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Abstract

We derive some entanglement properties of the ground states of two classes of quantum
spin chains described by the Fredkin model for half-integer spins and the Motzkin model
for integer ones. Since the ground states of the two models are known analytically, we
can calculate the entanglement entropy, the negativity and the quantum mutual informa-
tion exactly. We show, in particular, that these systems exhibit long-distance entanglement,
namely two disjoint regions of the chains remain entangled even when the separation is sent
to infinity, i.e. these systems are not affected by decoherence. This strongly entangled be-
havior is consistent with the violation of the cluster decomposition property occurring in
the case of colorful versions of the models (with spin larger than 1/2 or 1, respectively),
but is also verified for colorless cases (spin 1/2 and 1). Moreover we show that this be-
havior involves disjoint segments located both at the edges and in the bulk of the chains.
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1 Introduction

The study of nonlocal properties and their consequences on the dynamics in addition to the vio-
lation of the area law for the entanglement entropy are certainly, at the present date, a very chal-
lenging field of research. The concept of locality plays a crucial role in physical theories, with far
reaching consequences, a fundamental one being the cluster decomposition property [[1,2]. This
property implies that two-point connected correlation functions go to zero when the separation of
the points goes to infinity. This is the reason why two systems very far apart, separated by a large
distance, behave independently.

Another aspect related to correlations is the quantum entanglement. In bipartite systems the
von Neumann or entanglement entropy quantifies how the two parts of the whole system are en-
tangled. This quantity measures non-local quantum correlations and has universal properties, like
the fact that, for gapped systems, it scales with the area of the boundary of the two subsystems [3]].
This property is called area law and is valid for systems with short-range interactions. In other
words, if the interactions are short-ranged the information among the constituents of the system
propagates with a finite speed involving a surface surrounding the source of the signal, like an elec-
tromagnetic impulse propagating with the speed of light. For critical 1-dimentional short-range
systems the area law is violated logarithmically [4]. Quantum spin chains are promising tools for
universal quantum computation [5] and the efficiency may be related to the amount of quantum
entanglement. Spin systems with entanglement entropy larger than that dictated by the area law
can be used for quantum computing even more efficiently, and breaking down the speed of the
propagation of the excitations can represent a breakthrough for quantum information processing.

Recently, novel quantum spin models have been introduced, with integer [[6-8]] (Motzkin
model) and half-integer [9,/10] spins (Fredkin model), which, in spite of being described by local
Hamiltonians, exhibit violation of the cluster decomposition property and of the area law for the
entanglement entropy, with the presence of anomalous and extremely fast propagation of the exci-
tations after driving the system out-of-equilibrium [9]]. These models seem, therefore, extremely
promising for applications in quantum information and communication processes. Very recently,
also deformed versions of Motzkin [11]] and of Fredkin [12]] chains have been introduced and stud-
ied [|13,|14]], which can exhibit a quantum phase transition separating a phase with an extensively
entangled phase [[11}/12]] from a topological one [15]].

Quite recently, it has been given also a continuum description for the ground-state wavefunc-
tions of those models, as originally formulated and in the colorless cases, which can reproduce
well some quantities like the local magnetization and the entanglement entropy, and whose scal-
ing Hamiltonian is not conformally invariant [16]. Some results on the Renyi entropy for these
models have been also reported [|17].

In this work we focus on the study of quantum entanglement after the discovery that cluster
decomposition property in such systems can be violated [9]. This behavior occurs for colorful
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cases, when also the area law for the entanglement entropy is violated more than logarithmically,
and is more pronounced for correlation functions measured close to the edges of the chains. What
is presented here is the calculation of other entanglement measures, the quantum negativity [[1819]
and the mutual information [20}21]] shared by two disjoint segments of the chains in the ground
state. We show that such systems exhibit long-distance entanglement [22]], namely given a measure
of entanglement, e.g. the mutual information, Z, 5 for the system A U B made by two disjoint
subsystems A and B, the quantity Z 4 5 does not vanish when the distance between A and B goes to
infinity. For colorful cases this result is consistent with the fact that also the connected correlation
functions do not vanish in the thermodynamic limit [9]], being the the mutual information an upper
bound for normalized connected correlators [21,,23]].

Moreover we show that this non-vanishing mutual information, persisting for infinite dis-
tances, is verified not only when the cluster decomposition is violated (for colorful cases, where
the entanglement entropy scales as a square-root law) but also when the connected spin-correlators
go to zero (for colorless cases, where the entanglement entropy scales logarithmically). Finally,
contrary to what found in the continuum limit [16]], this behavior occurs, and is even more pro-
nounced, also when the subsystems are located deep inside the bulk, showing a stronger entangle-
ment as compared to the one obtained in conformal field theories, where the mutual information
vanishes upon increasing the distance with a power law behavior [24]. On the other hand, quite
surprisingly, we show that the mutual information for two disjoint subsystems inside the bulk has
the same form of the logarithmic negativity and of the mutual information for conformal field
theories of two adjacent intervals [25].

2 Models

In this section we report the Hamiltonians for recently introduced half-integer and integer spin
models, called Fredkin and Motzkin models whose ground state is known exactly and has the
peculiarity of being related to some random lattice walks.

2.1 Fredkin model

The Fredkin model [9.{10]] is described by the following half-integer spin Hamiltonian H = Hy +
Hp, with

q L-2 — q L-1
o= {2 [P(les) +P(e5) | + z )+ P (i) 0
c,c=1 j=1 j=1 c#£C j=1
Hy =" [P(IL5) + P (I15)] )

Q
I
—

composed by a bulk, Hy, and a boundary, Hy, Hamiltonians, where P(|.)) = |.) (.| is a projector
operator acting on quantum states made by local spin-states, ‘Tg located at site 7 with half-integer

spin along z-quantization axis s, = (c - %) and ‘¢§> with local half-integer spin s, = (% — c),

withc € Nand ¢ = 1, ..., q. The maximum value of the index ¢, namely g, is called the number
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of colors of the model. The quantum states appearing in Eq. (1)) are defined as follows

_ 1 _ _

Q%5) = VG (151551 $502) = 1545101 1542)) 3)
) 1 .

|Q%5) = NG (N5 1551 V52 — 154541 4542)) “
) 1 o

‘Q8§'> = NG (W 1) — \Ti 41)) )

For colorless case, ¢ = 1 (spin 1/2), we have that the third and the last term, so-called crossing
term, are not present. In such a case the bulk term terms of Pauli matrices

L—2
Ho=)_ [(1 +0:5)(1 = Gj1 - jr2) + (1 =05 - 0j11)(1 — 02 512) (6)
j=1
In terms of Fredkin gates ﬁ’ijk (controlled-swap operators), Hy = ZJ-L72(2 — Fj,j+1,j+2 —

o;" o Fj+2,j+17j 0}5 +2), where ka acts on three %—spins (three gbits), swapping the j-th and k-th
if the i-th is in the state |1) while does nothing if it is in the state |J).
2.2 Motzkin model

The Motzkin model [6l7] is described by the following integer spin Hamiltonian H = Hy + Hp
with

q L-1 q L—1
o= 35 {P (@) + P () + P Q) ) + 3 P (1) @
c=1j=1 c#c j=1
q
Ho =7 [P (45) +P(I15))] @®)
c=1
where now P(|.)) = |.) (.| acts on quantum states made by local integer spin-states, ﬂ§> located at

site 7 with integer spin s, = c and

l}§> with integer spin s, = —c, with, again,c = 1,...,q. Also
in this case, q is called the number of colors of the model and, in the Motzkin case, it correspond to
the maximum value of the spins. . The quantum states appearing in Eq. (I)) are defined as follows

1

Q%) = 7z (10j 541) — |05 0j41)) ©)
1

Qf;) = 7 (105 ¥511) — |45 0j11)) (10)
1

|Q5;) = NG (1050551) — [154551)) (1)

Also in this case, for colorless case, ¢ = 1 (spin 1), we have that the third and the last term are
absent.

3 Ground states
The most important property shared by these frustration-free Hamiltonians is that their ground

states are unique, made by uniform superpositions of all states corresponding to Motzkin paths,
for the integer case (for the Motzkin model) and all states corresponding to Dyck paths for the

4
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half-integer one (Fredkin model). This states are such that, denoting the spins up, 1, by /, the spins
down, |}, by \ and spins zero, 0, by —, one can construct a Motzkin path, while by using only / for
1 and \ for | one can construct a Dick path.

A Motzkin path is any path on a z-y plan connecting the origin (0, 0) to the point (0, L) with steps
(1,0), (1,1), (1,—1), where L is an integer number. Any point (z,y) of the path is such that
and y are not negative.

Analogously, a Dyck path is any path from the point (0,0) to (0, L) (L now should be an even
integer number) with steps (1,1), (1,—1). As for the Motzkin path, any point (z, y) of the Dyck
path is such that x and y are not negative.

The corresponding colored path are such that the steps can be drawn with more than one color. The
color attached to a path move is taken freely only for upward steps (up-spins) while any downward
steps (down-spin) should have the same color of the nearest up-spin on the left-hand-side at the
same level. This color matching is induced by the cost energy contribution described by the last
term both in Eq. (I) and Eq. (7), which, in spite of being short-ranged, it produces non local effect
in the ground state.

