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Abstract

We derive some entanglement properties of the ground states of two classes of quantum spin
chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for inte-
ger ones. Since the ground states of the two models are known analytically, we can calculate the
entanglement entropy, the negativity and the quantum mutual information exactly. We show, in
particular, that these systems exhibit long-distance entanglement, namely two disjoint regions
of the chains remain entangled even when the separation is sent to infinity, i.e. these systems
are not affected by decoherence. This strongly entangled behavior, occurring both for colorful
versions of the models (with spin larger than 1/2 or 1, respectively) and for colorless cases (spin
1/2 and 1), is consistent with the violation of the cluster decomposition property. Moreover we
show that this behavior involves disjoint segments located both at the edges and in the bulk of
the chains.
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1 Introduction

The study of nonlocal properties and their consequences on the dynamics in addition to the violation
of the area law for the entanglement entropy are certainly, at the present date, a very challenging field
of research. The concept of locality plays a crucial role in physical theories, with far reaching conse-
quences, a fundamental one being the cluster decomposition property [1,2]. This property implies that
two-point connected correlation functions go to zero when the separation of the points goes to infinity.
This is the reason why two systems very far apart, separated by a large distance, behave independently.

Another aspect related to correlations is the quantum entanglement. In bipartite systems the von
Neumann or entanglement entropy quantifies how the two parts of the whole system in a quantum state
are entangled. This quantity measures non-local quantum correlations and has universal properties,
like the fact that, for gapped systems in the ground states, it scales with the area of the boundary
of the two subsystems [3]. This property is called area law and is valid for systems with short-
range interactions. In other words, if the interactions are short-ranged the information among the
constituents of the system propagates with a finite speed involving a surface surrounding the source
of the signal, like an electromagnetic impulse propagating with the speed of light. For critical one-
dimensional short-range systems the area law is violated logarithmically [4]. Quantum spin chains are
promising tools for universal quantum computation [5] and the efficiency may be related to the amount
of quantum entanglement. Spin systems with entanglement entropy larger than that dictated by the
area law can be used for quantum computing even more efficiently, and breaking down the speed of
the propagation of the excitations can represent a breakthrough for quantum information processing.

Recently, novel quantum spin models have been introduced, with integer [6–8] (Motzkin model)
and half-integer [9, 10] spins (Fredkin model), which, in spite of being described by local Hamiltoni-
ans, exhibit violation of the cluster decomposition property and of the area law for the entanglement
entropy, with the presence of anomalous and extremely fast propagation of the excitations after driving
the system out-of-equilibrium [9]. These models seem, therefore, extremely promising for applica-
tions in quantum information and communication processes. Very recently, also deformed versions
of Motzkin [11] and of Fredkin [12] chains have been introduced and studied [13, 14], which can ex-
hibit a quantum phase transition separating an extensively entangled phase [11,12] from a topological
one [15].

Quite recently, it has been given also a continuum description for the ground-state wavefunctions
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of those models, as originally formulated and in the colorless cases (spin-1 Motzkin model and spin-
1/2 Fredkin model), which can reproduce well some quantities like the local magnetization and the
entanglement entropy, and whose scaling Hamiltonian is not conformally invariant [16]. Some results
on the Renyi entropy for these models have been also reported [17].

In this work we focus on the study of quantum entanglement after the discovery that cluster decom-
position property in such systems can be violated [9]. This behavior has been shown to occur in the
connected correlation functions of spins along z-directions for the colorful cases (for spins larger than
1), when also the area law for the entanglement entropy is violated more than logarithmically [7, 9],
and is more pronounced for correlation functions measured close to the edges of the chains. What is
presented here is the calculation of other entanglement measures, the quantum negativity [18, 19] and
the mutual information [20,22] shared by two disjoint segments of the chains in the ground state. The
latter, also called the von Neumann mutual information, is a measure of correlation between subsys-
tems of a quantum state and is the quantum analog of the Shannon mutual information. The negativity
is also a measure of quantum entanglement, based on the positive partial transpose (PPT) criterion of
separability, which provides a necessary condition for a joint density matrix ρAB of two quantum me-
chanical systems, A and B, to be separable [18]. If the state is separable (not entangled) the negativity
is zero, therefore, if the negativity is greater than zero, the state is surely entangled, nevertheless it can
be zero even if the state is entangled.

We show that such systems exhibit long-distance entanglement [23], namely given a measure of
entanglement, e.g. the mutual information, IAB for the systemA∪B made by two disjoint subsystems
A and B, the quantity IAB does not vanish when the distance between A and B goes to infinity.
This result is consistent with the fact that also some connected correlation functions do not vanish
in the thermodynamic limit [9, 16, 21], being the mutual information an upper bound for normalized
connected correlators [22, 24].

Moreover we show that this non-vanishing mutual information, persisting for infinite distances,
is verified not only in the colorful cases, where the entanglement entropy scales as a square-root law,
but also in the colorless cases, where the entanglement entropy scales just logarithmically, as for
critical systems. Finally, contrary to what found in the continuum limit [16], this behavior occurs,
and is even more pronounced, also when the subsystems are located deep inside the bulk, showing a
stronger entanglement as compared to the one obtained in conformal field theories, where the mutual
information vanishes upon increasing the distance with a power law behavior [25]. On the other hand,
quite surprisingly, we show that the mutual information for two disjoint subsystems inside the bulk has
the same form of the logarithmic negativity and of the mutual information for conformal field theories
of two adjacent intervals [26].

2 Models

In this section we report the Hamiltonians for recently introduced half-integer and integer spin models,
referred to as Fredkin and Motzkin models, whose ground states are known exactly and have the
peculiarity of being related to some random lattice walks.
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2.1 Fredkin model

The Fredkin model [9,10] is described by the following half-integer spin Hamiltonian H = H0 +H∂ ,
with

H0 =

q∑
c,c̄=1

{ L−2∑
j=1

[
P
(∣∣Qcc̄↑j〉)+ P

(∣∣Qcc̄↓j〉) ]+
L−1∑
j=1

P
(∣∣Qcc̄0j〉)}+

q∑
c 6=c̄

L−1∑
j=1

P
(∣∣↑cj ↓c̄j+1

〉)
(1)

H∂ =

q∑
c=1

[P (|↓c1〉) + P (|↑cL〉)] (2)

composed by bulk, H0, and boundary, H∂ , Hamiltonians, where P(|.〉) = |.〉 〈.| is a projector operator
acting on quantum states made by local spin-states, |↑cj〉, located on sites labelled by j with half-integer
spins along z-quantization axis sz =

(
c− 1

2

)
and |↓cj〉with local half-integer spins sz =

(
1
2 − c

)
, with

c ∈ N and c = 1, . . . , q. The maximum value of the index c is q that is called the number of colors of
the model. The quantum states appearing in Eq. (1) are defined by∣∣Qcc̄↑j〉 =

