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Abstract

We derive some entanglement properties of the ground states of two classes of quantum
spin chains described by the Fredkin model for half-integer spins and the Motzkin model
for integer ones. Since the ground states of the two models are known analytically, we
can calculate the entanglement entropy, the negativity and the quantum mutual informa-
tion exactly. We show, in particular, that these systems exhibit long-distance entanglement,
namely two disjoint regions of the chains remain entangled even when the separation is sent
to infinity, i.e. these systems are not affected by decoherence. This strongly entangled be-
havior is consistent with the violation of the cluster decomposition property occurring in
the case of colorful versions of the models (with spin larger than 1/2 or 1, respectively),
but is also verified for colorless cases (spin 1/2 and 1). Moreover we show that this be-
havior involves disjoint segments located both at the edges and in the bulk of the chains.
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1 Introduction

The study of nonlocal properties and their consequences on the dynamics in addition to the vio-
lation of the area law for the entanglement entropy are certainly, at the present date, a very chal-
lenging field of research. The concept of locality plays a crucial role in physical theories, with far
reaching consequences, a fundamental one being the cluster decomposition property [1, 2]. This
property implies that two-point connected correlation functions go to zero when the separation of
the points goes to infinity. This is the reason why two systems very far apart, separated by a large
distance, behave independently.

Another aspect related to correlations is the quantum entanglement. In bipartite systems the
von Neumann or entanglement entropy quantifies how the two parts of the whole system are en-
tangled. This quantity measures non-local quantum correlations and has universal properties, like
the fact that, for gapped systems, it scales with the area of the boundary of the two subsystems [3].
This property is called area law and is valid for systems with short-range interactions. In other
words, if the interactions are short-ranged the information among the constituents of the system
propagates with a finite speed involving a surface surrounding the source of the signal, like an elec-
tromagnetic impulse propagating with the speed of light. For critical 1-dimentional short-range
systems the area law is violated logarithmically [4]. Quantum spin chains are promising tools for
universal quantum computation [5] and the efficiency may be related to the amount of quantum
entanglement. Spin systems with entanglement entropy larger than that dictated by the area law
can be used for quantum computing even more efficiently, and breaking down the speed of the
propagation of the excitations can represent a breakthrough for quantum information processing.

Recently, novel quantum spin models have been introduced, with integer [6–8] (Motzkin
model) and half-integer [9, 10] spins (Fredkin model), which, in spite of being described by local
Hamiltonians, exhibit violation of the cluster decomposition property and of the area law for the
entanglement entropy, with the presence of anomalous and extremely fast propagation of the exci-
tations after driving the system out-of-equilibrium [9]. These models seem, therefore, extremely
promising for applications in quantum information and communication processes. Very recently,
also deformed versions of Motzkin [11] and of Fredkin [12] chains have been introduced and stud-
ied [13, 14], which can exhibit a quantum phase transition separating a phase with an extensively
entangled phase [11, 12] from a topological one [15].

Quite recently, it has been given also a continuum description for the ground-state wavefunc-
tions of those models, as originally formulated and in the colorless cases, which can reproduce
well some quantities like the local magnetization and the entanglement entropy, and whose scal-
ing Hamiltonian is not conformally invariant [16]. Some results on the Renyi entropy for these
models have been also reported [17].

In this work we focus on the study of quantum entanglement after the discovery that cluster
decomposition property in such systems can be violated [9]. This behavior occurs for colorful
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cases, when also the area law for the entanglement entropy is violated more than logarithmically,
and is more pronounced for correlation functions measured close to the edges of the chains. What
is presented here is the calculation of other entanglement measures, the quantum negativity [18,19]
and the mutual information [20, 21] shared by two disjoint segments of the chains in the ground
state. We show that such systems exhibit long-distance entanglement [22], namely given a measure
of entanglement, e.g. the mutual information, IAB for the system A ∪ B made by two disjoint
subsystemsA andB, the quantity IAB does not vanish when the distance betweenA andB goes to
infinity. For colorful cases this result is consistent with the fact that also the connected correlation
functions do not vanish in the thermodynamic limit [9], being the the mutual information an upper
bound for normalized connected correlators [21, 23].

Moreover we show that this non-vanishing mutual information, persisting for infinite dis-
tances, is verified not only when the cluster decomposition is violated (for colorful cases, where
the entanglement entropy scales as a square-root law) but also when the connected spin-correlators
go to zero (for colorless cases, where the entanglement entropy scales logarithmically). Finally,
contrary to what found in the continuum limit [16], this behavior occurs, and is even more pro-
nounced, also when the subsystems are located deep inside the bulk, showing a stronger entangle-
ment as compared to the one obtained in conformal field theories, where the mutual information
vanishes upon increasing the distance with a power law behavior [24]. On the other hand, quite
surprisingly, we show that the mutual information for two disjoint subsystems inside the bulk has
the same form of the logarithmic negativity and of the mutual information for conformal field
theories of two adjacent intervals [25].

2 Models

In this section we report the Hamiltonians for recently introduced half-integer and integer spin
models, called Fredkin and Motzkin models whose ground state is known exactly and has the
peculiarity of being related to some random lattice walks.

2.1 Fredkin model

The Fredkin model [9,10] is described by the following half-integer spin Hamiltonian H = H0 +
H∂ , with

H0 =

q∑
c,c̄=1

{ L−2∑
j=1

[
P
(∣∣Qcc̄↑j〉)+ P

(∣∣Qcc̄↓j〉) ]+

L−1∑
j=1

P
(∣∣Qcc̄0j〉)}+

q∑
c 6=c̄

L−1∑
j=1

P
(∣∣↑cj ↓c̄j+1

〉)
(1)

H∂ =

q∑
c=1

[P (|↓c1〉) + P (|↑cL〉)] (2)

composed by a bulk, H0, and a boundary, H∂ , Hamiltonians, where P(|.〉) = |.〉 〈.| is a projector
operator acting on quantum states made by local spin-states,

∣∣∣↑cj〉 located at site j with half-integer

spin along z-quantization axis sz =
(
c− 1

2

)
and

∣∣∣↓cj〉 with local half-integer spin sz =
(

1
2 − c

)
,

with c ∈ N and c = 1, . . . , q. The maximum value of the index c, namely q, is called the number
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of colors of the model. The quantum states appearing in Eq. (1) are defined as follows∣∣Qcc̄↑j〉 =
1√
2

(∣∣↑c̄j ↑cj+1 ↓cj+2

〉
−
∣∣↑cj ↓cj+1 ↑c̄j+2

〉)
(3)∣∣Qcc̄↓j〉 =

1√
2

(∣∣↓c̄j ↑cj+1 ↓cj+2

〉
−
∣∣↑cj ↓cj+1 ↓c̄j+2

〉)
(4)∣∣Qcc̄0j〉 =

1√
2

(∣∣↑cj ↓cj+1

〉
−
∣∣↑c̄j ↓c̄j+1

〉)
(5)

For colorless case, q = 1 (spin 1/2), we have that the third and the last term, so-called crossing
term, are not present. In such a case the bulk term terms of Pauli matrices

H0 =

L−2∑
j=1

[
(1 + σz,j)(1− ~σj+1 · ~σj+2) + (1− ~σj · ~σj+1)(1− σz,j+2)

]
(6)

In terms of Fredkin gates F̂ijk (controlled-swap operators), H0 =
∑L−2

j (2 − F̂j,j+1,j+2 −
σxj+2 F̂j+2,j+1,j σ

x
j+2), where F̂i,j,k acts on three 1

2 -spins (three qbits), swapping the j-th and k-th
if the i-th is in the state |↑〉 while does nothing if it is in the state |↓〉.

2.2 Motzkin model

The Motzkin model [6, 7] is described by the following integer spin Hamiltonian H = H0 + H∂

with

H0 =

q∑
c=1

L−1∑
j=1

{
P
(∣∣Qc⇑j〉)+ P

(∣∣Qc⇓j〉)+ P
(∣∣Qc0j〉)}+

q∑
c 6=c̄

L−1∑
j=1

P
(∣∣⇑cj⇓c̄j+1

〉)
(7)

H∂ =

q∑
c=1

[P (|⇓c1〉) + P (|⇑cL〉)] (8)

where now P(|.〉) = |.〉 〈.| acts on quantum states made by local integer spin-states,
∣∣∣⇑cj〉 located at

site j with integer spin sz = c and
∣∣∣⇓cj〉 with integer spin sz = −c, with, again, c = 1, . . . , q. Also

in this case, q is called the number of colors of the model and, in the Motzkin case, it correspond to
the maximum value of the spins. . The quantum states appearing in Eq. (1) are defined as follows∣∣Qc⇑j〉 =

1√
2

(∣∣0j ⇑cj+1

〉
−
∣∣⇑cj 0j+1

〉)
(9)∣∣Qc⇓j〉 =

1√
2

(∣∣0j ⇓cj+1

〉
−
∣∣⇓cj 0j+1

〉)
(10)∣∣Qc0j〉 =

1√
2

(
|0j0j+1〉 −

∣∣⇑cj⇓cj+1

〉)
(11)

Also in this case, for colorless case, q = 1 (spin 1), we have that the third and the last term are
absent.

3 Ground states

The most important property shared by these frustration-free Hamiltonians is that their ground
states are unique, made by uniform superpositions of all states corresponding to Motzkin paths,
for the integer case (for the Motzkin model) and all states corresponding to Dyck paths for the
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half-integer one (Fredkin model). This states are such that, denoting the spins up, ⇑, by /, the spins
down, ⇓, by \ and spins zero, 0, by −, one can construct a Motzkin path, while by using only / for
↑ and \ for ↓ one can construct a Dick path.
A Motzkin path is any path on a x-y plan connecting the origin (0, 0) to the point (0, L) with steps
(1, 0), (1, 1), (1,−1), where L is an integer number. Any point (x, y) of the path is such that x
and y are not negative.
Analogously, a Dyck path is any path from the point (0, 0) to (0, L) (L now should be an even
integer number) with steps (1, 1), (1,−1). As for the Motzkin path, any point (x, y) of the Dyck
path is such that x and y are not negative.
The corresponding colored path are such that the steps can be drawn with more than one color. The
color attached to a path move is taken freely only for upward steps (up-spins) while any downward
steps (down-spin) should have the same color of the nearest up-spin on the left-hand-side at the
same level. This color matching is induced by the cost energy contribution described by the last
term both in Eq. (1) and Eq. (7), which, in spite of being short-ranged, it produces non local effect
in the ground state.
As a result, a colorless Motzkin path |m(L)

p 〉 or Dyck path |d(L)
p 〉 can be defined as a string of L

spins (or steps) such that, starting from the left by convention, the sum of the spins contained in
any initial segment of the string is nonnegative, or alternatively, any initial segment contains at
least as many up-spins (upward steps) as down-spins (downward steps), while the sum of all the
L spins is zero (the total number of upward steps is equal to the number of downward steps). The
colorful Motzkin or Dyck paths are the paths where, in addition, the upward steps can be colored
at will while the colors of the downward steps are determined uniquely by the matching condition
(any spin down has the same color of the adjacent upward spin on the left-hand-side at the same
height). Examples of colored Motzkin and Dyck states are shown in Fig. 1.

