated
to a combination of degrees of freedom in another region.
The existence of this physical effect, called “complemen-
tarity” [4], was demonstrated in a simple setting in [5]
and this paper will elucidate its relation to the informa-
tion paradox.

A complete understanding of black-hole evaporation
requires additional physical effects. For instance, nonper-
turbative dynamical effects in gravity provide the expo-

nentially small corrections that are required to unitarize
Hawking radiation and reconcile the late-time behaviour
of two-point functions or the spectral form-factor with
general predictions from unitarity [6–9]. Moreover, to re-
solve paradoxes that appear in the interior of large AdS
black-holes [10], the map between the bulk and boundary
must be state-dependent [11].

However these three effects — complementarity, ex-
ponentially small corrections and state-dependence are
really independent physical effects in gravity and should
not be conflated. In this paper, we will explore com-
plementarity but we will not appeal either to state-
dependence or to non-perturbative corrections.

A technical point emphasized in this paper is that
the monogamy of entanglement in gravity is best stud-
ied by examining the monogamy of Bell correlations.
Monogamy paradoxes for black hole evaporation were
originally formulated in terms of the strong subadditivity
of the von Neumann entropy. However, the von Neumann
entropy is difficult to even define [12], let alone compute,
in a theory of dynamical gravity. In contrast, Bell corre-
lations can be computed reliably in perturbation theory
as we show here.

There are no gauge-invariant exactly local bulk oper-
ators in gravity [13], and all gauge-invariant operators
must extend to the asymptotic region. However, in spite
of this, we would still like some way of capturing our
naive notions of locality. Indeed, some such notion is
necessary even to frame the monogamy and cloning para-
doxes, since these paradoxes require a sense in which op-
erations “inside” the black-hole are separate from opera-
tions “outside” the black-hole.

Said another way, even though all operators in quan-
tum gravity have a global element, we would like to se-
lect some particular set of operators whose behaviour is
as close as possible to our naive ideas of a local physical
observation. There are several possible ways to choose
such a set but a common choice [14], which we will adopt
here, is to fix gauge.

So, in this paper, we will use the term localized to
describe operators that are functions of quantum fields
from a region after a specific choice of gauge. Except at
one point below, we leave the gauge-choice unspecified
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since different choices of gauge just change the results by

O
(

1
N

)
.

The reader should keep the definition above in mind
whenever the term localized appears below. In particular,
we emphasize that a localized operator is not an exactly
local operator since, as we have already explained, ex-
actly local bulk operators simply do not exist in quantum
gravity.

However, most recent versions of the information para-
dox tacitly assume that, at low energies and up to leading
order in 1

N , such localized observables will share the prop-
erties of exactly local operators. For instance, essential
to the paradox of [1, 2] is the idea that because the old
Hawking radiation has low energy and can be manipu-
lated by localized operators far away from the black hole,
such manipulations do not affect the black-hole interior.

The result of this paper show, in a precise setting,
how such an assumption could fail. If one considers
localized observables that cannot be well-approximated
by low-order polynomials of elementary localized field
operators—we call such observables “complicated” in
what follows—then it might not be true that the effect of
these observables remains confined to the original region,
and such a nonlocal effect might be important at O (1).

For complicated localized operators, not only can their
commutator with other localized operators become large
at spacelike separation but, crucially, “complementarity”
can emerge so that the same quantum information is
available in operators localized in distinct regions. We
demonstrate this explicitly in this paper by using such
complicated operators to construct an analogy to the
cloning and monogamy paradoxes even in empty space.

We will work with a minimally coupled scalar field, φ in
anti-de Sitter space, with `AdS = 1. The Planck length,
in these units, is denoted by 1

N ; the same parameter is
assumed to control the self-interactions of the field.

MONOGAMY OF ENTANGLEMENT

We start by reviewing how the monogamy of entangle-
ment constrains Bell correlations.

Consider two pairs of operators {A1, A2} and {B1, B2}
with operator norms, ‖Ai‖, ‖Bi‖ ≤ 1 and with [Ai, Bj ] =
0. Define the CHSH operator [15]

CAB = A1(B1 +B2) +A2(B1 −B2). (1)

Classically, in any state, |〈CAB〉| ≤ 2. But quantum me-
chanically, |〈CAB〉| ≤ 2

√
2 [16]. Thus a state that yields

2 < |〈CAB〉| ≤ 2
√

2 displays correlations between the op-
erators Ai and Bi beyond classical correlations — which
implies that the degrees of freedom probed by these op-
erators are entangled.