1√
2

(∣∣↑c̄j ↑cj+1 ↓cj+2

〉
−
∣∣↑cj ↓cj+1 ↑c̄j+2

〉)
(3)∣∣Qcc̄↓j〉 =

1√
2

(∣∣↓c̄j ↑cj+1 ↓cj+2

〉
−
∣∣↑cj ↓cj+1 ↓c̄j+2

〉)
(4)∣∣Qcc̄0j〉 =

1√
2

(∣∣↑cj ↓cj+1

〉
−
∣∣↑c̄j ↓c̄j+1

〉)
(5)

For colorless case, q = 1 (spin 1/2), we have that the third and the last term, so-called crossing term,
in Eq. (1) are not present. In this case the bulk Hamiltonian, in terms of Pauli matrices, reads

H0 =
L−2∑
j=1

[
(1 + σz,j)(1− ~σj+1 · ~σj+2) + (1− ~σj · ~σj+1)(1− σz,j+2)

]
(6)

In terms of Fredkin gates F̂ijk (controlled-swap operators),H0 =
∑L−2

j (2−F̂j,j+1,j+2−σxj+2 F̂j+2,j+1,j σ
x
j+2),

where F̂i,j,k acts on three 1
2 -spins (three qbits), swapping the j-th and k-th spins if the i-th is in the

state |↑〉 while does nothing if it is in the state |↓〉.

2.2 Motzkin model

The Motzkin model [6,7] is described by the following integer spin Hamiltonian H = H0 +H∂ with

H0 =

q∑
c=1

L−1∑
j=1

{
P
(∣∣Qc⇑j〉)+ P

(∣∣Qc⇓j〉)+ P
(∣∣Qc0j〉)}+

q∑
c 6=c̄

L−1∑
j=1

P
(∣∣⇑cj⇓c̄j+1

〉)
(7)

H∂ =

q∑
c=1

[P (|⇓c1〉) + P (|⇑cL〉)] (8)

where now P(|.〉) = |.〉 〈.| acts on quantum states made by local integer spin-states, |⇑cj〉 located at
sites j with integer spins sz = c, and |⇓cj〉 with spins sz = −c, where, again, c = 1, . . . , q. Also in
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this case, q is called the number of colors of the model and, in the Motzkin case, it corresponds to the
maximum value of the spins. The quantum states appearing in Eq. (1) are defined by∣∣Qc⇑j〉 =

1√
2

(∣∣0j ⇑cj+1

〉
−
∣∣⇑cj 0j+1

〉)
(9)∣∣Qc⇓j〉 =

1√
2

(∣∣0j ⇓cj+1

〉
−
∣∣⇓cj 0j+1

〉)
(10)∣∣Qc0j〉 =

1√
2

(
|0j0j+1〉 −

∣∣⇑cj⇓cj+1

〉)
(11)

For the colorless case, q = 1 (spin 1), we have that the last term in Eq. (7) is absent.

3 Ground states

The most important property shared by these frustration-free Hamiltonians is that their ground states
are unique, made by uniform superpositions of all states corresponding to Motzkin paths, for the
integer case (for the Motzkin model) and all states corresponding to Dyck paths for the half-integer
one (Fredkin model). These states are such that, denoting the spins up, ⇑, by /, the spins down, ⇓, by
\ and spins zero, 0, by −, one can construct a Motzkin path, while by using only / for ↑ and \ for ↓
one can construct a Dick path.
A Motzkin path is any path on a x-y plan connecting the origin (0, 0) to the point (0, L) with steps
(1, 0), (1, 1), (1,−1), where L is an integer number. Any point (x, y) of the path is such that x and y
are not negative.
Analogously, a Dyck path is any path from the point (0, 0) to (0, L) (now L should be an even integer
number) with steps (1, 1), (1,−1). As for the Motzkin path, any point (x, y) of the Dyck path is such
that x and y are not negative.
The corresponding colored path are such that the steps can be drawn with more than one color. The
color attached to a path move is taken freely only for upward steps (up-spins) while any downward
steps (down-spin) should have the same color of the nearest up-spin on the left-hand-side at the same
level. This color matching is induced by the cost energy contribution described by the last term, both
in Eq. (1) and Eq. (7), which, in spite of being short-ranged, it produces non a local effect in the
ground state.
As a result, a colorless Motzkin path |m(L)

p 〉 or Dyck path |d(L)
p 〉 can be defined as a string of L spins

(or steps) such that, starting from the left by convention, the sum of the spins contained in any initial
segment of the string is nonnegative, or alternatively, any initial segment contains at least as many
up-spins (upward steps) as down-spins (downward steps), while the sum of all the L spins is zero (the
total number of upward steps is equal to the number of downward steps). The colorful Motzkin or
Dyck paths are the paths where, in addition, the upward steps can be colored at will while the colors
of the downward steps are uniquely determined by the matching condition (any spin down has the
same color of the adjacent upward spin on the left-hand-side at the same height). Examples of colored
Motzkin and Dyck states are shown in Fig. 1.
The ground state of the Fredkin Hamiltonian is then obtained by a uniform superposition of all possible
Dyck paths at a given length L and a given number of colors q,

|P(L)〉=
1√
D(L)

∑
p

|d(L)
p 〉 (12)
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Figure 1: An example of Dyck path (left panel) and of a Motzkin path (right panel) with q = 3 colors,
which contribute to the ground states for the 3-color spin models, respectively, the spin-5

2 Fredkin
model and the spin-3 Motzkin model.

where D(L) is the number of all possible colored Dick paths with q colors, which is

D(L) = q
L
2 C

(
L

2

)
pL (13)

where C(n) = 2n!
n!(n+1)! are the Catalan numbers and pn = (1−mod(n, 2)) selects even integers.

Analogously, the ground state of the Motzkin Hamiltonian is a uniform superpositions of all possible
Motzkin paths

|P(L)〉=
1√
M(L)

∑
p

|m(L)
p 〉 (14)

where the normalization factor

M(L) =

bL
2
c∑

`=0

q`
(

L
2`

)
C(`) (15)

is the colored Motzkin number, i.e. the number of all the possible colored Motzkin paths. Because of
this mapping between the ground states and the lattice paths, several ground state properties can be
studied exactly resorting to combinatorics.