Figure 1: An example of Dyck path (left panel) and of a Motzkin path (right panel) with q = 3
colors, which contribute to the ground states for the 3-color spin models, respectively, the spin-7

2
Fredkin model and the spin-3 Motzkin model.

The ground state of the Fredkin Hamiltonian is then obtained by a uniform superposition of all
possible Dyck paths for a given length L and a given number of colors q,

|P(L)〉=
1√
D(L)

∑
p

|d(L)
p 〉 (12)

where D(L) is the number of all possible colored Dick paths with q colors

D(L) = q
L
2 C

(
L

2

)
pL (13)

with C(n) = 2n!
n!(n+1)! the Catalan numbers and pn = (1−mod(n, 2)) selects even integers.

Analogously, the ground state of the Motzkin Hamiltonian is a uniform superpositions of all pos-
sible Motzkin paths

|P(L)〉=
1√
M(L)

∑
p

|m(L)
p 〉 (14)
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where, in the normalization factor,

M(L) =

bL
2
c∑

`=0

q`
(

L
2`

)
C(`) (15)

is the colored Motzkin number, i.e. the number of all the possible colored Motzkin paths. Because
of this mapping between the ground states and the lattice paths several ground state properties can
be studied exactly resorting to combinatorics.

3.1 Decomposition in two parts

The ground state for both the models can be written in terms of states defined on two subsystems,
A and B, as follows

|P(L)〉 =

hm∑
h=0

√
Ah

∑
c1,...,ch

|P(`A)
0h 〉c1,...,ch |P

(L−`A)
h0 〉ch,...,c1 (16)

where, hm = min(`A, L − `A) and Ah are some Schmidt coefficients depending of the number
of paths, whose expressions will be given in the next section for the two cases, in Eq. (19) for the
Fredkin model and Eq. (66) for the Motzkin one.
|P(`A)

0h 〉c1,...,ch is an orthonormal state defined on the subsystem A made by a uniform superposi-
tion of lattice paths (of the Motzkin or Dyck type) which start from the origin and reaching the
height h after `A steps, with therefore h unmatched up-spins with indices c1, ..., ch. Analogously,
|P(L−`A)
h0 〉c1,...,ch is an orthonormal state defined on the subsystem B made by a uniform super-

position of lattice paths (of the Motzkin or Dyck type) which start from the point (`A, h) and
reaching the ending point (L, 0) after `B = L = `A steps, with h unmatched down-spins with
indices c1, ..., ch.

3.2 Decomposition in three parts

Let us now divide our spin chains in three parts, a left and a right part, A and B, and a central part
C, see Fig 2. The ground state can decomposed in terms of states defined in these three regions as

Figure 2: Tripartition of a spin chain into subsystems A, B and C.

follows

|P(L)〉 =

hm∑
h=0

h′m∑
h′=0

min(h,h′)∑
z=0

√
Ahh′z

∑
c1,...,ch
c̄1,...,c̄h′

|P(`A)
0h 〉c1,...,ch |P

(L−`A−`B)
hh′(z) 〉 ch,...,c1

c̄1,...,c̄h′
|P(`B)
h′0 〉c̄h′ ,...,c̄1

(17)
with hm = min(`A, L− `A), h′m = min(`B, L− `B) and where |P(L−`A)

h0 〉c1,...,ch an orthonormal
state defined on the region A as before, namely as a uniform superposition of lattice paths starting
from the origin and ending at (`A, h) with h unmatched colored up-spins and |P(`B)

h′0 〉c̄h′ ,...,c̄1 a
uniform superposition of lattice paths defined on B, starting from the point (L − `B, h

′) and
ending at (L, 0) with h′ unmatched colored down-spins. Moreover

|P(L−`A−`B)
hh′(z) 〉 ch,...,c1

c̄1,...,c̄h′
= δc1c̄1 , . . . , δcz c̄z |P

(L−`A−`B)
h−z h′−z 〉 ch,...,cz+1

c̄z+1,...,c̄h′
(18)
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is the an orthonormal state composed uniformly by all the paths with (L− `A− `B) steps starting
at height h and ending at height h′, with (h− z) unmatched down-spins and (h′ − z) unmatched
up-spins, namely those paths which touch at most ones the horizontal line defined by z. In our
notation the indices in Eq. (18) for unmatched spins are useful also for colorless case to classify
the paths by the level z. Actually the minimum of the values of z which contribute to the sum
appearing in Eq. (17) is zmin = max

(
0, dh+h′−(L−`A−`B)

2 e
)
.

This horizontal quantity can be seen, therefore, as a quantum number classifying all the state
in the central region C, since for any z the states |P(L−`A−`B)

hh′(z) 〉 c1,...ch
c̄1,...c̄h′

are orthogonal to each

other simply because composed by local spin states express in the canonical orthogonal basis. An
example of this classification is shown in Fig. 3 for the Fredkin and the Motzkin case.

Figure 3: Examples of Dyck (left) and Motzkin (right) paths to be taken in a central region C
of length L − `A − `B = 7 after a tripartition, which start at height h = 2 and end at height
h′ = 3, classified by touching at least once the horizontal lines z. The solid blue lines are all those
which touch z = 2 that contribute to |P(7)

23 〉c̄3 , the dashed red lines are all the paths which touch
z = 1 that contribute to |P(7)

23 〉c2,c̄2,c̄3 , the dotted green lines are all those which touch z = 0 that
contribute to |P(7)

23 〉c1,c2,c̄1,c̄2,c̄3 .

4 Entanglement properties of the Fredkin chain

We will study the entanglement properties of the ground state for the Fredkin model, reviewing the
entanglement entropy after a bipartition, and then calculating the negativity and the mutual infor-
mation shared by the two spins at the edges resorting to the decomposition we obtained Eq. (17).
We will show that these quantities, particularly the mutual information, revel an unconventional
long-distance behavior. Before to proceed ne need to know the coefficient in Eq. (16) for the
Fredkin ground state decomposed in two parts , which is

Ah =
D(`A)

0h D
(L−`A)
h0 q−h

D(L)
(19)

and the coefficient in Eq. (17) after its decomposition into three parts, which reads

Ahh′z =
D(`A)

0h D
(`B)
h′0

(
D(L−`A−`B)
h−z h′−z −D(L−`A−`B)

h−z−1 h′−z−1

)
qz−h

′−h

D(L)
(20)

where

D(n)
hh′ = q

n+h′−h
2

[(
n

n+|h−h′|
2

)
−
(

n
n+h+h′

2 + 1

)]
pn+h+h′ (21)
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is the number of colored Dyck-like paths (q the number of colors) between two points at pos-
itive heights h and h′ with n steps. We assume D(n)

hh′ to be zero for negative h or h′ by defi-
nition. In particular we have D(n)

00 ≡ D(n) = q
n
2C
(
n
2

)
pn. Moreover we notice that D(n)

0h =

q
n+h
2

h+1
n+h
2

+1

(
n
n+h

2

)
pn+h = qhD(n)

h0 .

4.1 Entanglement entropy

In this section we will briefly review the calculation for the von Neumann entanglement entropy.
The reduced density matrix after a bipartition of the whole systems into two subsystems A and B,
after tracing out one of them, is obtained from Eq. (16)

ρA = TrB |P(L)〉 〈P(L)| =
hm∑
h

Ah
∑

c1,...,ch

|P(`A)
0h 〉c1,...,ch 〈P

(`A)
0h |c1,...,ch (22)

whereAh given by Eq. (19) therefore, since there are qh eigenvalues equal toAh, the entanglement
entropy is simply

SA = −
hm∑
h

qhAh log(Ah) =

hm∑
h

D(`A)
0h D

(L−`A)
h0

D(L)

[
h log q − log

(
D(`A)

0h D
(L−`A)
h0

D(L)

)]
(23)

Since qhAh =
D(`A)

0h D(L−`A)

h0

D(L) is a normalized probability,
∑

h q
hAh = 1, the first term of Eq. (23)

is log q times the average height of the paths at a given position located at distance `A from the
edge

〈h〉`A =
∑
h

h
D(`A)

0h D
(L−`A)
h0

D(L)
(24)

which, for large L and `A, when the binomial factors can be approximated by gaussian factors and

the sum by an integral, scales as a square root, 〈h〉`A '
2
√

2√
π

√
`A(L−`A)

L . The second term, instead

scales as 1
2 log

(
`A(L−`A)

L

)
, therefore, for large systems and for a sizable bipartition one gets

SA '
2
√

2√
π

√
`A(L− `A)

L
log q +

1

2
log

(
`A(L− `A)

L

)
+O(1). (25)

Notice that this approximation is very good when the bipartition occurs in the bulk while Eq. (23)
is exact for any `A and L. For instance, if `A = 1, the entanglement entropy, from Eq. (23), is
exactly SA = log q, for any L, while Eq. (25) deviates from it.

4.2 Reduced density matrix for the edges

Let us consider the system A∪B made by the two spins located at the edges of our spin chains, as
shown in Fig. 4. We will study the entanglement properties between these two spins at the edges
for the Fredkin spin chain by tracing out all the spins between the first and the last one described
by

|P(`A=1)
01 〉c = |↑c1〉 (26)

|P(`B=1)
10 〉c̄ = |↓c̄L〉 (27)

so that Eq. (17), dropping the site indices to simplify notation, reads

|P(L)〉 =
∑
c,c̄

|↑c〉
(√
A110|P(L−2)

11 〉c,c̄ + δcc̄
√
A111|P(L−2)〉

)
|↓c̄〉 (28)
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Figure 4: Tripartition of a spin chain in three subsystems A,B,C, where the separated regions, A
and B are made by single spins at the edges.