A beautiful statement of the monogamy of entangle-
ment is then as follows [17]. (See also [18].) Consider a

third pair of operators {C1, C2} with ‖Ci‖ ≤ 1, [Ai, Cj ] =
[Bi, Cj ] = 0 and form the combination CAC just as above.
Then in any state we have

〈CAB〉2 + 〈CAC〉2 ≤ 8. (2)

Therefore if the operators Ai are “entangled” with Bi
then their correlations with Ci must be less than the
allowed classical limit: |〈CAB〉| > 2 =⇒ |〈CAC〉| < 2.

In a local quantum field theory, the criterion that
Ai, Bi, Ci commute can be replaced by the statement that
Ai, Bi, Ci are localized on spacelike separated regions.

We will now show that in a theory of gravity, if we
consider operators Ai, Bi, Ci localized on spacelike sep-
arated regions, then (2) is violated by an O (1) amount.

BELL INEQUALITIES IN FIELD THEORY

Much of the literature on Bell inequalities is focused on
qubits, and while Bell inequalities have been considered
in quantum field theory [19–21], here we will indepen-
dently construct some simple operators that display Bell
correlations beyond the classical limit.

Preliminaries

To warm up, consider a system of two commuting sim-
ple harmonic oscillators, with annihilation operators αs,
where s = A or s = B, in a thermofield state√

1− x2exα
†
Aα
†
B |0〉. (3)

Here |0〉 is the joint vacuum and 0 < x < 1.
Let Ps be the projector onto states annihilated by αs.

Take the CHSH operator (1) to comprise

A1 = PA − α†APAαA; A2 = α†APA + PAαA;

B1 =
1√
2

(
PB − α†BPBαB + α†BPB + PBαB

)
;

B2 =
1√
2

(
PB − α†BPBαB − α

†
BPB − PBαB

)
.

(4)

It can be easily checked that ‖Ai‖ = ‖Bi‖ = 1. In the
thermofield state

〈CAB〉 =
√

2(1− x)(1 + x)3 (5)

This is maximized at x = 1/2 with 〈CAB〉 = 27
√

2
16 ≈ 2.4.

This does not saturate the bound, |〈CAB〉| ≤ 2
√

2, but
will suffice for our purpose.

Bell operators in quantum field theory

We now turn to a weakly interacting quantum field
theory. All expectation values below will be taken in the
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vacuum |Ω〉. The idea is to extract a pair of simple har-
monic degrees of freedom for which the vacuum resembles
the thermofield state (3).

By smearing the field and its conjugate momentum
with functions supported on spatially separated compact
regions, we define two Hermitian operators (Xs,Πs) and
set αs = 1√

2
(Xs + iΠs). Here, as above, s runs over

systems “A” and “B” and the smearing functions are
normalized by [αs, α

†
s′ ] = δss′ .

The projector onto states annihilated by αs is

Ps =
1

π2

∫ ∞
−∞

d2~t

∫ 2π

0

dθs
e−~t

2−κ(θs)(t1Xs−t2Πs)

(eiθs − 1)
, (6)

where ~t = (t1, t2) is a two-component vector of dummy
variables and κ(θ) ≡ 2

√
tanh(iθ). Formula (6) can be

verified by performing the integrals over the dummy vari-
ables carefully, using the BCH lemma to account for the
non-commutativity of Xs and Πs

Using these projectors we define operators in quantum
field theory precisely as in (4). The most general two-
point function of these operators can be extracted from

Q[υi, ζi] =

∫
d2~td2~ydθAdθB

π4(eiθB − 1)(eiθA − 1)
e−
~t2−~y2〈G〉, (7)

with

G = eυ2α
†
BeXB ỹ1−ΠB ỹ2eζ2αBeυ1α

†
Aet̃1XA−ΠA t̃2eζ1αA ,

and t̃i = tiκ(θA); ỹi = yiκ(θB). The values of Q and its
derivatives at υi = ζi = 0 yield correlators of all operators
in (4).

For actual computations, it is convenient to express
αs in terms of global creation and annihilation opera-
tors, labeled by quantum numbers n and `, that sat-
isfy [an,`, a

†
n′,`′ ] = δnn′δ``′ . (Such operators can even be

found in the interacting theory.)

αs =
∑
n,`

hs(n, `)an,` + g∗s (n, `)a†n,`.

Since [αs, α
†
s′ ] = δss′ ,

hs · h∗s′ − g∗s · gs′ = δss′ ,

where the dot-product is taken by summing over n, `:
hs · h∗s′ ≡

∑
hs(n, `)h

∗
s′(n, `).

