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Abstract1

We deform two-dimensional quantum field theories by antisymmetric combina-2

tions of their conserved currents that generalize Smirnov and Zamolodchikov’s3

T T̄ deformation. We obtain that energy levels on a circle obey a transport4

equation analogous to the Burgers equation found in the T T̄ case. This equa-5

tion relates charges at any value of the deformation parameter to charges in the6

presence of constant background gauge fields. We determine the initial data7

and solve the transport equations for antisymmetric combinations of flavor8

symmetry currents and the stress tensor starting from conformal field theories.9

Among the theories we solve are conformal field theories deformed by JT̄ and10

T T̄ simultaneously. We check our answer against results from AdS/CFT.11
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1 Introduction46

Two-dimensional field theories are interesting theoretical laboratories for discovering new47

phenomena in quantum field theories. An exciting recent development indicates that in48

special situations we may control a theory flowing against the renormalization group flow:49

we can deform a theory by special irrelevant operators and flow towards the ultraviolet50

without encountering an infinite set of ambiguities that usually plague such attempts. On51

top of this, in some cases the resulting theory is solvable in the sense that its spectrum on52

S1 × R can be determined explicitly in terms of the spectrum of the undeformed theory.53

This has so far been achieved for the T T̄ and JT̄ deformed theories. In this paper, we54

extend these results to a large family of deformations. Below we briefly summarize what55

has been understood about these theories in the literature. These exciting findings provide56

ample motivation for this study.57

It was understood in [1] that the composite operator T T̄ is unambiguously defined in58

any translationally invariant field theory, because the collision limit of the point splitted59

operators is regular (up to derivatives). The derivation was extended in [2] to other60

operators, and deforming by such irrelevant operators was proposed. The spectrum of the61

theory was shown to obey the Burgers equation in [2, 3], see also [4] for the nonrelativistic62

case. The spectrum of the JT̄ deformed theory was obtained in [5], see also [6, 7].63

One can also arrive at the T T̄ deformed theories from the point of view of S-matrices.64

This was developed in [8–10] and a realization of it as a theory of quantum gravity was65

proposed in [11–13]. Other work analyzing the very interesting UV behavior of the theory66

depending on the sign of the coupling includes [14,15].67

The torus partition function of both the T T̄ and JT̄ obeys interesting differential68

equations, has nice modular properties, and is unique in the appropriate sense [12,16–19].69

Correlation functions were analyzed in [20–24].70

The first holographic interpretation of T T̄ as cutoff AdS3 geometry was proposed in [14],71

progress in this direction is reported in [22,25,26]. The holographic interpretation of JT̄72
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deformation was studied in [6, 27]. Higher dimensional generalizations in the holographic73

context were discussed in [28–31]. These ideas were applied to the dS/dS correspondence74

in [32]. A second holographic interpretation of a single trace version of T T̄ with a different75

sign for the coupling was proposed to describe AdS3 embedded in a linear dilaton background76

in [15]. Soon this approach was generalized to the single trace version of JT̄ in [5, 33].77

Work in this direction includes [21, 34–39]. The entanglement entropy of these holographic78

theories was analyzed in [40,41].79

Deformations of supersymmetric theories were discussed in [42, 43]. T T̄ deformed80

theories on S2 were analyzed in [30, 44]. Classical field theories deformed by T T̄ have81

interesting properties on their own, which were analyzed in [3, 45–48].82

Organization83

Since our arguments borrow results from a variety of sources, we perform a number of84

checks and make several comments in the process of solving the spectrum of the deformed85

theories. We include these at each key step in the paper. To arrive at the result fastest,86

the reader may wish to follow the argument narrowly and skip the checks and comments,87

and read Section 2 for the strategy of our approach, Section 3 except for Section 3.4 for88

the solution of the theory with background gauge fields, Section 4 for the universal flow89

equation describing a generic point in theory space, Section 6 except for Section 6.4 for the90

solution of the spectrum, and Section 7 for conclusions and future directions.91

The content of the rest of the paper is as follows. Section 3.4 includes our unsuccessful92

attempt to understand deformations by higher spin (KdV) currents, Section 5 contains two93

complementary checks of the universal equation, and Section 6.4 checks a special case of94

the spectrum from string theory. The Appendices contain details of our conventions, the95

worked out example of the compact free scalar, and comparison with the JT̄ literature.96

97

Note added: Results equivalent to those in Section 6.4 have been obtained independently98

using the same methods in ongoing work [49]. We thank the authors for comparing our99

formulas. A summary of that work appears in a coordinated submission to the arXiv [50].100

2 A strategy for solving T T̄ -like theories101

Let us take a 2d QFT on a cylinder, S1 × R, which is translationally invariant in both the102

spatial (S1) and the time (R) directions. Note that we do not require Lorentz symmetry.103

In [1, 2] it was shown that there exist composite operators built from conserved currents in104

any such QFT, whose expectation value factorizes in an energy eigenstate |n〉:105

〈n|εµνJ (1)
µ (y)J (2)

ν (y)|n〉 ≡ 〈n| lim
x→y

εµνJ (1)
µ (x)J (2)

ν (y)|n〉

= εµν〈n|J (1)
µ |n〉〈n|J (2)

ν |n〉 ,
(2.1)

where in the second line we deleted the arguments to emphasize that the one point functions106

in energy eigenstates do not depend on the position of the operator. There are two107

familiar examples of these composite operators: taking J (1)
z ≡ J and J (2)

z̄ ≡ J̄ in a CFT, the108

composite operator εµνJ (1)
µ J

(2)
ν is the exactly marginal operator JJ̄ , while taking J (1)

µ ≡ T1µ109

and J (2)
µ ≡ T2µ in any 2d QFT, the composite operator becomes what is known as T T̄ in110

the literature. (In our conventions, it is − 1
2π2T T̄ .)111
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The composite operator O ≡ εµνJ
(1)
µ J

(2)
ν hence defined can be used to define a one112

parameter family of theories,113

d

dλ
S(λ) =

∫
d2x Oλ(x) , (2.2)

where the notation Oλ(x) serves as a reminder that the conserved currents J (1,2)
µ building114

O change as λ is changed. Using factorization, it immediately follows that the energy115

spectrum of this family of theories obeys116

∂

∂λ
En = L εµν〈n|J (1)

µ |n〉〈n|J (2)
ν |n〉 , (2.3)

where we used the Hellmann-Feynman theorem ∂
∂λEn = 〈n| ∂∂λH|n〉. If we want to use117

this equation, we need to know the matrix elements 〈n|J (1,2)
µ |n〉. For the time component118

µ = 2, we have 〈n|J2|n〉 = Qn/L, where L is the length of the spatial S1 and Q is the119

charge corresponding to the conserved current. If Q is the charge of an internal symmetry,120

its value is quantized, and cannot depend on λ. This includes the case of the momentum121

along the spatial S1, for which Qn = iPn = 2πijn
L , where jn ∈ Z. For time-translations,122

Qn = −En. One can also consider a higher spin (KdV) charge Q of a 2d CFT or integrable123

model, in which case to get a closed set of equations we also need to write down a flow124

equation for ∂
∂λQ

(higher spin)
n . We treat one such case in a separate publication.125

For the spatial component µ = 1 giving 〈n|J1|n〉, we do not in general have a physical126

interpretation. The case of the T T̄ deformation of a relativistic field theory is an exception,127

where we know the value of all matrix elements:128

〈n|Ttt|n〉 = −En
L
, 〈n|Txx|n〉 = −∂LEn , 〈n|Txt|n〉 =

iPn
L

= 〈n|Ttx|n〉 , (2.4)

where the last equality follows from the fact that the stress tensor is symmetric. Plugging129

these into (2.3) we obtain the Burgers equation of [2]:130

∂

∂λ
En =

1

2

(
En∂LEn +

P 2
n

L

)
, (2.5)

where the overall factor on the RHS follows from our choice of normalization of the composite131

operator O, as discussed below (2.3).132

We propose to proceed in the more general case, where general considerations do not133

determine 〈n|J1|n〉, by coupling the current to an infinitesimal constant background field134

δaS(λ, a) ≡
∫
d2x iJ1(x) . (2.6)

With the introduction of a, (2.3) becomes:135

∂

∂λ
En =

1

L

(
Q(2)δa(1)En −Q(1)δa(2)En

)
. (2.7)

We do not want to introduce background fields for quantities that we know from other136

considerations, hence in such cases it is understood that δaEn should be replaced by the137

appropriate quantity in this equation, see e.g. (2.4).138

In order for (2.7) to be useful, we have to understand two things. First, to use it as139

an evolution equation, we need to understand the equation away from infinitesimal a(I).140

We refer to these deformations by the spatial component of a current as turning on a141

background gauge field, even when the current is part of the stress-tensor and the gauge142
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field is actually a vielbein. We work to all orders in a(I), not just first (linear) order. We will143

refer to the deformations by the quadratic composite operators O as bilinear deformations;144

again we work to all orders in λ. The deformations do not in general commute, namely145

the vector fields describing the flow in coupling space have a nonzero Lie bracket. We146

want to understand the flow in some coordinate system in coupling space (λ, a(I)) taking147

into account this noncommutativity. Second, if we want to solve the λ-evolution in this148

enlarged coupling space, we need to understand the theory not just at S(λ = 0), but at149

S(λ = 0, a(I)). This can be done if the theory at λ = a(I) = 0 is a CFT, because for150

holomorphic (antiholomorphic) currents, J1 = ∓iJ2. Besides all these challenges, we have to151

make sure that ambiguities (e.g., improvement transformations) do not ruin the universality152

of the result. In Figure 1 we give an illustration of our strategy.153

CFT
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Figure 1: Graphical representation of the strategy solving deformations of CFTs by bilinear
composite operators. Turning on the background gauge fields a, b determines the initial
value surface, drawn here as a bright orange plane. These are the directions corresponding
to deformations by spatial components of currents. The λ direction in coupling space
represents the deformation by the bilinear composite operator O. We erect a coordinate
system by first deforming by

∫
dx Oλ as in (2.2) and going λ distance. Subsequently we

turn on background gauge fields. Hence, deforming a generic point in coupling space by
δλ
∫
dx O (indicated by blue arrow) does not in general agree with δλ× ∂λH(λ, a, b).

In what follows, we present strong arguments that the outlined strategy works for a154

large family of irrelevant deformations of CFTs. We remark that [5] solved the JT̄ -deformed155

theory using a different method: the existence of a holomorphic current. We reproduce their156

results in our framework. We explain how to reconcile the two viewpoints in Appendix D.157
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3 Background gauge fields158

In what follows, we find it convenient to work in the Hamiltonian formalism on S1 × R159

with objects understood to be operators. The conservation equation of a current Jµ in our160

conventions is:161

0 = ∂xJx + [H,Jt] . (3.1)

Our conventions are collected in Appendix A.162

3.1 CFT deformed by stress tensor163

Using translational invariance, we know the diagonal matrix elements of the stress tensor164

(2.4), except for that of Ttx 6= Txt since we do not assume Lorentz invariance of the deformed165

theory. According to the general strategy, we introduce a constant background field b for166

this operator. We want to determine H(b) for finite b. Its evolution equation is167

∂

∂b
H(b) = −i

∫
dx Ttx(x) . (3.2)

Note that in Euclidean signature Ttx is antihermitian, hence the i in the above formula. We168

were not able to determine H(b) in closed form, if we only assume Lorentz symmetry for169

H(b = 0). If H(b = 0) describes a CFT, however, we obtain a solvable system of equations.170

Of course, we only have conformal symmetry at the starting point of the flow equation171

(3.2). Away from b = 0 the stress tensor will not be symmetric as can be seen from the172

explicit expressions we give below.173

Starting from a CFT we have T (0)
tt + T

(0)
xx = 0 (at zero deformation) in addition to174

T
(0)
tx = T

(0)
xt . Using the definition (3.2), we get ∂bTtt = iTtx. Because momentum is175

quantized and hence cannot depend on b, we have ∂bTxt = 0. Using the conservation176

equations ∂xTµx = −[H,Tµt], we work out Txt = T
(0)
xt , and177

Ttt = −Txx =
1

1− b2T
(0)
tt +

ib

1− b2T
(0)
xt ,

Ttx =
−2ib

(1− b2)2
T

(0)
tt +

1 + b2

(1− b2)2
T

(0)
xt ,

(3.3)

where we only had to use (A.4) that gives H, P in terms of the components of the178

stress tensor, and (A.5) that gives the spacetime translations they generate. Interestingly179

Ttt + Txx = 0 for all b. Integrating Ttt, Txt as in (A.4) we find:180

P = P (0), H =
H(0) + bP (0)

1− b2 . (3.4)

It will be helpful to rewrite the result for H as:181

H = −
(

1

1− bP
(0)
1 +

1

1 + b
P

(0)
−1

)
,

P
(0)
±1 ≡ −

H(0) ± P (0)

2
,

(3.5)

which we interpret to say that the initial value of the holomorphic and antiholomorphic182

charges contribute to H weighted by the factor 1
1∓b .183

6



SciPost Physics Submission

3.2 CFT deformed by currents and the stress tensor184

We consider a CFT with left- and right-moving U(1) symmetry currents Jµ and J̄µ. The185

case of a CFT deformed by only Jx is straightforward, so we move on to discussing a CFT186

deformed by Jx, J̄x, and Ttx. In familiar deformations of CFTs, we are used to losing one187

of the conserved currents. In contrast, a curious feature of the deformed theories that we188

consider is that the currents Jµ and J̄µ remain separately conserved.189

We will see that it is possible to keep the corresponding conserved charges unchanged190

under the deformation. An easy way to argue for this is to take an example where the191

charges generate a compact U(1)×U(1) symmetry: the spectrum of charges cannot depend192

on the deformation due to charge quantization. Such an example is provided by the compact193

scalar discussed in Appendix B. Since our methods do not depend on global aspects, we194

then expect that the spectrum of charges corresponding to internal symmetries does not195

change. We will check by explicit computation that this is indeed the case.196

We observe a major simplification during the derivation: turning on background gauge197

fields for different symmetries commutes (to all orders in the background fields a, ā, b). We198

derive this using explicit computation. An explanation for this is that all operators that199

feature in the derivation are neutral and hence commute with Q, Q̄. Thus adding them to200

the Hamiltonian does not change the conservation equation, and the currents Jµ, J̄µ remain201

unchanged under the a, ā deformation. Noncommutativity, however, will be an essential202

aspect of the physics of the coupling space flow once we include bilinear deformations in203

Section 4.204

We expect based on (3.5) that the conserved charges behave as:205

Q(a, ā, b) = Q(0) , Q̄(a, ā, b) = Q̄(0) , P (a, ā, b) = P (0) ,

H(a, ā, b) =
H(0) + bP (0)

1− b2 +
aQ(0)

1− b +
āQ̄(0)

1 + b
,

(3.6)

where we note that the internal symmetry charges Q(0), Q̄(0) are pure numbers (see Ap-206

pendix B for their allowed values for the example of the compact scalar), while P (0) ∈ 2π
L Z207

depends on L. It is only the second line that is an Ansatz, the first line follows from general208

principles.209

A little bit of thought leads to the following Ansatz for the currents that we will verify210

below:211

Ttt =
1

1− b2T
(0)
tt +

ib

1− b2T
(0)
xt −

1

1− baJ
(0)
t −

1

1 + b
āJ̄

(0)
t ,

Ttx = − 2ib

(1− b2)2
T

(0)
tt +

1 + b2

(1− b2)2
T

(0)
xt +

i

(1− b)2
aJ

(0)
t −

i

(1 + b)2
āJ̄

(0)
t ,

Jx = − i

1− bJ
(0)
t , J̄x =

i

1 + b
J̄

(0)
t .