As a result, a colorless Motzkin path |m,(,L)> or Dyck path |d;£,L)> can be defined as a string of L
spins (or steps) such that, starting from the left by convention, the sum of the spins contained in
any initial segment of the string is nonnegative, or alternatively, any initial segment contains at
least as many up-spins (upward steps) as down-spins (downward steps), while the sum of all the
L spins is zero (the total number of upward steps is equal to the number of downward steps). The
colorful Motzkin or Dyck paths are the paths where, in addition, the upward steps can be colored
at will while the colors of the downward steps are determined uniquely by the matching condition
(any spin down has the same color of the adjacent upward spin on the left-hand-side at the same
height). Examples of colored Motzkin and Dyck states are shown in Fig.

| ) = ST N, =/ | N
It 13 13 18 15 46 47 s 18 4ho) |1 02 13 42 05 13 17 0a U5 010 43 Uiz s Ue)
Figure 1: An example of Dyck path (left panel) and of a Motzkin path (right panel) with ¢ = 3

colors, which contribute to the ground states for the 3-color spin models, respectively, the spin—%
Fredkin model and the spin-3 Motzkin model.

The ground state of the Fredkin Hamiltonian is then obtained by a uniform superposition of all
possible Dyck paths for a given length L and a given number of colors ¢,

1
P~ > ldiP) (12)
VD) < P

where D) is the number of all possible colored Dick paths with ¢ colors
L
P =¢3C <) P (13)

with C'(n) = n,(ii’il), the Catalan numbers and p,, = (1 — mod(n, 2)) selects even integers.
Analogously, the ground state of the Motzkin Hamiltonian is a uniform superpositions of all pos-
sible Motzkin paths

[Py (14)

1
T Tl
ML) -
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where, in the normalization factor,

M =% ( ZLK ) C(0) (15)

is the colored Motzkin number, i.e. the number of all the possible colored Motzkin paths. Because
of this mapping between the ground states and the lattice paths several ground state properties can
be studied exactly resorting to combinatorics.

3.1 Decomposition in two parts

The ground state for both the models can be written in terms of states defined on two subsystems,
A and B, as follows

P(L) Z\/i Z |,P0;;A 01, ,Ch‘P(L ta) >ch,...,c1 (16)

C1,--+,Ch

where, h,, = min(¢4,L — {4) and A;, are some Schmidt coefficients depending of the number
of paths, whose expressions will be given in the next section for the two cases, in Eq. for the
Fredkin model and Eq. (66)) for the Motzkin one.

]POEA)>61MC,I is an orthonormal state defined on the subsystem A made by a uniform superposi-
tion of lattice paths (of the Motzkin or Dyck type) which start from the origin and reaching the
height h after £4 steps, with therefore h unmatched up-spins with indices c1, ..., ¢,. Analogously,
|P (L= ZA))CLH,,% is an orthonormal state defined on the subsystem B made by a uniform super-
position of lattice paths (of the Motzkin or Dyck type) which start from the point ({4, h) and
reaching the ending point (L, 0) after {5 = L = {4 steps, with h unmatched down-spins with
indices cq, ..., .

3.2 Decomposition in three parts

Let us now divide our spin chains in three parts, a left and a right part, A and B, and a central part
C, see Fig[2] The ground state can decomposed in terms of states defined in these three regions as

eA L'éA'éB éB
A (@ B

Figure 2: Tripartition of a spin chain into subsystems A, B and C.

follows

k!, min(h,h)

Z Z Z V Anbsz Z |7)0 01, 7Ch|7)hi/ o ZB)> Shoeell |Ph€(1)3)>5h/,...,51

Cc1 Cp/
h=0h/= C1,.-,Ch »-yCh
Cly--sCpt

a7
with hy, = min(£4, L —{4), h),, = min({p, L — ¢ ) and where \73 (L— ZA)>017“,7Ch an orthonormal
state defined on the region A as before, namely as a uniform superposition of lattice paths starting
from the origin and ending at (¢4, h) with h unmatched colored up-spins and \Pf(f(’f )>5h,,.,,751 a
uniform superposition of lattice paths defined on B, starting from the point (L — ¢p,h’) and
ending at (L, 0) with A’ unmatched colored down-spins. Moreover
(L—0p— eB)

ChyeesC1 = 601617 ce CzCz |Ph 2 h/— > Chye-ey Cz+1 (18)
CLyesCpyt Cat1yesCpyt

La—4
Py )
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is the an orthonormal state composed uniformly by all the paths with (L — ¢4 — ) steps starting
at height h and ending at height 1/, with (h — z) unmatched down-spins and (h’ — z) unmatched
up-spins, namely those paths which touch at most ones the horizontal line defined by z. In our
notation the indices in Eq. (I8) for unmatched spins are useful also for colorless case to classify

the paths by the level z. Actually the minimum of the values of z which contribute to the sum
(0 I'h-i-h/—(L—éA—fB)‘l)
) 9 .

appearing in Eq. 1i 1S Zmin = Max
This horizontal quantity can be seen, therefore, as a quantum number classifying all the state

in the central region C, since for any z the states |P}S}LLI_(ﬁ§x—€B)> c1,...c, are orthogonal to each

C1,---Cpt
other simply because composed by local spin states express in the canonical orthogonal basis. An

example of this classification is shown in Fig. 3] for the Fredkin and the Motzkin case.

L-¢:¢, L-¢:¢,

Figure 3: Examples of Dyck (left) and Motzkin (right) paths to be taken in a central region C'
of length L — ¢4 — fp = 7 after a tripartition, which start at height h = 2 and end at height
I/ = 3, classified by touching at least once the horizontal lines z. The solid blue lines are all those
which touch z = 2 that contribute to \732(?> &3 the dashed red lines are all the paths which touch
z = 1 that contribute to |P§?)CQ@,ES, the dotted green lines are all those which touch z = 0 that

: (7)
contribute to |Pys' Ve, cs.21,60,25-

4 Entanglement properties of the Fredkin chain

We will study the entanglement properties of the ground state for the Fredkin model, reviewing the
entanglement entropy after a bipartition, and then calculating the negativity and the mutual infor-
mation shared by the two spins at the edges resorting to the decomposition we obtained Eq. (I7).
We will show that these quantities, particularly the mutual information, revel an unconventional
long-distance behavior. Before to proceed ne need to know the coefficient in Eq. (I6) for the
Fredkin ground state decomposed in two parts , which is

(la)y(L—L£a) —h
A, = Don ' Dho 4 (19)
h DL)
and the coefficient in Eq. (I7) after its decomposition into three parts, which reads
(ta)y(B) (y(L—ta—LB) (L—€a—LB) —h'—h
Aorr Do, Do (Dh—z e — DA h'liz—l) q 0
hh'z = 5109 (20)
where
n+h'—h n n
DSZ’/ =q 2 [( nt|h—r| ) - < nthth’ 4 ) Dn+h+h! (21
2 2

7
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is the number of colored Dyck-like paths (¢ the number of colors) between two points at pos-

itive heights h and b’ with n steps. We assume D;:;L)/ to be zero for negative h or i’ by defi-

nition. In particular we have D(()O) =D = ¢:C (%) pn. Moreover we notice that D(()Z) =

nth poq
q 2 LJH ( n+h )pn+h = thf(Lo)'
2 2

4.1 Entanglement entropy

In this section we will briefly review the calculation for the von Neumann entanglement entropy.
The reduced density matrix after a bipartition of the whole systems into two subsystems A and B,
after tracing out one of them, is obtained from Eq. (16))

hm
pa=Tig [PEY PO =3" A, S PSPPI (22)

sCh
Cl,.--sCh

where Ay, given by Eq. therefore, since there are ¢ eigenvalues equal to Aj, the entanglement
entropy is simply

hm hm ~(a)y(L—£a) (ba)y(L—¢ta)
D D D, D
h _ 0Oh h0 Oh h0
— gh q"Aplog(Ap) = Eh = [h log g — log <(L) )] (23)

D(/A),D(L La)
Since ¢" A, = —0h—— is a normalized probability, >on q"Aj, = 1, the first term of Eq. 1'
is log g times the average height of the paths at a given position located at distance ¢4 from the

edge
Zh

which, for large L and ¢ 4, when the blnomlal factors can be approximated by gaussian factors and

¢ L l

the sum by an integral, scales as a square root, (h);, =~ Qf M. The second term, instead

scales as % log (M) therefore, for large systems and for a sizable bipartition one gets

S~

2\[ KA(L EA) 1 EA(L—ZA)
1 -1 _
/T 0gq +  log I
Notice that this approximation is very good when the bipartition occurs in the bulk while Eq. (23)

is exact for any ¢4 and L. For instance, if /4 = 1, the entanglement entropy, from Eq. (23), is
exactly S4 = log g, for any L, while Eq. deviates from it.

>+Ou» (25)

4.2 Reduced density matrix for the edges

Let us consider the system A U B made by the two spins located at the edges of our spin chains, as
shown in Fig.[d We will study the entanglement properties between these two spins at the edges
for the Fredkin spin chain by tracing out all the spins between the first and the last one described
by
ZA 1 c
Po1 e =11) (26)
tp=1) ¢
PiE e = 1U5) 27

so that Eq. (T7), dropping the site indices to simplify notation, reads

[P) Z\T (\/Hlpl(f* Voo + See v/ A [PE2 )w (28)
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[ HA+———————+—+1 |
A Cc B

Figure 4: Tripartition of a spin chain in three subsystems A, B, C, where the separated regions, A
and B are made by single spins at the edges.