3.1 Decomposition in two parts

The ground state for both the models can be written in terms of states defined on two subsystems, A
and B, as it follows

|P(L)〉 =

hm∑
h=0

√
Ah

∑
c1,...,ch

|P(`A)
0h 〉c1,...,ch |P

(L−`A)
h0 〉ch,...,c1 (16)

where, hm = min(`A, L − `A) and Ah are some Schmidt coefficients depending of the number of
paths, whose expressions will be given in the next section for the two cases, in Eq. (19) for the Fredkin
model and Eq. (66) for the Motzkin one.
|P(`A)

0h 〉c1,...,ch is an orthonormal state defined on the subsystem A made by a uniform superposition of
lattice paths (of the Motzkin or Dyck type) which start from the origin and reach the height h after `A
steps, with, therefore, h unmatched up-spins with indices c1, ..., ch. Analogously, |P(L−`A)

h0 〉c1,...,ch is
an orthonormal state defined on the subsystem B made by a uniform superposition of lattice paths (of
the Motzkin or Dyck type) which start from the point (`A, h) and reach the ending point (L, 0) after
`B = L− `A steps, with h unmatched down-spins with indices c1, ..., ch.
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3.2 Decomposition in three parts

Let us now divide our spin chains in three parts, a left and a right part, A and B, and a central part
C, see Fig 2. The ground state can decomposed in terms of states defined in these three regions as it

Figure 2: Tripartition of a spin chain into subsystems A, B and C.

follows

|P(L)〉 =

hm∑
h=0

h′m∑
h′=0

min(h,h′)∑
z=0

√
Ahh′z

∑
c1,...,ch
c̄1,...,c̄h′

|P(`A)
0h 〉c1,...,ch |P

(L−`A−`B)
hh′(z) 〉 ch,...,c1

c̄1,...,c̄h′
|P(`B)
h′0 〉c̄h′ ,...,c̄1 (17)

with hm = min(`A, L − `A), h′m = min(`B, L − `B) and where |P(L−`A)
h0 〉c1,...,ch an orthonormal

state defined on the region A as in Eq. (16), namely as a uniform superposition of lattice paths starting
from the origin and ending at (`A, h) with h unmatched colored up-spins and |P(`B)

h′0 〉c̄h′ ,...,c̄1 a uniform
superposition of lattice paths defined on B, starting from the point (L − `B, h′) and ending at (L, 0)
with h′ unmatched colored down-spins. Moreover

|P(L−`A−`B)
hh′(z) 〉 ch,...,c1

c̄1,...,c̄h′
= δc1c̄1 , . . . , δcz c̄z |P

(L−`A−`B)
h−z h′−z 〉 ch,...,cz+1

c̄z+1,...,c̄h′
(18)

is the orthonormal state uniformly composed by all the paths with (L − `A − `B) steps starting at
height h and ending at height h′, with (h − z) unmatched down-spins and (h′ − z) unmatched up-
spins, namely those paths which touch at least once the horizontal line defined by z but never cross
it. In our notation the indices in Eq. (18) for unmatched spins are useful also for the colorless case to
classify the paths by the level z. Actually the minimum of the values of z which contribute to the sum
appearing in Eq. (17) is zmin = max

(
0, dh+h′−(L−`A−`B)

2 e
)
.

This quantity, i.e. the horizon z, can be seen, therefore, as a quantum number classifying all the
states in the central region C, since for any z the states |P(L−`A−`B)

hh′(z) 〉 c1,...ch
c̄1,...c̄h′

are orthogonal to each

other simply because composed by local spin states, expressed in the canonical orthogonal basis. An
example of this classification is shown in Fig. 3 for the Fredkin and the Motzkin case.

4 Entanglement properties of the Fredkin chain

We will study the entanglement properties of the ground state for the Fredkin model, reviewing the
entanglement entropy after a bipartition, and then calculating the negativity and the mutual information
shared by the two spins at the edges, resorting to the decompositions in Eqs. (16), (17). We will
show that these quantities, particularly the mutual information, revel an unconventional long-distance
behavior. Before to proceed ne need to know the coefficient in Eq. (16) for the Fredkin ground state,
decomposed in two parts, which is the Schmidt number resulting from the product of the normalization
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Figure 3: Examples of Dyck (left) and Motzkin (right) paths to be taken in a central region C of length
L − `A − `B = 7 after a tripartition, which start at height h = 2 and end at height h′ = 3, classified
by touching at least once, but not crossing, the horizontal lines z = 0, 1, 2. The solid blue lines are all
the paths which touch z = 2, that contribute to |P(7)

01 〉c̄3 , the dashed red lines are all the paths which
touch z = 1, that contribute to |P(7)

12 〉c2,c̄2,c̄3 , the dotted green lines are all those which touch z = 0,
that contribute to |P(7)

23 〉c2,c1,c̄1,c̄2,c̄3 .

factors of |P(`A)
0h 〉 and |P(L−`A)

h0 〉, when expressed in the canonical basis, divided by the normalization
factor of |P(L)〉 and the number of color degrees of freedom for h up-spins [9, 10]

Ah =
D(`A)

0h D
(L−`A)
h0 q−h

D(L)
(19)

The coefficient in Eq. (17), for the decomposition into three parts, analogously to Eq. (19), is given by
the product of the normalization factors of |P(`A)

0h 〉, |P
(L−`A−`B)
hh′(z) 〉 and |P(`B)

h′0 〉, when these states are

expressed in the canonical basis, divided by the normalization factor of |P(L)〉 and the total number
of color degrees of freedom for (h+ h′ − z) up-spins, so that it reads

Ahh′z =
D(`A)

0h D
(`B)
h′0

(
D(L−`A−`B)
h−z h′−z −D(L−`A−`B)

h−z−1 h′−z−1

)
qz−h

′−h

D(L)
(20)

where

D(n)
hh′ = q

n+h′−h
2

[(
n

n+|h−h′|
2

)
−
(

n
n+h+h′

2 + 1

)]
pn+h+h′ (21)

is the number of colored Dyck-like paths (q the number of colors) between two points at positive
heights h and h′ with n steps. We assumeD(n)

hh′ to be zero for negative h or h′ by definition. In particu-

lar we haveD(n)
00 ≡ D(n) = q

n
2C
(
n
2

)
pn. Moreover we notice thatD(n)

0h = q
n+h
2

h+1
n+h
2

+1

(
n
n+h

2

)
pn+h =

qhD(n)
h0 . The quantity in the brackets of Eq. (20) counts the number of just those paths which touch

but not cross the level z. For example, in Fig. 3, for z = 1 the paths are only those depicted by dashed
red lines.

4.1 Entanglement entropy

In this section we will briefly review the calculation for the von Neumann entanglement entropy
[9, 10]. The reduced density matrix after a bipartition of the whole systems into two subsystems A

8
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and B, after tracing out one of them, is obtained from Eq. (16)

ρA = TrB |P(L)〉 〈P(L)| =
hm∑
h

Ah
∑

c1,...,ch

|P(`A)
0h 〉c1,...,ch 〈P

(`A)
0h |c1,...,ch (22)

whereAh is given by Eq. (19). Since, for any h, there are qh eigenvalues equal toAh, the entanglement
entropy is simply

SA = −
hm∑
h

qhAh log(Ah) =

hm∑
h

D(`A)
0h D

(L−`A)
h0

D(L)

[
h log q − log

(
D(`A)

0h D
(L−`A)
h0

D(L)

)]
(23)

Since qhAh =
D(`A)

0h D(L−`A)

h0

D(L) is a normalized probability,
∑

h q
hAh = 1, the first term of Eq. (23) is

log q times the average height of the paths at a given position located at distance `A from the edge

〈h〉`A =
∑
h

h
D(`A)

0h D
(L−`A)
h0

D(L)
(24)

which, for large L and `A, when the binomial factors can be approximated by gaussian factors and the

sum by an integral, scales as a square root, 〈h〉`A '
2
√

2√
π

√
`A(L−`A)

L . The second term, instead scales

as 1
2 log

(
`A(L−`A)

L

)
, therefore, for large systems and for a sizable bipartition one gets

SA '
2
√

2√
π

√
`A(L− `A)

L
log q +

1

2
log

(
`A(L− `A)

L

)
+O(1). (25)

Notice that this approximation is very good when the bipartition occurs in the bulk while Eq. (23) is
exact for any `A and L. For instance, if `A = 1, the entanglement entropy, from Eq. (23), is exactly
SA = log q, for any L, while Eq. (25) deviates from it.