Evaluating (7) for arbitrary hs, gs is a straightforward,
albeit tedious, exercise. We only outline the steps. First,

〈G〉 = exp
[ 4∑
p,q=1

(fp ·f∗q +fq ·f∗p )
mpmq

4
−R

2

]
+O

( 1

N

)
,

where f1 = (hA + gA); f2 = −i(hA − gA); f3 = hB +
gB ; f4 = −i(hB − gB); ζ±i = (ζi ± υi)/

√
2; m1 = t̃1 + ζ+

1 ,
m2 = −t̃2 + iζ−1 ; m3 = ỹ1 + ζ+

2 ; m4 = −ỹ2 + iζ−2 and

R =
(
m1ζ

+
1 + im2ζ

−
1 +m3ζ

+
2 + im4ζ

−
2

)
− ζ1υ1− ζ2υ2.

The O
(

1
N

)
corrections above arise because, in an inter-

acting theory, the vacuum is not exactly annihilated by
the global annihilation operators.

The remaining integrals in (7) over ~t and ~y are Gaus-
sian. They yield a function with a regular Fourier series
expansion in θA and θB whose zeroth order term is the
desired answer. The final expression for arbitrary hs, gs
is unenlightening; so we do not record it here.

Entangled modes in AdS

The discussion above applies to any quantum field the-
ory but we now turn to global AdS and make specific
choices of hs and gs to obtain simple answers for Bell
correlations.

The global AdS metric is

ds2 =
1

cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

d−1

)
. (8)

A minimally coupled massive scalar dual to an operator
of dimension ∆ can be expanded as

φ(t, ρ,Ω) =
∑
n

an,`e
−i(2n+`+∆)tY`(Ω)χn,`(ρ) + h.c.,

up to O
(

1
N

)
, where Y` are spherical harmonics. The

wave-functions χn,` are given in [5] but we will only need
their asymptotic forms. We set the normalization so that
[an,`, a

†
n′,`′ ] = δnn′δ``′ .

Now consider the (d− 1)-sphere in AdS at ρ = ρ0 and
t = 0. We will construct the operators Ai by smearing
the field slightly inside the contracting light shell from
this sphere, and Bi by smearing slightly outside the ex-
panding light shell.

To be precise, we consider a real-valued “turning
on/off” function T (U) that is largely constant in an in-
terval Ul ≤ U ≤ Uh, and vanishes smoothly at these end-
points. We take the limit where U0 → 0, log(Ul/U0) →
−∞, log(Uh/U0)→∞ but yet Uh � 1. These cutoffs are
introduced to make all integrals below convergent, and we
will denote any dependence on them by the symbol O (ε).

The cutoffs never scale with N and so O
(

1
N

)
� O (ε).

We define T̃ (ν), which is sharply centered around a
particular frequency, ω0, by

T (U)

(
U

U0

)iω0

=

∫
T̃ (ν)

(
U

U0

)iν
dν.

With some prescience, we also impose

lim
ν→0

1

ν
T̃ (ν) = 0; π

∫
|T̃ (ν)|2 dν

ν
= 1

With ρA(U) ≡ ρ0 − v0 − U/2 and tA(U) ≡ U/2 − v0,
and ρB(U) ≡ ρ0 + v0 +U/2; tB(U) ≡ v0 −U/2, where v0
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is an irrelevant small positive constant, we take

αs =

∫
dU

U
dd−1Ω

[
φ(ρs(U), ts(U),Ω)

× [tan ρs(U)]
d−1
2

(
U

U0

)iωs
T (U)

]
,

(9)

where ωA = ω0 and ωB = −ω0. In the limit of interest
the two modes are defined by integrals that have effec-
tively vanishing support in the global AdS geometry but
nevertheless (U/U0)iωs undergoes a large number of os-
cillations in this region.

The functions hs(n, `) and gs(n, `) vanish for ` 6= 0
(because of the Ω integral) and are effectively supported
only by large values of n. The AdS wave-function ef-
fectively remains constant in the integration region for
modes with O (1) values of n and the integrals defined
by (9) then vanish since T̃ (ν) vanishes for small ν.

For large n, the radial wave-functions simplify greatly.

χn,`(ρ) −→
n→∞

1√
πn

cot(ρ)
d−1
2 sin (ξ0 − ρ(∆ + `+ 2n)) .

where ξ0 = π
4 (d+1+2`+4n). Then, for n� 1, neglecting

O (ε)-terms,

hA(n, 0) =
e−iξ1

2
√
πn

∫
e
πν
2 (2U0n)−iνΓ(iν)T̃ (ν)dν;

g∗A(n, 0) =
eiξ1

2
√
πn

∫
e−

πν
2 (2U0n)−iνΓ(iν)T̃ (ν)dν;

hB(n, 0) =
e−iξ1

2
√
πn

∫
e
πν
2 (2U0n)iνΓ(−iν)T̃ ∗(ν)dν;

g∗B(n, 0) =
eiξ1

2
√
πn

∫
e
−πν

2 (2U0n)iνΓ(−iν)T̃ ∗(ν)dν,

where ξ1 = ξ0 + (∆ + 2n)ρ0 − (d+ 1)π2 .
To sum products of these functions over n, we recognize

that in the limit of interest,∑ 1

n
(U0n)it →

∫
d log(U0n)eit log(U0n) = 2πδ(t)+O (ε) .