The joint reduced density matrix of the subsystem A U B, after tracing out all the degrees of
freedom of the central part, and keeping only the two spins at the edges, is

pap = Trg [PO)Y (PW)] = Z <A111 [19) 14) (€] (L°] + Arwo [1€) [1°) (19 <¢E’) 29

c,C

where the coefficients, from Eq. (20), are

pL-2)
«4111 = W (30)
(L=2) _ (L-2) (L—2)
1 ([ Dy D _1(1 D
Ao =1 < Do) ) = <q - D<L>> GD

The normalization condition is fulfilled since the trace of p4p is
Trpap = ¢ A1 + ¢* A0 = 1 (32)

On the basis ([11) [11) , [1%) [12) . [19) [L9) S [11) L2 112) 5 oo I10) [H9) S 119) [E)

112 14%), 112) 142), )t we can write the ¢? x ¢ reduced density matrix as follows
pAB = < AmJ%xq + At1o Loxg p (iqu?—q) ) (33)
(®—a)xq 110 +(¢%~q) % (¢*>—q)

where J is a matrix of all ones, O is a matrix of all zeros and 1 the identity matrix.

4.3 Negativity

We calculate now the quantum negativity which detects the entanglement between two disjoint
regions and can be defined as follows

1
N = Qza:(|)\a|*)\a) (34)

where )\, are the eigenvalues of the partial transpose of the reduced density matrix with respect to
a region, say B, namely obtained when the indices related to the degrees of freedom of one part,
B, are transposed, which is

s = D (Auan 11 149 (1] (] + Anno 1199 W) 0 4T ) (35)

Taking the same basis as for Eq. the partial transpose of the reduced density matrix reads

. ( (A111 + A110)1gxq 04 (¢—q) )

PAB = O(qQ—q)Xq Aol (q22—q) « (q22—q) ® A (36)
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where the last block is a Kronecker product of an identity matrix and a 2 X 2 matrix

Ao A
A= 37
(-»4111 Ano) 7)

The eigenvalues of pffB are (A111 + Aq10) with multiplicity q(q + 1)/2 and (A110 — A111) with
multiplicity ¢(¢ — 1)/2, therefore the negativity is greater than zero if A;11 > A110, namely, if

DU-2  (O(L/2—-1)  L+4 _
Tpm T T C(L2)  AL—-1) q+1

(38)

which is verified for ¢ > 3, for any finite L. Therefore N' = 0 for ¢ < 2 (and ¢ = 3 in the limit
L — o0) while

(g1 DUL-2 1
N = 5 (q—i—l)m—a , for ¢ > 3. 39)
which, in the large L limit goes to
—1)(¢g—3
Ny la=D=3) (40)
L—o0 8q

4.4 Mutual Information

The eigenvalues of the reduced density matrix p4p, from Eq. (33)), are (A119 + ¢.A111) and Aq1p,
the latter with multiplicity (¢> — 1), so that the entanglement entropy is

Sap = —(q* — 1)A110log (A110) — (A110 + ¢A111) log (A110 + g A111) (41)

with 4117 and A11¢ given by Egs. and . On the other hand, from Eq. , since A1 = q_1
which is the eigenvalue of p4 (and pp) with multiplicity ¢, we have

Sa=Sp=—qAlog(A) =loggq (42)

We can, therefore calculate and study another entanglement measure which is the mutual informa-
tion
Tap =Sa+ S — San (43)

as a function of the size L, being L — 2 the distance between the two disjoint spins in A and B,
and as a function the color number q.

Colorless case : For ¢ = 1, we have Syp = 0 as well as Sy = Sg = 0, therefore Zyg =
0 exactly, for any size of the chain L. This is due to the fact that the first and the last spins
of the colorless Fredkin model are uncorrelated in the ground state. For that reason one has to
increase the size of the subsystems A and B including further spins, as done in the next Sec. [4.5]
where we will consider two spins at each edge, revealing in this way that there is a long-distance
entanglement even for colorless case.

Colorful case : For colorful cases (¢ > 1) instead Z 4 turns to be finite also for large distances,
namely for large L > 1, as shown in Fig. (5). Actually we can calculate the limit of L — oo,
since I can be written in terms of % only and

' D(L—2) 1
A S E T 1 “4)

10
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Figure 5: (Left) Mutual information between two spins at the edges of colorful Fredkin chains,
as a function of the size L, for different values of ¢. (Right) Mutual Information at long distance,
L — o0, between two spins at the edges of colorful Fredkin chains, as a function of the color
number q.

where lim means the limit of a sequence, therefore A1 = 1 and Ai10 — 1 2 , so that
(3+¢% 3+¢* 3(g2 —1) 3
7 — |21 1 1 — . 45
AB [T |78 + 4q? o8 4q? + 4q? o8 4q2 (45)

We show therefore that the two spins located at the edges of the chain, even when the distance is
infinite, are strongly entangled for any ¢ > 1. This behavior is consistent with the violation of the
cluster decomposition occurring in such colorful cases.

4.5 Entanglement between the two couples of spins at the edges

As we know, for the colorless case, the first and the last spins are completely uncorrelated in the
ground state, since for all the configurations of the spins in the bulk which contribute to the ground
state, the first spin is always up and the last is always down. For colorful case instead they are
correlated because of the color matching condition. For that reason we will consider more than
one spin at the edges, studying the entanglement properties of two couples of spins at the borders,
namely A and B made by two spins instead of one, as shown in Fig. [0]

Figure 6: Tripartition of a spin chain in three subsystems, where the separated regions at the edges,
A and B, are both made by two spins.

In this case, for any q the states at the edges are given by

P eren = 15152) (46)
Py >aa |¢L ) (@7)
Py ) = =S5 =1 (48)
S = Zm A =1 (49)

11
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so that, dropping the site indices to simplify the notation, Eq. reads

= VAo [1) [PE9) 111) +¢HOZ [1142) [P e, 114) (50)
++/ Ao2o Z ‘T\L |7D(L 4 6102 ‘\LQ\LQ + \/«UQQ Z |T61T02 |732(£’_4)>g?g1 u52¢61>
C1,C2 c1,c2 ,C2
C1,C2
VA Z [1ee2) [P ) ey 00 [1210) + V/Aaza Y [1192) [PLE=D) g2 o)

where the coefficients are

(p(2))2 D(L—9) ) DL—4)

Aooo =  pm q D(L) (5D
L—4 L—4
A _ D(Q)’Déo ) _ 'Déo ) 52)
200 D) q D(L)
1 D(2)D(L_4) 1 D( 4)
AOQO ;T% q 222( = AQOO (53)
(Dl ot
Agz0 = e ( i) (54)
1 D(L_4) _ fD(L74)
Agor = P ( H D) (55)
DEN2 p(L—4)  p(L—4)
Aoz = (D2 ) = (56)

D) D(L)

Let us now consider the colorless case (¢ = 1) for simplicity. The reduced density matrix of
A U B, after tracing out over the states of the central region, is

pa = Aooo [T1) [T4) (MU (T 4+ Azo0 [T [T4) (P (T4 + Aozo 1) ) (HH (L]
AoooAzzz ([T4) [T4) A+ [0 1D (R ()

+ (A220 + Aa21 + Azo2) [11) L) (1] (L 67
(L—4) _
where (Ag20 + A221 + A222) = % and Agop = Az22 = %-

On the basis (|T1) [T1), [T T4, [T1) H4) 5 [T |¢¢))t the reduced density matrix can be written
as

Dl 0 0 0
1 0 pU4 pl-4H 58)
PAB = S _ L—4
pO | o peL piH g
0 0 o DY

with D§§_4) = D(()S_4) . Its partial transpose matrix with respect to B is

P = Aooo [14) [14) (1L (1] 4 Azo0 [11) [14) (1] (1] 4 Aozo [14) [44) (1] (14|

AoooAzzz ([T4) W4 (ML 4 110 114) (14 (L)
+ (A220 + A1 + A222) [T1) [L1) (1] (L] (39

12
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which, on the same basis of Eq. (58)), reads

D o 0 DEY
1 o D&Y o 0
ip
PAB=Dm | 0 0o DEY o (60)
DI 0o DY

(L—4) _ (L—4) (L—4)
. DSy D(L—4) D5~ V4D
whose eigenvalues are —25—, <5 d D)

negativity is zero, N' = 0.
Tracing out the degrees of freedom of one of the two parts we get ps = Trppap,or pgp = Trapap
which can be written as

, and since Déﬁn) > DEn) vy > 1, the

1 (DY 4 DLy 0
PA= D) 0 DL—4) 4 D((é%) ’

1 (pe 4 piY 0 ol
PE= D) 0 P L plt= | oD

One can notice that D%%) + Dééﬁ‘) = D(()é*z) and DL 4 D((é%) = DL=2) g0 that

1 o RN
PA = m ( 0 ,D(L,Q) , PB = m 0 D(()Q—Q) (62)

which are the matrices one can get after a bipartition of the system, from Eqgs. (I9), (22), with
£4 =2 (or {g = 2), since Dg) = D@ = 1. In the limit L — oo the reduced density matrices in

Egs. (60), become

3 000
0110
PAB L:; %lo 190 (63)
0 00 3
whose eigenvalues are twice 3/16 and (5 + /17) /16, and

1/3 0 1/1 0
AL:>>04<0 1)’ pBL:;AI(O 3)’ (64)

Now one can easily calculate S4p, Sa and Sp, finding as a result, the large L limit of the mutual
information which is

Tap — L 2+/17 arcosh > 181log 3 + 151og 2 (65)

— — ) —18lo o
AB 16 V7 8 &

which is Z4p ~ 0.01745 using the natural logarithm. We have shown, therefore, that, even for the
colorless case, with the lowest value for the entanglement entropy, the mutual information, shared
by two couples of spins at the edges, does not go to zero but remain finite also for infinite distance.