4.2 Reduced density matrix for the edges

Let us consider the system A ∪ B made by the two spins located at the edges of our spin chains, as
shown in Fig. 4. We will study the entanglement properties between these two spins at the edges for
the Fredkin spin chain, tracing out all the spins between the first and the last one described by

Figure 4: Tripartition of a spin chain in three subsystems A,B,C, where the separated regions, A and
B are made by single spins at the edges.

|P(`A=1)
01 〉c = |↑c1〉 (26)

|P(`B=1)
10 〉c̄ = |↓c̄L〉 (27)

9
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so that Eq. (17), dropping the site indices to simplify notation, reads

|P(L)〉 =
∑
c,c̄

|↑c〉
(√
A110|P(L−2)

11 〉c,c̄ + δcc̄
√
A111|P(L−2)〉

)
|↓c̄〉 (28)

The joint reduced density matrix of the subsystem A ∪B, after tracing out all the degrees of freedom
of the central part, and keeping only the two spins at the edges, is

ρAB = TrC |P(L)〉 〈P(L)| =
∑
c,c̄

(
A111 |↑c〉 |↓c〉 〈↑c̄| 〈↓c̄|+A110 |↑c〉 |↓c̄〉 〈↑c| 〈↓c̄|

)
(29)

where the coefficients, from Eq. (20), are

A111 =
D(L−2)

D(L)
(30)

A110 =
1

q

(
D(L−2)

11 −D(L−2)

D(L)

)
=

1

q

(
1

q
− D

(L−2)

D(L)

)
(31)

The normalization condition is fulfilled since the trace of ρAB is

TrρAB = qA111 + q2A110 = 1 (32)

On the basis
(
|↑1〉 |↓1〉 , |↑2〉 |↓2〉 , ... , |↑q〉 |↓q〉 , |↑1〉 |↓2〉 , |↑2〉 |↓1〉 , ... , |↑1〉 |↓q〉 , |↑q〉 |↓1〉 ,

|↑2〉 |↓3〉 , |↑3〉 |↓2〉 , ...
)t, where t means transpose, we can write the q2× q2 reduced density matrix as

it follows

ρAB =

(
A111Jq×q +A110 1q×q 0q×(q2−q)

0(q2−q)×q A110 1(q2−q)×(q2−q)

)
(33)

where J is a matrix with all elements equal to 1, 0 a matrix with all zeros and 1 the identity matrix.

4.3 Negativity

We calculate now the quantum negativity which detects the entanglement between two disjoint regions
and can be defined as it follows

N =
1

2

∑
α

(|λα| − λα) (34)

where λα are the eigenvalues of the partial transpose of the reduced density matrix with respect to a
region (B, for instance), obtained by transposing the indices related to the degrees of freedom of one
part. The partial transpose of ρAB with respect to B, from Eq. (29), is

ρtBAB =
∑
c,c̄

(
A111 |↑c〉 |↓c̄〉 〈↑c̄| 〈↓c|+A110 |↑c〉 |↓c̄〉 〈↑c| 〈↓c̄|

)
(35)

Taking the same basis as for Eq. (33), the partial transpose of the reduced density matrix reads

ρtBAB =

(
(A111 +A110)1q×q 0q×(q2−q)

0(q2−q)×q A110 1 (q2−q)
2
× (q2−q)

2

⊗ A

)
(36)

where the last block is a Kronecker product of an identity matrix and a 2× 2 matrix

A =

(
A110 A111

A111 A110

)
(37)

10
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The eigenvalues of ρtBAB are (A111 + A110) with multiplicity q(q + 1)/2 and (A110 − A111) with
multiplicity q(q − 1)/2, therefore the negativity is greater than zero if A111 > A110, namely, if

q
D(L−2)

D(L)
=
C(L/2− 1)

C(L/2)
=

L+ 2

4(L− 1)
>

1

q + 1
(38)

which is verified for q ≥ 3, for any finite L. Therefore N = 0 for q ≤ 2 (and q = 3 in the limit
L→∞) while

N =
(q − 1)

2

(
(q + 1)

D(L−2)

D(L)
− 1

q

)
, for q ≥ 3. (39)

Some values of N as a function of the color number q are reported in Fig. 5. In the large L limit the
negativity does not vanishes for any q > 3 and goes to

N −→
L→∞

(q − 1)(q − 3)

8q
. (40)

 0
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N

q

Figure 5: Negativity for two spins at the edges of a Fredkin chain with L = 1000, as a function of the
number of colors q.

We found, therefore, that, for q > 3, the negativity N does not vanish even at infinite distance
between the two spins at the edges of the chain. This means that the quantum state in Eq. (29) is
surely distantly entangled. On the other hand, for q = 1 the state is separable while for q = 2 the state
described by Eq. (29) is a Werner state with zero negativity, nevertheless it is entangled, is a so-called
PPT entangled state, as we will show in the next section using another entanglement measure. For
q = 3 the negativity isN = 1/(L− 1), therefore the state is surely entangled for any finite L. Also in
this case we will see that, even if the negativity goes to zero for infinite distance, the state in Eq. (29)
is long-distance entangled, as shown by the following calculation.

4.4 Mutual Information

The eigenvalues of the reduced density matrix ρAB , from Eq. (33), are (A110 + qA111) and A110, the
latter with multiplicity (q2 − 1), so that the entanglement entropy is

SAB = −(q2 − 1)A110 log (A110)− (A110 + qA111) log (A110 + qA111) (41)

11
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with A111 and A110 given by Eqs. (30) and (31). On the other hand, from Eq. (19), since A1 = q−1

which is the eigenvalue of ρA (and ρB) with multiplicity q, we have

SA = SB = −qA1 log(A1) = log q (42)

From these results we can calculate and study another entanglement measure which is the mutual
information

IAB = SA + SB − SAB (43)

as a function of the size L, being L − 2 the distance between the two disjoint spins in A and B, and
also IAB as a function the color number q.

Colorless case : For q = 1, we have SAB = 0 as well as SA = SB = 0, therefore IAB = 0 exactly,
for any size of the chain L. This is due to the fact that the first and the last spins of the colorless
Fredkin model are uncorrelated in the ground state. For that reason one has to increase the size of
the subsystems A and B including further spins, as done in the next section, Sec. 4.5, where we will
consider two spins at each edge, revealing in this way that there is a long-distance entanglement even
for colorless case.