The joint reduced density matrix of the subsystem A ∪ B, after tracing out all the degrees of
freedom of the central part, and keeping only the two spins at the edges, is

ρAB = TrC |P(L)〉 〈P(L)| =
∑
c,c̄

(
A111 |↑c〉 |↓c〉 〈↑c̄| 〈↓c̄|+A110 |↑c〉 |↓c̄〉 〈↑c| 〈↓c̄|

)
(29)

where the coefficients, from Eq. (20), are

A111 =
D(L−2)

D(L)
(30)

A110 =
1

q

(
D(L−2)

11 −D(L−2)

D(L)

)
=

1

q

(
1

q
− D

(L−2)

D(L)

)
(31)

The normalization condition is fulfilled since the trace of ρAB is

TrρAB = qA111 + q2A110 = 1 (32)

On the basis
(
|↑1〉 |↓1〉 , |↑2〉 |↓2〉 , ... , |↑q〉 |↓q〉 , |↑1〉 |↓2〉 , |↑2〉 |↓1〉 , ... , |↑1〉 |↓q〉 , |↑q〉 |↓1〉 ,

|↑2〉 |↓3〉 , |↑3〉 |↓2〉 , ...
)t we can write the q2 × q2 reduced density matrix as follows

ρAB =

(
A111Jq×q +A110 1q×q 0q×(q2−q)

0(q2−q)×q A110 1(q2−q)×(q2−q)

)
(33)

where J is a matrix of all ones, 0 is a matrix of all zeros and 1 the identity matrix.

4.3 Negativity

We calculate now the quantum negativity which detects the entanglement between two disjoint
regions and can be defined as follows

N =
1

2

∑
α

(|λα| − λα) (34)

where λα are the eigenvalues of the partial transpose of the reduced density matrix with respect to
a region, say B, namely obtained when the indices related to the degrees of freedom of one part,
B, are transposed, which is

ρtBAB =
∑
c,c̄

(
A111 |↑c〉 |↓c̄〉 〈↑c̄| 〈↓c|+A110 |↑c〉 |↓c̄〉 〈↑c| 〈↓c̄|

)
(35)

Taking the same basis as for Eq. (33) the partial transpose of the reduced density matrix reads

ρtBAB =

(
(A111 +A110)1q×q 0q×(q2−q)

0(q2−q)×q A110 1 (q2−q)
2
× (q2−q)

2

⊗ A

)
(36)
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where the last block is a Kronecker product of an identity matrix and a 2× 2 matrix

A =

(
A110 A111

A111 A110

)
(37)

The eigenvalues of ρtBAB are (A111 +A110) with multiplicity q(q + 1)/2 and (A110 −A111) with
multiplicity q(q − 1)/2, therefore the negativity is greater than zero if A111 > A110, namely, if

q
D(L−2)

D(L)
=
C(L/2− 1)

C(L/2)
=

L+ 4

4(L− 1)
>

1

q + 1
(38)

which is verified for q ≥ 3, for any finite L. Therefore N = 0 for q ≤ 2 (and q = 3 in the limit
L→∞) while

N =
(q − 1)

2

(
(q + 1)

D(L−2)

D(L)
− 1

q

)
, for q ≥ 3. (39)

which, in the large L limit goes to

N −→
L→∞

(q − 1)(q − 3)

8q
. (40)

4.4 Mutual Information

The eigenvalues of the reduced density matrix ρAB , from Eq. (33), are (A110 + qA111) and A110,
the latter with multiplicity (q2 − 1), so that the entanglement entropy is

SAB = −(q2 − 1)A110 log (A110)− (A110 + qA111) log (A110 + qA111) (41)

withA111 andA110 given by Eqs. (30) and (31). On the other hand, from Eq. (19), sinceA1 = q−1

which is the eigenvalue of ρA (and ρB) with multiplicity q, we have

SA = SB = −qA1 log(A1) = log q (42)

We can, therefore calculate and study another entanglement measure which is the mutual informa-
tion

IAB = SA + SB − SAB (43)

as a function of the size L, being L − 2 the distance between the two disjoint spins in A and B,
and as a function the color number q.

Colorless case : For q = 1, we have SAB = 0 as well as SA = SB = 0, therefore IAB =
0 exactly, for any size of the chain L. This is due to the fact that the first and the last spins
of the colorless Fredkin model are uncorrelated in the ground state. For that reason one has to
increase the size of the subsystems A and B including further spins, as done in the next Sec. 4.5,
where we will consider two spins at each edge, revealing in this way that there is a long-distance
entanglement even for colorless case.

Colorful case : For colorful cases (q > 1) instead IAB turns to be finite also for large distances,
namely for large L � 1, as shown in Fig. (5). Actually we can calculate the limit of L → ∞,
since I can be written in terms of D

(L−2)

D(L) only and

lim
L→∞

D(L−2)

D(L)
=

1

4q
, (44)

10
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Figure 5: (Left) Mutual information between two spins at the edges of colorful Fredkin chains,
as a function of the size L, for different values of q. (Right) Mutual Information at long distance,
L → ∞, between two spins at the edges of colorful Fredkin chains, as a function of the color
number q.

where lim means the limit of a sequence, therefore A111 → 1
4q and A110 → 3

4q2
, so that

IAB −→
L→∞

[
2 log q +

(3 + q2)

4q2
log

(
3 + q2

4q2

)
+

3(q2 − 1)

4q2
log

(
3

4q2

)]
. (45)

We show therefore that the two spins located at the edges of the chain, even when the distance is
infinite, are strongly entangled for any q > 1. This behavior is consistent with the violation of the
cluster decomposition occurring in such colorful cases.

4.5 Entanglement between the two couples of spins at the edges

As we know, for the colorless case, the first and the last spins are completely uncorrelated in the
ground state, since for all the configurations of the spins in the bulk which contribute to the ground
state, the first spin is always up and the last is always down. For colorful case instead they are
correlated because of the color matching condition. For that reason we will consider more than
one spin at the edges, studying the entanglement properties of two couples of spins at the borders,
namely A and B made by two spins instead of one, as shown in Fig. 6.

Figure 6: Tripartition of a spin chain in three subsystems, where the separated regions at the edges,
A and B, are both made by two spins.

In this case, for any q the states at the edges are given by

|P(`A=2)
02 〉c1c2 = |↑c11 ↑

c2
2 〉 (46)

|P(`B=2)
20 〉c̄1c̄2 = |↓c̄1L−1↓

c̄2
L 〉 (47)

|P(`A=2)
00 〉 = |P(2)〉 =

∑
|↑c1 ↓c2〉 ≡ |↑ ↓〉 (48)

|P(`B=2)
00 〉 = |P(2)〉 =

∑
c

|↑cL−1↓cL〉 ≡ |↑ ↓〉 (49)

11
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so that, dropping the site indices to simplify the notation, Eq. (17) reads

|P(L)〉 =
√
A000 |↑ ↓〉 |P(L−4)〉 |↑ ↓〉+

√
A200

∑
c1,c2

|↑c1↑c2〉 |P(L−4)
20 〉c2c1 |↑ ↓〉 (50)

+
√
A020

∑
c̄1,c̄2

|↑ ↓〉 |P(L−4)
02 〉c̄1c̄2 |↓c̄2↓c̄1〉+

√
A220

∑
c1,c2
c̄1,c̄2

|↑c1↑c2〉 |P(L−4)
22 〉c2,c1

c̄1,c̄2
|↓c̄2↓c̄1〉

+
√
A221

∑
c1,c2,c̄2

|↑c1↑c2〉 |P(L−4)
11 〉c2,c̄2 |↓c̄2↓c1〉+

√
A222

∑
c1,c2

|↑c1↑c2〉 |P(L−4)〉 |↓c2↓c1〉

where the coefficients are

A000 =
(D(2))2D(L−4)

D(L)
= q2D(L−4)

D(L)
(51)

A200 =
D(2)D(L−4)

20

D(L)
= q
D(L−4)

20

D(L)
(52)

A020 =
1

q2

D(2)D(L−4)
02

D(L)
=

1

q

D(L−4)
02

D(L)
= A200 (53)

A220 =
1

q2

(
D(L−4)

22 −D(L−4)
11

D(L)

)
(54)

A221 =
1

q

(
D(L−4)

11 −D(L−4)

D(L)

)
(55)

A222 =
(D(2)

20 )2D(L−4)

D(L)
=
D(L−4)

D(L)
(56)

Let us now consider the colorless case (q = 1) for simplicity. The reduced density matrix of
A ∪B, after tracing out over the states of the central region, is

ρAB = A000 |↑↓〉 |↑↓〉 〈↑↓| 〈↑↓|+A200 |↑↑〉 |↑↓〉 〈↑↑| 〈↑↓|+A020 |↑↓〉 |↓↓〉 〈↑↓| 〈↓↓|
+
√
A000A222

(
|↑↓〉 |↑↓〉 〈↑↑| 〈↓↓|+ |↑↑〉 |↓↓〉 〈↑↓| 〈↑↓|

)
+ (A220 +A221 +A222) |↑↑〉 |↓↓〉 〈↑↑| 〈↓↓| (57)

where (A220 +A221 +A222) =
D(L−4)

22

D(L) and A000 = A222 = D(L−4)

D(L) .
On the basis (|↑↑〉 |↑↓〉 , |↑↓〉 |↑↓〉 , |↑↑〉 |↓↓〉 , |↑↓〉 |↓↓〉)t the reduced density matrix can be written
as

ρAB =
1

D(L)


D(L−4)

20 0 0 0

0 D(L−4) D(L−4) 0

0 D(L−4) D(L−4)
22 0

0 0 0 D(L−4)
02

 (58)

with D(L−4)
20 = D(L−4)

02 . Its partial transpose matrix with respect to B is

ρtBAB = A000 |↑↓〉 |↑↓〉 〈↑↓| 〈↑↓|+A200 |↑↑〉 |↑↓〉 〈↑↑| 〈↑↓|+A020 |↑↓〉 |↓↓〉 〈↑↓| 〈↓↓|
+
√
A000A222