Thus, for example, up to O (ε),

hA · h∗A =

∫
dν

πeπν

2ν sinh(πν)
|T̃ (ν)|2dν =

eπω0

2 sinh(πω0)
.

Proceeding as above, with x = e−πω0 ,

fp·f∗q+fq·f∗p =
2

1− x2


x2 + 1 0 2x 0

0 x2 + 1 0 −2x
2x 0 x2 + 1 0
0 −2x 0 x2 + 1


Substituting this into the integral (7), we obtain precisely
the answer (5). In particular, for x = 1/2

〈CAB〉 =
27
√

2

16
+ O

( 1

N

)
+ O (ε) .

A PARADOX IN GRAVITY

We now turn to the effect of gravity. We will construct
operators Ci by smearing the field on a region spatially
separated from the regions used for Ai and Bi.

Our construction relies on the fact that in a theory of
gravity (and only in a theory of gravity!), we can con-
struct a bulk operator, near the boundary of the space,
that projects onto the vacuum. The simplest way to de-
fine this operator is to expand the metric as

gµν = gAdS
µν + hµν ,

where gAdS
µν is given in (8) and choose Fefferman-Graham

gauge, hρµ = 0, near the boundary. In the quantum
theory, hµν is an operator that represents the quantized
metric fluctuation. We now consider

Hcan =
d

16πGN
lim
ρ→π

2

(cos ρ)2−d
∫
dd−1Ωhtt, (10)

where the integral is along t = 0. We pause to discuss
the significance of Hcan.

First, we note that the “extrapolate” dictionary [22]
in AdS/CFT [23–25] relates the boundary value of h to
the boundary stress-tensor. Assuming the validity of this
dictionary, Hcan reduces to the Hamiltonian of the the-
ory. Note that here we have subtracted off the constant
given in [26] so Hcan gives the excess energy of a state
above global AdS.

This identification of Hcan uses the extrapolate dictio-
nary as a relationship between the boundary values of
bulk operators and boundary operators, and not just as
a relationship between expectation values. The extrapo-
late dictionary can be checked in the interacting theory,
by checking that the boundary values of bulk multi-point
correlators (after rescaling with an appropriate power of
cos ρ) are boundary multi-point correlators [27]. Note
that this dictionary is also implicit if bulk operators are
written in the HKLL-form [28] since the boundary limit
of the bulk metric fluctuation written in the HKLL-form
is just the boundary stress tensor.

Second, the reader will note that Hcan is also the
Hamiltonian that one would obtain by canonically quan-
tizing the bulk theory [29]. The remarkable fact that
the quantum Hamiltonian is a boundary term in gravity
arises as follows. The set of physical states in quantum
gravity must be invariant under all diffeomorphisms that
vanish at the boundary, including those diffeomorphisms
that move bulk points in time. These constraints are ex-
pressed through the Wheeler-DeWitt (WDW) equation
[30] that states that the local bulk Hamiltonian density
vanishes on gauge-invariant states. Therefore, on the set
of all solutions to the WDW equation, which encompasses
the set of all gauge-invariant states, the Hamiltonian re-
duces purely to a boundary term. A clear exposition,
keeping all boundary terms from the start, is given in
[31].
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The quantum theory has ultraviolet divergences. But,
as long as these divergences can be regulated so as to
preserve diffeomorphism invariance, the canonical Hamil-
tonian will remain a boundary term when evaluated on
gauge-invariant states.

Now, the extrapolate dictionary may be corrected at

higher-orders in O
(

1
N

)
. Also, the WDW equation may

fail to have a nonperturbative generalization. So we will
not assume that Hcan coincides with the exact Hamilto-
nian of the full theory.

Instead, we will make the following weaker assump-
tion: Hcan is a positive operator and has a unique eigen-
state with eigenvalue zero whose overlap with the ground

state of the full theory is 1 − O
(

1
N

)
. This is now just

an assumption about the ground state of Hcan and not
about its behaviour for high-energy states. Note we are
in global AdS, where the vacuum is unique and the spec-
trum is gapped; this avoids any difficulties with infrared
modes.