Colorful case : For colorful cases (q > 1), instead, IAB turns to be finite also for large distances,
namely for large L (L� 1), as shown in Fig. 6. Actually we can calculate the limit of L→∞, since

 0
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Figure 6: (Left) Mutual information between two spins at the edges of colorful Fredkin chains, as a
function of the size L, for different values of q. (Right) Mutual Information at long distance, L→∞,
between two spins at the edges of colorful Fredkin chains, as a function of the color number q.

IAB can be written in terms of D
(L−2)

D(L) only and

lim
L→∞

D(L−2)

D(L)
=

1

4q
, (44)

where lim means the limit of a sequence, therefore A111 → 1
4q and A110 → 3

4q2
, so that

IAB −→
L→∞

[
2 log q +

(3 + q2)

4q2
log

(
3 + q2

4q2

)
+

3(q2 − 1)

4q2
log

(
3

4q2

)]
. (45)

We show therefore that the two spins located at the edges of the chain, even when the distance is
infinite, are strongly entangled for any q > 1. This behavior is consistent with the violation of the
cluster decomposition occurring in such colorful cases.

12



SciPost Physics Submission

4.5 Entanglement between the two couples of spins at the edges

As we know, for the colorless case, the first and the last spins are completely uncorrelated in the
ground state, since for all the configurations of the spins in the bulk which contribute to the ground
state, the first spin is always up and the last is always down. For colorful case, instead, they are
correlated because of the color matching condition. For that reason we will consider more than one
spin at the edges, studying the entanglement properties of two couples of spins at the borders, namely
A and B made by two spins instead of one, as shown in Fig. 7.

Figure 7: Tripartition of a spin chain in three subsystems, where the separated regions at the edges, A
and B, are both made by two spins.

In this case, for any q the states at the edges are given by

|P(`A=2)
02 〉c1c2 = |↑c11 ↑

c2
2 〉 (46)

|P(`B=2)
20 〉c̄1c̄2 = |↓c̄1L−1↓

c̄2
L 〉 (47)

|P(`A=2)
00 〉 = |P(2)〉 =

∑
|↑c1 ↓c2〉 ≡ |↑ ↓〉 (48)

|P(`B=2)
00 〉 = |P(2)〉 =

∑
c

|↑cL−1↓cL〉 ≡ |↑ ↓〉 (49)

so that, dropping the site indices to simplify the notation, Eq. (17) reads

|P(L)〉 =
√
A000 |↑ ↓〉 |P(L−4)〉 |↑ ↓〉+

√
A200

∑
c1,c2

|↑c1↑c2〉 |P(L−4)
20 〉c2c1 |↑ ↓〉 (50)

+
√
A020

∑
c̄1,c̄2

|↑ ↓〉 |P(L−4)
02 〉c̄1c̄2 |↓c̄2↓c̄1〉+

√
A220

∑
c1,c2
c̄1,c̄2

|↑c1↑c2〉 |P(L−4)
22 〉c2,c1

c̄1,c̄2
|↓c̄2↓c̄1〉

+
√
A221

∑
c1,c2,c̄2

|↑c1↑c2〉 |P(L−4)
11 〉c2,c̄2 |↓c̄2↓c1〉+

√
A222

∑
c1,c2

|↑c1↑c2〉 |P(L−4)〉 |↓c2↓c1〉

13
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where the coefficients are

A000 =
(D(2))2D(L−4)

D(L)
= q2D(L−4)

D(L)
(51)

A200 =
D(2)D(L−4)

20

D(L)
= q
D(L−4)

20

D(L)
(52)

A020 =
1

q2

D(2)D(L−4)
02

D(L)
=

1

q

D(L−4)
02

D(L)
= A200 (53)

A220 =
1

q2

(
D(L−4)

22 −D(L−4)
11

D(L)

)
(54)

A221 =
1

q

(
D(L−4)

11 −D(L−4)

D(L)

)
(55)

A222 =
(D(2)

20 )2D(L−4)

D(L)
=
D(L−4)

D(L)
(56)

Let us now consider the colorless case (q = 1) for simplicity. The reduced density matrix ofA∪B,
after tracing out over the states of the central region, is

ρAB = A000 |↑↓〉 |↑↓〉 〈↑↓| 〈↑↓|+A200 |↑↑〉 |↑↓〉 〈↑↑| 〈↑↓|+A020 |↑↓〉 |↓↓〉 〈↑↓| 〈↓↓|
+
√
A000A222

(
|↑↓〉 |↑↓〉 〈↑↑| 〈↓↓|+ |↑↑〉 |↓↓〉 〈↑↓| 〈↑↓|

)
+ (A220 +A221 +A222) |↑↑〉 |↓↓〉 〈↑↑| 〈↓↓| (57)

where (A220 +A221 +A222) =
D(L−4)

22

D(L) and A000 = A222 = D(L−4)

D(L) .
On the basis (|↑↑〉 |↑↓〉 , |↑↓〉 |↑↓〉 , |↑↑〉 |↓↓〉 , |↑↓〉 |↓↓〉)t the reduced density matrix can be written as

ρAB =
1

D(L)


D(L−4)

20 0 0 0

0 D(L−4) D(L−4) 0

0 D(L−4) D(L−4)
22 0

0 0 0 D(L−4)
02

 (58)

with D(L−4)
20 = D(L−4)

02 . The corresponding partial transpose matrix with respect to B is

ρtBAB = A000 |↑↓〉 |↑↓〉 〈↑↓| 〈↑↓|+A200 |↑↑〉 |↑↓〉 〈↑↑| 〈↑↓|+A020 |↑↓〉 |↓↓〉 〈↑↓| 〈↓↓|
+
√
A000A222

(
|↑↓〉 |↓↓〉 〈↑↑| 〈↑↓|+ |↑↑〉 |↑↓〉 〈↑↓| 〈↓↓|

)
+ (A220 +A221 +A222) |↑↑〉 |↓↓〉 〈↑↑| 〈↓↓| (59)

which, on the same basis of Eq. (58), reads

ρtBAB =
1

D(L)


D(L−4)

20 0 0 D(L−4)

0 D(L−4) 0 0

0 0 D(L−4)
22 0

D(L−4) 0 0 D(L−4)
02

 (60)

whose eigenvalues are D
(L−4)
22

D(L) , D
(L−4)

D(L) and D
(L−4)
20 ±D(L−4)

D(L) , and since D(2n)
20 ≥ D(2n), ∀n ≥ 1, the

negativity is zero, N = 0.