(
|↑↓〉 |↓↓〉 〈↑↑| 〈↑↓|+ |↑↑〉 |↑↓〉 〈↑↓| 〈↓↓|

)
+ (A220 +A221 +A222) |↑↑〉 |↓↓〉 〈↑↑| 〈↓↓| (59)
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which, on the same basis of Eq. (58), reads

ρtBAB =
1

D(L)


D(L−4)

20 0 0 D(L−4)

0 D(L−4) 0 0

0 0 D(L−4)
22 0

D(L−4) 0 0 D(L−4)
02

 (60)

whose eigenvalues are D
(L−4)
22

D(L) , D
(L−4)

D(L) and D
(L−4)
20 ±D(L−4)

D(L) , and since D(2n)
20 ≥ D(2n), ∀n ≥ 1, the

negativity is zero, N = 0.
Tracing out the degrees of freedom of one of the two parts we get ρA = TrBρAB , or ρB = TrAρAB
which can be written as

ρA =
1

D(L)

(
D(L−4)

20 +D(L−4)
22 0

0 D(L−4) +D(L−4)
02

)
,

ρB =
1

D(L)

(
D(L−4) +D(L−4)

20 0

0 D(L−4)
02 +D(L−4)

22

)
. (61)

One can notice that D(L−4)
20 +D(L−4)

22 = D(L−2)
02 and D(L−4) +D(L−4)

02 = D(L−2), so that

ρA =
1

D(L)

(
D(L−2)

02 0

0 D(L−2)

)
, ρB =

1

D(L)

(
D(L−2) 0

0 D(L−2)
02

)
(62)

which are the matrices one can get after a bipartition of the system, from Eqs. (19), (22), with
`A = 2 (or `B = 2), since D(2)

02 = D(2) = 1. In the limit L→∞ the reduced density matrices in
Eqs. (60), (62) become

ρAB −→
L→∞

1

16


3 0 0 0
0 1 1 0
0 1 9 0
0 0 0 3

 (63)

whose eigenvalues are twice 3/16 and
(
5±
√

17
)
/16, and

ρA −→
L→∞

1

4

(
3 0
0 1

)
, ρB −→

L→∞

1

4

(
1 0
0 3

)
, (64)

Now one can easily calculate SAB , SA and SB , finding as a result, the large L limit of the mutual
information which is

IAB −→
L→∞

1

16

[
2
√

17 arcosh
(

5√
17

)
− 18 log 3 + 15 log 2

]
(65)

which is IAB ≈ 0.01745 using the natural logarithm. We have shown, therefore, that, even for the
colorless case, with the lowest value for the entanglement entropy, the mutual information, shared
by two couples of spins at the edges, does not go to zero but remain finite also for infinite distance.

5 Entanglement properties of the Motzkin chain

As done for the Fredkin model, we will study the entanglement properties of the Motzkin model
in the ground state, briefly reviewing the entanglement entropy after a bipartition, then calculating
the negativity and the mutual information shared by the two spins at the edges. We will show that

13
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also in this case the latter quantity reveals long-distance entanglement.
The coefficients in Eq. (16) for the ground state of the Motzkin chain, after a bipartition, are

Ah =
M(`A)

0h M
(L−`A)
h0 q−h

M(L)
(66)

while the coefficients in Eq. (17) after decomposing the state into three parts are

Ahh′z =
M(`A)

0h M
(`B)
h′0

(
M(L−`A−`B)

h−z h′−z −M(L−`A−`B)
h−z−1 h′−z−1

)
qz−h

′−h

M(L)
(67)

where

M(n)
hh′ =

bn−|h
′−h|
2

c∑
`=0

(
n

2`+ |h′ − h|

)
D(2`+|h′−h|)
hh′ (68)

is the number of colored Motzkin-like paths between two points at heights h and h′. Moreover

M(n)
0h = qhM(n)

h0 , and M(n)
00 ≡ M(n) =

∑bn
2
c

`=0 q
`

(
n
2`

)
C(`) which is the colored Motzkin

number.

5.1 Entanglement entropy

In this section we briefly review the calculation for the von Neumann entanglement entropy for the
Motzkin chain. The reduced density matrix after a bipartition of the system into two subsystems
A and B, after tracing out one of them, is obtained from Eq. (16) and has the same form reported
in Eq. (22) where now Ah is given by Eq. (66). Since ρA have qh eigenvalues equal to Ah, the
entanglement entropy reads as follows

SA = −
hm∑
h

qhAh log(Ah) =

hm∑
h

M(`A)
0h M

(L−`A)
h0

M(L)

[
h log q − log

(
M(`A)

0h M
(L−`A)
h0

M(L)

)]
(69)

Also in this case, since qhAh =
M(`A)

0h M(L−`A)

h0

M(L) is a normalized probability,
∑

h q
hAh = 1, the

first term of Eq. (69) is log q times the average height of the paths at a given position located at
distance `A from the edge

〈h〉`A =
∑
h

h
M(`A)

0h M
(L−`A)
h0

M(L)
(70)

which, for largeL and `A, scales as a square root, 〈h〉`A '
2
√

2σ√
π

√
`A(L−`A)

L , with σ = 2
√
q/(2
√
q+

1). The second term, instead, scales as 1
2 log

(
`A(L−`A)

L

)
, therefore, for large systems and for a

sizable bipartition one gets

SA '
2
√

2σ√
π

√
`A(L− `A)

L
log q +

1

2
log

(
`A(L− `A)

L

)
+O(1). (71)

As for the Fredkin case, this approximation is very good when the bipartition occurs in the bulk
while Eq. (69) is exact for any `A and L.

14
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5.2 Reduced density matrix of the edges

Let us consider the system A ∪ B made by the two spins located at the edges of our spin chains,
as shown in Fig. 4, and study the entanglement properties between these two spins at the edges of
a Motzkin spin chain by tracing out all the spins between the first and the last one described by

|P(`A=1)
01 〉c = |⇑c1〉 (72)

|P(`B=1)
10 〉c̄ = |⇓c̄L〉 (73)

|P(`A=1)
00 〉 = |P(1)〉 = |01〉 (74)

|P(`B=1)
00 〉 = |P(1)〉 = |0L〉 (75)

so that Eq. (17), dropping the site indices to simplify the notation, reads

|P(L)〉 =
√
A000 |0〉 |P(L−2)〉 |0〉+

√
A100

∑
c

|⇑c〉 |P(L−2)
10 〉c |0〉+

√
A010

∑
c̄

|0〉 |P(L−2)
01 〉c̄ |⇓c̄〉

+
√
A110

∑
c,c̄

|⇑c〉 |P(L−2)
11 〉c,c̄ |⇓c̄〉+

√
A111

∑
c

|⇑c〉 |P(L−2)〉 |⇓c〉 (76)

The joint reduced density matrix of A ∪ B, after tracing out all the degrees of freedom of the
central part C (see Fig. 4) and keeping only the two spins at the edges, is

ρAB = A000 |0〉 |0〉 〈0| 〈0|+A100

∑
c

|⇑c〉 |0〉 〈⇑c| 〈0|+A010

∑
c

|0〉 |⇓c〉 〈0| 〈⇓c|

+A110

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c| 〈⇓c̄|+A111

∑
c,c̄

|⇑c〉 |⇓c〉 〈⇑c̄| 〈⇓c̄|

+
√
A000A111

∑
c

(
|0〉 |0〉 〈⇑c| 〈⇓c|+ |⇑c〉 |⇓c〉 〈0| 〈0|

)
(77)

where the Schmidt coefficients are given by

A000 =
M(L−2)

M(L)
= A111 (78)

A010 =
1

q

M(L−2)
01

M(L)
(79)

A100 =
M(L−2)

10

M(L)
= A010 (80)

A110 =
1

q

(
M(L−2)

11 −M(L−2)

M(L)

)
(81)

One can verify that the trace of ρAB is one,

TrρAB = A000 + q (A100 +A010 +A111) + q2A110

=
1

M(L)

(
M(L−2) +M(L−2)

01 + qM(L−2)
10 + qM(L−2)

11

)
= 1 (82)

Writing ρAB on the basis
(
|0〉 |0〉 , |⇑1〉 |⇓1〉 , ... , |⇑q〉 |⇓q〉 , |0〉 |⇓1〉 , ... , |0〉 |⇓q〉 , |⇑1〉 |0〉 , ... ,

|⇑q〉 |0〉 , |⇑1〉 |⇓2〉 , |⇑2〉 |⇓1〉 , ...
)t we get

ρAB =


A000

√
A000A111J1×q 01×q 01×q 01×(q2−q)√

A000A111Jq×1 A111Jq×q +A1101q×q 0q×q 0q×q 0q×(q2−q)
0q×1 0q×q A1001q×q 0q×q 0q×(q2−q)
0q×1 0q×q 0q×q A0101q×q 0q×(q2−q)

0(q2−q)×1 0(q2−q)×q 0(q2−q)×q 0(q2−q)×q A1101(q2−q)×(q2−q)


(83)
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5.3 Negativity

We can calculate the negativity defined as in Eq. (34) where now λα are the eigenvalues of the
partial transpose of the reduced density matrix with respect to B

ρtBAB = A000 |0〉 |0〉 〈0| 〈0|+A100

∑
c

|⇑c〉 |0〉 〈⇑c| 〈0|+A010

∑
c

|0〉 |⇓c〉 〈0| 〈⇓c|

+A110

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c| 〈⇓c̄|+A111

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c̄| 〈⇓c|

+
√
A000A111

∑
c

(
|0〉 |⇓c〉 〈⇑c| 〈0|+ |⇑c〉 |0〉 〈0| 〈⇓c|

)
(84)

Expressing this matrix on the same basis of Eq. (83) we can write

ρtBAB =


A000 01×q 01×q 01×q 01×(q2−q)
0q×1 (A111 +A110)1q×q 0q×q 0q×q 0q×(q2−q)
0q×1 0q×q A1001q×q

√
A000A111 1q×q 0q×(q2−q)

0q×1 0q×q
√
A000A111 1q×q A0101q×q 0q×(q2−q)

0(q2−q)×1 0(q2−q)×q 0(q2−q)×q 0(q2−q)×q 1 (q2−q)
2
× (q2−q)