We believe that the assumption above is robust. It can
be rephrased as the statement that in the full quantum
theory, no excitation can completely hide its effect in the
distant field. Therefore, if the integral of the asymptotic
metric fluctuations in (10) vanishes then one can reliably
conclude that the state coincides with empty global AdS

at least to leading order in O
(

1
N

)
.

Now consider

P (z) = e−zH
can

.

Although this operator seems very complicated, we can
treat it exactly in the limit where z becomes very large.
By the assumption above,

PΩ = lim
z→∞

P (z) = |Ω〉〈Ω|+ O
( 1

N

)
.

We pause again to discuss two properties of PΩ, which
also bring out its similarities to observables that are used
in common versions of the information paradox.

First, a correlator with an insertion of PΩ can be cal-
culated to arbitrary precision by combining correlators
with suitably many insertions of htt [5]. To see this, note
that instead of taking z → ∞ above, it suffices to take
z = O (log(N)) to ensure that P (z) annihilates the low-
est excited state in global AdS, which has energy O (1),

up to O
(

1
N

)
. For any finite value of z, P (z) can be

approximated by a polynomial, by expanding the expo-
nential in a power series and truncating the series at some
finite order. If we require that this polynomial approx-
imation work well within the span of states where the
eigenvalue of Hcan ≤ N then with z = O (log(N)), it is
easy to check that we must keep O (N log(N)) terms in
the series approximation.

This polynomial approximation is unwieldy and so we
will not use it in any actual computation. But it shows

that correlators of PΩ can be well-approximated by very
high-point correlators of graviton-fluctuations. For now,
we just note that in this sense, an observation involving
PΩ is similar to the observables of [1, 2] that involve high-
point correlators of Hawking radiation. We will return
below to a discussion of these similarities.

Second, one of the points made in [2] was that a suit-
ably powerful observer could operationally distil informa-
tion from Hawking radiation while remaining far away
from the black hole. We note that an observer with ac-
cess to multiple identically prepared systems and an ex-
ternal measuring apparatus can operationally “act” with
PΩ: such an observer simply has to measure Hcan near
the boundary and discard the results of experiments that
yield Hcan 6= 0.

To project onto the vacuum from afar is possible only
in gravity but the second step in our construction relies
on the fact that it is possible to “lift” the vacuum to any
excited state in any field theory as we now demonstrate.

Consider the (d + 2)-dimensional embedding space,
with metric diag(−1,−1, 1, . . . 1), where AdSd+1 is the

hyperboloid, ~X · ~X = −1. The global coordinates are

X0 = sec ρ sin τ ; X1 = sec ρ cos τ ; Xj+1 = tan ρΩj ,

where
∑d
j=1 Ω2

j = 1. Now consider a bulk causal wedge,
dual to a boundary causal diamond, spanned by coordi-
nates ρR, tR, u and a (d− 2)-sphere, Ω̃j [32]:

X1 = ρR coshu cosh γ + ρ̃Rcosh(tR) sinh γ;

Xd+1 = ρRcoshu sinh γ + ρ̃Rcosh γ cosh tR;

X0 = ρ̃R sinh(tR); Xj+1 = ρR sinhuΩ̃j ;

d−1∑
j=1

Ω̃2
j = 1,

with ρ̃2
R ≡ ρ2

R − 1. The metric, in these coordinates, is

ds2 = (1− ρ2
R)dt2R +

dρ2
R

ρ2
R − 1

+ ρ2
RdH

2
d−1,

where u and Ω̃j combine to form a unit hyperbolic space.
We set cosh γ > sec ρ0 so that the entire wedge is space-

like to the regions that support Ai and Bi. By integrat-
ing along tR = 0, we can extract the wedge-annihilation
operators

ηω,λ =

∫
(φ+

i

ω

dφ

dtR
)ψ∗ω,λ(ρR)L∗λ(H)

ρd−1
R dρR
ρ̃2
R

dd−1H,

where Lλ are eigenfunctions of the hyperbolic Laplacian
and the wave-functions ψω,λ are given in [33]. We can
find operators η̃ω,λ on the wedge’s complement so that,

up to O
(

1
N

)
, [ηω,λ, η̃ω′,λ′ ] = [η†ω,λ, η̃ω′,λ′ ] = 0, and

η̃ω,λ|Ω〉 = e−πωη†ω,λ|Ω〉; η̃†ω,λ|Ω〉 = eπωηω,λ|Ω〉. (11)

This follows from the Bisognano-Wichmann theorem [34]
and can be checked explicitly [35]. Moreover, XB ,ΠB are
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linear combinations of ηω,λ, η
†
ω,λ, η̃ω,λ, η̃

†
ω,λ. So, using (6)

and (11), we can find operators Qi comprising only ηω,λ
and η†ω,λ that satisfy

Qi|Ω〉 = Bi|Ω〉+ O
( 1

N

)
. (12)

FIG. 1. Support of the operators Ai (purple), Bi (yellow), Ci

(union of the asymptotic region (brown) supporting PΩ and
green region supporting Qi) in global AdS.