5 Entanglement properties of the Motzkin chain
As done for the Fredkin model, we will study the entanglement properties of the Motzkin model

in the ground state, briefly reviewing the entanglement entropy after a bipartition, then calculating
the negativity and the mutual information shared by the two spins at the edges. We will show that

13
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also in this case the latter quantity reveals long-distance entanglement.
The coefficients in Eq. (I6) for the ground state of the Motzkin chain, after a bipartition, are

B M(Z}LA)M%*ZA)Q—}L o
Ah - M(L) ( )

while the coefficients in Eq. (17) after decomposing the state into three parts are

M) (M~ )
Apprz = D (67)

—|h'—h
I_n | D ‘J

(n) _ n (20+|n'—hl)

is the number of colored Motzkin-like paths between two points at heights h and h'. Moreover

M(()Z) = th%), and /\/lég) = MM = ﬁé ¢ < 272 > C(¢) which is the colored Motzkin

number.

5.1 Entanglement entropy

In this section we briefly review the calculation for the von Neumann entanglement entropy for the
Motzkin chain. The reduced density matrix after a bipartition of the system into two subsystems
A and B, after tracing out one of them, is obtained from Eq. (I6)) and has the same form reported
in Eq. where now A4, is given by Eq. . Since p4 have ¢" eigenvalues equal to Ay, the
entanglement entropy reads as follows

hum, hom - pgLa) pg(L—La) (£a) pg(L—La)
Sa=-— thAh log(Ap) = Z OhM(L};O h log q — log OhM(L}SO (69)
h h

. . . h M(ZA)M(L_ZA) . . . h
Also in this case, since ¢ A}, = % is a normalized probability, > | | Ap = 1, the

first term of Eq. is log ¢ times the average height of the paths at a given position located at

distance ¢ 4 from the edge
M(KA)M(L*KA)
(e = >R (70
h

which, for large L and £ 4, scales as a square root, (h)g, ~ 2\‘/;? KA(LL_ZA) ,witho = 2,/q/(2,/q+

1). The second term, instead, scales as %log (M), therefore, for large systems and for a
sizable bipartition one gets

_2v20 [a(L — L)
~ = 7

As for the Fredkin case, this approximation is very good when the bipartition occurs in the bulk
while Eq. is exact for any £4 and L.

a(L—1L4)

Sa 7

logq + %log ( > +0(1). (71)

14
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5.2 Reduced density matrix of the edges

Let us consider the system A U B made by the two spins located at the edges of our spin chains,
as shown in Fig. [ and study the entanglement properties between these two spins at the edges of
a Motzkin spin chain by tracing out all the spins between the first and the last one described by

(£a=1)

P e = 109) (72)
PEP=)e = 45) (73)
P5 =) = [Py = [oy) (74)
5" =) = PW) = Jo) (75)

so that Eq. (T7), dropping the site indices to simplify the notation, reads

= VAo 0) [P1E-2) [0) +\/«41002W ) [P~ )e 0) +\/A01OZ|0 P52z 4%
+V/A110 > 1) 1P )ee [4°) +\/A111ZHTC ) [PE2) |y (76)

The joint reduced density matrix of A U B, after tracing out all the degrees of freedom of the
central part C (see Fig. @) and keeping only the two spins at the edges, is

pas = Aooo |0) 0) (O] (O] + A1o0 Z 1) 10) (11 (0] + Ao1o Z |0) [4) (0] (4

+A11oZ|TTC 4°) TTC|<UCI+«41112|TTC [4) (1] (4°]

CC

mm Z 10) 0) (1] (4] + 1) [4°) (0] (0] ) (77)
where the Schmidt coefficients are given by
Aooo = Aj\/(lL(Q) A (78)
Ao1o = ;Aj\/éll( ) i (79)
Aioo /\;élg(:) = Aoio (80)
Airo = ; (M%‘j/;@/)%“”) @1)

One can verify that the trace of p4p is one,
Trpap = Aooo + ¢ (A100 + Ao1o + Ar11) + 7* Ao

1
= @ (M(L 24 ME? + aME? 4 amlET 2)) —1 (82)

Writing pap on the basis (0) [0), [f1) [41), ..., [19) [49),]0) [41) , ..., 10) [49) , [41) [0), ...,
[19) 10), 1) [42), 142) [41) , ...)" we get
Aooo VAo A111d1xq O1xq O1xq 01«

(®—q)
VAo A111dgx1  A111dgxg + At10lgxg  Ogxg Ogxq 0yx(g2—q)
PAB = 0q><1 0q><q -/41001q><q 0q><q 0q><(q2 q)
0q><1 0q><q Oq><q A0101q><q 0q><(q2—q)
Og2—g)x1 O(2—g)xq O@2—g)xq O@—gq)xq A1101(g2 —Q)X(( §3) )

15
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5.3 Negativity

We can calculate the negativity defined as in Eq. (34) where now ), are the eigenvalues of the
partial transpose of the reduced density matrix with respect to B

PP = Aooo [0) 10) (0] 0] + Aroo D 1) 0) (1] (O] + Aoro Y 0) [4) 0] (4]
+A110 D 1) UO) (] (U] + Annn Y €Y 14°) (4] (4°]

c,C c,C

+v/AoooAirr Y (10) 14°) (1] (0] + 1) 10) (0] (4°]) (84)

Expressing this matrix on the same basis of Eq. (83) we can write

Aooo 01><q 01><q Ol><q 01><(q2—q)
0gx1 (A111 + A110)1gxq 0yxq Ogxq Ogx(q2—q)
piBs = 0yx1 Ogxq Ai00lgxq vV AoooA111 1gxq Ogx(q2—q)
Ogx1 Ogxq vV AoooA111 1gxq Aotolgxg Oyx (42—q)
O(g2—q)x1 Og2—g)xq Og2—g)xq O-axa  luwzoo, w0 @A
(85)
where the last block on the bottom-right corner is a Kronecker product of an identity matrix and a
2 X 2 matrix y u
110 111
A= <A111 ./4110) (86)

where, according to Eqs. , A111 = Agoo and A9 = Apio- The eigenvalues of pffB are
Apoo with multiplicity one, (Aggo + A110) with multiplicity g, (A100 + Aooo) with multiplicity g,
(A100 — Agoo) with multiplicity g, (A110 + .Agoo) with multiplicity ¢(¢—1)/2 and (A110 — Aooo)
with multiplicity ¢(¢ — 1)/2.

Since A19p > Agoo, namely M7, > M", ¥n > 1, the only possibility for having a negativity
greater than zero is when Aggg > A110, Which occurs for

(L-2)
q> (MH —1) — 3 (87)

M(L—2) L—oo

Notice that even if M%_z) and M(L=2) depend on q (see. Egs. , , ) their ratio, in the

limit L — oo, goes to 4 from below for any q. As a result, for any finite L, we have

_ (L-2) (L=2)
N:(q21)<(q+1)M - Mo >,forqz3. (88)

ML) ML)

and N/ = 0 otherwise (¢ = 1, 2), as in the case of the Fredkin model. For L > 1, we have that
METD 4 MEL=2) for any ¢ so that Eq. (88) becomes

Ny [a=Dlg=3) M=

Pt > MDD (89)

5.4 Mutual Information

The eigenvalues of the reduced density matrix, Eq. (83), are

1
At = 3 [Auo + (g + 1)Aooo = v/ (A110)2 + 2(q — 1)AgooA110 + (g + 1)2(Ao00)2|  (90)

16
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together with Aggp with multiplicity (¢ — 1), Ajoo with multiplicity 2q and .A;1¢ with multiplicity
(¢®> — q). The entanglement entropy S4p is, therefore,

Sap = — [)\+ log(A4)+A— log(A-)+(g—1).Aoo0 log(Aoon)+2q A1o0 log(A100)+(¢° —q)A110 IOg(Allo)}

oD
with Aggo as in Eq. (78)), Ajqo in Eq. and A;1¢ in Eq. (8I). On the other hand
Sy=Sp=— [Ao log(Ao) + g A 1og(,41)} 92)
with the coefficients (L-1)
MED) Miy~
Ao = , A ="—1 (93)
ML) M)
fulfilling Ao + ¢.A; = 1. The mutual information that we report here for convenience
Tap=Sa+ S —5aB 94)

can be calculated for any value of L and ¢ through Eqgs. (90), (91) and (92)). For some values of ¢,
Zap is plotted in Fig. [/| (left panel). As one can see increasing L the mutual information goes to
some asymptotic value which depends on q. The asymptotic values of Z4p have been calculated
and show in Fig. [/| (right panel) for several values of ¢.

7 S — 0.2
=1 -
0.35 q=2 - e
g=3 o S Lt
03t ] 015t
0.25 |, 1 PN,
2 02 [ e, 2 orf e
0.15 F, v
01 [ ] 0.05 |*
'."“'--....m
005 |
L L L L L L L L L 0 L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 5 10 15 20 25 30 35 40 45 50
L q

Figure 7: (Left) Mutual information between two spins at the edges of colorful Motzkin chains,
as a function of the size L, for different values of ¢. (Right) Mutual information at long distance,
L — oo between two spins at the edges of colorful Motzkin chains, as a function of the color
number q.

Colorless case : Let us focus on the simplest case ¢ = 1, in the long distance limit L — oco. The
reduced density matrix, Eq. (83)), becomes simply

110 0
11 4 0 0

PAB =2 510 0 2 0 ©3)
000 2

whose eigenvalues are twice 2/9 and (5 + v 13) /18. Summing over the right or left spin degrees
of freedom we get

1/1 0
pa=po L:;3<o 2)’ ©

17
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so that the mutual information is given by

1
— — |2V1
Tan 18 [2 3 arcosh <

5

—— ) —16log2 + 5log 3 97)
iE] 3> g g }

which is Z4p =~ 0.05361, in natural logarithm, as shown in Fig.