2

⊗ A


(85)

where the last block on the bottom-right corner is a Kronecker product of an identity matrix and a
2× 2 matrix

A =

(
A110 A111

A111 A110

)
(86)

where, according to Eqs. (78-80), A111 = A000 and A100 = A010. The eigenvalues of ρtBAB are
A000 with multiplicity one, (A000 +A110) with multiplicity q, (A100 +A000) with multiplicity q,
(A100−A000) with multiplicity q, (A110 +A000) with multiplicity q(q−1)/2 and (A110−A000)
with multiplicity q(q − 1)/2.
Since A100 ≥ A000, namely Mn

10 ≥ Mn, ∀n ≥ 1, the only possibility for having a negativity
greater than zero is when A000 > A110, which occurs for

q >

(
M(L−2)

11

M(L−2)
− 1

)
−→
L→∞

3 (87)

Notice that even ifM(L−2)
11 andM(L−2) depend on q (see. Eqs. (21), (68), (15)) their ratio, in the

limit L→∞, goes to 4 from below for any q. As a result, for any finite L, we have

N =
(q − 1)

2

(
(q + 1)

M(L−2)

M(L)
− M

(L−2)
11

M(L)

)
, for q ≥ 3. (88)

and N = 0 otherwise (q = 1, 2), as in the case of the Fredkin model. For L � 1, we have that
M(L−2)

11 → 4M(L−2) for any q so that Eq. (88) becomes

N −→
L�1

(q − 1)(q − 3)

2

M(L−2)

M(L)
. (89)

5.4 Mutual Information

The eigenvalues of the reduced density matrix, Eq. (83), are

λ± =
1

2

[
A110 + (q + 1)A000 ±

√
(A110)2 + 2(q − 1)A000A110 + (q + 1)2(A000)2

]
(90)
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together withA000 with multiplicity (q− 1),A100 with multiplicity 2q andA110 with multiplicity
(q2 − q). The entanglement entropy SAB is, therefore,

SAB = −
[
λ+ log(λ+)+λ− log(λ−)+(q−1)A000 log(A000)+2qA100 log(A100)+(q2−q)A110 log(A110)

]
(91)

with A000 as in Eq. (78), A100 in Eq. (80) and A110 in Eq. (81). On the other hand

SA = SB = −
[
A0 log(A0) + qA1 log(A1)

]
(92)

with the coefficients

A0 =
M(L−1)

M(L)
, A1 =

M(L−1)
10

M(L)
(93)

fulfilling A0 + qA1 = 1. The mutual information that we report here for convenience

IAB = SA + SB − SAB (94)

can be calculated for any value of L and q through Eqs. (90), (91) and (92). For some values of q,
IAB is plotted in Fig. 7 (left panel). As one can see increasing L the mutual information goes to
some asymptotic value which depends on q. The asymptotic values of IAB have been calculated
and show in Fig. 7 (right panel) for several values of q.
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Figure 7: (Left) Mutual information between two spins at the edges of colorful Motzkin chains,
as a function of the size L, for different values of q. (Right) Mutual information at long distance,
L → ∞ between two spins at the edges of colorful Motzkin chains, as a function of the color
number q.

Colorless case : Let us focus on the simplest case q = 1, in the long distance limit L→∞. The
reduced density matrix, Eq. (83), becomes simply

ρAB −→
L→∞

1

9


1 1 0 0
1 4 0 0
0 0 2 0
0 0 0 2

 (95)

whose eigenvalues are twice 2/9 and
(
5±
√

13
)
/18. Summing over the right or left spin degrees

of freedom we get

ρA = ρB −→
L→∞

1

3

(
1 0
0 2

)
, (96)
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so that the mutual information is given by

IAB −→
L→∞

1

18

[
2
√

13 arcosh
(

5√
13

)
− 16 log 2 + 5 log 3

]
(97)

which is IAB ≈ 0.05361, in natural logarithm, as shown in Fig. 7.

Colorful case : Here we derive an explicit expression for the asymptotic value of IAB as a
function of q. For a generic q we can simplify the expression for IAB , in the limit L → ∞,
writing it in terms of only one colored Motzkin ratio

Fq ≡ lim
L→∞

A0 = lim
L→∞

M(L−1)

M(L)
= lim

L→∞

2F1

(
1−L

2 , 2−L
2 , 2, 4q

)
2F1

(−L
2 , 1−L

2 , 2, 4q
) (98)

since A1 = (1−A0)/q and, from Eqs. (78)-(81),

lim
L→∞

A000 = F2
q (99)

lim
L→∞

A100 =
2
√
q
F2
q (100)

lim
L→∞

A110 =
3

q
F2
q (101)

where we recognize thatM(L) in Eq. (15) can be seen as 2F1(−L2 , 1−L
2 , 2, 4q), an hypergeometric

serie reduced to a polynomial since at least one on the first two arguments is a nonpositive integer
number. Substituting these values in Eq. (90) we get

Λ±q ≡ lim
L→∞

λ± =
F2
q

2q

(
q2 + q + 3±

√
q4 + 2q3 + 7q2 − 6q + 9

)
(102)

and, from Eqs. (91), (92) we get, for the mutual information, the following asymptotic exact
expression

IAB −→
L→∞

[
2(Fq − 1) log

(
1−Fq
q

)
− 2Fq logFq + 2F2

q (q − 1) logFq

+3F2
q (q − 1) log

(
3F2

q

q

)
+4F2

q

√
q log

(
2F2

q√
q

)
+ Λ+

q log Λ+
q + Λ−q log Λ−q

]
(103)

The result is, therefore, that the mutual information shared by the two disjoint spins at the edges is
always finite, even when the separation is sent to infinity, also for the colorless case which, from
the point of view of the entanglement entropy resembles a critical system.

6 Entanglement properties in the bulk

Let us generalize what seen so far considering two disjoint subsystems also in the bulk. This
requires to divide our system in five subsystems with different lengths such that L = `A + `B +
`C + `D + `E , as shown in Fig. 8, and the ground state has to be decomposed in five parts

|P(L)〉 =
∑

h1h2h3h4
z1z2z3

√
Ah1h2h3h4

z1z2z3

∑
c1... ch1
c̄1... c̄h2

∑
c̃1... c̃h3
ĉ1... ĉh4

|P(`D)
0h1
〉c1,...,ch1 |P

(`A)
h1h2(z1)〉ch1 ,...,c1

c̄1,...,c̄h2

|P(`C)
h2h3(z2)〉c̄h2 ,...,c̄1

c̃1,...,c̃h3

|P(`B)
h3h4(z3)〉 c̃h3 ,...,c̃1

ĉ1,...,ĉh4

|P(`E)
h40 〉ĉh4 ,...,ĉ1 (104)
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Figure 8: Pentapartition of a spin chain into subsystems A, B, C, D, E.

where the states located in each region is defined as before, see Eq. (18), and the coefficients de-
pend on the model.

6.1 Fredkin model

For the half-integer spin model the coefficients appearing in Eq. (104) are the following

Ah1h2h3h4
z1z2z3

=
D(`D)

0h1
L(`A)
h1h2z1

L(`C)
h2h3z2

L(`B)
h3h4z3

D(`E)
h40

D(L)
qz1+z2+z3−(h1+h2+h3+h4) (105)

where
L(`)
hihjz

=
(
D(`)
hi−z hj−z −D

(`)
hi−z−1hj−z−1

)
(106)

Let us consider the case where both in A and B there is only a single spin (`A = `B = 1).
In this case, using the definition given in Eq. (18) and remembering that non-zero contributions
|P(`)
hihj(zi)

〉 come from

max (0, d(hi + hj − `)/2e) ≤ zi ≤ min(hi, hj) (107)

and that the difference of the heights is limited by `, namely |hi − hj | ≤ `, we have only the
following possibilities for the states defined in A and B

|P(`A=1)
h1 h1+1(z1)〉 ch1 ,...,c1

c̄1,...,c̄(h1+1)

= |↑c̄(h1+1)〉 δz1h1 δc1,c̄1 . . . δch1 ,c̄h1 (108)

|P(`A=1)
h1 h1−1(z1)〉 ch1 ,...,c1

c̄1,...,c̄(h1−1)

= |↓ch1 〉 δz1,h1−1 δc1,c̄1 . . . δc(h1−1),c̄(h1−1)
(109)

|P(`B=1)
h4−1h4(z3)〉c̃(h4−1),...,c̃1

ĉ1,...,ĉh4

= |↑ĉh4 〉 δz3,h4−1 δc̃1,ĉ1 . . . δc̃(h4−1),ĉ(h4−1)
(110)

|P(`B=1)
h4+1h4(z3)〉c̃(h4+1),...,c̃1

ĉ1,...,ĉh4

= |↓c̃(h4+1)〉 δz3h4 δc̃1,ĉ1 . . . δc̃h4 ,ĉh4 (111)

Eq. (109) is null for h1 = 0 and Eq. (111) if h4 = 0, however the coefficients in Eq. (104) take
into account these possibilities when some heights in the argument of the Dyck numbers become
negative. Calling h = h1, h′ = h4, z = z2 and the residual spin indices c̄ = c̄(h+1) and c̃ = c̃(h′+1)

to simplify the notation, the ground state can be written as

|P(L)〉 =
∑
hh′z

∑
c1... ch
ĉ1... ĉh′

|P(`D)
0h 〉c1,...,ch

[∑
c̄

√
V↑↑hh′z |↑

c̄〉 |P(`C)
h+1h′−1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉ(h′−1)

|↑ĉh′ 〉

+
∑
c̄,c̃

√
V↑↓hh′z |↑

c̄〉 |P(`C)
h+1h′+1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉh′ ,c̃
|↓c̃〉+

√
V↓↑hh′z |↓

ch〉 |P(`C)
h−1h′−1 (z)〉 c(h−1),...,c1

ĉ1,...,ĉ(h′−1)

|↑ĉh′ 〉

+
∑
c̃

√
V↓↓hh′z |↓

ch〉 |P(`C)
h−1h′+1 (z)〉c(h−1),...,c1

ĉ1,...,ĉh′ ,c̃
|↓c̃〉

]
|P(`E)
h′0 〉ĉh′ ,...,ĉ1 (112)
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where, from Eq. (105) and L(1)
hh+1 = D(1)