Define the Hermitian operators

Ci =
〈B2

i 〉
(
QiPΩ + PΩQ

†
i − 〈Bi〉PΩ

)
− 〈Bi〉QiPΩQ

†
i

〈B2
i 〉 − 〈Bi〉2

.

Since PΩ is localized in the asymptotic region and Qi
are localized in the wedge, Ci are localized in a region
spacelike to the regions containing Ai and Bi. The com-
bination above is chosen because, by (12), it satisfies

‖Ci‖2 = 〈B2
i 〉+O

( 1

N

)
≤ 1; 〈AjCi〉 = 〈AjBi〉+O

( 1

N

)
.

Therefore, for x = 1/2, 〈CAC〉 = 27
√

2
16 + O

(
1
N

)
+ O (ε).

But then,

〈CAB〉2 + 〈CAC〉2 =
729

64
+ O

( 1

N

)
+ O (ε) ≈ 11.4 > 8!

So we have violated the inequality (2) by an O (1) amount
by means of operators localized in distinct spatial regions.

CONCLUSION

The resolution to the paradox above is clear. Al-
though the operators Bi and the operators Ci are local-

ized on spacelike-separated regions, they are neverthe-
less secretly acting on the same degrees of freedom in the
vacuum. So there is no contradiction with the quantum-
information theorem (2), which assumes that operators
from different pairs act on distinct Hilbert spaces.

So this construction shows that, in gravity, if one
probes spacetime with fine-grained operators like PΩ

then the intuitive notion that spatially separated regions
contain distinct degrees of freedom may break down com-
pletely. This provides a proof of principle that for ques-
tions involving such complicated operators, even within
low-energy effective field theory, one must carefully take
into account that a localized operator in one region may
sometimes be equated to a combination of localized op-
erators from another region to avoid paradoxes.

We emphasize that this is a feature of quantum grav-
ity, and a similar construction is not possible in gauge
theories. In gauge-theories, the charge is a boundary-
term, just like gravity. However, the crucial difference
is that, unlike gravity, the projector onto states of zero
gauge-charge does not project onto a unique state. This
would cause an attempt to repeat the construction above
in gauge theories to fail.

From a technical perspective, the operators Qi are deli-
cately tuned to use the local-entanglement in the vacuum,
so that their action on the vacuum creates the same states
as the action of Bi on the vacuum. If the operator PΩ

had been a projector onto states of zero gauge-charge,
it would not have projected onto the vacuum, but in-
stead have projected onto a large subspace of the Hilbert
space. However the subspace comprising all states of zero
gauge-charge contains states with widely differing local-
entanglement structures. So the operators Ci, formed
by combining Qi and PΩ, would not have had a large
two-point function with Ai.

But the distinction between gravity and gauge theo-
ries is also clear from a physical point of view. Non-
gravitational gauge theories contain local operators that
are exactly gauge-invariant. So, in such a theory, an ob-
server in the middle of AdS can act with a localized uni-
tary that does not change the value of any observation
near the boundary and is entirely invisible to the bound-
ary observer. But this means that, in a non-gravitational
gauge theory, the observer near the boundary cannot
uniquely identify the bulk excitation.

To summarize, while in gauge theories, the Wilson lines
of operators can be used to construct non-zero commuta-
tors between operators localized in distinct regions, there
is no analogue of the phenomenon of complementarity,
which seems to be a feature unique to quantum gravity.

Since these nonlocal relations in gravity are important
in empty space, it is natural that they will also be impor-
tant during black hole evaporation. As we pointed out
above, the operators used in the construction of this toy
model are similar to the operators used in the monogamy
and cloning paradoxes.
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More specifically, the operators that distil information
relevant for the infalling observer from the old Hawk-
ing radiation — which are used in both the cloning and
monogamy paradoxes — can be written explicitly in the
form of the operators Ci. This is achieved by replacing
PΩ in the construction above with the projector onto the
black-hole microstate, and by replacing Qi from equation
(12) with the appropriate operators that act on the old
Hawking radiation like an operator near the horizon.

The projector onto a black-hole microstate cannot be
constructed easily using simple operators as was done for
PΩ. So, in the black-hole these operators are more com-
plicated than Ci, but they are also fundamentally similar
to Ci in that they can also be measured, in principle, by
examining very high-point correlators of localized light
operators in a thin shell far away from the black hole.