(3.7)

The components Jt, J̄t, Txt cannot depend on the background fields because of the quanti-212

zation conditions (3.6), while we will not need Txx. The Ansatz clearly obeys213

∂bTtt = iTtx , ∂aTtt = −iJx , ∂āTtt = iJ̄x . (3.8)

Let us verify that the Ansatz indeed solves the problem. The current conservation214
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equation is215

∂xJx + [H,Jt] = − i

1− b∂xJ
(0)
t +

[
H(0) + bP (0)

1− b2 +
aQ(0)

1− b +
āQ̄(0)

1 + b
, J

(0)
t

]

= − i

1− b∂xJ
(0)
t +

(
1

1− b2
[
H(0), J

(0)
t

]
+

ib

1− b2∂xJ
(0)
t

)

=
1

1− b2
(
∂x(−iJ (0)

t ) +
[
H(0), J

(0)
t

])
= 0 ,

(3.9)

where in the first line we plugged in the Ansatz, in the second we used the fact that216

[Q(0), J
(0)
t ] = [Q̄(0), J

(0)
t ] = 0 and that [P,O] = i∂xO, and in the third we discovered the217

original conservation equation; recall that J (0)
x = −iJ (0)

t . Similarly, recycling the results218

of the previous section and using that [Q(0), J
(0)
t ] = [Q̄(0), J

(0)
t ] = 0, we learn that in the219

stress tensor conservation equation we can focus on the linear in a terms:220

(∂xTtx + [H,Ttt])
∣∣
linear in a

=
i

(1− b)2
a∂xJ

(0)
t +

[
aQ(0)

1− b ,
1

1− b2T
(0)
tt +

ib

1− b2T
(0)
xt

]
+

[
H(0) + bP (0)

1− b2 ,− 1

1− baJ
(0)
t

]

= ia

(
1

(1− b)2
∂xJ

(0)
t +

i

(1− b2)(1− b)
[
H(0), J

(0)
t

]
+

b

(1− b2)(1− b)∂xJ
(0)
t

)
= 0 ,

(3.10)

where in the second equality we used that [Q(0), T
(0)
µν ] = 0, and in the third that

[
H(0), J

(0)
t

]
=221

i∂xJ
(0)
t .222

3.3 Ambiguities223

There are ambiguities in the determination of currents from conservation laws. We could224

perform an improvement transformation on the currents, Jµ = J
(min)
µ + εµν∂

νχ with an225

arbitrary scalar function χ, which neither violates conservation nor changes the value of the226

conserved charge. We also note that an improvement only changes the bilinear composite227

operators O = εµνJ
(1)
µ J

(2)
µ by total derivatives, hence the theories deformed by O and228

O(min) are equivalent. Another ambiguity arises from mixing two conserved currents.1 In229

the absence of Lorentz invariance mixing Jµ and Tµν is allowed: an example that arises230

in the discussion of Appendix D is the redefinition Ĵµ ≡ Jµ − 2π2i` Tz̄µ. Finally, we could231

simply multiply the conserved current by an arbitrary constant α to get a new conserved232

current: Ĵµ ≡ αJµ.233

We have fixed all these ambiguities above by requiring that not just the charge Q,234

but also the time component of the current Jt remains unchanged. The only remaining235

ambiguity that arises is that the spatial component of currents can be shifted by multiples236

of the identity. The most general such transformations are:237

Ttt = T
(min)
tt + f1(b)a2 + 2f2(b)aā+ f3(b)ā2 ,

Jx = J (min)
x + 2i(f1(b)a+ f2(b)ā) , J̄x = J̄ (min)

x − 2i(f2(b)a+ f3(b)ā) ,

Ttx = T
(min)
tx − i

(
f ′1(b)a2 + 2f ′2(b)aā+ f ′3(b)ā2

)
,

Txx = T
(min)
tx + f4(b)a2 + 2f5(b)aā+ f6(b)ā2 ,

(3.11)

1In theories with a non-abelian symmetry group, the mixing ambiguity allows to change the U(1)
subgroup involved in our deformations. This ambiguity is fixed below together with all others.
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where O(min) refers to the expressions given in (3.7). These shifts satisfy dimensional238

constraints and the defining equations (3.8). We do not know of any algebraic way to fix239

these ambiguities. Using the Lagrangian formulation, however, we will fix these ambiguities240

in Section 4.3.241

3.4 An attempt to deform by KdV currents242

Encouraged by the success with turning on backgrounds for Ttx and Jx, we attempt to243

deform by the higher spin KdV currents. For concreteness, we take the simplest one,244

obeying the conservation equation245

∂̄T4 = ∂Θ2 , (3.12)

which in more convenient coordinates takes the form246

0 = ∂xJ
(3)
x + ∂tJ

(3)
t ,

J (3)
µ =

(
J (3)
x , J

(3)
t

)
= (−2πi(T4 −Θ2), 2π(T4 + Θ2)) .

(3.13)

We will use that ∂tJ
(3)
t = [H,J

(3)
t ] in the canonical formalism.247

The corresponding conserved charge is248

P3 =

∫
dx J

(3)
t (x) . (3.14)

We used the similarly defined conserved charges P±1 in (3.5). The KdV conserved charges249

are mutually commuting, [Ps, Pσ] = 0.250

We want to introduce a background field α that couples to J (3)
x , i.e.251

∂H(α)

∂α
= i

∫
dx J (3)

x . (3.15)

Specializing the argument of [2] to this case shows that all the Ps can be preserved under252

this deformation: First, it is more convenient to work in the path integral formalism and253

define254

Ps ≡
1

2π

∮

C
(dz Ts+1 + dz̄ Θs−1) , (3.16)

and then from [Ps, Pσ] = 0 it follows that255

[Ps, Tσ+1(z)] = ∂As,σ(z) , [Ps,Θσ−1(z)] = ∂̄As,σ(z) . (3.17)

Second, we assume that the theory at α has a conserved current J (3)
µ , and ask if we can256

adjust the current so that it remains conserved at α+ δα, and that its charge commutes257

with the Hamiltonian. We now work out how P3 changes under this deformation. We write:258

259

0 = δ[H,P3] = [δH, P3] + [H, δP3] ,

[H, δP3] = i

∫
dx [P3, J

(3)
x (x)] = −2πi

∫
dx ∂tA3,3(x) = [H,−2πi

∫
dx A3,3(x)] ,

(3.18)

where we used (3.13) and (3.17). From this we conclude that up to total derivatives260

δJ
(3)
t (x) = −2πiA3,3(x) . (3.19)
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With a bit more work, it is possible to determine how to adjust δJ (3)
x by local operators so261

that that the current remains conserved.262

Now we list some formulas valid at the CFT point. The KdV currents are well known,263

and A3,3 can be computed using the definition (3.17):264

T2 = T T4 = :T 2: , T6 = :T 3: +
c+ 2

12
:(∂T )2: , . . .

A3,3 = −4i :T 3: +
i(c+ 2)

2
:(∂T )2: +(tot. der.) = −4iT6 +

i5(c+ 2)

6
:(∂T )2: +(tot. der.) .

(3.20)

Using these formulas, for the family of theories defined by (3.15) to first order in α we get:265

H = H(0) + 2παP
(0)
3 +O(α2) ,

P3 = P
(0)
3 − 8πα

(
P

(0)
5 − 5(c+ 2)

24

∫
dx :(∂T (0))2:

)
+O(α2) ,

(3.21)

where the (0) superscript indicates CFT quantities. Since
∫
dx :(∂T (0))2: does not commute266

with P (0)
s , unlike in the previously considered cases, we cannot use the CFT eigenstates267

that simultaneously diagonalize P (0)
s as the eigenbasis for the deformed theories.2 This in268

itself does not constitute a no-go result, as in later sections we will be able to solve for269

the spectrum of Hamiltonians that do not commute with H(0). However, we were not able270

to understand how to extend (3.21) to all orders in α and how to obtain the spectrum of271

(3.21) efficiently. It would be very interesting to make progress on these fronts.272

4 Understanding the flow around a generic point273

We saw that deformations by spatial components of the current and stress-tensor commute.274

This is not true once we include the bilinear composite operators. Let us denote by275

H(λ, a, ā, b) the Hamiltonian density that we obtain by first doing bilinear deformations,276

and then turning on background gauge fields. See Figure 1 for a graphical representation.277

We want to determine ∂λH(λ, a, ā, b) and solve the resulting equation using the initial278

conditions determined in Section 3. The existence of such a universal equation valid for279

all theories is already nontrivial, but the equation itself will have even more structure.280

Schematically, we will find that for every bilinear operator (and their linear combinations)281

∂λH(λ, a, ā, b) = g1(b) · O1 + ag2(b) · O2 + āg3(b) · O3 + a2g4(b) · O4 + aāg5(b) · O5 + ā2g6(b) · O6 ,

(4.1)

where we lightened the notation by introducing gI(b) ·OI =
∑

i gIi(b)OIi. This extra sum is282

necessary, since there are different operators OIi multiplying a given power of a and ā, with283

different b dependent coefficients. A remarkable property is that the RHS does not depend284

on λ explicitly. Since [λ] ≤ 0 (the exact value depends on what operator we are deforming285

by) and [a, ā] = 1, [b] = 0, positive powers of λ would multiply high dimension operators (or286

high powers of a, ā) on the RHS. The absence of λ severely restricts the structure of the RHS:287

we cannot have too high powers of a, ā on dimensional grounds, and in practice a, ā only288

features quadratically. We note that there is another dimensionful quantity in the problem,289

2We emphasize that [H,P3] = 0 to all orders in α, they just do not commute with P (0)
s . To see that

[H,P3] = 0 to O(α2) in (3.21), the only nontrivial step involves realizing that
[
H0,

∫
dx :(∂T (0))2:

]
= 0,

which is true because :(∂T (0))2: is holomorphic.

10



SciPost Physics Submission

the length of the spatial S1, [L] = −1. Since we are (at least formally) working in local290

field theory, it cannot appear in (4.1). In order for (4.1) to be unambiguous, we need the291

operators OIi to be either Jµ, J̄µ, Tµν or one of the factorizing bilinear composite operators292

built from them, as generic composite operators have arbitrariness in their definitions. The293

OIi we find are indeed such special operators.294

If there exists a universal equation for deformations by higher spin KdV currents similar295

to (4.1), we expect that it would involve an infinite number of terms on the RHS. This296

has simple dimensional reasons. The background fields coupling to the spin-s higher spin297

currents have dimension [αs] = 2− s, and hence for s > 2 it is an irrelevant coupling. We298

expect that arbitrary high powers of it would appear on the RHS with very irrelevant299

factorizing composite operators built from the KdV currents multiplying them. It would be300

interesting to understand if a universal equation exists at all, and whether our expectations301

about it are realized.302

Once we have the operator equation (4.1), we can take the diagonal matrix element in303

the eigenstate |n〉, use the Hellmann-Feynman theorem on the LHS as in (2.3), factorization304

on the RHS for composite operators, and compute the matrix elements according to what305

was explained in Section 2. This then leads to a flow equation for the energy eigenvalues in306

the enlarged coupling space.307

We are not able to derive (4.1) in a systematic manner. We will find the equation for308

deformations starting from the classical free scalar theory nonperturbatively in Section 4.1.309

We then check the validity of the equation in a more general classical field theory in310

Section 5.1, and in the quantum theory at low orders in perturbation theory in Section 5.2.311

We solve the equations in Section 6.1. The solution reproduces the energy spectrum of312

the T T̄ and JT̄ deformed theories obtained previously in the literature as special cases.313

We also compute the spectrum of a certain string theory in Section 6.4, which was argued314

in [5] to be dual to a theory that is closely related to a CFT deformed by T T̄ , JT̄ , J̄T315

simultaneously; the results are again in perfect agreement.316

4.1 Flow equation for the classical free scalar317

It is clear that if a universal operator equation like (4.1) exists, then it must hold for classical318

field theories. Conversely, we can use classical field theory to conjecture the equation (4.1),319

and then test it in the quantum theory. There also exists a way to read off the energy levels320

from the knowledge of the classical Hamiltonian, assuming that a universal expression for321

these also exists, see Appendix C.322

To keep the discussion simple, we will study the case of the JT̄ deformation of the free323

massless scalar first. To reiterate, we want determine the Hamiltonian density H(λ, a, b) by324

first deforming by λJT̄ , and then by aJx and by bTtx. This implies that ∂λH(λ, a, b) is not325

just JT̄ . As we will see it is instead a linear combination of various deformations, see also326

Figure 1. For our conventions for the free scalar see Appendix B, this helps explain some327

signs that appear below.328

Now take H = h(∂xφ,Π). We enforce the quantization of charges and momentum329

by requiring that the t components of the corresponding currents do not depend on the330
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couplings λ, a, b and we obtain their x components from conservation:331

Jt = −1

2
(∂xφ− 4πΠ) , Jx = 2πi

(
∂h

∂(∂xφ)
− 1

4π

∂h

∂Π

)
,

J̄t = −1

2
(∂xφ+ 4πΠ) , J̄x = −2πi

(
∂h

∂(∂xφ)
+

1

4π

∂h

∂Π

)
,

Ttt = −h , Ttx = −i ∂h
∂Π

∂h

∂(∂xφ)
,

Txt = −iΠ∂xφ , Txx = Π
∂h

∂Π
+ ∂xφ

∂h

∂(∂xφ)
− h .