01 = q together with L(1)
hh−1 = D(1)

10 = 1, we have

V↑↑hh′z = Ah(h+1)(h′−1)h′

hz(h′−1)

=
D(`D)

0h

(
D(`C)
h−z+1 h′−z−1 −D

(`C)
h−z h′−z−2

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′+1 (113)

V↑↓hh′z = Ah(h+1)(h′+1)h′

hzh′
=
D(`D)

0h

(
D(`C)
h−z+1 h′−z+1 −D

(`C)
h−z h′−z

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′−1 (114)

V↓↑hh′z = Ah(h−1)(h′−1)h′

(h−1)z(h′−1)

=
D(`D)

0h

(
D(`C)
h−z−1 h′−z−1 −D

(`C)
h−z−2 h′−z−2

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′+1(115)

V↓↓hh′z = Ah(h−1)(h′+1)h′

(h−1)zh′
=
D(`D)

0h

(
D(`C)
h−z−1 h′−z+1 −D

(`C)
h−z−2 h′−z

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′−1 (116)

and where the sums over h is limited by min(`D, L − `D), the sums over h′ is limited by
min(`E , L − `E) and the sum over z is defined differently for the four terms according to the
different heights of the borders of the central region as given by Eq. (107), where zi = z, ` = `C ,
hi = h± 1 and hj = h′ ± 1. More importantly, we notice that in Eq. (112), for any z, the central
states in the first and in the last term are orthogonal to any other while the central states in the sec-
ond and third term can overlap, more explicitly any (z + 2)-th state of the second term coincides
with the z-th state of the third term. This overlaps cause the coherent terms in the reduced density
matrix ρAB .
In order to calculate the mutual information between A and B we have to calculate also ρA and
ρB . This can be done using the tripartition, Eq. (17) and Eq. (20)

ρA =
∑
h c

(
qhA(A)

h(h+1)h |↑
c〉 〈↑c|+ qh−1A(A)

h(h−1)(h−1) |↓
c〉 〈↓c|

)
(117)

ρB =
∑
h c

(
qh−1A(B)

(h−1)h(h−1) |↑
c〉 〈↑c|+ qhA(B)

(h+1)hh |↓
c〉 〈↓c|

)
(118)

where, using the same notation of Eq. (20),

A(A)
h(h+1)h =

D(`D)
0h D

(`C+`E+1)
h+1,0

D(`D+`C+`E+2)
q−h (119)

A(A)
h(h−1)(h−1) =

D(`D)
0h D

(`C+`E+1)
h−1,0

D(`D+`C+`E+2)
q−h (120)

A(B)
(h−1)h(h−1) =

D(`D+`C+1)
0h−1 D(`E)

h0

D(`D+`C+`E+2)
q1−h (121)

A(B)
(h+1)hh =

D(`D+`C+1)
0h+1 D(`E)

h0

D(`D+`C+`E+2)
q−h−1 (122)

Colorless case. Let us consider for simplicity the colorless case (q = 1).
From Eq. (112) we can derive the reduced density matrix for the joint system A ∪B after tracing
out the rest of the chain

ρAB = V↑↑ |↑〉|↑〉 〈↑|〈↑|+ V↑↓ |↑〉|↓〉 〈↑|〈↓|+ V↓↑ |↓〉|↑〉 〈↓|〈↑|+ V↓↓ |↓〉|↓〉 〈↓|〈↓| (123)

+VX
(
|↓〉|↑〉 〈↑|〈↓|+ |↑〉|↓〉 〈↓|〈↑|

)
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which, on the basis (|↑〉 |↑〉 , |↑〉 |↓〉 , |↓〉 |↑〉 , |↓〉 |↓〉)t, can be written as

ρAB =


V↑↑ 0 0 0
0 V↑↓ VX 0
0 VX V↓↑ 0
0 0 0 V↓↓

 , (124)

where the coefficients, from Eqs. (113)-(116), are

V↑↑ =
∑
hh′z

V↑↑hh′z , V↑↓ =
∑
hh′z

V↑↓hh′z , V↓↑ =
∑
hh′z

V↓↑hh′z , V↓↓ =
∑
hh′z

V↓↓hh′z (125)

and the crossing term which actually causes coherence and long-distance entanglement between
the spins

VX =
∑
hh′z

√
V↑↓hh′z+2 V

↓↑
hh′z =

∑
hh′z

V↓↑hh′z = V↓↑ (126)

One can verify through Eqs. (113)-(116) that

Tr(ρAB) = V↑↑ + V↑↓ + V↓↑ + V↓↓ = 1. (127)

Eq. (123) is actually the generalization of Eq. (57) and reduces to it for `D = `E = 1 since the
first and he last spins are fixed to be up and down respectively. The eigenvalues of ρAB are V↑↑,
V↓↓, and

V± ≡ 1

2

(
V↑↓ + V↓↑ ±

√
4(VX)2 + (V↑↓ − V↓↑)2

)
. (128)

Together with the following reduced density matrices for the regions A and B

ρA = A↑ |↑〉 〈↑|+A↓ |↓〉 〈↓| (129)

ρB = B↑ |↑〉 〈↑|+ B↓ |↓〉 〈↓| (130)

where the coefficients, from Eqs. (119)-(122), are

A↑ =
∑
h

A(A)
h(h+1)h , A↓ =

∑
h

A(A)
h(h−1)(h−1) , B↑ =

∑
h

A(B)
(h−1)h(h−1) , B↓ =

∑
h

A(B)
(h+1)hh

(131)
we can calculate the entanglement entropies and then the mutual information, IAB = SA + SB −
SAB , exactly from Eqs. (113)-(116), (119)-(122), (125), (126), (128), (164), which is

IAB = V↑↑ logV↑↑+V↓↓ logV↓↓+V+ logV++V− logV−−A↑ logA↑−A↓ logA↓−B↑ logB↑−B↓ logB↓
(132)

Explicit calculation shows that also for very large system size L the mutual information between
two spins also in the bulk does not vanishes, as depicted in the left panel of Fig. 9. Actually, its
asymptotic value increases when considering two spins more deeply in the bulk (see right panel of
Fig. 9. Actually we expected and verified that increasing `D and `E , so going more deeply in the
bulk, the probabilities of getting ↑ and ↑ (V↑↑) or ↑ and ↓ (V↑↓) or ↓ and ↑ (V↓↑) or finally ↓ and ↓
(V↓↓) should become the same and equal to 1/4, since also the probabilities of having one spin ↑
or ↓ both in A and B should be 1/2. This means that

ρAB →
1

4


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 , ρA →
1

2

(
1 0
0 1

)
, ρB →

1

2

(
1 0
0 1

)
, (133)
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Figure 9: (Left) Mutual information between two spins in the bulk of a colorless Fredkin chain at
distances `D = `E = 6, 10, 20 from the edges, as a function of the relative distance `C ; (Right)
Mutual information between two spins in the bulk as a function of the distance `D = `E from the
edges for colorless Fredkin chain with size L = 1000.

and consequently, for large system size L and for `D, `E � 1, completely in the bulk,

IAB →
1

2
log 2 (134)

which is also the same value, IAB ≈ 0.35, obtained for `C = 0 and `D, `E � 1, as shown by the
first points in the left panel of Fig. 9). Eq. (134) is actually the asymptotic value of the curve in
the right panel of Fig. 9.

6.2 Motzkin model

For the integer spin model the coefficients appearing in Eq. (104) are the following

Ah1h2h3h4
z1z2z3

=
M(`D)

0h1
L(`A)
h1h2z1

L(`C)
h2h3z2

L(`B)
h3h4z3

M(`E)
h40

M(L)
qz1+z2+z3−(h1+h2+h3+h4) (135)

where
L(`)
hihjz

=
(
M(`)

hi−z hj−z −M
(`)
hi−z−1hj−z−1

)
(136)

As done for the Fredkin chain, let us consider the case where in A and B there are only a single
spin (`A = `B = 1). Proceeding analogously as done for the half-integer case, using Eq. (104) we
get, for the ground state of the Motzkin model, the following decomposition

|P(L)〉 =
∑
hh′z

∑
c1... ch
ĉ1... ĉh′

|P(`D)
0h 〉c1,...,ch

[∑
c̄

√
V⇑⇑hh′z |⇑

c̄〉 |P(`C)
h+1h′−1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉 (137)

+
∑
c̄,c̃

√
V⇑⇓hh′z |⇑

c̄〉 |P(`C)
h+1h′+1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉh′ ,c̃
|⇓c̃〉+

√
V⇓⇑hh′z |⇓

ch〉 |P(`C)
h−1h′−1 (z)〉 c(h−1),...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉

+
∑
c̃

√
V⇓⇓hh′z |⇓

ch〉 |P(`C)
h−1h′+1 (z)〉c(h−1),...,c1

ĉ1,...,ĉh′ ,c̃
|⇓c̃〉+

∑
c̄

√
V⇑0
hh′z |⇑

c̄〉 |P(`C)
h+1h′ (z)〉c̄ ,ch,...,c1

ĉ1,...,ĉh′
|0〉

+

√
V⇓0
hh′z |⇓

ch〉 |P(`C)
h−1h′ (z)〉c(h−1),...,c1

ĉ1,...,ĉh′
|0〉+

√
V0⇑
hh′z |0〉 |P

(`C)
hh′−1 (z)〉 ch,...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉

+
∑
c̃

√
V0⇓
hh′z |0〉 |P

(`C)
hh′+1 (z)〉 ch,...,c1ĉ1,...,ĉh′ ,c̃

|⇓c̃〉+
√
V00
hh′z |0〉 |P

(`C)
hh′ (z)〉 ch,...,c1ĉ1,...,ĉh′

|0〉
]
|P(`E)
h′0 〉ĉh′ ,...,ĉ1
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where the coefficients, according to Eq. (135), since L(1)
hh+1 = M(1)

01 = q and L(1)
hh = M(1)

00 =

L(1)
hh−1 =M(1)

10 = 1, are

V⇑⇑hh′z = Ah(h+1)(h′−1)h′

hz(h′−1)

=
M(`D)

0h

(
M(`C)

h−z+1 h′−z−1 −M
(`C)
h−z h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1 (138)

V⇑⇓hh′z = Ah(h+1)(h′+1)h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z+1 h′−z+1 −M
(`C)
h−z h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (139)