14



SciPost Physics Submission

Tracing out the degrees of freedom of one of the two parts we get ρA = TrBρAB , or ρB = TrAρAB
which can be written as

ρA =
1

D(L)

(
D(L−4)

20 +D(L−4)
22 0

0 D(L−4) +D(L−4)
02

)
,

ρB =
1

D(L)

(
D(L−4) +D(L−4)

20 0

0 D(L−4)
02 +D(L−4)

22

)
. (61)

One can notice that D(L−4)
20 +D(L−4)

22 = D(L−2)
02 and D(L−4) +D(L−4)

02 = D(L−2), so that

ρA =
1

D(L)

(
D(L−2)

02 0

0 D(L−2)

)
, ρB =

1

D(L)

(
D(L−2) 0

0 D(L−2)
02

)
(62)

which are the same matrices we get after a bipartition of the system, from Eqs. (19), (22), with `A = 2

(or `B = 2), since D(2)
02 = D(2) = 1. In the limit L → ∞ the reduced density matrices in Eqs. (60),

(62) become

ρAB −→
L→∞

1

16


3 0 0 0
0 1 1 0
0 1 9 0
0 0 0 3

 (63)

whose eigenvalues are twice 3/16 and
(
5±
√

17
)
/16, and

ρA −→
L→∞

1

4

(
3 0
0 1

)
, ρB −→

L→∞

1

4

(
1 0
0 3

)
, (64)

Now one can easily calculate SAB , SA and SB , finding as a result the large L limit for the mutual
information

IAB −→
L→∞

1

16

[
2
√

17 arcosh
(

5√
17

)
− 18 log 3 + 15 log 2

]
(65)

which is IAB ≈ 0.01745 using the natural logarithm. We have shown, therefore, that, even for the
colorless case, with the lowest value for the entanglement entropy, the mutual information, shared by
two couples of spins at the edges, does not go to zero but remain finite also for infinite distance.

5 Entanglement properties of the Motzkin chain

As done for the Fredkin model, we will study the entanglement properties of the Motzkin model in
the ground state, briefly reviewing the entanglement entropy after a bipartition, then calculating the
negativity and the mutual information shared by the two spins at the edges. We will show that also in
this case the latter quantity reveals long-distance entanglement.
The coefficients in Eq. (16) for the ground state of the Motzkin chain, after a bipartition, analogously
to Eq. (19), are given by [7, 8]

Ah =
M(`A)

0h M
(L−`A)
h0 q−h

M(L)
(66)
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while the coefficients in Eq. (17), after decomposing the state into three parts, analogously to what
found for the Fredkin model in Eq. (20), are given by

Ahh′z =
M(`A)

0h M
(`B)
h′0

(
M(L−`A−`B)

h−z h′−z −M(L−`A−`B)
h−z−1 h′−z−1

)
qz−h

′−h

M(L)
(67)

where

M(n)
hh′ =

bn−|h
′−h|
2

c∑
`=0

(
n

2`+ |h′ − h|

)
D(2`+|h′−h|)
hh′ (68)

is the number of colored Motzkin-like paths between two points at heights h and h′. MoreoverM(n)
0h =

qhM(n)
h0 , andM(n)

00 ≡M(n) =
∑bn

2
c

`=0 q
`

(
n
2`

)
C(`) which is the colored Motzkin number.

5.1 Entanglement entropy

In this section we briefly review the calculation for the von Neumann entanglement entropy for the
Motzkin chain [7–9]. The reduced density matrix after a bipartition of the system into two subsystems
A and B, after tracing out the degrees of freedom of one of them, is obtained from Eq. (16) and has
the same form reported in Eq. (22) where now Ah is given by Eq. (66). Since ρA have qh eigenvalues
equal to Ah, the entanglement entropy reads as it follows

SA = −
hm∑
h

qhAh log(Ah) =

hm∑
h

M(`A)
0h M

(L−`A)
h0

M(L)

[
h log q − log

(
M(`A)

0h M
(L−`A)
h0

M(L)

)]
(69)

Also in this case, since qhAh =
M(`A)

0h M(L−`A)

h0

M(L) is a normalized probability,
∑

h q
hAh = 1, the first

term of Eq. (69) is log q times the average height of the paths at a given position located at distance
`A from the edge

〈h〉`A =
∑
h

h
M(`A)

0h M
(L−`A)
h0

M(L)
(70)

which, for large L and `A, scales as square root, 〈h〉`A '
2
√

2σ√
π

√
`A(L−`A)

L , with σ = 2
√
q/(2
√
q+1).

The second term, instead, scales as 1
2 log

(
`A(L−`A)

L

)
, therefore, for large systems and for a sizable

bipartition one gets

SA '
2
√

2σ√
π

√
`A(L− `A)

L
log q +

1

2
log

(
`A(L− `A)

L

)
+O(1). (71)

As for the Fredkin case, this approximation is very good when the bipartition occurs in the bulk while
Eq. (69) is exact for any `A and L.

5.2 Reduced density matrix of the edges

Let us consider the system A ∪ B made by the two spins located at the edges of our spin chains,
as shown in Fig. 4, and study the entanglement properties between these two spins at the edges of a
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Motzkin spin chain by tracing out all the spins between the first and the last one described by

|P(`A=1)
01 〉c = |⇑c1〉 (72)

|P(`B=1)
10 〉c̄ = |⇓c̄L〉 (73)

|P(`A=1)
00 〉 = |P(1)〉 = |01〉 (74)

|P(`B=1)
00 〉 = |P(1)〉 = |0L〉 (75)

so that Eq. (17), dropping the site indices to simplify the notation, reads

|P(L)〉 =
√
A000 |0〉 |P(L−2)〉 |0〉+

√
A100

∑
c

|⇑c〉 |P(L−2)
10 〉c |0〉+

√
A010

∑
c̄

|0〉 |P(L−2)
01 〉c̄ |⇓c̄〉

+
√
A110

∑
c,c̄

|⇑c〉 |P(L−2)
11 〉c,c̄ |⇓c̄〉+

√
A111

∑
c

|⇑c〉 |P(L−2)〉 |⇓c〉 (76)

The joint reduced density matrix of A ∪ B, after tracing out all the degrees of freedom of the central
part C (see Fig. 4) and keeping only the two spins at the edges, is

ρAB = A000 |0〉 |0〉 〈0| 〈0|+A100

∑
c

|⇑c〉 |0〉 〈⇑c| 〈0|+A010

∑
c

|0〉 |⇓c〉 〈0| 〈⇓c|

+A110

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c| 〈⇓c̄|+A111

∑
c,c̄

|⇑c〉 |⇓c〉 〈⇑c̄| 〈⇓c̄|

+
√
A000A111

∑
c

(
|0〉 |0〉 〈⇑c| 〈⇓c|+ |⇑c〉 |⇓c〉 〈0| 〈0|

)
(77)

where the Schmidt coefficients are given by

A000 =
M(L−2)

M(L)
= A111 (78)

A010 =
1

q

M(L−2)
01

M(L)
(79)

A100 =
M(L−2)

10

M(L)
= A010 (80)

A110 =
1

q

(
M(L−2)

11 −M(L−2)

M(L)

)
(81)

One can verify that the trace of ρAB is one,

TrρAB = A000 + q (A100 +A010 +A111) + q2A110

=
1

M(L)

(
M(L−2) +M(L−2)

01 + qM(L−2)
10 + qM(L−2)

11

)
= 1 (82)