(4.2)

It is easy to check that the currents are conserved using Hamilton’s equations (B.6), and332

they reduce to their free scalar counterparts listed in Appendix B.333

Deforming H by Jx or J̄x amounts to shifting ∂xφ and Π. In particular, H(a) =334

h(∂xφ− 2πa,Π + a/2) obeys335

∂H(a)

∂a
= iJx(a) , (4.3)

where Jx(a) is the spatial component of the current in the presence of the background336

gauge field a. The deformation of H by ibTtx cannot be written in a closed form in general,337

H(b) = h− b ∂h

∂(∂xφ)

∂h

∂Π
+O(b2) , so that

∂H(b)

∂b
= −iTtx(b) . (4.4)

After this preparation, consider any deformation with the background fields a, b set to338

zero:339

∂λH(λ) = S

(
H, ∂H

∂(∂xφ)
,
∂H
∂Π

, ∂xφ,Π

)
(4.5)

for some S that is a function of its five argument. Note that all the components of the340

currents in (4.2) are of this form, hence the deformations (background gauge fields and341

bilinear deformations) of interest in this paper are a special case of S. Let H(λ, a, b) be342

obtained by turning on background fields a and b after deforming by λ. Below, in (4.14),343

we give an explicit formula for ∂λH(λ, a, b) in terms of S, which is the main result of this344

section.345

Let us define346

S̃(a, b, ∂xφ,Π) ≡ S
(
H(λ, a, b),

∂H(λ, a, b)

∂(∂xφ)
,
∂H(λ, a, b)

∂Π
, ∂xφ,Π

)
, (4.6)

i.e. S̃ is the same function as S, but regarded as having the arguments (a, b, ∂xφ,Π). As a347

first step towards obtaining ∂λH(λ, a, b), let us set b = 0. Then from what we said around348

(4.3) it follows that349

∂λH(λ, a, 0, ∂xφ,Π) = S̃(0, 0, ∂xφ− 2πa,Π + a/2) . (4.7)

As discussed around (4.4), obtaining such a closed form formula for b 6= 0 does not seem350

possible, but perturbation theory should be straightforward. Taking this as a hint, we351

expand the RHS of (4.7) in a:3352

S̃(0, 0, ∂xφ− 2πa,Π + a/2) =
∑

m≥0

am

m!
Dm

1 S̃(a, 0, ∂xφ,Π) , (4.8)

3The point is to express ∂λH in terms of the currents and their bilinears at the same value of a instead
of a = 0.
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where the differential operator D1 is defined by:353

D1 = −2π

(
∂

∂(∂xφ)
− 1

4π

∂

∂Π

)
− ∂a . (4.9)

The infinite series is easily seen to implement a translation (−a, 0, 2πa,−a/2) on the354

arguments of S̃, proving (4.8). Another nice way to see that the infinite series is equal to355

∂λH(λ, a, 0), is to prove that they satisfy the same differential equation (regarded as an356

evolution equation with a as time) with the same initial condition:357

D1∂λH(λ, a, 0, ∂xφ,Π) = ∂λ (D1H(λ, a, 0, ∂xφ,Π)) = 0 ,

D1

∑

m≥0

am

m!
Dm

1 S̃(a, 0, ∂xφ,Π) =


−

∑

m≥1

am−1

(m− 1)!
Dm

1 +
∑

m≥0

am

m!
Dm+1

1


 S̃(a, 0, ∂xφ,Π) = 0 ,

∂λH(λ, 0, 0, ∂xφ,Π) = S̃(0, 0, ∂xφ,Π) ,

(4.10)

where in the first line we used that [D1, ∂λ] = 0 (because partial derivatives commute) and358

(4.3) together with the expression of Jx given in (4.2), while in the second line we relabeled359

the summation index to show that the two terms cancel. The third line is true by the360

definition of the λ deformation (4.5).361

The latter method generalizes to the b 6= 0 case. We want to find a differential operator362

D2 = −∂b + . . . that annihilates ∂λH. The unique D2 satisfying this regardless of ∂λH is:363

D2 = −
(
∂H(λ, a, b, ∂xφ,Π)

∂(∂xφ)

∂

∂Π
+
∂H(λ, a, b, ∂xφ,Π)

∂Π

∂

∂(∂xφ)

)
− ∂b . (4.11)

To show that D2∂λH = 0 we have to do some computations, as unlike in (4.10), [D2, ∂λ] 6= 0364

and D2H 6= 0. We write365

D2∂λH = −
(
∂b∂λH+

∂H
∂(∂xφ)

∂ (∂λH)

∂Π
+
∂H
∂Π

∂ (∂λH)

∂(∂xφ)

)

= −∂λ
(
∂bH+

∂H
∂(∂xφ)

∂H
∂Π

)
= 0 ,

(4.12)

where in the first line we wrote out the definitions, and in the second we commuted partial366

derivatives, and used that H satisfies the differential equation displayed in (4.4). Then we367

follow the same logic as in (4.10). The proof of368

D2

∑

n≥0

bn

n!
Dn

2 S̃(0, b, ∂xφ,Π) = 0 (4.13)

follows that in (4.10) verbatim. Thus the series and ∂λH satisfy the same evolution equation369

in b (regarded as time), with the same initial conditions, given in the last line of (4.10).370

It is easy to show that [D1, D2] = 0, hence we can combine the two evolutions without371

encountering any issues, and we arrive at372

∂λH(λ, a, b, ∂xφ,Π) =
∑

m,n≥0

1

m!n!
ambnDm

1 D
n
2 S̃(a, b, ∂xφ,Π) . (4.14)

This is our key result, we will see that the infinite sum truncates in the cases of interest,373

and the resulting equation will allow us to write down an evolution equation for the energy374

levels.375
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To be able to deform by operators built from J̄ , we introduce a background field ā that376

couples to it. As defined in (3.8), the analogue of (4.3) is ∂H
∂ā = −iJ̄x. The corresponding377

unique differential operator that annihilates ∂λH(λ, a, ā, b) is given by:378

D̄1 = −2π

(
∂

∂(∂xφ)
+

1

4π

∂

∂Π

)
− ∂ā . (4.15)

D̄1 commutes with D1, D2.379

Because we intend to build the deforming operator S from Tµν , Jµ, J̄µ, it is a useful380

intermediate step to compute the action of the differential operators on these quantities.381

Remarkably, this results in components of conserved currents. We collect the results in382

Table 1.

Jt Jx J̄t J̄x Ttt Ttx Txt Txx

D1 2π 0 0 0 0 0 iJt iJx

D̄1 0 0 2π 0 0 0 −iJ̄t −iJ̄x
D2 iJx 0 iJ̄x 0 iTtx 0 −i(Ttt − Txx) −iTtx

Table 1: Action of the differential operators D1, D̄1, D2 on the operators Jµ, J̄µ, Tµν .

383

As promised, we go through the JT̄ deformation in detail, and to shorten the discussion,384

we set ā = 0. We will later write down the result including ā 6= 0 terms and also for the385

rest of the bilinear deformations. By the JT̄ deformation, we mean that we add to the386

Hamiltonian387

SJT̄ = 2πiJ[t|Tz̄|x]

=
πi

2
(JtTxx + iJtTtx − JxTxt − iJxTtt) ,

(4.16)

where the normalization is chosen so that we get SJT̄ = JT̄ in a CFT; our conventions are388

summarized in Appendix A. We then compute all the non-vanishing derivatives (omitting389

D̄1):390

D1SJT̄ = 2π2iTz̄x D2SJT̄ = πJ[t|Tt|x]

D2
1SJT̄ = −π2Jx D1D2SJT̄ = π2Ttx .

(4.17)

All other derivatives vanish. Using these formulas we conclude that391

∂λH(λ, a, b) = 2πiJ[t|Tz̄|x] + πbJ[t|Tt|x] −
π2a2

2
Jx + 2π2iaTz̄x + π2abTtx . (4.18)

This universal equation holds for any Hamiltonian density in the class we considered. The392

term πbJ[t|Tt|x] is a linear combination of JzT̄ + Jz̄Θ̄ and JzΘ + Jz̄T deformations. In a393

CFT the second deformation vanishes.394

Now we are ready to systematize the derivation for all bilinear deformations that we395

can construct. The bilinear composite operators that obey factorization are396

“JJ̄” ≡ −iJ[tJ̄x]

“JT̄” ≡ 2πiJ[t|Tz̄|x]

“JΘ” ≡ −2πiJ[t|Tz|x]

“J̄T” ≡ −2πiJ̄[t|Tz|x]

“J̄Θ̄” ≡ 2πiJ̄[t|Tz̄|x]

“T T̄” ≡ −2π2Tt[t|Tx|x] .

(4.19)
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Instead of writing six long equations, we give ∂
∂λO
H(λ, a, ā, b) with the deforming composite397

operator being O in Table 2. As promised, the equation is of the form (4.1).

O
+

JJ̄ JT̄ JΘ J̄T J̄Θ̄ T T̄ Jt Jx J̄t J̄x Ttt Ttx Txt Txx

JJ̄ 1 0 0 0 0 0 0 iπā 0 −iπa 0 0 0 0

JT̄ iπā 1− b
2 − b

2 0 0 0 0 −π2

2

(
a2 + ā2

)
0 π2aā 0 −π2a(1− b) 0 iπ2a

JΘ −iπā b
2 1 + b

2 0 0 0 0 π2

2

(
a2 + ā2

)
0 −π2aā 0 −π2a(1 + b) 0 −iπ2a

J̄T −iπa 0 0 1 + b
2

b
2 0 0 π2aā 0 −π2

2

(
a2 + ā2

)
0 −π2ā(1 + b) 0 −iπ2ā

J̄Θ̄ iπa 0 0 − b
2 1− b

2 0 0 −π2aā 0 π2

2

(
a2 + ā2

)
0 −π2ā(1− b) 0 iπ2ā

T T̄ 0 −iπa −iπa iπā iπā 1 0 0 0 0 0 iπ3
(
a2 − ā2

)
0 0

Table 2: The equation for ∂
∂λO
H(λ, a, ā, b) can be read out from this table as follows. The

deforming operator S = O labels the rows. We have to add up the operators in the top row
with coefficients in the row labelled by O. For comparison, the JT̄ example for ā = 0 is
given in (4.18) in more conventional form.

398

We postpone solving these equations. Instead, we convert them now into equations399

describing the evolution of the spectrum. In Appendix C we then explain how to recover400

the classical Hamiltonian (and Lagrangian) from the solution of the spectrum.401

4.2 Flow equation for the spectrum402

The flow equations for the Hamiltonian density, (4.18) and Table 2, can now be turned into403

a flow equation for the energy eigenvalues following the strategy outlined in Section 2: for404

a given eigenstate |n〉, we take the diagonal matrix element of the (conjectured) operator405

equation, for the composite operators use factorization, and replace the matrix elements406

that we encounter with:407

〈n| ∂
∂λO
H(λ, a, ā, b)|n〉 =

∂

∂λO
En(λ, a, ā, b) ,

〈n|Jt|n〉 =
Qn
L
, 〈n|Jx|n〉 = − i∂aEn

L
, 〈n|J̄t|n〉 =

Q̄n
L
, 〈n|J̄x|n〉 =

i∂āEn
L

〈n|Ttt|n〉 = −En
L
, 〈n|Ttx|n〉 =

i∂bEn
L

, 〈n|Txt|n〉 =
iPn
L

, 〈n|Txx|n〉 = −∂LEn .
(4.20)

For the time component of currents, Jt, J̄t, Ttt, Txt the above equations follow from the408

definition of charge given in (A.4) and (A.10). We coupled the spatial components of409

the currents to background fields, see (4.3) and (4.4), thereby modifying the Hamiltonian,410

and we use the Hellmann-Feynman theorem 〈n|∂λH|n〉 = ∂λEn to determine their matrix411

elements. The same logic is used to determine the first line of (4.20). The matrix element of412

Txx is curious, we obtain −∂LEn from its interpretation as pressure. From our perspective,413

the length of the spatial S1 can be regarded as a background field on the same footing as414

a, ā, b, and from this point of view it becomes natural that its diagonal matrix element is415

obtained by taking a ∂L derivative.416

Executing this straightforward, but tedious task, we arrive at the differential equation417

describing the flow of energy eigenvalues. We again put the equations in a table, see Table 3.418
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For ease of reading, we write out the equation for the JT̄ deformation explicitly:419

0 =
2L

iπ

∂

∂λJT̄
En +

(
−ā ˆ̄Qn − π(a2 − ā2)L− (1− b)En + Pn

)
∂aEn

− āQ̂n∂āEn + (1− b)Q̂n∂bEn + LQ̂n∂LEn ,

Q̂ ≡ Q+ 2πaL , ˆ̄Q ≡ Q̄+ 2πāL .

(4.21)

O
+

∂
∂λO

En ∂aEn ∂āEn ∂bEn ∂LEn

JJ̄ 2L − ˆ̄Qn −Q̂n 0 0

JT̄ 2L
iπ

−ā ˆ̄Qn − π(a2 − ā2)L

−(1− b)En + Pn −āQ̂n (1− b)Q̂n LQ̂n

JΘ 2L
iπ

ā ˆ̄Qn + π(a2 − ā2)L

−(1 + b)En − Pn āQ̂n (1 + b)Q̂n −LQ̂n

J̄T −2L
iπ −a ˆ̄Qn

−aQ̂n + π(a2 − ā2)L

−(1 + b)En − Pn −(1 + b) ˆ̄Qn L ˆ̄Qn

J̄Θ̄ −2L
iπ a ˆ̄Qn

aQ̂n − π(a2 − ā2)L

−(1− b)En + Pn −(1− b) ˆ̄Qn −L ˆ̄Qn

T T̄ − L
π2 aEn āEn

−aQ̂n + ā ˆ̄Qn
π(a2 − ā2)L− Pn −EnL

Table 3: The flow equation for the energy eigenvalue can be read out from the this table as
follows. The deforming operator S = O labels the rows. We have to add up the terms in
the top row with coefficients in the row labelled by O and equate it to zero. For reference,
the second line is given in conventional form in (4.21), where we also define Q̂, ˆ̄Q.