Colorful case : Here we derive an explicit expression for the asymptotic value of Z4p5 as a

function of g. For a generic ¢ we can simplify the expression for Z4p, in the limit . — oo,
writing it in terms of only one colored Motzkin ratio

M(L=1) o F (ﬂ 2-L 9 4q)
Fg= lim Ap = lim ——— = lim 20 27 98
0= AT @ T A R (5E, 5L, 2,4q) %)
since A; = (1 — Ag)/q and, from Egs. (78)-(81),
li = F? 99
Jim Aooo = F, 99)
li = —_F; 1
L1—>H;o .»4100 \f]:q ( 00)
li = = 101
Jim Ai1o q]'—q (101)
where we recognize that ML) in Eq. (15) can be seen as o F} (—, 1=L 9 44), an hypergeometric

serie reduced to a polynomial since at least one on the first two arguments is a nonpositive integer
number. Substituting these values in Eq. (90) we get

]:'2
AE = Tim )\izz—q<q2+q+3i\/q4+2q3+7q2—6q+9) (102)
q

L—oo

and, from Egs. (91), we get, for the mutual information, the following asymptotic exact
expression

1-F
Zap P [2(]-'(1 —1) log ( q) — 2F, log F, + 2]:3(61 —1) log Fy
— 00

2

) +A+ logA"' + A logA (103)

3F7 2F;
+3.7:2(q —1) log +4}'2\f log
K2 v

The result is, therefore, that the mutual information shared by the two disjoint spins at the edges is
always finite, even when the separation is sent to infinity, also for the colorless case which, from
the point of view of the entanglement entropy resembles a critical system.

6 Entanglement properties in the bulk

Let us generalize what seen so far considering two disjoint subsystems also in the bulk. This
requires to divide our system in five subsystems with different lengths such that L = ¢4 + /p +
Lo+ £p + L, as shown in Fig.[8] and the ground state has to be decomposed in five parts

§ : / § : § : (£a) (tc)
Ah1h2h3h4 |PO 61,...,Ch1 ’Ph1h2(2:1)>c_h1""_’cl‘Phghg(Z2)>ch2’ -C1
2129223 C1

ey C
hihaohshy Chl Cq.. ch3 »++3Cho Cl,.. ,Ch3
212923 C1... Chy .. eny

Y4 (£
PAE) g [P Yo (104

C1yeesChy
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fD fA eC ZB éE
bbbt
D A C B E

Figure 8: Pentapartition of a spin chain into subsystems A, B, C, D, E.

where the states located in each region is defined as before, see Eq. (I8), and the coefficients de-
pend on the model.

6.1 Fredkin model
For the half-integer spin model the coefficients appearing in Eq. (I04) are the following
plp) pla)  pllc)  ps)  ple)

Oh hi1hoz1~hohszo™~hzhsz3 ™ h40 —(h1+h2+hs+h
Ah1h2h3h4 _ 1 1h221 2(L3)2 31423 4 q21+22+z3 (h1+ho+hz+hy) (105)
212223
where ) (© (0)
/ / Y4
‘Chihjz - (Dhi—z hj—z ~ Phi—z-1 hj—z—l) (106)

Let us consider the case where both in A and B there is only a single spin ({4 = ¢p = 1).
In this case, using the definition given in Eq. (I8) and remembering that non-zero contributions

]Plglj(zz,)) come from
max (0, [(h; + h; — £)/2]) < z; < min(hy, hj) (107)

and that the difference of the heights is limited by ¢, namely |h; — h;| < ¢, we have only the
following possibilities for the states defined in A and B

(£a=1) ¢
’PhlAh1+1(Z1)> Chl["’cl — |/]\C(h1+1)> 521}11 501751 e 6Ch176h1 (108)
C1yesChy +1)
la=1
PEAD ) emmer = 1) by o1 Ber.r - - Oy 1 (109)
Cl--C(hy —1)
(tp=1) __ |4
’Ph4 1h4 Z3 >C(}7;4_1),A...,51 - |T h4> 6z37h4—1 551761 . 66(h471)7é(h471) (110)
Clye-5Chy
(tp=1) é
Pt h4(23)>0(h4+1>, i = [EPatD) 020y 021 6 - - - 0a, 0, (111)
617 ,Ch4

Eq. is null for h; = 0 and Eq. if hy = 0, however the coefficients in Eq. take
into account these possibilities when some heights in the argument of the Dyck numbers become
negative. Calling h = hy, h' = hy, 2 = 25 and the residual spin indices ¢ = C(hy1)and ¢ = Cayy)
to simplify the notation, the ground state can be written as

Z Z |PO Je. ’C"[Z VZ;, 1) |Ph+1h’ 1(2)) ©ehyn |16n")

i ClyesClpl —1)
Ch/
(e J4
+Z VZ# 1) P w1 e onen W) 4 3 Vil B PR ) mycn [19)
Ch/C C1,.. C(h’ 1)
Z ~
+Z Vit 1) [P C1h/+1(z)>csh—1)1“"‘il Hcﬂlph'o N (112)
C1yesCpt,C
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where, from Eq. Ii and L’,(j,)l = D((ﬁ) = q together with 521})171 = D%) = 1, we have

(f ) (ple) (tc) (Ce)
1 ; (Dh CZ+1 h!'—z—1 Dh—cz h’—z—?) Dh/g 2—h—h'+1
Vit = Ah(h;{l()}gﬁ’hl)h’ - Dp+lc+lp+2) q (113)
S(h—
f ) (& ) (k)
41 n (Dh Cz+1 Wezt1— Dpls huz) Dyio o —1
Vihz = Ah(h+1}3(i}5+1) D(eD+ec+eE+2) q (114)
VA
é ) (¢ (tc) (Ce)
ViT A D (Dh Cz 1h'—2—-1 _Dh Cz 2 h'—z— 2) Dh’g Zﬁhih/+1(115)
hh'z = Sth(h=1)(K'=1)h" = q
z (h1ys(r—1) DUp+ic+ip+2)
4 ) (e (tc) (¢E)
m n (Dh Cz Lh—at1 — PR h’—z) Dio 1
th’z = Ah("@”ﬁ’i'ﬁfl) D(zD+zc+zE+2) q (116)
—1)z

and where the sums over h is limited by min(¢p, L — ¢p), the sums over A’ is limited by
min(¢g, L — /) and the sum over z is defined differently for the four terms according to the
different heights of the borders of the central region as given by Eq. (107), where z; = z, £ = {¢,
h; = h+1and h; = b’ £+ 1. More importantly, we notice that in Eq. , for any z, the central
states in the first and in the last term are orthogonal to any other while the central states in the sec-
ond and third term can overlap, more explicitly any (z + 2)-th state of the second term coincides
with the z-th state of the third term. This overlaps cause the coherent terms in the reduced density
matrix pAp.

In order to calculate the mutual information between A and B we have to calculate also p4 and
pp. This can be done using the tripartition, Eq. and Eq.

pa =3 (" Ay 19T+ 0" TLASD o ) (41) (117)
hc

PB = Z ( " IA(f)l)h h—1) 17 (1] + qh.AEth_l)hh 14) <\Lc|> (118)
hc

where, using the same notation of Eq. (20),

) D(ZD)D}(L%;_(fE—H) L

A, h(h-+1)h = plotiotiat2) 4 (119)
P

A th—1y(h-1) = Dlp+ic+ip+2) 1 (120)

.A(B) D(()ézDJ'l_ec-i_l)Dl(ﬁ)E) 1-h (121)

Ip+lo+1 4

.A D(()hl—)i—l ‘ )D( ») —h—1 (122)

(h+1 - D(ZD+ZC+€E+2) 4

Colorless case. Let us consider for simplicity the colorless case (¢ = 1).
From Eq. (I12) we can derive the reduced density matrix for the joint system A U B after tracing
out the rest of the chain

B =V AL+ VD) QUL+ VDI G+ VDI (I (123)
VX (IO (G + 1) ()
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which, on the basis ([1) 1) ,11) |1}, [1) [1), [1) [4))", can be written as

vito 00
o v v¥ o
PAB = o vX vl oo | (124)
0o 0 0 w¢
where the coefficients, from Eqs. (I13)-(T16), are
1) 1 1T L
VISV V=S, WISV WY

hh'z hh'z hh'z hh'z

and the crossing term which actually causes coherence and long-distance entanglement between

the spins
X _ 0 T "o
= Wil Vil = SVl =V (126)
hh'z hh'z
One can verify through Eqs. (II3)-(116) that
Tr(pap) = VIT+ V4 P L pH =1, (127)

Eq. (123) is actually the generalization of Eq. and reduces to it for /p = ¢ = 1 since the
first and he last spins are fixed to be up and down respectively. The eigenvalues of psp are V1T,
YH | and

Vi = %(V“ + V£ \/4(VX)2 + (V- vw)2). (128)
Together with the following reduced density matrices for the regions A and B
a = AT (1] + AR (U (129)
5 =BT [1) (1 +B*[1) (130)
where the coefficients, from Eqs. (IT9)-(122), are
_ (4) _ (B)
AT = ZAh(h+1)h ’ ZAh(h 1)(h—1) Z A(h 1h(h—1) > B = Z‘A(h-i-l)hh
h h
(131)

we can calculate the entanglement entropies and then the mutual information, Zap = S4 + Sp —

Sap, exactly from Egs. (T13)-(116), (T19)-(122), (123), (126), (128), (164}, which is

5 =V Mlog VIT+VH 1og V4V T log VT +V " log V™ — AT log AT— At log AY—B" log BT —B* log B

(132)

Explicit calculation shows that also for very large system size L the mutual information between

two spins also in the bulk does not vanishes, as depicted in the left panel of Fig.[9] Actually, its

asymptotic value increases when considering two spins more deeply in the bulk (see right panel of