This strongly suggests that the monogamy and cloning
paradoxes can be resolved by recognizing that even if
these operators are localized far from the interior, they
might nevertheless extract quantum information from the
interior just as was done in the toy model above.

The toy-model also shows that, in contrast to what is
suggested by the firewall and fuzzball proposals, such a
violation of naive-locality does not necessarily imply a
breakdown of effective field theory behind the horizon.
This is because these violations of naive-locality also ap-
pears in empty space where effective field theory is clearly
valid. There is no inconsistency between the idea that
there are relations between complicated operators local-
ized in different regions, and the fact that the geometry
appears entirely smooth when probed with simple ob-
servables.

Indeed an important open problem is to precisely de-
lineate the situations in which nonlocal effects are im-
portant. As mentioned above, these effects are clearly
insignificant for questions that only reference correla-
tors with a small number of insertions. However, this
cannot be the entire story. For instance, the entangle-
ment wedge conjecture [36] would suggest that arbitrarily
complicated correlators measured inside an entanglement
wedge remain meaningfully localized in the wedge and do
not leak outside it. So it would be nice to devise a pre-
cise criterion that indicates when nonlocality in gravity
is important.

Acknowledgments I am grateful to Sudip Ghosh,
Monica Guica, Nima Lashkari, R. Loganayagam, Kyr-
iakos Papadodimas, Ben Toner, Eric Verlinde, Spenta
Wadia and all the members of the ICTS string group for
useful discussions. I am grateful to IMSc (Chennai) and
CERN (Geneva) for hospitality while this work was in
progress. This work was partially supported by a Swar-
najayanti fellowship of the Department of Science and
Technology (India).

[1] S. D. Mathur, Class. Quant. Grav. 26, 224001 (2009),
arXiv:0909.1038 [hep-th].

[2] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, JHEP
02, 062 (2013), arXiv:1207.3123 [hep-th].

[3] K. Papadodimas and S. Raju, JHEP 10, 212 (2013),
arXiv:1211.6767 [hep-th]; Phys. Rev. Lett. 112, 051301
(2014), arXiv:1310.6334 [hep-th]; Phys. Rev. D89,
086010 (2014), arXiv:1310.6335 [hep-th]; S. Ghosh
and S. Raju, Phys. Rev. Lett. 118, 131602 (2017),
arXiv:1611.08003 [hep-th]; Phys. Rev. D96, 066033
(2017), arXiv:1706.07424 [hep-th].

[4] G. ’t Hooft, Nucl.Phys. B256, 727 (1985); L. Susskind,
L. Thorlacius, and J. Uglum, Phys. Rev. D48, 3743
(1993), arXiv:hep-th/9306069 [hep-th]; Y. Kiem, H. L.
Verlinde, and E. P. Verlinde, Phys. Rev. D52, 7053
(1995), arXiv:hep-th/9502074 [hep-th].

[5] S. Banerjee, J.-W. Bryan, K. Papadodimas, and S. Raju,
JHEP 05, 004 (2016), arXiv:1603.02812 [hep-th].

[6] J. M. Maldacena, JHEP 0304, 021 (2003), arXiv:hep-
th/0106112.

[7] J. Barbon and E. Rabinovici, Fortsch.Phys. 52, 642
(2004), arXiv:hep-th/0403268.

[8] A. L. Fitzpatrick and J. Kaplan, JHEP 04, 072 (2017),
arXiv:1609.07153 [hep-th]; T. Anous, T. Hartman,
A. Rovai, and J. Sonner, JHEP 07, 123 (2016),
arXiv:1603.04856 [hep-th].

[9] P. Saad, S. H. Shenker, and D. Stanford, (2018),
arXiv:1806.06840 [hep-th].

[10] D. Marolf and J. Polchinski, JHEP 01, 008 (2016),
arXiv:1506.01337 [hep-th]; A. Almheiri, D. Marolf,
J. Polchinski, D. Stanford, and J. Sully, JHEP 09, 018
(2013), arXiv:1304.6483 [hep-th].

[11] K. Papadodimas and S. Raju, Phys. Rev. D93, 084049
(2016), arXiv:1503.08825 [hep-th]; Phys. Rev. Lett. 115,
211601 (2015), arXiv:1502.06692 [hep-th]; E. Verlinde
and H. Verlinde, (2013), arXiv:1311.1137 [hep-th]; D. L.
Jafferis, (2017), arXiv:1703.01519 [hep-th]; D. Beren-
stein and A. Miller, Phys. Rev. Lett. 118, 261601 (2017),
arXiv:1605.06166 [hep-th]; J. De Boer, S. F. Lokhande,
E. Verlinde, R. Van Breukelen, and K. Papadodimas,
(2018), arXiv:1804.10580 [hep-th].