420

The main power of our method comes from its ability to solve theories where we consider421

a linear combination of irrelevant deformations. Recall that, as reviewed in Section 2,422

the case of T T̄ deformation of a relativistic QFT can be solved without introducing the423

background fields a, ā, b [2, 3], while the JT̄ (or equivalently the J̄T ) deformation can be424

solved using holomorphy [5]. However, the combination of T T̄ and JT̄ leads to the loss of425

both Lorentz invariance and holomorphy, and the aforementioned methods do not apply.426

Let us introduce a length scale ` with [`] = −1 and real dimensionless couplings gO:427

λJT̄ ≡ igJT̄ ` , λJΘ ≡ igJΘ` , λJ̄T ≡ −igJ̄T ` , λJ̄Θ̄ ≡ −igJ̄Θ̄` ,

λT T̄ ≡ gT T̄ `2 .
(4.22)

By changing `, we obtain a one-parameter family of theories. Note that because JJ̄ is a428

marginal operator it is not included among the deforming operators. The energy levels429

evolve according to the equation:430

L
∂

∂`
En =

πgJT̄
2

II +
πgJΘ

2
III +

πgJ̄T
2

IV +
πgJ̄Θ̄

2
V + 2π2` gT T̄VI , (4.23)

where the Roman numerals stand for one row of Table 3 (omitting the ∂
∂λO

En entry). We431

note that a similar equation can also be obtained at the level of the operator equations432

included in Table 2. We will solve (4.23) in Section 6.1 with the initial conditions determined433

in Section 3.434
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4.3 Fixing ambiguities in the initial conditions435

In Section 3.3, we discussed some ambiguities in the initial conditions. These ambiguities436

are fixed by the form of the conserved currents that we gave in (4.2). Conversely, the437

x components of currents in (4.2) could be shifted in the same way as in (3.11) while438

preserving conservation. Since we have the additional scale ` with [`] = −1 in the problem,439

the ambiguities could be made even more severe than those in the initial conditions. We440

have to invoke additional principles to fix them.441

Let us start with Txx, from which we want to require 〈n|Txx|n〉 = −∂LEn, see (4.20).442

The Noether stress tensor given in (4.2) achieves this. Since we have not written down443

T
(min)
xx there, we omit the details and just state that there indeed exists a shift involving444

the background fields that makes the expression of Txx in (4.20) match with T (min)
xx .445

Coupling a scalar theory to a constant background gauge field Aµ = (a, 0) in the446

Hamiltonian formalism amounts to the shift H(a) = h(∂xφ − 2πa,Π + a/2). This was447

already used above, see (4.3). Gauge invariance forbids the addition of AµAµ terms. At448

λO = ` = 0, we determined the Hamiltonian in Appendix B, in (B.10). Comparing this to449

the algebraic result T (min)
tt , we require the shift:450

Ttt = T
(min)
tt − πa2

1− b −
πā2

1 + b
, (4.24)

and the shifts of of J (min)
x , J̄

(min)
x , T

(min)
tx follow from these shifts according to (3.11). We451

have checked that these shifts are exactly the ones needed to reproduce the currents given452

in (4.2). Integrating (4.24) according to the rule (A.4), we get453

H(a, ā, b) =
H(0) + bP (0)

1− b2 +
aQ(0) + πa2L

1− b +
āQ̄(0) + πā2L

1 + b
, (4.25)

where we used (3.6).454

After settling the ambiguities, we are ready to give the initial conditions for the energy455

flow equations. Because the operators in (4.25) commute, we can easily convert it to an456

expression for the energy eigenvalues:457

En = 〈n|H(a, ā, b)|n〉 =
E

(0)
n + bPn
1− b2 +

aQn + πa2L

1− b +
āQ̄n + πā2L

1 + b
. (4.26)

We will use this as initial data for the flow equation (4.23) in Section 6.1.458

We remark that the algebraic approach does not break down without the additional459

requirements discussed in this section. E.g. we could define Jx = 2πi
(

∂H
∂(∂xφ) − 1

4π
∂H
∂Π

)
+460

2iag1(b), which would in turn lead to the modification of entries in Tables 1, 2, 3, and461

ultimately lead to a different (and uglier) (4.23). The solution would also change, but462

setting the background fields to zero must give an identical result for the energy spectrum463

of the theory deformed by bilinear composite operators.464

5 Checks465

5.1 A classical field theory check466

In the previous section we conjectured a set of universal equations, (4.18) and Table 2,467

governing the evolution of the Hamiltonian under irrelevant deformations based on the468

classical free scalar with shift symmetry. In this section, we check a restriction of these469
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equations to the case of one conserved U(1) current which can generate a symmetry other470

than shifts, and a much more general classical scalar theory.471

Consider a collection of scalars φI and momenta ΠI and Hamiltonian density H =472

h(φI , ∂xφI ,Π
I), for example scalars with a potential or a sigma model. We sum over473

repeated I, J, . . . indices. The Hamilton equations of motion are:474

∂tφI = −i ∂H
∂ΠI

, ∂tΠ
I = i

(
∂H
∂φI
− ∂x

∂H
∂(∂xφI)

)
. (5.1)

For our sign conventions refer to (B.6). The theory is translation invariant and in complete475

analogy to (4.2) the components of the conserved stress tensor are:476

Ttt = −H , Ttx = −i ∂H
∂ΠI

∂H
∂(∂xφI)

,

Txt = −iΠI∂xφI , Txx =
∂H

∂(∂xφI)
∂xφI +

∂H
∂ΠI

ΠI −H .
(5.2)

If the Hamiltonian is invariant under some continuous symmetry group acting like δφI =477

ΛI(φ) and δΠI = −ΠJ ∂ΛJ
∂φI

, it has a conserved current478

Kt = ΠIΛI , Kx = i
∂H

∂(∂xφI)
ΛI . (5.3)

For the familiar case of the O(2) symmetric scalar field, we have ΛI = εIJφJ . For the shift479

symmetry we discussed in Section 4.1, Λ = 4π and the current K of (5.3) corresponds to480

the difference of holomorphic and antiholomorphic currents Kµ = Jµ − J̄µ, hence we chose481

a different name for it.482

We want to understand deformations by coupling to the background fields a and b483

according to the rules ∂H
∂a = iKx,

∂H
∂b = −iTtx. Following the strategy of Section 4.1 to484

write down a flow equation for H(λ, a, b), we want to find commuting differential operators485

D1, D2 that act on functions of variables (a, b, φI , ∂xφI ,Π
I) and that annihilate ∂λH. This486

is possible, and their expressions are:487

D1 = −ΛI
∂

∂(∂xφI)
− ∂a ,

D2 = −
(

∂H
∂(∂xφI)

∂

∂ΠI
+
∂H
∂ΠI

∂

∂(∂xφI)

)
− ∂b .

(5.4)

It is now straightforward to compute the results in Table 4. Note that in the case of the488

scalar with shift symmetry investigated in Section 4.1, ā = a and D1 = D1 + D̄1. The489

results in this table are in complete agreement with those in Table 1, if we remember that490

Kµ = Jµ − J̄µ and D1 = D1 + D̄1.

Kt Kx Ttt Ttx Txt Txx

D1 0 0 0 0 iKt iKx

D2 iKx 0 iTtx 0 −i(Ttt − Txx) −iTtx

Table 4: Action of the differential operators D1, D2 on the operators Kµ, Tµν .

491

Since everything in Section 4.1 followed from the results of Table 1, and we recovered492

those results in this more general setting, we reach the same conclusions as in the rest of493
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that section. We conclude that we found additional evidence for the universality of the494

equations collected in Table 2.495

To be explicit we summarize how to read off the results appropriate for the case at496

hand. Besides T T̄ , we can only consider the deformation by497

O1 ≡ 2πiK[t|Tz̄|x]
(free scalar)

= JT̄ − J̄Θ̄ ,

O2 ≡ 2πiK[t|Tz|x]
(free scalar)

= J̄T − JΘ .
(5.5)

Then using also that ā = a, Table 2 collapses to Table 5. We obtained the latter table both498

from Table 2 using the rules explained and also by direct computation. Notably, only the499

bilinear composite operators make an appearance, and the linear operators are absent.

O
+
O1 O2 T T̄

O1 1− b
2 − b

2 0

O2
b
2 1 + b

2 0

T T̄ −iπa −iπa 1

Table 5: The equation for ∂
∂λO
H(λ, a, b) can be read off from the table in exactly the same

way as from Table 2.

500

Continuing in this direction, we could obtain a flow equation for the spectrum in the501

same way as in Section 4.1. We do not write down the result of this straightforward exercise502

here. Unlike in the case of the deformed free scalar with shift symmetry, we do not have a503

point in the parameter space with a CFT with (anti)holomorphic currents, which was crucial504

in determining the initial conditions in Section 3, so we do not know how to determine505

the initial conditions for neither flow equations. This is the reason we only presented the506

treatment of the more general case as a check on the conjectured universality of the flow507

equations. The initial conditions could however be obtained in Gaussian theories: the508

massive complex boson and fermion, and it is an interesting future direction to obtain the509

spectrum of their irrelevant deformations.510

5.2 A perturbative quantum check511

The universal equations (4.18) and Table 2 for the Hamiltonian density H = −Ttt can be512

checked in quantum perturbation theory around a CFT, order by order in λ and exactly513

in the background gauge fields a, ā and b. These equations are statements about local514

operators modulo derivative terms, because they involve collision limits that are only defined515

up to derivatives.516

In line with the rest of the paper we place the theory on S1 × R and work in the517

Hamiltonian formalism and on a fixed time slice.4 We expand all local operators in Fourier518

modes. For example, the CFT’s holomorphic stress-tensor is519

TCFT(x) = −
(

2π

L

)2 ∞∑

k=−∞
e2πikx/L `k, [`k, `m] = (k −m)`k+m +

c

12
k3δk+m,0, (5.6)

4Translation to the path integral formalism should be straightforward.
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in terms of shifted Virasoro modes `k ≡ Lk−δk,0 c/24. See Appendix E for more conventions520

and explicit formulas. All operators of interest are constructed from the dimensionless modes521

`k, ¯̀
k, jk, j̄k of the CFT stress-tensor TCFT(x), T̄CFT(x) and two independently-conserved522

currents JCFT(x), J̄CFT(x).523

Schematically, one proceeds as follows. First turn on λ. In our formalism, Txt, Jt,524

J̄t are fixed. Once the mode expansions of Jµ, J̄µ and Tµν are known up to order λp−1,525

one computes the bilinear operator by which to deform, for example the collision limit526

“JT̄” = 2πiJ[t|Tz̄|x], to deduce Ttt hence H = −
∫
dxTtt to order λp. Then conservation527

gives ∂xTtx, ∂xTxx, ∂xJx, ∂xJ̄x thus gives all modes of Ttx, Txx, Jx, J̄x except their zero528

modes (since ∂xeinx vanishes for n = 0). Locality fixes these zero modes up to ambiguities529

explained in Section 3.3: shifts by multiples of the identity. Then a, ā, b are turned on530

using the same steps.531

The rest of the section spells out details. We introduce useful deformations of the modes532

`k, jk, ¯̀
k, j̄k in Section 5.2.1. Next, we tackle the two key difficulties: finding OPEs such533

as 2πiJ[t|Tz̄|x] in Section 5.2.2, and finding zero modes of Ttx, Txx, Jx, J̄x in Section 5.2.3.534

Section 5.2.4 summarizes all the steps needed to do perturbation theory in our setting.535

For the JT̄ deformation we performed calculations specified by the procedure up to536

order λ2, with ā = 0 and exactly in a, b, and confirmed the universal equation. At this537

order quantum effects could have spoiled the equation but some coefficients cancel. Let538

us see why quantum effects arise at this order and not before. Our quantum calculations539

reduce to classical calculations by replacing all commutators by Poisson brackets, replacing540

all collision limits of operators by (coincident-point) products of functions, and setting541

c = 0. The last requirement comes from comparing the equal-time commutators542

[T̄CFT(x), T̄CFT(y)] = −2πi

(
c

12
δ′′′(x−y)+2T̄CFT(y)δ′(x−y)−∂yT̄CFT(y)δ(x−y)

)
(5.7)

and [TCFT(x), TCFT(y)] to their classical Poisson bracket analogues which have no (c/12)δ′′′(x−543

y) term. Quantum perturbation theory expresses Tµν(x) and Jµ(x) as series in λ of sums544

of composite operators built from the CFT operators TCFT(x), JCFT(x), T̄CFT(x). Dimen-545

sional analysis restricts the set of operators that can appear. We are interested in terms546

multiplying c. Factors of c appear in commutators (5.7) multiplied by the distribution547

δ′′′(x− y), which involves two additional derivatives and one fewer stress-tensor compared548

to other terms. In expressions of Jµ and Tµν , operators multiplying c thus involve two549

derivatives. For Ttt, dimensional analysis only allows ∂2
xJCFT at order λ, and at order λ2,550

only ∂2
xT̄CFT, JCFT ∂

2
xJCFT, ∂xJCFT ∂xJCFT and ∂2

xTCFT (actually, the last of these is for-551

bidden because commutators do not produce it). Since the universal equation is defined552

modulo derivatives, derivative terms ∂2
xJCFT and ∂2

xT̄CFT cannot spoil it. However, the553

terms JCFT ∂
2
xJCFT and ∂xJCFT ∂xJCFT could arise with different (b-dependent) coefficients,554

thus fail to give a derivative. These terms would then affect energy levels. The outcome of555

our calculation is that the terms have equal coefficients so that they combine into a total556

derivative557

JCFT ∂
2
xJCFT + ∂xJCFT ∂xJCFT =

1

2
∂2
xJ

2
CFT . (5.8)

The universal equation is thus confirmed, as are the energy levels.558

Note that this check is not subsumed in the comparison of JT̄ -deformed energy levels559

at a = b = 0 with earlier literature. Indeed, these previous results were worked out by560

imposing holomorphy of Jµ (our definitions of Jµ differ slightly, as discussed in Appendix D)561

which cannot be imposed once we turn on the backgrounds a and b.562
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5.2.1 Spectrum-generating operators563

We now return to a general deformation by Tµν , Jµ, J̄µ and their antisymmetric bilinear564

combinations, and we introduce operators Λk, Υk, Λk, Υk that play an important role565

when computing OPEs later.5 For brevity we choose notations adapted to deformations by566

a single bilinear operator, with a single coupling λ, but it is easy to generalize. We call567