Writing ρAB on the basis
(
|0〉 |0〉 , |⇑1〉 |⇓1〉 , ... , |⇑q〉 |⇓q〉 , |0〉 |⇓1〉 , ... , |0〉 |⇓q〉 , |⇑1〉 |0〉 , ... ,

|⇑q〉 |0〉 , |⇑1〉 |⇓2〉 , |⇑2〉 |⇓1〉 , ...
)t we get

ρAB =


A000

√
A000A111J1×q 01×q 01×q 01×(q2−q)√

A000A111Jq×1 A111Jq×q +A1101q×q 0q×q 0q×q 0q×(q2−q)
0q×1 0q×q A1001q×q 0q×q 0q×(q2−q)
0q×1 0q×q 0q×q A0101q×q 0q×(q2−q)

0(q2−q)×1 0(q2−q)×q 0(q2−q)×q 0(q2−q)×q A1101(q2−q)×(q2−q)


(83)
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5.3 Negativity

We can calculate the negativity defined as in Eq. (34) where now λα are the eigenvalues of the partial
transpose of the reduced density matrix with respect to B in Eq. (77)

ρtBAB = A000 |0〉 |0〉 〈0| 〈0|+A100

∑
c

|⇑c〉 |0〉 〈⇑c| 〈0|+A010

∑
c

|0〉 |⇓c〉 〈0| 〈⇓c|

+A110

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c| 〈⇓c̄|+A111

∑
c,c̄

|⇑c〉 |⇓c̄〉 〈⇑c̄| 〈⇓c|

+
√
A000A111

∑
c

(
|0〉 |⇓c〉 〈⇑c| 〈0|+ |⇑c〉 |0〉 〈0| 〈⇓c|

)
(84)

Expressing this matrix on the same basis of Eq. (83) we can write

ρtBAB =


A000 01×q 01×q 01×q 01×(q2−q)
0q×1 (A111 +A110)1q×q 0q×q 0q×q 0q×(q2−q)
0q×1 0q×q A1001q×q

√
A000A111 1q×q 0q×(q2−q)

0q×1 0q×q
√
A000A111 1q×q A0101q×q 0q×(q2−q)

0(q2−q)×1 0(q2−q)×q 0(q2−q)×q 0(q2−q)×q 1 (q2−q)
2
× (q2−q)

2

⊗ A


(85)

where the last block on the bottom-right corner is a Kronecker product of an identity matrix and a
2× 2 matrix

A =

(
A110 A111

A111 A110

)
(86)

where, according to Eqs. (78-80), A111 = A000 and A100 = A010. The eigenvalues of ρtBAB are
A000 with multiplicity one, (A000 + A110) with multiplicity q, (A100 + A000) with multiplicity q,
(A100 − A000) with multiplicity q, (A110 + A000) with multiplicity q(q − 1)/2 and (A110 − A000)
with multiplicity q(q − 1)/2.
Since A100 ≥ A000, namelyMn

10 ≥Mn, ∀n ≥ 1, the only possibility for having a negativity greater
than zero is when A000 > A110, which occurs for

q >

(
M(L−2)

11

M(L−2)
− 1

)
−→
L→∞

3 (87)

Notice that even ifM(L−2)
11 andM(L−2) depend on q (see. Eqs. (21), (68), (15)) their ratio, in the

limit L→∞, goes to 4 from below for any q. As a result, for any finite L, we have

N =
(q − 1)

2

(
(q + 1)

M(L−2)

M(L)
− M

(L−2)
11

M(L)

)
, for q ≥ 3 (88)

and N = 0 otherwise (q = 1, 2), as in the case of the Fredkin model, see Fig. 8. For L� 1, we have
thatM(L−2)

11 → 4M(L−2) for any q so that Eq. (88) becomes

N −→
L�1

(q − 1)(q − 3)

2

M(L−2)

M(L)
. (89)
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Figure 8: Negativity for two spins at the edges of a Motzkin chain of size L = 1000, as a function of
the number of colors q.

Also for the Motzkin model we have that, for q > 3, the negativity N does not vanish even at
infinite distance between the two spins at the edges of the chain. This means that the quantum state
in Eq. (77) is surely distantly entangled. On the other hand, for q = 1 and q = 2 the negativity is
zero, nevertheless Eq. (77) is a PPT entangled state, as we will show in the next section. For q = 3
the negativity is N ≈ 7/9L, therefore the state is surely entangled for any finite L, but also in this
case we will see that, even if the negativity goes to zero for infinite distance, the state in Eq. (77) is
infinitely long-distance entangled, as shown by the following calculation.

5.4 Mutual Information

The eigenvalues of the reduced density matrix, Eq. (83), are

λ± =
1

2

[
A110 + (q + 1)A000 ±

√
(A110)2 + 2(q − 1)A000A110 + (q + 1)2(A000)2

]
(90)

together with A000 with multiplicity (q − 1), A100 with multiplicity 2q and A110 with multiplicity
(q2 − q). The entanglement entropy SAB is, therefore,

SAB = −
[
λ+ log(λ+)+λ− log(λ−)+(q−1)A000 log(A000)+2qA100 log(A100)+(q2−q)A110 log(A110)

]
(91)

with A000 as in Eq. (78), A100 in Eq. (80) and A110 in Eq. (81). On the other hand

SA = SB = −
[
A0 log(A0) + qA1 log(A1)

]
(92)

with the coefficients

A0 =
M(L−1)

M(L)
, A1 =

M(L−1)
10

M(L)
(93)

fulfilling A0 + qA1 = 1. The mutual information that we report here for convenience

IAB = SA + SB − SAB (94)

can be calculated for any value of L and q through Eqs. (90), (91) and (92). IAB as a function of the
size L is plotted in Fig. 9 (left panel) for some values of q. As one can see, increasing L the mutual
information goes to some asymptotic value which depends on q. The asymptotic values of IAB have
been calculated and show in Fig. 9 (right panel) for several values of q.
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Figure 9: (Left) Mutual information between two spins at the edges of colorful Motzkin chains, as a
function of the size L, for different values of q. (Right) Mutual information at long distance, L→∞
between two spins at the edges of colorful Motzkin chains, as a function of the color number q.

Colorless case : Let us focus on the simplest case q = 1, in the long distance limit L → ∞. The
reduced density matrix, Eq. (83), becomes simply

ρAB −→
L→∞

1

9


1 1 0 0
1 4 0 0
0 0 2 0
0 0 0 2

 (95)

whose eigenvalues are twice 2/9 and
(
5±
√

13
)
/18. Summing over the right or left spin degrees of

freedom we get

ρA = ρB −→
L→∞

1

3

(
1 0
0 2

)
, (96)

so that the mutual information is given by

IAB −→
L→∞

1

18

[
2
√

13 arcosh
(

5√
13

)
− 16 log 2 + 5 log 3

]
(97)

which is IAB ≈ 0.05361, in natural logarithm, as shown in Fig. 9.