[12] S. Ghosh and S. Raju, Phys. Rev. D98, 046005 (2018),
arXiv:1712.09365 [hep-th].

[13] D. Marolf, Phys.Rev. D79, 044010 (2009),
arXiv:0808.2842 [gr-qc].

[14] N. Anand, H. Chen, A. L. Fitzpatrick, J. Kaplan, and
D. Li, JHEP 02, 012 (2018), arXiv:1708.04246 [hep-th].

[15] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[16] B. S. Cirel’son, Letters in Mathematical Physics 4, 93
(1980).

[17] B. Toner and F. Verstraete, (2006), 0611001 [quant-ph].
[18] B. Toner, Proceedings of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sci-
ences 465, 59 (2009), arXiv:quant-ph/0601172; M. P.
Seevinck, Quantum information processing 9, 273 (2010),
arXiv:0908.1867 [quant-ph]; V. Scarani and N. Gisin,
Physical review letters 87, 117901 (2001), arXiv:quant-
ph/0101110.

[19] S. J. Summers and R. Werner, Journal of Mathematical
Physics 28, 2440 (1987); Physics Letters A 110, 257

http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://arxiv.org/abs/0909.1038
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://dx.doi.org/10.1007/JHEP10(2013)212
http://arxiv.org/abs/1211.6767
http://dx.doi.org/10.1103/PhysRevLett.112.051301
http://dx.doi.org/10.1103/PhysRevLett.112.051301
http://arxiv.org/abs/1310.6334
http://dx.doi.org/10.1103/PhysRevD.89.086010
http://dx.doi.org/10.1103/PhysRevD.89.086010
http://arxiv.org/abs/1310.6335
http://dx.doi.org/10.1103/PhysRevLett.118.131602
http://arxiv.org/abs/1611.08003
http://dx.doi.org/10.1103/PhysRevD.96.066033
http://dx.doi.org/10.1103/PhysRevD.96.066033
http://arxiv.org/abs/1706.07424
http://dx.doi.org/10.1016/0550-3213(85)90418-3
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/hep-th/9306069
http://dx.doi.org/10.1103/PhysRevD.52.7053
http://dx.doi.org/10.1103/PhysRevD.52.7053
http://arxiv.org/abs/hep-th/9502074
http://dx.doi.org/ 10.1007/JHEP05(2016)004
http://arxiv.org/abs/1603.02812
http://arxiv.org/abs/hep-th/0106112
http://arxiv.org/abs/hep-th/0106112
http://dx.doi.org/10.1002/prop.200410157
http://dx.doi.org/10.1002/prop.200410157
http://arxiv.org/abs/hep-th/0403268
http://dx.doi.org/10.1007/JHEP04(2017)072
http://arxiv.org/abs/1609.07153
http://dx.doi.org/ 10.1007/JHEP07(2016)123
http://arxiv.org/abs/1603.04856
http://arxiv.org/abs/1806.06840
http://dx.doi.org/10.1007/JHEP01(2016)008
http://arxiv.org/abs/1506.01337
http://dx.doi.org/ 10.1007/JHEP09(2013)018
http://dx.doi.org/ 10.1007/JHEP09(2013)018
http://arxiv.org/abs/1304.6483
http://dx.doi.org/10.1103/PhysRevD.93.084049
http://dx.doi.org/10.1103/PhysRevD.93.084049
http://arxiv.org/abs/1503.08825
http://dx.doi.org/10.1103/PhysRevLett.115.211601
http://dx.doi.org/10.1103/PhysRevLett.115.211601
http://arxiv.org/abs/1502.06692
http://arxiv.org/abs/1311.1137
http://arxiv.org/abs/1703.01519
http://dx.doi.org/10.1103/PhysRevLett.118.261601
http://arxiv.org/abs/1605.06166
http://arxiv.org/abs/1804.10580
http://dx.doi.org/10.1103/PhysRevD.98.046005
http://arxiv.org/abs/1712.09365
http://dx.doi.org/10.1103/PhysRevD.79.044010
http://arxiv.org/abs/0808.2842
http://dx.doi.org/ 10.1007/JHEP02(2018)012
http://arxiv.org/abs/1708.04246
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://arxiv.org/abs/0611001
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1098/rspa.2008.0149
http://dx.doi.org/10.1098/rspa.2008.0149
http://arxiv.org/abs/quant-ph/0601172
http://arxiv.org/abs/0908.1867
http://arxiv.org/abs/quant-ph/0101110
http://arxiv.org/abs/quant-ph/0101110


8

(1985).
[20] D. Campo and R. Parentani, Phys. Rev. D74, 025001

(2006), arXiv:astro-ph/0505376 [astro-ph].
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