“eigenstate” or “state in the spectrum” a joint eigenstate of the various conserved charges:568

energy H, momentum P and charges Q, Q.569

Tracking the λ-dependence of eigenstates is impractical because one must determine570

how each eigenstate `k1 . . . jm1 . . .
¯̀
n1 . . . j̄p1 . . . |primary〉 in the CFT evolves. Instead we571

track relations between these states. More precisely we construct perturbatively a family of572

operators (see (E.4) for O(λ) terms)573

Λk = `k +O(λ), Υk = jk +O(λ), Λk = ¯̀
k +O(λ), Υk = j̄k +O(λ) (5.9)

that generate the spectrum in the sense that acting on an eigenstate gives another eigenstate.574

These operators can be defined abstractly as the result of “conjugating” the original modes575

`k, jk, ¯̀
k, j̄k by the deformation. For any eigenstate |n〉λ that is the image of some576

CFT state |n〉 under the deformation, Λk|n〉λ is defined as the image of `k|n〉 under the577

deformation, and likewise Υk|n〉λ ≡ (jk|n〉)λ and Λk|n〉λ ≡ (¯̀
k|n〉)λ and Υk|n〉λ ≡ (j̄k|n〉)λ578

are images of jk|n〉, ¯̀
k|n〉, j̄k|n〉 under the deformation.6579

This abstract definition does not help compute Λk, Υk, Λk, Υk but leads to various580

properties.581

• Given a state |n〉 = |h, q, h̄, q̄〉 in the CFT with `0, j0, ¯̀
0, j̄0 eigenvalues h, q, h̄, q̄582

respectively, its image under the flow obeys Λ0|n〉λ = (`0|n〉)λ = h|n〉λ and so on.583

In that sense, Λ0 ± Λ0, Υ0, Υ0 acting on |n〉λ measure the energy, momentum and584

charges of the original state |n〉.585

• Since charge and momentum of states are fixed, Υ0 = j0, Υ0 = j̄0, and Λ0 − Λ0 =586

`0 − ¯̀
0.587

• The operators obey the same Virasoro and Kač–Moody algebra as `k, jk, ¯̀
k, j̄k,588

namely [Λk,Λm] = [Λk,Υm] = [Υk,Λm] = [Υk,Υm] = 0 and589

[Λk,Λm] = (k −m)Λk+m +
c

12
k3δk+m,0, [Λk,Υm] = −mΥk+m, [Υk,Υm] = kδk+m,

[Λk,Λm] = (k −m)Λk+m +
c

12
k3δk+m,0, [Λk,Υm] = −mΥk+m, [Υk,Υm] = kδk+m.

(5.10)

• Acting with Λk or Υk or Λk or Υk on an eigenstate |n〉λ gives another eigenstate. Its590

energy is higher than that of |n〉λ if k < 0 and lower if k > 0. One could call these591

operators “raising” or “lowering” operators according to the sign of k, but importantly592

their existence does not make the spectrum trivial. Indeed, energies of different593

eigenstates are shifted by different amounts.594

Explicit low-order perturbative calculations suggest a last property for our class of defor-595

mations.596

5In the case of the JT̄ deformation, the operators Λk should reduce to effectively non-local state-dependent
Virasoro generators found previously in [24,27].

6More precisely, the CFT spectrum has states with degenerate energy and momentum and charge, for
instance `−4|0〉 and `2−2|0〉, and to distinguish (`−4|0〉)λ from (`2−2|0〉)λ one uses KdV conserved charges,
under which the CFT spectrum is non-degenerate. These KdV conserved charges also exist in the deformed
theory for any deformation in the class we consider, which makes Λk, Υk, Λk, Υk well-defined.
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• The Hamiltonian H can be written as a function H(λ; Λ0,Υ0,Λ0,Υ0) = 2π
L (Λ0 +Λ0) +597

O(λ), given explicitly for the JT̄ deformation in (E.5). In particular, eigenstates of598

H, P , Q, Q are the same as eigenstates of Λ0, Υ0, Λ0, Υ0. From it we deduce that599

the energy of a state |h, q, h̄, q̄〉λ is H(λ;h, q, h̄, q̄) since600

H|h, q, h̄, q̄〉λ = H(λ; Λ0,Υ0,Λ0,Υ0)|h, q, h̄, q̄〉λ = H(λ;h, q, h̄, q̄)|h, q, h̄, q̄〉λ. (5.11)

Energy levels then depend on the original energy, momentum and charges in the601

same way as the Hamiltonian depends on Λ0 ± Λ0, Υ0, Υ0. Reversing the logic, our602

solution (6.4) for energy levels thus predicts the exact Hamiltonian. For example for603

the JT̄ -deformed CFT with a = ā = b = 0, we expect604

H
prediction

=
2π

L

(
Λ0−Λ0−

L2

2π4λ2

(
1−2π2iλ

L
Υ0−

√(
1− 2π2i(λ/L)Υ0

)2 − 2
(
2π2iλ/L

)2
Λ0

))
.

(5.12)

How do we find the expressions of the spectrum-generating operators Λk, Υk, Λk, Υk605

order-by-order in λ in terms of the CFT modes `k, jk, ¯̀
k, j̄k? The construction of ∂λΛk,606

∂λΥk, ∂λΛk, ∂λΥk is easiest to do in terms of the spectrum-generating operators themselves;607

it can then be translated to the CFT modes using expressions of Λk, Υk, Λk, Υk at the608

previous order in λ.609

While in practice we eventually do all of our calculations in terms of Λk, Υk, Λk, Υk,610

derivatives with respect to couplings always denote derivatives at fixed `k, jk, ¯̀
k, j̄k. This611

makes it a bit awkward to reconstruct an operator O =
∑

n≥0
1
n!λ

nO(n) from its λ derivative612

because the λp/p! term in ∂λO works out to be613

(∂λO)(p) = O(p+1) +

p∑

n=0

(
p

n

)(
∂λ
(
O(n)

))(p−n)
. (5.13)

Note that we had to expand ∂λ
(
O(n)

)
in powers of λ because it involves derivatives of Λk,614

Υk, Λk, Υk that are themselves series in λ.615

To proceed, we first note that ∂λΥ0 = ∂λΥ0 = ∂λ(Λ0−Λ0) = 0 by charge and momentum616

conservation. Then we construct ∂λΛ0 = ∂λΛ0 such that (5.12) holds (or its analogue for617

other deformations). We find it by solving (5.12) for Λ0 in terms of H and Υ0 and Λ0−Λ0,618

619

Λ0 =
1

2

(
1− 2π2iλ

L
Υ0

)(
LH

2π
− Λ0 + Λ0

)
+
π4λ2

2L2

(
LH

2π
− Λ0 + Λ0

)2

, (5.14)

and taking a ∂λ derivative. The deformation ∂λH commutes with Λ0 − Λ0 = `0 − ¯̀
0 (is620

translation-invariant) so ∂λΛ0 also does, namely all terms Λm1 . . .Υn1 . . .Λm̄1 . . .Υn̄1 . . . in621

∂λΛ0 obey
∑
m+

∑
n =

∑
m̄+

∑
n̄. At the orders we checked we additionally find that622

there are no terms that commute with Λ0 (or equivalently with Λ0), namely no term with623

∑
m+

∑
n =

∑
m̄+

∑
n̄ = 0 . (5.15)

The lack of such terms is essential for the following construction to work. We now know624

∂λΛ0 = ∂λΛ0 up to a certain order in λ and want to construct other ∂λΛk, ∂λΥk, ∂λΛk,625

∂λΥk that are consistent with the commutators (5.10).626

First, we want to preserve [Λ0,Λk] = [Λ0,Υk] = 0. From their derivatives we learn that627

we need628

[Λ0, ∂λΛk] = [Λk, ∂λΛ0], and [Λ0, ∂λΥk] = [Υk, ∂λΛ0]. (5.16)

Crucially, the right-hand sides do not contain any term of the form Λ . . .Υ . . .Λm1 . . .Υn1 . . .629

with
∑
m̄+

∑
n̄ = 0, because as we mentioned, ∂λΛ0 do not contain such terms. Then (5.16)630
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fixes ∂λΛk and ∂λΥk up to such terms, and we choose to define ∂λΛk and ∂λΥk without631

any such term, even though we could add arbitrary such terms without spoiling (5.16).632

We define ∂λΛk and ∂λΥk similarly, based on [Λ0,Λk] = −kΛk, which gives [Λ0, ∂λΛk] +633

k∂λΛk = [Λk, ∂λΛ0] hence fixes ∂λΛk up to terms of the form Λm1 . . .Υn1 . . .Λm̄1 . . .Υn̄1 . . .634

with
∑
m̄+

∑
n̄ = k. We choose to define ∂λΛk without any such term. Equivalently, these635

terms are characterized by
∑
m+

∑
n = 0, so this is really the analogue of the condition636

we put on terms appearing in ∂λΛk and ∂λΥk.637

These definitions reduce for k = 0 to the ones we already imposed.638

Finally we must check our constructed ∂λΛk, ∂λΥk, ∂λΛk, ∂λΥk give rise to the remaining639

commutators (5.10). Let us just show one calculation explicitly: that ∂λ
(
[Λk,Λm]− (k −640

m)Λk+m − k3δk+m,0 c/12
)
vanishes. First, note that this derivative is built from some641

∂λΛn, which by construction have no terms that commute with Λ0, so it is enough to642

check that [Λ0, ∂λ(. . . )] vanishes. We compute (at an order in λ at which we know the643

commutators (5.10) but not yet their λ derivative)644

[Λ0, ∂λ(. . . )] = [Λ0, [∂λΛk,Λm]] + [Λ0, [Λk, ∂λΛm]]− (k −m)[Λ0, ∂λΛk+m]

= [[Λ0, ∂λΛk],Λm] + [Λk, [Λ0, ∂λΛm]]− (k −m)[Λ0, ∂λΛk+m]

= [[Λk, ∂λΛ0],Λm] + [Λk, [Λm, ∂λΛ0]]− (k −m)[Λk+m, ∂λΛ0]

=
[
[Λk,Λm]− (k −m)Λk+m, ∂λΛ0

]
= 0.

(5.17)

This concludes the construction of spectrum-generating operators Λk, Υk, Λk, Υk. At645

each order in λ one should check that ∂λΛ0 deduced from (5.14) has no term Λ . . .Υ . . .Λ . . .Υ . . .646

that commutes with Λ0. Other properties of these operators then come for free.647

5.2.2 Computing OPEs648

The Virasoro (and Kač–Moody) algebras (5.6) and (E.3) obeyed by `k, jk, ¯̀
k, j̄k are649

unchanged by the deformation, and the same is true for commutators of local operators650

such as TCFT(x) whose expression in terms of modes does not depend on couplings.651

On the other hand, OPEs of such coupling-independent operators change.7 For instance,652

653

JCFT(x)T̄CFT(y) = 2πλ

(
c/2

(x− y)4
+

2T̄CFT(y)

(x− y)2
+
∂yT̄CFT(y)

(x− y)

)
+O((x−y)0)+O(λ2) (5.18)

in the JT̄ -deformed theory, even though the left-hand side has no λ dependence whatsoever.654

In our formalism, this seemingly contradictory result comes from how the notion of well-655

defined operator depends on λ. In the CFT,656

JCFT(x)T̄CFT(x) = i

(
2π

L

)3∑

k,m

e2πi(k+m)x/Ljk ¯̀
m (5.19)

is well-defined, in the sense that each mode (k + m = constant) is an infinite sum that657

truncates when acting on any state in the spectrum.8 The spectrum depends on λ and658

in the deformed theory the sum fails to truncate, so that the coincident-point operator659

JCFT(x)T̄CFT(x) is ill-defined. The correct OPE (5.18) can be checked in principle by660

7This is a rather different situation than the OPEs considered in [23], because what these authors denote
T,Θ, Θ̄, T̄ are certain components of the deformed stress-tensor Tµν , whereas here we consider OPEs, in
the deformed theory, of the CFT operators.

8By “state in the spectrum” we mean an eigenstate of the Hamiltonian, momentum, and conserved
charge.
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comparing matrix elements λ〈n|JCFT(x)T̄CFT(y)|n′〉λ between eigenstates |n〉λ, |n′〉λ to661

matrix elements of the right-hand side.662

Let us briefly discuss collision limits in a CFT when working explicitly in modes. First663

consider JCFT(x)JCFT(y). To get a finite collision limit one reorders modes using the664

commutator (we set L = 2π to shorten expressions)665

JCFT(x)JCFT(y) = −
∑

k,m

ei(kx+my)jkjm = −
∑

k>m

ei(kx+my)[jk, jm]−
∑

k,m

ei(kx+my) :jkjm:

=
1

(2 sin x−y
2 )2

−
∑

k,m

ei(kx+my) :jkjm: =
1

(x− y)2
+

1

12
+ :JCFT(y)JCFT(y): +O(x− y)

(5.20)
where :jkjm: = (jkjm if k < m else jmjk).9 The reason −∑k,m e

i(k+m)x :jkjm: has finite666

matrix elements in any energy eigenstate |n〉 of the CFT is that :jkjm:|n〉 vanishes for large667

enough k orm (thanks to the normal-ordering) while 〈n′| :jkjm: vanishes for negative enough668

k or m. Altogether only finitely many k and m can contribute to a given 〈n′|:jkjm:|n〉.669

For more complicated examples such as collisions of Sugawara stress-tensors 1
2 :J2

CFT:, the670

prescription is still to reorder modes using commutators until modes are all ordered, then671

evaluate the series such as
∑

k e
ik(x−y)k that arise. Normal-ordered products have finite672

collision limits. In a CFT on the plane, the shortcut to get the regularized collision limits673

of operators such as :JpCFT: is simply to normal-order the modes and take x = y.674

Consider now the collision of a product A(x)B(y) of local operators10 in the deformed675

theory.676

We can apply a similar idea: express A and B in terms of spectrum-generating operators677

Λk, Υk, Λk, Υk then sort these operators by increasing k. Let us call the resulting normal-678

ordered product Sort(A(x)B(y)). Since this places lowering operators to the right of raising679

ones, all matrix elements in energy eigenstates truncate the sums to finitely many terms,680

hence remain finite as x → y. The x → y collision limit Sort(AB) is thus well-defined.681