Fig.[9] Actually we expected and verified that increasing ¢p and ¢, so going more deeply in the

bulk, the probabilities of getting 1 and T (V) or T and | (V™) or | and + (V*T) or finally | and |

(VH) should become the same and equal to 1/4, since also the probabilities of having one spin 1

or | both in A and B should be 1/2. This means that

1/1 0 1/1 0

0

PAB —

i~
OO O
O~ = O
—_ o O O

1
1
0
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Figure 9: (Left) Mutual information between two spins in the bulk of a colorless Fredkin chain at
distances {p = ¢ = 6, 10, 20 from the edges, as a function of the relative distance ¢¢; (Right)
Mutual information between two spins in the bulk as a function of the distance /p = ¢ from the
edges for colorless Fredkin chain with size L = 1000.

and consequently, for large system size L and for {p, g > 1, completely in the bulk,
1
Tap — ilogQ (134)
which is also the same value, Z4p = 0.35, obtained for /o = 0 and ¢p, £ > 1, as shown by the

first points in the left panel of Fig. [0). Eq. (I34) is actually the asymptotic value of the curve in
the right panel of Fig.[9]

6.2 Motzkin model

For the integer spin model the coefficients appearing in Eq. (I04) are the following

¢ ¢ ¢ l ¢
Méhlz)ﬁgﬁb)zﬂﬁ( < E( 5 MEM%)

Ahshahshs = sl g s (et (135)
212223
where
£ = (mP M 136
hihjz — hi—zhj—z hi—z—1hj—z—1 ( )

As done for the Fredkin chain, let us consider the case where in A and B there are only a single
spin ({4 = £p = 1). Proceeding analogously as done for the half-integer case, using Eq. (104) we
get, for the ground state of the Motzkin model, the following decomposition

(€ (€ -
Z Z ’730 D) Clwwch [Z V}T}?’ HTC> ’thl)h’ 1( )>AE’chZ""Cl ’ﬂch> (137)
hh'z c Cly--5C(p! —1)
Chl
¢ ¢ -
+Z V}%ﬁ/ mc 7Df(LJrcl)h’qu(z)>c ChiyewsCL W> + V}%}?’ ) ’P}(Lfcl)h’fl(z)>?(h_1)""’61 1)
€1yeeesCpy,C 1€ 1)
14 0 (e
+Z Vit [ PR b oy ennynen [49) +Z Vi W P e cnneer [0)
C1yeeCprC ClyeenCpyt

7. (¢ e
+y Vi, W) [P, () =1men [0) + Vir. 10) [Py 1)), cher ()

ClyeeesCpt Clse5C(p/ —1)

(e é (€ 4
+Z vk 10y [PLe). L) e 1)+ 4/ ViR, 10) P ) |o>}|7vg,g)>éh,7,_,@1

,CptsC LyeesCpy
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where the coefficients, according to Eq. (135)), since L’,(m) b= M(l) = q and £§Ll) = M(%) =
L’S,B 1= M(O) =1, are

£ ¢ (tc) )
( D ( ;1cz+1 h'— Mh—cz h’—z—Z) Mh’g —h—h'
Vi = Ay —nw = (gD +zc vy 7 +1(138)
hz(h'—1) M
(¢p) (€ (c) (€g)
Vﬂ _A . MOhD (thz—l—l h!'—z+1 Mh—cz h’—z) Mh’g s h—h'—1 139
(fD Mlke) (€c) G:)
vl = Anh-1)(w—1)n = ( SRSl h/_z_2> " ¢~ 40)
z (h_l)z(h/_l) M(ZD+£C+€E+2)
(e Ml tc) ¢
y ( hcz 1h/'—24+1 MEL—CZ—2 h’—z) Ml(z’g) oy
Vi = An(n-1y s 1m0 = oot lst2) ¢ (14)
(h—1)zh’ MEptfotin
15 (tc) (L) (¢p)
D) ( hCz+1 h'—z thz h’fzfl) Mh’g Y
V,g,?,z = Aphrywn = (e o — g (142)
hah! MUp+tctte
‘D) (bc) (ec) 155)
(thz lh’—z_MhCz 2h!—z— )MEL’]OE Y
Vinz = An(h-nyin = (p+lct+lp+2) ¢ (143)
(h—1)zh’ MEpHietis
M (¢ ¢
MG (M) = ML) M
Vi, = Apnw—nyw = (P G (144)
hz(h' 1) MUEprtorte
(¢p) (L) (L) (¢p)
Vou -4 . MOhD (thz h —z+1 Mh z—1h'— )Mh’g o h—h—1 145
hh'z — hh(Z;})h/— MUptlctipt2) q (145)
¢ (L) (Lc) Gy
00 M(()hD) (Mh—cz h—z thz—l h’—z—l) Mh’}g o h—h!
Vihz = Ahﬁh};};’ = ) q (146)

On the other hand the reduced density matrix of a single spin in A and B can be determined by
using the tripartition, Eq. (T7), and Eq. (67)

pa = ZA;SQL 10) 0] + Z (A 10 0T+ 6" ATy Y1) 14D)

pp = Z Af) 10} (0] +Z( PLAG) ey 1) (0] + " AQ L 9 (e (148
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where, using the definition reported in Eq. (67), the coefficients are

M(ED M (Lc+HLE+1)

(4) hO —h
(p) s Lc+lE+1)
A . M Y Mh—fl OE —h (150)
h(h+1 - M(ZDHCMEH) B
¢ bot+lp+1
e Moy S 151)
h(h—=1)(h—1) — MEpt+ct+in+2) 1 (
(Ep+ec+1) , ((£
A(B) MOhD c M( ) Y 152)
hhh M(6D+£c+£E+2) 1
(p+tc+1) (Z )
.A(B) MOh[ilC M y 1-h (153)
(h=1)h(h—1) — M<6D+ec+eE+2> 9
Up+Lo+1) 4 (L)
.A(B) o MOhD-i-l ¢ MhOE —h—1 (154)
(h+1)hh - MUptlot+lp+2) q

Colorless case. As done for Fredkin chain, let us consider for simplicity the colorless Motzkin
model (¢ = 1).

From Eq. (I38) we can derive the reduced density matrix for the joint system A U B after tracing
out the rest of the chain

B = VI ) I+ V1 [910) (h10] + V0 [0)1) (0[] + V5= (1910 (01 + [0)l4) {#1o] )
FVI L) (I + V2 [0)0) (OK0] + VA [ (et -+ V5 (1M (e + 11 (hicH )
V57 (1) COKOL + 10)10) (1G] ) + VX" (10)]0) (Wt + [4)11) (0K0] ) + VO [0)18) (Ol

+VY 110 (BI(0] + VX4 ( 0)[4) (UIC0] + [1)]0) (O(Y] ) + VR (U] (155)
where, denoting o, 0’ =1}, 0, |}, the coefficients are defined by

VT =Y v, (156)

hh'z

0

fozrh’z+1 s = VO (157)
VXél) V;I#’z—i—? hWz — VUTT (158)
D SRVAYTINNY TR (159)
VXég) = Z Vi%/gzvi??z’z+l = VUTT (160)

hh'z
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Choosing an opportune basis the reduced density matrix can be written as a block diagonal matrix
as follows

yit o 0 0 0 0 0 0 0
0 pm por g 0 0O 0 0 0
0 Yo yor o 0 0 0 0 0
0 0 0 ph ooyt o o 0
pap=1| 0 0 0 YO ypo pi o o o0 [, (161)
0 0 0 wHr pit Yt o o0 0
0 0 0 0 0 0 Yo plo g
0 0 0 0 0 (TR VA D Vi ()
0 0 0 0 0 0 0 0o pw

We verified that Tr(p4p) = 1. Now, together with the reduced density matrices for the single
spins on A and B

pa = A1) (1 +.A%10) (0] + AV |U) (Y] (162)
pr = BT ) (1] + B°(0) (0] + B [4) (U] (163)
where the coefficients, from Eqs. (I49)-(154), are
_ (4) _ (4) _ (4)
AT = Z Ah(h—i—l)h , A= Z A s AV = Z‘Ah(h—l)(h—l) ) (164)
h h h
B B B
B = Z‘Aghzl)h(h—l) , B'= ZA;S;J“ Bt = ZAgh}rl)hh' (165)
h h h

we can calculate the entanglement entropies and finally the mutual information, Zyp = S4 +
Sp — Sap, exactly. Examples for the exact mutual information shared by two spins in the bulk
have been given in Fig. [I0] where it is shown that it does not vanishes when the distance of the
spins in the bulk goes to zero but saturates at some values which increases going more deeply into
the bulk. Increasing the distances from the edges, /p and /g, we expected and verified that the

0.6 T T T T T T T T T ; 0.5

]
=l.=2 .
g D~'E e
0.5 Ip=lg=3 04 L ”'”.,,.,.,,
04} 1 Lt
3 03} .
2 03t =
C e 02}
02F % v T %o 0o 00 o oo ,
ol e e e e ] 01"
L L L L L L L L L L 0 L L L L
10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25
le Ip

Figure 10: (Left) Mutual information between two spins in the bulk of a colorless Motzkin chain
at distances {p = g = 1,2, 3 from the edges, as a function of the relative distance ¢¢; (Right)
Mutual information between two spins in the bulk as a function of the distance /p = ¢ from the
edges for colorless Motzkin chain with size L = 100.