V⇓⇑hh′z = Ah(h−1)(h′−1)h′

(h−1)z(h′−1)

=
M(`D)

0h

(
M(`C)

h−z−1 h′−z−1 −M
(`C)
h−z−2 h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1(140)

V⇓⇓hh′z = Ah(h−1)(h′+1)h′

(h−1)zh′
=
M(`D)

0h

(
M(`C)

h−z−1 h′−z+1 −M
(`C)
h−z−2 h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (141)

V⇑0
hh′z = Ah(h+1)h′h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z+1 h′−z −M
(`C)
h−z h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(142)

V⇓0
hh′z = Ah(h−1)h′h′

(h−1)zh′
=
M(`D)

0h

(
M(`C)

h−z−1 h′−z −M
(`C)
h−z−2 h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(143)

V0⇑
hh′z = Ahh(h′−1)h′

hz(h′−1)

=
M(`D)

0h

(
M(`C)

h−z h′−z−1 −M
(`C)
h−z−1 h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1 (144)

V0⇓
hh′z = Ahh(h′+1)h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z h′−z+1 −M
(`C)
h−z−1 h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (145)

V00
hh′z = Ahhh′h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z h′−z −M
(`C)
h−z−1 h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(146)

On the other hand the reduced density matrix of a single spin in A and B can be determined by
using the tripartition, Eq. (17), and Eq. (67)

ρA =
∑
h

A(A)
hhh |0〉 〈0|+

∑
h c

(
qhA(A)

h(h+1)h |⇑
c〉 〈⇑c|+ qh−1A(A)

h(h−1)(h−1) |⇓
c〉 〈⇓c|

)
(147)

ρB =
∑
h

A(B)
hhh |0〉 〈0|+

∑
h c

(
qh−1A(B)

(h−1)h(h−1) |⇑
c〉 〈⇑c|+ qhA(B)

(h+1)hh |⇓
c〉 〈⇓c|

)
(148)
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where, using the definition reported in Eq. (67), the coefficients are

A(A)
hhh =

M(`D)
0h M

(`C+`E+1)
h0

M(`D+`C+`E+2)
q−h (149)

A(A)
h(h+1)h =

M(`D)
0h M

(`C+`E+1)
h+1,0

M(`D+`C+`E+2)
q−h (150)

A(A)
h(h−1)(h−1) =

M(`D)
0h M

(`C+`E+1)
h−1,0

M(`D+`C+`E+2)
q−h (151)

A(B)
hhh =

M(`D+`C+1)
0h M(`E)

h0

M(`D+`C+`E+2)
q−h (152)

A(B)
(h−1)h(h−1) =

M(`D+`C+1)
0h−1 M(`E)

h0

M(`D+`C+`E+2)
q1−h (153)

A(B)
(h+1)hh =

M(`D+`C+1)
0h+1 M(`E)

h0

M(`D+`C+`E+2)
q−h−1 (154)

Colorless case. As done for Fredkin chain, let us consider for simplicity the colorless Motzkin
model (q = 1).
From Eq. (138) we can derive the reduced density matrix for the joint system A ∪B after tracing
out the rest of the chain

ρAB = V⇑⇑ |⇑〉|⇑〉 〈⇑|〈⇑|+ V⇑0 |⇑〉|0〉 〈⇑|〈0|+ V0⇑ |0〉|⇑〉 〈0|〈⇑|+ VXu

(
|⇑〉|0〉 〈0|〈⇑|+ |0〉|⇑〉 〈⇑|〈0|

)
+V⇑⇓ |⇑〉|⇓〉 〈⇑|〈⇓|+ V00 |0〉|0〉 〈0|〈0|+ V⇓⇑ |⇓〉|⇑〉 〈⇓|〈⇑|+ VX

(1)
0

(
|⇑〉|⇓〉 〈⇓|〈⇑|+ |⇓〉|⇑〉 〈⇑|〈⇓|

)
+VX

(2)
0

(
|⇑〉|⇓〉 〈0|〈0|+ |0〉|0〉 〈⇑|〈⇓|

)
+ VX

(3)
0

(
|0〉|0〉 〈⇓|〈⇑|+ |⇓〉|⇑〉 〈0|〈0|

)
+ V0⇓ |0〉|⇓〉 〈0|〈⇓|

+V⇓0 |⇓〉|0〉 〈⇓|〈0|+ VXd

(
|0〉|⇓〉 〈⇓|〈0|+ |⇓〉|0〉 〈0|〈⇓|

)
+ V⇓⇓ |⇓〉|⇓〉 〈⇓|〈⇓| (155)

where, denoting σ, σ′ =⇑, 0,⇓, the coefficients are defined by

Vσσ′ =
∑
hh′z

Vσσ′hh′z (156)

VXu =
∑
hh′z

√
V⇑0
hh′z+1V

0⇑
hh′z = V0⇑ (157)

VX
(1)
0 =

∑
hh′z

√
V⇑⇓hh′z+2V

⇓⇑
hh′z = V⇓⇑ (158)

VX
(2)
0 =

∑
hh′z

√
V⇑⇓hh′z+1V00

hh′z = V00 (159)

VX
(3)
0 =

∑
hh′z

√
V⇓⇑hh′zV00

hh′z+1 = V⇓⇑ (160)
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Choosing an opportune basis the reduced density matrix can be written as a block diagonal matrix
as follows

ρAB =



V⇑⇑ 0 0 0 0 0 0 0 0
0 V⇑0 V0⇑ 0 0 0 0 0 0
0 V0⇑ V0⇑ 0 0 0 0 0 0
0 0 0 V⇑⇓ V00 V⇓⇑ 0 0 0
0 0 0 V00 V00 V⇓⇑ 0 0 0
0 0 0 V⇓⇑ V⇓⇑ V⇓⇑ 0 0 0
0 0 0 0 0 0 V⇓0 V⇓0 0
0 0 0 0 0 0 V0⇓ V0⇓ 0
0 0 0 0 0 0 0 0 V⇓⇓


, (161)

We verified that Tr(ρAB) = 1. Now, together with the reduced density matrices for the single
spins on A and B

ρA = A⇑ |⇑〉 〈⇑|+A0 |0〉 〈0|+A⇓ |⇓〉 〈⇓| (162)

ρB = B⇑ |⇑〉 〈⇑|+ B0 |0〉 〈0|+ B⇓ |⇓〉 〈⇓| (163)

where the coefficients, from Eqs. (149)-(154), are

A⇑ =
∑
h

A(A)
h(h+1)h , A0 =

∑
h

A(A)
hhh , A⇓ =

∑
h

A(A)
h(h−1)(h−1) , (164)

B⇑ =
∑
h

A(B)
(h−1)h(h−1) , B0 =

∑
h

A(B)
hhh , B⇓ =

∑
h

A(B)
(h+1)hh . (165)

we can calculate the entanglement entropies and finally the mutual information, IAB = SA +
SB − SAB , exactly. Examples for the exact mutual information shared by two spins in the bulk
have been given in Fig. 10 where it is shown that it does not vanishes when the distance of the
spins in the bulk goes to zero but saturates at some values which increases going more deeply into
the bulk. Increasing the distances from the edges, `D and `E , we expected and verified that the
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Figure 10: (Left) Mutual information between two spins in the bulk of a colorless Motzkin chain
at distances `D = `E = 1, 2, 3 from the edges, as a function of the relative distance `C ; (Right)
Mutual information between two spins in the bulk as a function of the distance `D = `E from the
edges for colorless Motzkin chain with size L = 100.

probabilities in ρAB factorize
Vσσ′ → AσBσ′ , (166)

and upon further increasing `D and `E , very deeply in the bulk, they become homogeneous,
Vσσ′ → 1

9 and Aσ → 1
3 , Bσ′ → 1

3 . The eigenvalues of ρAB , in this limit, become 1/3, 2/9, 2/9,
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1/9, 1/9, 0, 0, 0, 0, getting for the entanglement entropy SAB → 5
3 log 3− 4

9 log 2. As a result the
asymptotic upper bound limit for the mutual information between two spins in the bulk is

IAB →
1

3
log 3 +

4

9
log 2 . (167)

6.3 General results for any disjoint intervals

The physical explanation of what seen so far, at least for the colorless cases, is the following. Any
state defined on a segment of the chain |Phh′(z)〉 can be defined by two quantum numbers:
i) the magnetization m = (h′ − h) (the number of up-spins minus the number of down-spins),
ii) the horizon z (the lowest level of the paths),
so that we can write |Phh′(z)〉 = |m, z〉. Considering the decomposition as depicted in Fig. 8 we
have that the ground state Eq. (104) can be written schematically as

|P(L)〉 =
∑
{m}{z}

√
A(m, z) |mD, 0〉 |mA, zA〉 |mC , zC〉 |mB, zB〉 |mE , 0〉 (168)

where the sum is such that mD + mA + mC + mB + mE = 0 and is restricted by the request
that for any set of magnetizations one has to get a Fredkin or a Motzkin path (therefore, mD has
to be non-negative, as well as any initial sums, for instance mD + mA + .., while mE has to be
non-positive). The reduced density matrix of A ∪ C ∪B, after tracing over D and E is

ρACB = TrDE |P(L)〉 〈P(L)| (169)

=
∑
{m,m′}
{z,z′}

√
A(m, z)A(m′, z′) |mA, zA〉 |mC , zC〉 |mB, zB〉 〈m′A, z′A| 〈m′C , z′C | 〈m′B, z′B|

where the central magnetizations are restricted by

mC = − (mD + mE + mA + mB) (170)

m′C = −
(
mD + mE + m′A + m′B

)
(171)

therefore
〈m′C , z′C |mC , zC〉 = δ(m′A+m′B),(mA+mB) δz′C ,zC (172)

namely, the overlap is one if the total magnetizations in A and B are the same. This constraint
implies that there are coherent terms in the reduced density matrix for A and B after integrating
over C. As a result the reduced density matrix ρAB can be written as a block diagonal matrix,
where each block is defined by a magnetization sector,

ρAB =



V`S

.

V`S−i

. . .