Unfortunately, this ordering prescription is not consistent with locality, namely we find by682

explicit calculations that the commutator of Sort(AB)(y) with a local operator at w fails683

to vanish for w 6= y.684

To preserve locality we cannot use the shortcut of normal ordering. Instead, we685

keep track of all commutators when reordering the operators Λk, Υk, Λk, Υk as we did686

in (5.20) in the CFT case. Once all terms are ordered, the coefficient of each product687

Υ . . .Λ . . .Λ . . .Υ . . . , often an infinite sum, should be evaluated and expanded as x→ y.688

The sought-after collision limit is then the (x − y)0 term. Besides the normal-ordered689

product Sort(AB) it may include additional terms similar to the shift by 1/12 in (5.20).690

We computed the non-trivial OPE (5.18) of the CFT local operators JCFT(x) and T̄CFT(y)691

by following these steps in the JT̄ -deformed theory. Converting from modes jk and ¯̀
k692

to operators Λk, Υk, Λk uses (the inverse of) the explicit formulas (E.4). At order λ,693

JCFT(x)T̄CFT(y) includes terms such as
∑

k,m,n(. . .)ΥkΥmΛn in which the Υ must be694

reordered. The commutator terms [Υk,Υm]Λn give sums of modes Λn whose coefficients695

are singular as x→ y, which lead to T̄CFT and ∂yT̄CFT terms in (5.18). The c-dependence696

in the OPE comes directly from the c-dependence of the dictionary (E.4) between CFT697

modes and deformed ones Λk, Υk, Λk.698

9The shift by 1/12 is the expected shift `n = Ln − (c/24)δn,0 once one remembers that :J2
CFT: is twice

the Sugawara stress-tensor, which has central charge c = 1 in this case.
10The deformed operators Jµ(x), J̄µ(x), Tµν(x) are eventually built from various collision limits at x of

the CFT operators JCFT, J̄CFT, TCFT, T̄CFT and their derivatives, so commutators of two such operators
at different points x1 and x2 vanish, namely these operators are still local after deformations. The fact that
the T T̄ deformation preserves locality was already observed in [23].
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The OPE of JCFT(x)T̄CFT(y) is only one term in the OPE 2πiJ[t|Tz̄|x] that we are699

really interested in, because the components Jµ and Tµν depend on λ. Among other terms,700

Jx contains λT̄CFT, whose OPE with T̄CFT cancels most terms in (E.4). Altogether, the701

collision limit we care about works out to be702

2πiJ[t|(x)Tz̄|x](y) = −λπ∂yT̄CFT(y)

x− y +O((x− y)0) +O(λ2). (5.21)

The operator ∂yT̄CFT(y) is a derivative, as expected from general considerations about703

antisymmetric combinations of conserved currents. We are actually interested in the (x−y)0
704

term in this OPE. Working it out we got a finite collision limit expressed in terms of Λk,705

Υk, Λk.706

By definition, ∂λTtt = −2πiJ[t|Tz̄|x], where the λ derivative is taken at fixed `k, jk, ¯̀
k.707

This lets us get the next power of λ in Ttt, by either translating 2πiJ[t|Tz̄|x] to the modes708

`k, jk, ¯̀
k, or accounting for non-zero ∂λΛk, ∂λΥk, ∂λΛk.709

5.2.3 Using background fields to get local currents710

Once Ttt is known, conservation equations give ∂xJx, ∂xJ̄x, ∂xTtx, ∂xTxx, but give no711

information on zero modes of these spatial components of currents. Finding the zero modes712

is absolutely crucial because they affect all modes of bilinear products such as 2πiJ[t|Tz̄|x],713

used to define Ttt at the next order in λ. In principle one should impose locality to find714

these modes, namely one should ask for the commutator with CFT operators TCFT, JCFT,715

T̄CFT, J̄CFT to be zero at separated points. This is very difficult: if we work in terms of Λk,716

Υk, Λk, Υk then commutators with modes of TCFT, JCFT, T̄CFT, J̄CFT are complicated;717

and if we work in terms of `k, jk, ¯̀
k, j̄k there is no good way to determine whether a given718

sum of products of modes is well-defined, as we discussed near (5.19).719

To get around this hurdle, and to turn on a and b, we treat our classical evolution720

equation (4.18) or Table 2 as providing an Ansatz for Ttt(λ, a, ā, b) hence for Jx = i∂aTtt and721

J̄x = −i∂āTtt and Ttx = −i∂bTtt and Txx = ∂L(LTtt). As everything else in this subsection,722

checking the Ansatz is done order by order in λ, so let us assume that Ttt(λ, a, ā, b) is723

known up to order λp−1, and exactly in a, ā, b.724

The order λp term of Ttt provided by our classical equation is correct for a = ā = b = 0725

by definition of the deformation. Then, to show that Ttt(λ, a, ā, b) matches the definition726

of the a, ā, b deformations, we need only check that for any (a, ā, b) the derivatives i∂aTtt,727

−i∂āTtt and −i∂bTtt are indeed equal to the correct components Jx, J̄x, Ttx. These are728

characterized (up to shifts by multiples of the identity discussed in Section 3.3) by the729

conservation equations and by locality. Locality is automatic because Ttt is constructed730

from local operators (including collisions, computed as explained above), and taking a, ā, b731

derivatives commutes with taking a commutator with the reference local (CFT) operators732

TCFT, JCFT, T̄CFT, J̄CFT. On the other hand, we do not have a general proof of conservation,733

so one has to check at each order in λ that the Ansatz obeys conservation, using explicit734

expressions for a given deformation.735

5.2.4 Summary of the procedure736

To start the whole process we need to know the “initial data”: Jµ, J̄µ, Tµν at order737

λ0 for all a, ā, b (and L). At this order, the stress-tensor and conserved current are738

linear combinations (3.7) of the CFT ones. The dependence on a, ā, b is fixed up to the739

ambiguities (3.11) under shifts by multiples of the identity. We also keep Λk = `k +O(λ)740

etc. with no a nor b dependence at order λ0.741
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One safe way to avoid accidentally writing ill-defined products such as (5.19) is to742

work in terms of the spectrum-generating operators Λk, Υk, Λk, Υk and systematically743

commute operators with larger k towards the right of any product. We use (5.13) in the744

form O(p) = (∂λO)(p−1) − · · · to deduce an operator at order λp from its derivative at745

order λp−1.746

The concrete procedure to get the order λp terms in Jµ, J̄µ, Tµν (hence in H) knowing747

their order λp−1 terms is then as follows.748

1. Determine up to order λp−1 the collision limit 2πiJ[t|Tz̄|x] +πbJ[t|Tt|x] + . . . appearing749

on the right-hand side of (4.18) or its generalizations from Table 2. For a = ā = b = 0750

this is ∂λTtt, while for nonzero (a, ā, b) it is only an Ansatz, checked later. To deal751

with derivative ambiguities, one includes with unknown coefficients the derivative of752

every local operator allowed by dimensional analysis.753

2. Write the expression for ∂λΛ0 given in (5.14) or its generalizations including back-754

ground fields.755

Check that this Ansatz is valid, in that it produces no terms that commute with Λ0756

(or equivalently with Λ0). Deduce all other ∂λΛk, ∂λΥk, ∂λΛk, ∂λΥk up to order λp−1.757

3. Use (5.13) to deduce T (p)
tt from (∂λTtt)

(p−1) computed in step 1 and from the order758

λp−1−k terms of derivatives ∂λ(T
(k)
tt ), 0 ≤ k ≤ p− 1, which involve terms computed759

in step 2. Deduce H(p). By construction of ∂λΛ0 the Hamiltonian is expressed in760

terms of Λ0, Υ0, Λ0, Υ0.761

4. Likewise, work out ∂a, ∂ā, ∂b derivatives of Λk, Υk, Λk, Υk up to order λp by noticing762

that their ∂λ derivative is known to order λp−1. For instance ∂λ∂aΛk = ∂a∂λΛk =763

∂a(known+O(λp)), which only requires knowing ∂a derivatives of Λk, Υk, Λk, Υk up764

to order λp−1.765

5. Compute Jx = i∂aTtt and J̄x = −i∂āTtt and Ttx = −i∂bTtt and Txx = ∂L(LTtt) up766

to λp−1. Check current conservation [H,Jt] + ∂xJx = 0 and similarly for J̄ν and767

Tµν . This check fixes the unknown derivative terms from step 1. As explained in768

Section 5.2.3, locality is automatic and the check proves that the Ansatz for T (p)
tt is769

correct.770

We performed this procedure (without J̄CFT) up to p = 2 for the JT̄ deformation, thus771

checking the universal equation (4.18) as a local operator equation modulo derivatives. This772

proves to order λ2 that the spectrum, including its dependence on background gauge fields,773

is exactly as predicted by the evolution equation (4.21), which we solve exactly in (6.1)774

and (6.4).775

The procedure is quite bulky, and needs to be simplified before it can be pushed to776

much higher order. Perhaps the path integral formalism can help, but one would have777

to carefully work out OPEs such as (5.21) in this approach. In addition, the spectrum-778

generating operators Λk, Υk, Λk, Υk seem to be less natural in the path integral than in779

the Hamiltonian formalism.780

In this discussion we worked with spectrum-generating operators Λk, Υk, Λk, Υk to781

make writing normal ordered products easier, but we nevertheless considered `k, jk, ¯̀
k, j̄k782

as fixed when defining derivatives such as ∂λ. Just as one switches from the Schrödinger to783

the Heisenberg picture in quantum mechanics, we could switch from having λ-dependent784

states |n〉λ, hence λ-dependent spectrum-generating operators, to having a λ-independent785

spectrum and spectrum-generating operators. This would mean ∂λΛk and so on would786

vanish, while ∂λ`k etc. would not vanish any longer. It may be instructive to translate our787

universal equation to this picture.788
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6 The spectrum from the solution of flow equations789

6.1 Solving a large family of theories790

While (4.23) is a rather intimidating nonlinear PDE of five variables, we will nevertheless791

write down a closed form solution of it. While we suspect that there should be a straight-792

forward derivation of the solution, we first obtained the solution below using intuition from793

known results and solving the equations in series form. Before presenting the solution, we794

sketch the steps that led us to it.795

In our conventions (with gJT̄ = 1, namely λJT̄ = i`, see (4.22)), the spectrum of the796

JT̄ -deformed CFT in [5] is797

EnL =
1

π3
(
`
L

)2


1 + πQ

(
`

L

)
+ π3p

(
`

L

)2

−
√

1 + 2πQ

(
`

L

)
− (2π3(ε0 − p)− π2Q2)

(
`

L

)2

 ,

p ≡ PnL , ε0 ≡ E(0)
n L .

(6.1)

The spectrum of the T T̄ -deformed CFT is (with gT T̄ = 1 or λT T̄ = `2) [2, 3]:798

EnL =
1

2π2
(
`
L

)2


1−

√
1− 4π2ε0

(
`

L

)2

+ 4π4p2

(
`

L

)4

 . (6.2)

The spectrum can be checked to obey the Burgers equation (2.5), if we use the relation799

λ(2.5) = −2π2`2 as explained around (2.1). Based on these examples, a reasonable guess is800

that the spectrum of the full theory with all couplings turned on may take the form:801

EnL =
1

#
(
`
L

)2

(
P2

(
`

L

)
−
√
P4

(
`

L

))
, (6.3)

where Pn
(
`
L

)
denotes the an nth order polynomial of `

L . The coefficients of the polynomials802

can depend on the initial data ε0, p,Q, Q̄ and the (generalized) background fields a, ā, b, L.803

We require that as `
L → 0 we recover the initial condition given in (4.26). By matching to804

a high order series solution of (4.23), the Ansatz (6.3) can be verified and the coefficients805

determined.806

The string construction to be discussed in Section 6.4 suggests additional structure,807

namely that En is a solution of a quadratic equation. Following this hint, the most compact808
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form that we managed to bring the solution to is:809

εn ≡ EnL̂ = s+
−B −

√
B2 − 4AC

2A
, 0 = A(εn − s)2 +B(εn − s) + C ,

L̂ ≡ (1− b2)L , µ ≡ π`

L̂
, Q̂ ≡ Q+ 2πaL , ˆ̄Q ≡ Q̄+ 2πāL , A ≡ aL Ā ≡ āL ,

GJT̄ ≡ (1− b)gJT̄ , GJΘ ≡ (1 + b)gJΘ , GJ̄T ≡ (1 + b)gJ̄T , GJ̄Θ̄ ≡ (1− b)gJ̄Θ̄ ,

ĜT T̄ ≡ GT T̄ +
1

2
π(GJT̄GJΘ +GJ̄TGJ̄Θ̄) , GT T̄ ≡ (1− b2)gT T̄ ,

s =
1 + b

2
ε+

1− b
2

ε̄ , ε ≡ ε0 + p+ 2A
(
Q̂− πA

)
, ε̄ ≡ ε0 − p+ 2Ā

( ˆ̄Q− πĀ
)
,

A =
(π

2

(
G2
JT̄ +G2

J̄T

)
+ ĜT T̄

)
µ2 ,

B = −1−
(
GJT̄ Q̂+GJ̄T

ˆ̄Q
)
µ+

((
πG2

J̄T + ĜT T̄
)
ε+

(
πG2

JT̄ + ĜT T̄
)
ε̄
)
µ2 ,

C = −
(
GJ̄T

ˆ̄Qε+GJT̄ Q̂ε̄
)
µ+

(π
2
G2
J̄T ε

2 + ĜT T̄ εε̄+
π

2
G2
JT̄ ε̄

2
)
µ2 .