probabilities in p op factorize
Voo — A°B7, (166)

and upon further increasing ¢p and ¢, very deeply in the bulk, they become homogeneous,
Yoo % and A° — %, B — % The eigenvalues of p 45, in this limit, become 1/3,2/9,2/9,
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1/9,1/9,0,0,0,0, getting for the entanglement entropy Sap — % log 3 — % log 2. As aresult the
asymptotic upper bound limit for the mutual information between two spins in the bulk is

1 4
IAB—>§log3+§log2. (167)

6.3 General results for any disjoint intervals

The physical explanation of what seen so far, at least for the colorless cases, is the following. Any
state defined on a segment of the chain [Py, (.)) can be defined by two quantum numbers:

i) the magnetization m = (h’ — h) (the number of up-spins minus the number of down-spins),

ii) the horizon z (the lowest level of the paths),

so that we can write [Py (»)) = |m, z). Considering the decomposition as depicted in Fig. 8| we
have that the ground state Eq. (I04) can be written schematically as

PP = 3" /A(m,z)|mp,0)|ma, za) Imc, 2¢) Imp, 28) Mg, 0) (168)
{m}{z}

where the sum is such that mp + m4 + mg + mp + mg = 0 and is restricted by the request
that for any set of magnetizations one has to get a Fredkin or a Motzkin path (therefore, mp has
to be non-negative, as well as any initial sums, for instance mp + m4 + .., while mg has to be
non-positive). The reduced density matrix of A U C' U B, after tracing over D and F is

pace = Trpg |PL) (PW)] (169)
= Z VA, 2)A(M', 2) |ma, za) Ime, z¢) [mp, z8) (M'y, 24| (MG, 26| (M, 25|
{m,m’}
{z,2'}

where the central magnetizations are restricted by

mc:—(mD+mE+mA+mB) (170)
me = — (mp + mg + m’y + mfp) (171)

therefore
<m/C7 Z/C ‘mC’; ZC> = 5(mj4+m’5),(mA+mB) 6z’c,zo (172)

namely, the overlap is one if the total magnetizations in A and B are the same. This constraint
implies that there are coherent terms in the reduced density matrix for A and B after integrating
over C'. As a result the reduced density matrix p4p can be written as a block diagonal matrix,
where each block is defined by a magnetization sector,

Vg

pAB = Ves—i (173)

V_y

S

The blocks V_; are square matrices defined by the maximum total magnetization
Bszmax(mA—i—mB):éA—i—éB (174)

and the index ¢ which runs differently for the integer or half-integer case, i.e. ¢ = 0,2,4,...,2/0s,
for the Fredkin model, and i = 0, 1,2, ..., 2¢s, for the Motzkin model, namely there are ({s + 1)
square blocks for the Fredkin case and (2¢s+1) blocks for the Motzkin one. The dimension of p4p

26



SciPost Physics

is [(la+1)(lp+1)] x [(£sa+1)(¢p + 1)] for the Fredkin model and [(2{4 + 1)(2¢p + 1)] X
[(204 + 1)(2¢p + 1)] for the Motzkin model.

The dimension of the blocks Vg and V_j is 1, while the dimensions of the other blocks are
larger for sectors with smaller modulus of the spin. In general terms, V,, is a d, X d,, matrix, with

> OUp+n—h]Op—n+h] (175)
h=—fa

where the sum runs over h with step 1 for the Motzkin and step 2 for the Fredkin, and O[n] = 1
for n > 0 and ©[n| = 0 otherwise. Defining

(fD)E(fA) (‘o) r\s) D(KE)
ymamsp h (h+ma) za 7 (h4+mp) (W'—mp) z = (h'—mp) k' zg — h'0 (176)
hWzazpz DUp+lat+lo+ip+in)

where Efl W defined by Eq. ( m for the colorless Fredkin model and

(eD) (La) (¢c) (¢B) (“e)
pmams_ Mon Ln(iima) za L tema) (v-mp) = (=m0 25 M0 (177)
hh'zazpz — M(€D+€A+€c+€B+ZE)

where ﬁ{zh’z defined by Eq. lb for the colorless Motzkin model, the diagonal and the off-
diagonal matrix elements of V,, with n = m4 + mp = m4 + mp, on the base of all possible
magnetization configurations {(m 4, mp)} are the following

v(mA,mB (ma,mp) _ Z Vl’:hf};ng’ (178)
hh' {2}
Y(mamp)@ams) — § \/VfThﬂiBz ymams (179)

hh'{z}

For /4, /5 <« {p, g one verifies that the matrix elements of the blocks lose their dependce on
{ and become

A)(¢B)n(la)n(¢B)
ma,Mmp) _y \/D Dm Dﬁ"A DrﬁB

(ma,mp)(
| 20atls (180)
for the Fredkin model, where
¢ 1
DY = <g+m> Pesm (181)
2
with p, = (1 — mod(n, 2)) which selects even integers, as introduced before, while
\/l\/l fA)M(KB)M KA)M(ZB)
p(ma,mp)(ma,mg) (182)

3la+ip

for the Motzkin model, where

0 _ % k \ (¢
M’ = > (ketlml ) (| ) P (183)

k=|m| 2

Notice that D(K) D;f,)z +m> for large h, namely for & > ¢, and, analogously, Mff) = ./\/l,(f% Lm

for h > ¢. Both quantities are the number of some lattice paths starting from (0, 0) and ending at
(¢, m) without constraints. One can verify that

V4

3 by =2 (184)
m=—/

0
S My =3 (185)
m=—s
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which are the numbers of all possible configurations of ¢ %—spins and ¢ 1-spins, respectively.
Remarkably, we find that all off-diagonal terms in each block are written in terms of the diagonal
probabilities, therefore these coherent terms persist for any set of distances. In particular, looking
at Egs. (I80), (I82), we notice that the blocks, identifying the magnetization sectors, deeply in the
bulk, become singular matrices, since any two rows or columns are equal except for a factor. As a
result only a single eigenvalue of a generic block V,, is not zero, therefore, it is given by

LA D(EA)D(ZB) D(ZS)
K2 n—u n

TrV, — Z - = (186)
i=—ly
for the Fredkin and ‘ (€a)pa(LB)
A Mz 4 Mn—Bi ME‘KS)
TrVn — Z 345 — SZS (187)
i=—L 4

for the Motzkin case. We have found therefore the non-zero (¢s + 1) eigenvalues of the reduced
density matrix p4p of AU B deep inside the bulk for the colorless Fredkin model and the non-zero
(2¢s + 1) eigenvalues of p4p for the colorless Motzkin model. As a result, the entropy, deeply
inside the bulk, becomes

s DSfS) Dgés)
Sap == D |5l | Sr (188)
n=—/g
for the Fredkin model, and
5 (€s) (€s)
M M,
Sap — — 35 log< 3% ) (189)
n=—/g

for the Motzkin one. As we will see these entropies are the same of those obtained for a single
subsystem of size {5 = {4 + {p.

Let us consider now the reduced density matrices of the two regions A and B, separately,
which are diagonal matrices with elements obtained by tripartition

Ala) 0 BUs) . 0
pa=| o [ es=00 D (190)
0 ... At 0 ... BGtB)
where
Up)(£a) lct+Hp+LlEr) Up+lat+le)~(UB) g)
- — Dlotlatlotlotls) - — DUpHlatlotls+in)
for the Fredkin model and
(tp) 1y (£4) (bc+lp+lg) Lp+La+e ¢ [
.A(m) o Z MOhD Mh}?—i-th-fm,OB " B(m) - Z M(()hDij+ C)Mgf% hMELOE)
- - MUp+eatlc+ip+iE) ’ - - MEp+at+lc+ip+Ep)
(192)

for the Motzkin model. Also in this case, for A and B very far apart from the edges, the coefficients
become

D(KA) D(KB)
A o B s (193)
M) M(5)
(m) m (m) _, m
AN — 3a) B\ — 3(05) (194)
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for the Fredkin and Motzkin cases respectively. As a result the entanglement entropies of the two
subsystems have the same form of Eqs. (I88) and (I89), namely

£a Dr(fA) D'(fA) ‘B DgB) D'(fB)
Sa—= > | S lel o || Seo - Xl | Sl (195)

n:—EA n:_lB
for the Fredkin model and
ly (€a) (€a) ‘B (¢B) (¢B)
M Mp My My
Sa— — E:e 37a 10g< 20 )] , Sp — — E:@ 375 log( 305 >] (196)
n=—~&a n=—/g

for the Motzkin model. We can easily calculate the mutual information, Zop = Sa 4+ Sp — Sap,
shared by two generic disjoint intervals A and B of sizes £ 4 and ¢, from Egs. and for
the colorless Fredkin model and from Egs. and for the colorless Motzkin model. Some
results for the mutual information for the two cases with disjoint regions of same sizes, /4 = £,
are plotted in Fig.[T1] For s = 2, namely for £4 = {5 = 1, one recovers the results in Egs.

and (167).

IAB

Motzkin
Fredkin

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Iy

Figure 11: Mutual information between two regions of spins deep inside the bulk of a colorless
Fredkin (red bottom line) and Motzkin (blue top line) chain as a function of the subsystem sizes

{4 = {p, obtained from Eqgs. (188)), (195) and Egs. (189)), (196).

We have shown that the entropy for A U B behave as if the two regions compose a single unit
subsystem of size ¢4 + ¢p, no matter how far the two regions are. The effect of the off-diagonal
coherent terms in the reduced density matrix is to glue together, through the central region, the
two subsystems.