V−`S

 (173)

The blocks V`S−i are square matrices defined by the maximum total magnetization

`S = max(mA + mB) = `A + `B (174)

and the index i which runs differently for the integer or half-integer case, i.e. i = 0, 2, 4, . . . , 2`S,
for the Fredkin model, and i = 0, 1, 2, . . . , 2`S, for the Motzkin model, namely there are (`S + 1)
square blocks for the Fredkin case and (2`S+1) blocks for the Motzkin one. The dimension of ρAB
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is [(`A + 1)(`B + 1)] × [(`A + 1)(`B + 1)] for the Fredkin model and [(2`A + 1)(2`B + 1)] ×
[(2`A + 1)(2`B + 1)] for the Motzkin model.

The dimension of the blocks V`S and V−`S is 1, while the dimensions of the other blocks are
larger for sectors with smaller modulus of the spin. In general terms, Vn is a dn × dn matrix, with

dn =

`A∑
h=−`A

Θ[`B + n− h] Θ[`B − n + h] (175)

where the sum runs over h with step 1 for the Motzkin and step 2 for the Fredkin, and Θ[n] = 1
for n ≥ 0 and Θ[n] = 0 otherwise. Defining

VmAmB
hh′zAzBz

=
D(`D)

0h L
(`A)
h (h+mA) zA

L(`C)
(h+mA) (h′−mB) z L

(`B)
(h′−mB)h′ zB

D(`E)
h′0

D(`D+`A+`C+`B+`E)
(176)

where L`hh′z defined by Eq. (106), for the colorless Fredkin model and

VmAmB
hh′zAzBz

=
M(`D)

0h L
(`A)
h (h+mA) zA

L(`C)
(h+mA) (h′−mB) z L

(`B)
(h′−mB)h′ zB

M(`E)
h′0

M(`D+`A+`C+`B+`E)
(177)

where L`hh′z defined by Eq. (136), for the colorless Motzkin model, the diagonal and the off-
diagonal matrix elements of Vn, with n = mA + mB = m̃A + m̃B , on the base of all possible
magnetization configurations {(mA,mB)} are the following

V(mA,mB)(mA,mB) =
∑
hh′{z}

VmAmB
hh′zAzBz

, (178)

V(mA,mB)(m̃A,m̃B) =
∑
hh′{z}

√
VmAmB
hh′zAzBz

Vm̃Am̃B
hh′z̃Az̃Bz

(179)

For `A, `B � `D, `E one verifies that the matrix elements of the blocks lose their dependce on
`C and become

V(mA,mB)(m̃A,m̃B) →

√
D

(`A)
mA D

(`B)
mB D

(`A)
m̃A

D
(`B)
m̃B

2`A+`B
(180)

for the Fredkin model, where

D
(`)
m =

(
`

`+|m|
2

)
p`+m (181)

with pn = (1−mod(n, 2)) which selects even integers, as introduced before, while

V(mA,mB)(m̃A,m̃B) →

√
M

(`A)
mA M

(`B)
mB M

(`A)
m̃A

M
(`B)
m̃B

3`A+`B
(182)

for the Motzkin model, where

M
(`)
m =

∑̀
k=|m|

(
k

k+|m|
2

)(
`
k

)
pk+m (183)

Notice that D(`)
m = D(`)

hh+m, for large h, namely for h > `, and, analogously, M(`)
m = M(`)

hh+m,
for h > `. Both quantities are the number of some lattice paths starting from (0, 0) and ending at
(`,m) without constraints. One can verify that∑̀

m=−`
D

(`)
m = 2` (184)

∑̀
m=−s

M
(`)
m = 3` (185)
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which are the numbers of all possible configurations of ` 1
2 -spins and ` 1-spins, respectively.

Remarkably, we find that all off-diagonal terms in each block are written in terms of the diagonal
probabilities, therefore these coherent terms persist for any set of distances. In particular, looking
at Eqs. (180), (182), we notice that the blocks, identifying the magnetization sectors, deeply in the
bulk, become singular matrices, since any two rows or columns are equal except for a factor. As a
result only a single eigenvalue of a generic block Vn is not zero, therefore, it is given by

Tr Vn =

`A∑
i=−`A

D
(`A)
i D

(`B)
n−i

2`S
=

D
(`S)
n

2`S
(186)

for the Fredkin and

Tr Vn =

`A∑
i=−`A

M
(`A)
i M

(`B)
n−i

3`S
=

M
(`S)
n

3`S
(187)

for the Motzkin case. We have found therefore the non-zero (`S + 1) eigenvalues of the reduced
density matrix ρAB ofA∪B deep inside the bulk for the colorless Fredkin model and the non-zero
(2`S + 1) eigenvalues of ρAB for the colorless Motzkin model. As a result, the entropy, deeply
inside the bulk, becomes

SAB → −
`S∑

n=−`S

[
D

(`S)
n

2`S
log

(
D

(`S)
n

2`S

)]
(188)

for the Fredkin model, and

SAB → −
`S∑

n=−`S

[
M

(`S)
n

3`S
log

(
M

(`S)
n

3`S

)]
(189)

for the Motzkin one. As we will see these entropies are the same of those obtained for a single
subsystem of size `S = `A + `B .

Let us consider now the reduced density matrices of the two regions A and B, separately,
which are diagonal matrices with elements obtained by tripartition

ρA =

A
(`A) . . . 0
...

. . .
...

0 . . . A(−`A)

 , ρB =

B
(`B) . . . 0
...

. . .
...

0 . . . B(−`B)

 , (190)

where

A(m) =
∑
h

D(`D)
0h D

(`A)
hh+mD

(`C+`B+`E)
h+m,0

D(`D+`A+`C+`B+`E)
, B(m) =

∑
h

D(`D+`A+`C)
0h−m D(`B)

h−mhD
(`E)
h0

D(`D+`A+`C+`B+`E)
(191)

for the Fredkin model and

A(m) =
∑
h

M(`D)
0h M

(`A)
hh+mM

(`C+`B+`E)
h+m,0

M(`D+`A+`C+`B+`E)
, B(m) =

∑
h

M(`D+`A+`C)
0h−m M(`B)

h−mhM
(`E)
h0

M(`D+`A+`C+`B+`E)

(192)
for the Motzkin model. Also in this case, forA andB very far apart from the edges, the coefficients
become

A(m) → D
(`A)
m

2(`A)
, B(m) → D

(`B)
m

2(`B)
(193)

A(m) → M
(`A)
m

3(`A)
, B(m) → M

(`B)
m

3(`B)
(194)
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for the Fredkin and Motzkin cases respectively. As a result the entanglement entropies of the two
subsystems have the same form of Eqs. (188) and (189), namely

SA → −
`A∑

n=−`A

[
D

(`A)
n

2`A
log

(
D

(`A)
n

2`A

)]
, SB → −

`B∑
n=−`B

[
D

(`B)
n

2`B
log

(
D

(`B)
n

2`B

)]
(195)

for the Fredkin model and

SA → −
`A∑

n=−`A

[
M

(`A)
n

3`A
log

(
M

(`A)
n

3`A

)]
, SB → −

`B∑
n=−`B

[
M

(`B)
n

3`B
log

(
M

(`B)
n

3`B

)]
(196)

for the Motzkin model. We can easily calculate the mutual information, IAB = SA + SB − SAB ,
shared by two generic disjoint intervalsA andB of sizes `A and `B , from Eqs. (188) and (195) for
the colorless Fredkin model and from Eqs. (189) and (196) for the colorless Motzkin model. Some
results for the mutual information for the two cases with disjoint regions of same sizes, `A = `B ,
are plotted in Fig. 11. For `S = 2, namely for `A = `B = 1, one recovers the results in Eqs. (134)
and (167).
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Figure 11: Mutual information between two regions of spins deep inside the bulk of a colorless
Fredkin (red bottom line) and Motzkin (blue top line) chain as a function of the subsystem sizes
`A = `B , obtained from Eqs. (188), (195) and Eqs. (189), (196).

We have shown that the entropy for A ∪B behave as if the two regions compose a single unit
subsystem of size `A + `B , no matter how far the two regions are. The effect of the off-diagonal
coherent terms in the reduced density matrix is to glue together, through the central region, the
two subsystems.

As a final result, for ` � 1, approximating the binomial factors with a Gaussian distribution
and sums with integrals, we get

−
∑̀
n=−`

[
D

(`)
n

2`
log

(
D

(`)
n

2`

)]
≈ 1

2
log `+ log

(
2

√
π

3

)
(197)

−
∑̀
n=−`

[
M

(`)
n

3`
log

(
M

(`)
n

3`

)]
≈ 1

2
log `+ log

(
2

√
e π

3

)
(198)

therefore, the mutual information, IAB = SA + SB − SAB , from Eqs. (188), (195), (197) and
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Eqs. (189), (196), (198), becomes

IAB ≈
1

2
log

(
`A`B
`A + `B

)
+ log

(
2

√
π

3

)
, (Fredkin) (199)

IAB ≈
1

2
log

(
`A`B
`A + `B

)
+ log

(
2

√
e π

3

)
, (Motzkin) (200)

for the Fredkin and the Motzkin spin chains respectively. These approximations are in perfect
agreement with the results reported in Fig. 11. Surprisingly, the latter results for the mutual in-
formation have the same form of the logarithmic negativity and of the mutual information for
conformal field theories [25] of two adjacent intervals.

7 Conclusions

In this paper we have shown that the ground states of the novel quantum spin models under study
exhibit a robust non-local behavior, the long-distance entanglement, in addition to violation of
cluster decomposition property which occurs mainly on the boundaries of the chains in their col-
orful versions. On the contrary the strong entanglement shared by any segments of the spin chains
survives at infinite distances either if the subsystems are located close to the edges or inside the
bulk. This anomalous behavior has not been observed previously in the continuum version of the
models [16] and, therefore, one should resort to an exact calculation in order to reveal it, taking
afterwards the continuum limit. This peculiar non-local behavior takes origine from the presence
of coherent terms in the reduced density matrix which do not vanish in the thermodynamic limit.
Intriguingly, we show that the mutual information of two disjoint subsystems inside the bulk of
these spin chains does not depend on their distance and has the same form of the logarithmic neg-
ativity and of the mutual information for conformal field theories of two adjacent subsystems in
an infinite system. This finding strengthens the belief that these models, which in spite of being
described by local short-range Hamiltonians show non-local behaviors, can be promising tools for
quantum information technologies.
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