(6.4)

Let us highlight some properties of this lengthy set of expressions. When µ = 0, correspond-810

ing to only turning on background gauge fields in a CFT, A = C = 0 and B = −1, hence811

εn = s, which matches (4.26) once we account for the fact that En = εn/L̂; of course, this812

was the initial condition that we used to find the solution given in (6.4). It is not surprising813

that by forming dimensionless combinations µ,A, Ā we simplified formulas. Curiously, we814

managed to absorb all the b-dependence of A,B,C into the redefined couplings GO and815

µ, but even using these definitions s still depends on b explicitly. We also managed to816

absorb all the GJΘ, GJ̄Θ̄ dependence into a shifted T T̄ coupling, ĜT T̄ defined in (6.4).817

That A,B,C, s are polynomials in ε0, p,A, Ā, Q̂, ˆ̄Q is a consequence of (4.14) truncating at818

finite order.819

We used the background fields mainly as an auxiliary device. If we are only interested in820

bilinear deformations, we can turn the background fields off: A = Ā = b = 0, Q̂ = Q, ˆ̄Q =821

Q̄, GO = gO. In the absence of background fields, the expressions simplify significantly:822

ε = ε0 + p and ε̄ = ε0 − p. The special cases of JT̄ and T T̄ deformations given in (6.1) and823

(6.2) are reproduced as special cases.824

For large initial energy ε0 with other quantum numbers fixed, the spectrum formally825

behaves as826

εn =

√(
−ε0
A

+O(1)
)

+O(1) ,

A =

(
1

2
π(G2

JT̄ +G2
J̄T ) +GT T̄ +

1

2
π(GJT̄GJΘ +GJ̄TGJ̄Θ̄)

)
µ2 ,

(6.5)

where we repeated A from (6.4) for convenience. For A > 0, states with large initial energies827

become complex for some value of µ. In [14] it was proposed for the T T̄ deformation that828

such states should be discarded from the spectrum, turning the theory into a quantum829

mechanical theory with a finite number of states. The validity of this proposal is clearly830

beyond what can be assessed by the local field theory tools used in this paper. For A < 0831

the energies are real, and combined with the Cardy growth of the density of states this leads832

to Hagedorn growth of the density of states [8, 15]. For the pure JT̄ and J̄T deformations,833

one always has A > 0, and the spectrum necessarily becomes complex [5]. Once we turn834

on T T̄ (or equivalently JΘ in the presence of JT̄ ) with a sufficiently negative coupling835

constant, we can make A < 0 and the asymptotic spectrum real. It may be interesting to836
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study the A→ 0− limit: the spectrum appears to remain real and bounded below, with837

some states acquiring infinite energy.11
838

Finally, it is natural to ask about the meaning of the other branch of the square root839

in (6.4), ε(+)
n = s + −B+

√
B2−4AC
2A . For µ → 0 the energy of these states would diverge.840

Nevertheless, these “eigenvalues” play an interesting role in the modular differential equation841

that the torus partition function obeys in T T̄ and JT̄ deformed theories [18, 19].842

6.2 Exploring the coupling space843

To explore some properties of the spectrum, we ask what happens if we turn on the844

deformations one after another instead of simultaneously, which gives (6.4). See Figure 2845

for a sketch of the situation. We will only work with two couplings and turn off all the846

others. We leave the exploration of more complicated paths in coupling space for future847

work.
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Figure 2: Left: Graphical representation of (6.7). Independent of which order we evolve
the spectrum of the CFT with V and W , we get the same spectrum. The result also agrees
by the simultaneous irrelevant deformation by V and W represented by the diagonal orange
arrow. Right: For the special case of V = JT̄ , W = JΘ, the structure of the coupling
space is more complicated, as explained in (6.6).

848

Let us turn on λV first, where V is one of the five irrelevant operators that we are849

studying and λV is the dimensionful version of gV , see (4.22). The spectrum with background850

gauge fields turned on is obtained by setting gO = 0, (O 6= V ) in (6.4). We can use this851

result as initial condition for the λW , (W 6= V ) flow equations for the spectrum given in852

Table 3. This is a more complicated initial condition than the conformal initial conditions853

(4.23). Nevertheless, the flow is still solvable in a closed form. Setting the background fields854

to zero at the end, we obtain the spectrum of the theory first deformed by V and then855

by W , which we denote by F [λWW ]F [λV V ]σCFT , where σCFT is the CFT spectrum and856

F [λOO] is a symbolic operator implementing the flow. We find that the only nontrivial857

flow is obtained for V = JT̄ , W = JΘ (and similarly for their conjugates), for which858

F [λJT̄ JT̄ ]F [λJΘ JΘ]σCFT = F [λJT̄ JT̄ ]σCFT ,

F [λJΘ JΘ]F [λJT̄ JT̄ ]σCFT = F [λJT̄ JT̄ + 2λJΘ JΘ]σCFT .
(6.6)

The first equation is easy to understand: in a CFT JΘ = 0, hence F [λJΘ]σCFT = σCFT .859

The second equation is the result of a nontrivial computation. By F [λV V +λWW ] we mean860

11We thank David Kutasov and Soumangsu Chakraborty for discussing some upcoming work.
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the specific flow that led to (6.4), i.e. we use the common scale ` as defined in (4.22) and flow861

with the combined flow equation (4.23). Note the factor of 2 multiplying λJΘ in the second862

equation. Because (6.4) only depends on ĜT T̄ , which is a linear combination of λJT̄λJΘ and863

λT T̄ , we could have written F [λJT̄ JT̄ +2λJΘ JΘ] equivalently as F [λJT̄ JT̄ +# JΘ+#T T̄ ].864

For any other pair of operators:865

F [λWW ]F [λV V ]σCFT = F [λWW ]F [λV V ]σCFT = F [λV V + λWW ]σCFT . (6.7)

We conclude that the structure of the coupling space is rather simple, as most deforma-866

tions commute. In particular, making two deformation in succession does not lead out of867

the space of theories that we can reach by the simultaneous deformation by all operators,868

as given in (6.4).869

6.3 Solving and checking the JJ̄ deformation870

Recall that because we were using a dimensionful parameter to control the flow, we did not871

cover the case of the JJ̄ deformation, when solving (4.23). The solution of the differential872

equation given in the first row of Table 3 is a lot simpler than that of (4.23). The873

introduction of the same variables as in (6.4) is useful, and we get:874

εn = EnL̂ = s+ Q̂ ˆ̄Q sinh(2πλJJ̄) + (Q̂2 + ˆ̄Q2) sinh2(πλJJ̄) . (6.8)

In [51] the change in the scaling dimension of certain primary operators was obtained875

using AdS/CFT and confirmed to second order in perturbation theory. The result in their876

equation (5.1), after redefining q =
√

k
2Q, q̃ =

√
k̃
2 Q̄, h ≡ 2H

π
√
kk̃
, reads877

εn = ε0 −
2H

1−H2
QQ̄+

H2

1−H2
(Q2 + Q̄2) . (6.9)

Because H and λJJ̄ are dimensionless, and the space of theories is one dimensional, different878

definitions can give different parametrizations of the same line. Indeed setting879

λJJ̄ = − 1

2π
arcsinh

(
2H

1−H2

)
(6.10)

in (6.8) and setting the background fields to zero produces (6.9). This is another nice check880

of the validity of our formalism.881

6.4 A check from string theory882

In this section we use the string construction of [5,15,34] to test a special case of the energy883

formula (6.3), where the background fields are set to zero A = Ā = b = 0 and the JΘ and884

J̄Θ̄ deformations are turned off. We obtain a precise match.885

We now give a lightning review of the argument of [5], skipping over many important886

details. Let us consider Type II superstrings on the background (massless BTZ)×S1 ×N .887

Vertex operators of the worldsheet theory dual to certain Ramond sector states of the dual888

CFT2 were constructed in [5], whose explicit form we will not need. The construction uses889

separate primaries in the (massless BTZ)×S1 and in the N CFTs. The Virasoro constraint890

imposes:891

0 = ∆1 + ∆2 −
1

2
,

0 = ∆̄1 + ∆̄2 −
1

2
,

(6.11)
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where ∆1,2 are the left scaling dimensions in the (massless BTZ)×S1 and N CFTs respec-892

tively. To simplify formulas, we restrict to the winding number 1 sector of the theory. The893

scaling dimensions in the (massless BTZ)×S1 CFT are given by:894

∆1 = −EL +
Q2

8π2
− j(j + 1)

k
,

∆̄1 = −ER +
Q̄2

8π2
− j(j + 1)

k
,

EL,R ≡
1

2
(E ± P ) ,

(6.12)

where j is a quantum number related to radial motion, k =
(
LAdS
`s

)2
, and we set R =895

1, qL = Q
2π , qR = Q̄

2π in the formulas of [5].12
896

The (massless BTZ)×S1 CFT is an SL(2,R)k × U(1) WZW model, and hence has897

interesting exactly marginal JJ̄ deformations. It was argued in [5,15] that a deformation898

that to linear order agrees with the J−SLJ̄
−
SL deformation in the terminology of this paper is899

related to a single trace version of the T T̄ deformation of the dual CFT, while the JU(1)J̄
−
SL900

and J−SLJ̄U(1) deformation is related to the JT̄ and J̄T deformations [5]. The arguments901

are complicated and rely on some conjectures about the dual CFT; the proposal is that the902

string states created by the vertex operators discussed above should evolve in the same903

way under the single trace deformation version of the irrelevant deformations as they would904

under their double trace versions to which our field theory treatment applies.905

Under the JJ̄ deformations of the (massless BTZ)×S1 CFT the scaling dimensions in906

the N CFT do not change, while the change of ∆1 and ∆̄1 can be determined by combining907

formulas (5.19)-(5.22), (5.29), and (5.32)-(5.33) from [5]. Adapting their equations to our908

notation, which includes introducing the coupling constants gJT̄ , gJ̄T , g̃T T̄ with appropriate909

numerical prefactors, gives13
910

∆1 = −EL +
Q2

8π2
− gJ̄TµQ̄EL + 2π2g2

J̄Tµ
2E2

L

− gJT̄µQER + 2π2g2
JT̄µ

2E2
R + 4π(g̃T T̄ − πgJT̄ gJ̄T )µ2ELER −

j(j + 1)

k
,

∆̄1 = −ER +
Q̄2

8π2
− gJ̄TµQ̄EL + 2π2g2

J̄Tµ
2E2

L

− gJT̄µQER + 2π2g2
JT̄µ

2E2
R + 4π(g̃T T̄ − πgJT̄ gJ̄T )µ2ELER −

j(j + 1)

k
.

(6.13)

Subtracting the two equations leads to a µ independent result, which expresses that the spin911

of the vertex operator is quantized. Henceforth, we drop the second equation. We remark912

that the field theory explanation of why we can simply add together the contributions of913

different deforming operators is that these deformations commute in the sense explained in914

Section 6.2. We also note that linearizing in the couplings gJT̄ , gJ̄T , g̃T T̄ , we get915

δE = δ(∆1 + ∆̄1) = −2gJT̄Q(µER)− 2gJ̄T Q̄(µEL) + 4πg̃T T̄ (µEL)(µER) , (6.14)

which to linear order agrees with the spectrum of the JJ̄-deformed theory (6.8), if we identify916

the charges of JU(1), J̄U(1), J
−
SL, J̄

−
SL with Q, Q̄, (µEL), (µER), and gJT̄ , gJ̄T , gT T̄ with917

(up to constant factors) the coupling λJJ̄ of the JJ̄ operators JU(1)J̄
−
SL, J

−
SLJ̄U(1), J

−
SLJ̄

−
SL.918

12A check on these normalization factors is that if we set r =
√

2 in (B.9), we get the same spectrum of
scaling dimensions, as in [5].

13In the first version of the paper we were missing the shift of g̃TT̄ by −πgJT̄ gJ̄T . We thank Soumangsu
Chakraborty and Amit Giveon for pointing this out to us.
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To higher orders the agreement does not hold, demonstrating that the worldsheet CFT is919

not precisely a JJ̄ deformation of the (massless BTZ)×S1 CFT in the terminology of this920

paper.921

To get the evolution of energies in the boundary theory, we put (0) superscripts on the922

quantities in the undeformed theory given in (6.12). The Virasoro constraint (6.11) implies923

that we have to equate ∆1 (and ∆̄1) in (6.12) and (6.13), which then implies:924

−E(0)
L +

Q2

8π2
= −EL +

Q2

8π2
− gJ̄TµQ̄EL + 2π2g2

J̄Tµ
2E2

L

− gJT̄µQER + 2π2g2
JT̄µ

2E2
R + 4π(g̃T T̄ − πgJT̄ gJ̄T )µ2ELER .

(6.15)

If we define the T T̄ coupling as gT T̄ ≡ g̃T T̄ − πgJT̄ gJ̄T , then the above equation can be925

brought to the form:926

0 = (2π)2A(E − E(0))2 + 2πB(E − E(0)) + C , (6.16)

which is equivalent to (6.4) with all the background fields turned off, A = Ā = b = 0, Q̂ =927

Q, ˆ̄Q = Q̄, GO = gO, and with the JΘ and J̄Θ̄ deformations turned off, gJΘ = gJ̄Θ̄ = 0.928

The factors of 2π account for the fact that we set L = 2π by setting R = 1, hence ε = 2πE.929

(Also p = 2πP .)930

7 Conclusions and outlook931

In this paper, we presented detailed arguments for the proposal of the energy spectrum of932

CFTs deformed simultaneously by JT̄ , JΘ, J̄T, J̄Θ̄, T T̄ and also by the current components933

Jx, J̄x, Ttx which are equivalent to turning on the background fields a, ā, b in (6.4). Note934

that deforming by the time component of conserved currents would be trivial: since the935

corresponding charges commute with the Hamiltonian, the eigenvalues Q, Q̄, E, P would936

simply add under such deformations.937

We have arrived at this spectrum following the strategy outlined in Section 2, see also938

Figure 1. We implemented the first step of the strategy, rigorously determining the initial939

conditions for the flow equation for the Hamiltonian. We then used the example of the940

classical free scalar to conjecture a universal equation valid at an arbitrary point in coupling941

space in (4.18) and Table 2. We performed two checks of this equation in Section 5: we942

checked a special case of the equation in a more general classical field theory setting in943

Section 5.1, and a quantum mechanical check in low order perturbation theory in Section 5.2.944

It would be interesting to go to higher orders in perturbation theory. Ultimately, in the945

future we would like to find a nonperturbative quantum derivation of these equations. From946

these universal equations, the flow equation for the energy follows using the factorization947

property of the special composite operators discussed in this paper; this is again a fully948

rigorous step. We then solved this equation using the initial conditions to obtain the949

spectrum (6.4). That we have obtained elegant solvable equations for the spectrum, whose950

solution reproduces previously known special cases gives us confidence that this is the full951

quantum answer. We solved the JJ̄ deformation with the same methods, reproducing the952

spectrum found using conformal perturbation theory and AdS/CFT in [51]. We also did a953

new AdS/CFT computation in Section 6.4 of the spectrum of the JT̄ , J̄T, T T̄ deformed954

theory with the background fields turned off, and this confirmed the spectrum (6.4) in a955

special case. We provided evidence in Section 6.2 that turning on the couplings of the956

irrelevant operators in different order (instead of simultaneously) will not lead out of the957

space of theories we solved.958
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This work leaves many interesting directions open for future investigation. It would959

be interesting to obtain the spectrum of non-conformal theories deformed by irrelevant960

operators. While the universal operator equations and hence the flow equations for the961

spectrum apply, we do not know how to obtain the initial conditions. An exception is962

provided by Gaussian theories, the massive complex boson and fermion, where turning on963

background gauge fields preserves their Gaussian nature and hence solvability. We leave964

their solution to future work. The universal equations for the Hamiltonian can be solved for965

the classical Hamiltonian (and Lagrangian). We have only discussed this in Appendix C,966

since we do not know how to quantize these theories starting from the Lagrangian. Since we967

do know how to understand these theories using flow equations, this could give insight into968

how to treat such exotic theories that include the Nambu-Goto string (in static gauge) [3,8].969