As a final result, for £ > 1, approximating the binomial factors with a Gaussian distribution
and sums with integrals, we get

L RO (&)
Dy Dn 1 s
n=—/¢ L
_ ~ Llogt 4 1og 2,/ (198)
~ 3 og og 3

¢ Mg@) Mff)
-2 | lee | 5
therefore, the mutual information, Z4p = Sa + Sp — Sap, from Egs. (188), (193), (197) and

n=—/
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Egs. (189), (196)), (198)), becomes

1 EAKB ™ .
Tan~ =1 log (2,/X Fredk 199
a2 Y g (ofT). o
Tap ~ S1og (A8 {1og (2,/€7 (Motzkin) (200)
AB 508\ i, S\7V 73 )

for the Fredkin and the Motzkin spin chains respectively. These approximations are in perfect
agreement with the results reported in Fig. [[1] Surprisingly, the latter results for the mutual in-
formation have the same form of the logarithmic negativity and of the mutual information for
conformal field theories [25]] of two adjacent intervals.

7 Conclusions

In this paper we have shown that the ground states of the novel quantum spin models under study
exhibit a robust non-local behavior, the long-distance entanglement, in addition to violation of
cluster decomposition property which occurs mainly on the boundaries of the chains in their col-
orful versions. On the contrary the strong entanglement shared by any segments of the spin chains
survives at infinite distances either if the subsystems are located close to the edges or inside the
bulk. This anomalous behavior has not been observed previously in the continuum version of the
models [16] and, therefore, one should resort to an exact calculation in order to reveal it, taking
afterwards the continuum limit. This peculiar non-local behavior takes origine from the presence
of coherent terms in the reduced density matrix which do not vanish in the thermodynamic limit.
Intriguingly, we show that the mutual information of two disjoint subsystems inside the bulk of
these spin chains does not depend on their distance and has the same form of the logarithmic neg-
ativity and of the mutual information for conformal field theories of two adjacent subsystems in
an infinite system. This finding strengthens the belief that these models, which in spite of being
described by local short-range Hamiltonians show non-local behaviors, can be promising tools for
quantum information technologies.

References

[1] M. B. Hastings, Locality in Quantum and Markov Dynamics on Lattices and Networks, Phys.
Rev. Lett. 93, 140402 (2004) doi:10.1103/PhysRevLett.93.140402

[2] B. Nachtergaele and R. Sims, Lieb-Robinson Bounds and the Exponential Clustering Theo-
rem, Commun. Math. Phys. 265, 119 (2006) doi:10.1007/s00220-006-1556-1

[3] J. Eisert, M. Cramer, and M.B. Plenio, Area laws for the entanglement entropy - a review,
Rev. Mod. Phys. 82, 277 (2010) doi;10.1103/RevModPhys.82.277

[4] P. Calabrese and J. Cardy, Time Dependence of Correlation Functions Following a Quantum
Quench, Phys. Rev. Lett. 96, 136801 (2006) doi:10.1103/PhysRevLett.96.136801

[5] K. F. Thompson, C. Gokler, S. Lloyd, and P. W. Shor, Time independent universal com-
puting with spin chains: quantum plinko machine, New J. Phys. 18, 073044 (2016)
doi:10.1088/1367-2630/18/7/073044

[6] S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, and P. W. Shor, Criticality with-
out Frustration for Quantum Spin- I Chains, Phys. Rev. Lett. 109, 207202 (2012)
doi:10.1103/PhysRevLett.109.207202

30


http://dx.doi.org/10.1103/PhysRevLett.93.140402
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.96.136801
http://dx.doi.org/10.1088/1367-2630/18/7/073044
http://dx.doi.org/10.1103/PhysRevLett.109.207202

SciPost Physics

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

R. Movassagh and P. W. Shor, Supercritical entanglement in local systems: Counterexample
to the area law for quantum matter, PNAS 113, 13278 (2016) doi;10.1073/pnas.1605716113

R. Movassagh, Entanglement and correlation functions of the quantum Motzkin spin-chain,
J. Math. Phys. 58, 031901 (2017) doi:10.1063/1.4977829

L. Dell’ Anna, O. Salberger, L. Barbiero, A. Trombettoni, and V. Korepin, Violation of cluster
decomposition and absence of light cones in local integer and half-integer spin chains, Phys.

Rev. B 94, 155140 (2016) doi:10.1103/PhysRevB.94.155140

0. Salberger and V. Korepin, Entangled spin chain, Rev. Math. Phys. 29, 1750031 (2017)
doi:10.1142/S0129055X17500313

Z. Zhang, A. Ahmadain, and 1. Klich, Quantum phase transition from bounded to ex-
tensive entanglement entropy in a frustration-free spin chain, PNAS 114, 5142 (2017)
doi:10.1073/pnas.1702029114

O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, 1. Klich, and V. Korepin, Deformed Fred-
kin spin chain with extensive entanglement, J. Stat. Mech.: Theory Exp. 063103 (2017)
doi:10.1088/1742-5468/aabb1f

L. Levine and R. Movassagh, The gap of the area-weighted Motzkin spin chain is expo-
nentially small, J. Phys. A 50, 255302 (2017) doij10.1088/1751-8121/aa6bcc4| ; R. Movas-
sagh, The gap of Fredkin quantum spin chain is polynomially small, AMSA 4, 531 (2018)
doi:10.4310/AMSA.2018.v3.n2.a5

F. Sugino, P. Padmanabhan, Area law violations and quantum phase transitions in mod-
ified Motzkin walk spin chains, J. Stat. Mech. (2018) 013101 (2018) doi:10.1088/1742-
5468/aa9dcb

L. Barbiero, L. Dell’Anna, A. Trombettoni, V. Korepin, Haldane topological orders in
Motzkin spin chains, Phys. Rev. B 96, 180404(R) (2017) doii10.1103/PhysRevB.96.180404

X. Chen, E. Fradkin, W. Witczak-Krempa, Gapless quantum spin chains: multiple dynamics
and conformal wavefunctions, J. Phys. A: Math. Theor. 50 464002 (2017) doi:10.1088/1751-
8121/aa8dbc; Quantum spin chains with multiple dynamics, Phys. Rev. B 96, 180402 (2017)
doi:10.1103/PhysRevB.96.180402

F. Sugino, V. Korepin, Renyi entropy of highly entangled spin chains, Int. J. Mod. Phys. B
32, 1850306 (2018) doi:10.1142/S021797921850306X

K. Zyczkowski,P. Horodecki, A. Sanpera, M. Lewenstein, Volume of the set of separable
states, Phys. Rev. A 58 A 883 (1998) doi:10.1103/PhysRevA.58.883

G. Vidal, R. F. Werner, A computable measure of entanglement, Phys. Rev. A 65 032314
(2002) doi:10.1103/PhysRevA.65.032314

B. Groisman, S. Popescu, and A. Winter, Quantum, classical, and total amount of correla-
tions in a quantum state, Phys. Rev. A 72, 032317 (2005) doi:10.1103/PhysRevA.72.032317

M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Area laws in quantum sys-
tems: mutual information and correlations, Phys. Rev. Lett. 100, 070502 (2008)
doi:10.1103/PhysRevLett.100.070502

L. Campos Venuti, C. Degli Esposti Boschi, and M. Roncaglia, Long-distance entanglement
in spin systems, Phys. Rev. Lett. 96, 247206 (2006) doi;10.1103/PhysRevLett.96.247206

31


http://dx.doi.org/10.1073/pnas.1605716113
http://dx.doi.org/10.1063/1.4977829
http://dx.doi.org/10.1103/PhysRevB.94.155140
http://dx.doi.org/10.1142/S0129055X17500313
http://dx.doi.org/10.1073/pnas.1702029114
http://dx.doi.org/10.1088/1742-5468/aa6b1f
http://dx.doi.org/10.1088/1751-8121/aa6cc4
http://dx.doi.org/10.4310/AMSA.2018.v3.n2.a5
http://dx.doi.org/10.1088/1742-5468/aa9dcb
http://dx.doi.org/10.1088/1742-5468/aa9dcb
http://dx.doi.org/10.1103/PhysRevB.96.180404
http://dx.doi.org/10.1088/1751-8121/aa8dbc
http://dx.doi.org/10.1088/1751-8121/aa8dbc
http://dx.doi.org/10.1103/PhysRevB.96.180402
http://dx.doi.org/10.1142/S021797921850306X
http://dx.doi.org/10.1103/PhysRevA.58.883
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.72.032317
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.96.247206

SciPost Physics

[23] B. Chen, L. Chen, P.X. Hao, J. Long, On the mutual information in conformal field theory,
JHEP 06 096 (2017) doi:10.1007/JHEP06(2017)096

[24] P. Calabrese, J. Cardy, E. Tonni, Entanglement entropy of two disjoint intervals in con-

formal field theory II, J. Stat. Mech.: Theory Exp. P01021 (2011) doi:10.1088/1742-
5468/2011/01/P01021

[25] P. Calabrese, J. Cardy, E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev.
Lett. 109, 130502 (2012) doi;10.1103/PhysRevLett.109.130502

32


http://dx.doi.org/10.1007/JHEP06(2017)096
http://dx.doi.org/10.1088/1742-5468/2011/01/P01021
http://dx.doi.org/10.1088/1742-5468/2011/01/P01021
http://dx.doi.org/10.1103/PhysRevLett.109.130502

	Introduction
	Models
	Fredkin model
	Motzkin model

	Ground states
	Decomposition in two parts
	Decomposition in three parts

	Entanglement properties of the Fredkin chain
	Entanglement entropy
	Reduced density matrix for the edges
	Negativity
	Mutual Information
	Entanglement between the two couples of spins at the edges

	Entanglement properties of the Motzkin chain
	Entanglement entropy
	Reduced density matrix of the edges
	Negativity
	Mutual Information

	Entanglement properties in the bulk
	Fredkin model
	Motzkin model
	General results for any disjoint intervals

	Conclusions
	References