We would also like to understand how to turn on the background fields in the AdS/CFT970

setup analyzed in Section 6.4. It would be interesting to analyze the torus partition function971

of this class of theories, and fascinating to prove uniqueness results similar to those found972

in [18, 19].973

The most interesting extension of this work would be to understand deformations by974

bilinear composite operators built from the higher spin KdV currents. Understanding these975

would presumably lead to qualitatively new UV behaviors. In Section 3.4 we attempted976

to obtain the initial conditions for this flow, and explained why our approach does not977

apply straightforwardly. Despite this failure, it would be interesting to understand whether978

there exists a universal operator equation governing the Hamiltonian at an arbitrary point979

in coupling space. Since the background field for the spin s current is irrelevant in this980

case, [αs] = 2− s, we expect a proliferation of terms. A first step in this direction would981

be to work out the case of the classical free scalar. We also note that we take a step in982

a tanglential direction in a future publication, where we compute the spectrum of KdV983

conserved charges in the T T̄ flow.984
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A Conventions993

We use the following conventions. The complex coordinates in Euclidean space are defined994

by:995

z = x+ it , z̄ = x− it . (A.1)

The cylinder S1×R has circumference L, hence z ∼ z+L. The stress tensor in a relativistic996

theory is defined by997

Tµν ≡
2√
g

δS

δgµν
. (A.2)
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We will be dealing with theories that cannot be easily coupled to gravity, as they do not998

have Lorentz invariance, and for these we will be using the Noether stress tensor that obeys:999

1000

0 = ∂νTµν , (A.3)

with the corresponding (Hermitian) conserved quantities:1001

H = −
∫ L

0
dx Ttt , P = −i

∫ L

0
dx Txt . (A.4)

They generate the spacetime translations:1002

[H,O] = ∂tO , [P,O] = i∂xO . (A.5)

One useful example to keep in mind is that for a scalar theory whose Lagrangian L(φ, ∂µφ)1003

does not contain higher derivatives (but may contain arbitrary powers of single derivatives),1004

we have1005

Tµν ≡
∂L

∂(∂νφ)
∂µφ− δµνL , (A.6)

which obeys (A.3) by the equations of motion.1006

In CFT the components of the stress tensor are usually denoted by1007

T ≡ −2πTzz , Θ ≡ +2πTzz̄ , Θ̄ ≡ +2πTz̄z , T̄ ≡ −2πTz̄z̄ , (A.7)

and the conservation equation written as1008

∂̄T = ∂Θ , ∂T̄ = ∂Θ̄ . (A.8)

For convenience, we also write down the components of the stress tensor in (x, t) coordinates:1009

1010

Ttt =
1

2π

(
T + Θ + Θ̄ + T̄

)
, Ttx = − i

2π

(
T −Θ + Θ̄− T̄

)
,

Txt = − i

2π

(
T + Θ− Θ̄− T̄

)
, Txx = − 1

2π

(
T −Θ− Θ̄ + T̄

)
.

(A.9)

For a conserved current corresponding to an internal symmetry, we have1011

0 = ∂µJµ

Q =

∫ L

0
dx Jt(x)

(A.10)

From the perspective of Euclidean field theory a natural formula would instead be1012

−i
∫ L

0 dx Jt(x), because we want Q to be Hermitian, and to Wick-rotate an operator1013

with spin, we conventionally add factors of i to the time components. However, to conform1014

with CFT convention, we chose to omit the i from (A.10). If we have only one current a1015

natural choice for normalization is that the charge is an integer. However, as we recall on1016

the example of the free compact boson in Appendix B, this normalization is not always1017

natural. In CFT, it is customary to use the notation J ≡ Jz, J̄ ≡ J̄z̄.1018
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B Free compact boson1019

We take the free massless scalar Lagrangian to be:1020

L =
1

8π
(∂µφ)2 . (B.1)

The equation of motion is:1021

0 = (∂2
t + ∂2

x)φ . (B.2)

The propagator is1022

〈φ(z)φ(0)〉 = − log |z|2 . (B.3)

The currents and the stress tensor (on the plane) are given by:1023

J = i∂φ , J̄ = −i∂̄φ ,

T = −1

2
:(∂φ)2: =

1

2
:J2: , T̄ = −1

2
:(∂̄φ)2: =

1

2
:J̄2: .

(B.4)

The canonical momentum and Hamiltonian densities are defined by1024

Π ≡ i ∂L

∂(∂tφ)
=

i

4π
∂tφ

H ≡ iΠ∂tφ+ L = 2πΠ2 +
1

8π
(∂xφ)2 .

(B.5)

The canonical commutation relations are [Π(x), φ(y)] = −iδ(x− y). It is easy to check that1025

H = − 1
2π

(
T + T̄

)
, consistent with (A.4) and (A.9). Hamilton’s equations are:1026

∂tΠ = i
δH

δφ
= −i∂x

(
∂H

∂(∂xφ)

)
,

∂tφ = −iδH
δΠ

= −i
(
∂H
∂Π

)
,

(B.6)

which are consistent with (B.2). Since the Hamiltonian is the same as in usual Lorentzian1027

quantum mechanics, (B.6) are just the usual Lorentzian Hamilton’s equations with the1028

replacement ∂
∂tL

= i ∂∂t .1029

We take the boson to be compact with radius r:1030

φ ∼ φ+ 2πr . (B.7)

The mode expansion of the scalar and the currents on the cylinder is:1031

φ = φ0 +
4πn

rL
(−it)− 2πrw

L
x+ (oscillating terms)

J = i∂φ = − i
2

(
4πn

rL
+

2πrw

L

)
+ (oscillating terms)

J̄ = −i∂̄φ =
i

2

(
4πn

rL
− 2πrw

L

)
+ (oscillating terms) .

(B.8)

Then the charges using (A.10) are:1032

Q =
2πn

r
+ πrw , Q̄ =

2πn

r
− πrw . (B.9)
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The charges are quantized, but are not integers. In fact, for irrational r2, there does not1033

exist a normalization in which they would be integer valued.1034

At λ = 0, solving the differential equations (4.3) and (4.4) with the expressions for the1035

conserved current components given in (4.2) gives:1036

H =
2π
(
Π + a−ā

2

)2
+ 1

8π (∂xφ− 2π(a+ ā))2 − b
(
Π + a−ā

2

)
(∂xφ− 2π(a+ ā))

1− b2 . (B.10)

The shifts of Π and ∂xφ are explained by the comment around (4.3).1037

C Hamiltonian and Lagrangian of the deformed free scalar1038

We have not determined the closed form solution of the flow equations for the Hamiltonian1039

density, (4.18) and Table 2. They can be recovered from the solution of the spectrum (6.4)1040

using the following very simple recipe. In εn(ε0, p,Q, Q̄) as a function of the four initial1041

conditions, we have to make the replacements:1042

H =
1

(1− b2)L2
εn

(
L2

(
2πΠ2 +

1

8π
(∂xφ)2

)
, −L2 Π∂xφ, −

L

2
(∂xφ− 4πΠ), −L

2
(∂xφ+ 4πΠ)

)
.

(C.1)

An intuitive way to obtain this formula is to take a simple classical phase space configuration,1043

for which1044

∂xφ = −2πrw

L
, Π =

n

rL
,

ε0 = 2π

(
n2

r2
+
r2w2

4

)
, p = 2πnw , Q =

2πn

r
+ πrw , Q̄ =

2πn

r
− πrw .

(C.2)

In the undeformed case, the appropriate field configuration of φ is given in (B.8) (with the1045

oscillating terms set to zero), but after deformation Π 6= i
4π∂tφ. Plugging these into H1046

defined by (C.1) and multiplying by L to perform the trivial integral over x, we recover1047

the spectrum (6.4). This is not quite a proof of (C.1), since for the special configurations1048

in (C.2) ε0 and p are determined by Q, Q̄. Nevertheless, it can be checked explicitly that1049

H resulting from (C.1) indeed solves the appropriate equations. We note, that (B.10)1050

can indeed be recovered by using (C.1), with εn replaced by the initial condition s form1051

(6.4). Finally, the Lagrangian for the deformed theories can be obtained by Legendre1052

transformation,1053

∂H
∂Π

= i∂tφ ,

L = −iΠ ∂tφ+H .
(C.3)

Conversely, given a Lagrangian of a shift symmetric scalar field L(∂φ, ∂̄φ), we can1054

conjecture its energy spectrum by first going to the Hamiltonian H(∂xφ,Π), plugging in the1055

first line of (C.2), and expressing n, w with the possible initial conditions, ε0, p, Q, Q̄. As1056

already mentioned above, since there are four initial conditions and only the two n, w in the1057

output of this procedure, obtaining the right spectrum this way requires some guesswork.1058

In the case of the T T̄ deformation (with background fields turned off), the spectrum cannot1059

depend on Q, Q̄ and one obtains the correct spectrum from the Lagrangian1060

LT T̄ =
1

2π2`2

(
1−

√
1− π`2

2
(∂µφ)2

)
(C.4)

as was shown in [22] using the method described here.1061
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D Comments on the JT̄ deformation1062

At first sight, it may seem that our definition of the JT̄ deformation and the one in the1063

literature is different. We have been working with a non-holomorphic current that had1064

quantized charge that does not change under the deformation, while in the literature the1065

current J is holomorphic and its charge depends on the scale ` [5]. It turns out that the1066

two definitions of the theories are equivalent, as we explain below.1067

Let us determine the explicit form of H for the case of the JT̄ deformation with the1068

background fields turned off. We can use the simple explicit formula given in (6.1) instead1069

of (6.4). Plugging into (C.1) we obtain:1070

HJT̄ =
1− π`

2 (∂xφ− 4πΠ)− π3`2Π∂xφ−
√

(1 + 4π2`Π) (1− π`∂xφ)

π3`2
,

LJT̄ =
1

2π
∂φ

∂̄φ

1− π`∂̄φ .
(D.1)

The latter Lagrangian was obtained in [5, 6]. It can be checked that the current1071

Ĵµ ≡ Jµ − 2π2i` Tz̄µ (D.2)

is holomorphic, once we plug in H from (D.1) in the expression of the conserved current1072

components (4.2). So the current used in the literature is just a linear combination of1073

currents defined in our current formalism. The ambiguity of combining currents was1074

discussed in Section 3.3.1075

Finally, we show that the operators JT̄ and Ĵ T̄ are the same, hence the deformed1076

theories are equivalent. Writing out the definition (4.19), we get1077

Ĵ T̄ = 2πiĴ[t|Tz̄|x] = JT̄ − 4π3` Tz̄[tTz̄|x]

= JT̄ ,
(D.3)

which is just the manifestation of the simple fact that the bilinear composite operator built1078

from the same current is identically zero, O ≡ εµνJµJν = 0.1079

E Quantum perturbation theory formulas1080

We collect here some formulas relevant to Section 5.2. Local operators are expanded in1081

modes as1082

O(x) =

(
2π

L

)∆ ∞∑

n=−∞
e2πinx/LOn (E.1)

where On are dimensionless and ∆ is the dimension of O(x). We denote the CFT (anti-1083

)holomorphic current and stress tensor by J , T , T̄ (signs and factors of i chosen to match1084

standard 2d CFT literature):1085

T = −
(

2π

L

)2 ∞∑

n=−∞
e2πinx/L `n,

T̄ = −
(

2π

L

)2 ∞∑

n=−∞
e2πinx/L ¯̀

n,

J = −i2π
L

∞∑

n=−∞
e2πinx/L jn,

(E.2)
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and we recall TCFT
tt = −TCFT

xx = (T + T̄ )/(2π) and TCFT
xt = TCFT

tx = (T − T̄ )/(2πi) and1086

JCFT
t = iJCFT

x = iJ .1087

We shifted `m ≡ Lm − δm,0 c/24 and ¯̀
m ≡ Lm − δm,0 c/24 compared to the usual1088

Virasoro algebra, and these modes have non-zero commutators1089

[`m, `n] = (m− n)`m+n +
c

12
m3δm+n,0, [`m, jn] = −njm+n,

[¯̀m, ¯̀
n] = (m− n)¯̀

m+n +
c

12
m3δm+n,0, [jm, jn] = mδm+n.

(E.3)

After deformation by JT̄ we find spectrum-generating operators (we do not display1090

order λ2 terms in Λk and Λk because they are too long)1091

Υk = jk + δk 6=0
2π2iλ

(1 + b)L
¯̀−k + δk 6=0

(
2π2iλ

(1 + b)L

)2(
(j0 + La)¯̀−k +

1

2

∑

m6=0

m− k
m

jm ¯̀
m−k

)
+O(λ3),

Λk = `k +
2π2iλ

(1 + b)L

∑

m6=0

jk+m
¯̀
m +O(λ2),

Λk = ¯̀
k +

2π2iλ

(1 + b)L

(
c

12
k2j−k +

∑

m 6=0

m− k
m

jm ¯̀
k+m

)
+O(λ2).

(E.4)
Note that Υ0 = j0 and Λ0 − Λ0 = `0 − ¯̀

0 as expected. Calculating commutators confirms1092

that these operators obey the same algebra (5.10) as the original modes.1093

For the JT̄ deformation we find1094

H =
2π

L

(
Λ0

1− b +
Λ0

1 + b
+
aLΥ0

1− b +
a2L2

2(1− b)

)
+ 2πiλ

(
2π

L

)2 (Υ0 + aL)Λ0

(1− b)(1 + b)2

+
(2πiλ)2

2

(
2π

L

)3 (Υ0 + aL)2Λ0 + Λ
2
0/2

(1− b)(1 + b)3
+O(λ3)

(E.5)
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