Colorful case : Here we derive an explicit expression for the asymptotic value of IAB as a function
of q. For a generic q we can simplify the expression for IAB , in the limit L→∞, writing it in terms
of only one colored Motzkin ratio

Fq ≡ lim
L→∞

A0 = lim
L→∞

M(L−1)

M(L)
= lim

L→∞

2F1

(
1−L

2 , 2−L
2 , 2, 4q

)
2F1

(−L
2 , 1−L

2 , 2, 4q
) (98)

since A1 = (1−A0)/q and, from Eqs. (78)-(81),

lim
L→∞

A000 = F2
q (99)

lim
L→∞

A100 =
2
√
q
F2
q (100)

lim
L→∞

A110 =
3

q
F2
q (101)
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where we recognize that M(L) in Eq. (15) can be seen as 2F1(−L2 , 1−L
2 , 2, 4q), an hypergeometric

serie reduced to a polynomial since at least one on the first two arguments is a nonpositive integer
number. Substituting these values in Eq. (90) we get

Λ±q ≡ lim
L→∞

λ± =
F2
q

2q

(
q2 + q + 3±

√
q4 + 2q3 + 7q2 − 6q + 9

)
(102)

and, from Eqs. (91), (92) we get, for the mutual information, the following asymptotic exact expression

IAB −→
L→∞

[
2(Fq − 1) log

(
1−Fq
q

)
− 2Fq logFq + 2F2

q (q − 1) logFq

+3F2
q (q − 1) log

(
3F2

q

q

)
+4F2

q

√
q log

(
2F2

q√
q

)
+ Λ+

q log Λ+
q + Λ−q log Λ−q

]
(103)

We showed, therefore, that the mutual information shared by the two disjoint spins at the edges is
always finite, even when the separation is sent to infinity, also for the colorless case which, from the
point of view of the entanglement entropy, resembles a critical system. The expression in Eq. (103),
as a function of q, perfectly agrees with the results reported in Fig. 9 (right panel) obtained calculating
the asymptotic IAB for several values of q. As one can see from Fig. 9, comparing it with Fig. 6,
unlike the Fredkin model, because of the greater complexity due to the spin degrees of freedom, IAB
for the Motzkin model does not monotonically increase with q.

6 Entanglement properties in the bulk

Let us generalize what seen so far considering two disjoint subsystems also in the bulk. This requires
to divide our system in five subsystems with different lengths such that L = `A + `B + `C + `D + `E ,
as shown in Fig. 10, and the ground state has to be decomposed in five parts

Figure 10: Pentapartition of a spin chain into subsystems A, B, C, D, E.

|P(L)〉 =
∑

h1h2h3h4
z1z2z3

√
Ah1h2h3h4

z1z2z3

∑
c1... ch1
c̄1... c̄h2

∑
c̃1... c̃h3
ĉ1... ĉh4

|P(`D)
0h1
〉c1,...,ch1 |P

(`A)
h1h2(z1)〉ch1 ,...,c1

c̄1,...,c̄h2

|P(`C)
h2h3(z2)〉c̄h2 ,...,c̄1

c̃1,...,c̃h3

|P(`B)
h3h4(z3)〉 c̃h3 ,...,c̃1

ĉ1,...,ĉh4

|P(`E)
h40 〉ĉh4 ,...,ĉ1 (104)

where the states located in each region is defined as before, see Eq. (18), and the coefficients depend
on the model.

21



SciPost Physics Submission

6.1 Fredkin model

For the half-integer spin model the coefficients appearing in Eq. (104) are the following

Ah1h2h3h4
z1z2z3

=
D(`D)

0h1
L(`A)
h1h2z1

L(`C)
h2h3z2

L(`B)
h3h4z3

D(`E)
h40

D(L)
qz1+z2+z3−(h1+h2+h3+h4) (105)

where
L(`)
hihjz

=
(
D(`)
hi−z hj−z −D

(`)
hi−z−1hj−z−1

)
(106)

Let us consider the case where both inA andB there is only a single spin (`A = `B = 1). In this case,
using the definition given in Eq. (18) and remembering that non-zero contributions |P(`)

hihj(zi)
〉 come

from
max (0, d(hi + hj − `)/2e) ≤ zi ≤ min(hi, hj) (107)

and that the difference of the heights is limited by `, namely |hi−hj | ≤ `, we have only the following
possibilities for the states defined in A and B

|P(`A=1)
h1 h1+1(z1)〉 ch1 ,...,c1

c̄1,...,c̄(h1+1)

= |↑c̄(h1+1)〉 δz1h1 δc1,c̄1 . . . δch1 ,c̄h1 (108)

|P(`A=1)
h1 h1−1(z1)〉 ch1 ,...,c1

c̄1,...,c̄(h1−1)

= |↓ch1 〉 δz1,h1−1 δc1,c̄1 . . . δc(h1−1),c̄(h1−1)
(109)

|P(`B=1)
h4−1h4(z3)〉c̃(h4−1),...,c̃1

ĉ1,...,ĉh4

= |↑ĉh4 〉 δz3,h4−1 δc̃1,ĉ1 . . . δc̃(h4−1),ĉ(h4−1)
(110)

|P(`B=1)
h4+1h4(z3)〉c̃(h4+1),...,c̃1

ĉ1,...,ĉh4

= |↓c̃(h4+1)〉 δz3h4 δc̃1,ĉ1 . . . δc̃h4 ,ĉh4 (111)

Eq. (109) is null for h1 = 0 and Eq. (111) if h4 = 0, however the coefficients in Eq. (104) take into
account these possibilities when some heights in the argument of the Dyck numbers become negative.
Calling h = h1, h′ = h4, z = z2 and the residual spin indices c̄ = c̄(h+1) and c̃ = c̃(h′+1) to simplify
the notation, the ground state can be written as

|P(L)〉 =
∑
hh′z

∑
c1... ch
ĉ1... ĉh′

|P(`D)
0h 〉c1,...,ch

[∑
c̄

√
V↑↑hh′z |↑

c̄〉 |P(`C)
h+1h′−1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉ(h′−1)

|↑ĉh′ 〉

+
∑
c̄,c̃

√
V↑↓hh′z |↑

c̄〉 |P(`C)
h+1h′+1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉh′ ,c̃
|↓c̃〉+

√
V↓↑hh′z |↓

ch〉 |P(`C)
h−1h′−1 (z)〉 c(h−1),...,c1

ĉ1,...,ĉ(h′−1)

|↑ĉh′ 〉

+
∑
c̃

√
V↓↓hh′z |↓

ch〉 |P(`C)
h−1h′+1 (z)〉c(h−1),...,c1

ĉ1,...,ĉh′ ,c̃
|↓c̃〉

]
|P(`E)
h′0 〉ĉh′ ,...,ĉ1 (112)
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where, from Eq. (105) and L(1)
hh+1 = D(1)

01 = q together with L(1)
hh−1 = D(1)

10 = 1, we have

V↑↑hh′z = Ah(h+1)(h′−1)h′

hz(h′−1)

=
D(`D)

0h

(
D(`C)
h−z+1 h′−z−1 −D

(`C)
h−z h′−z−2

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′+1 (113)

V↑↓hh′z = Ah(h+1)(h′+1)h′

hzh′
=
D(`D)

0h

(
D(`C)
h−z+1 h′−z+1 −D

(`C)
h−z h′−z

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′−1 (114)

V↓↑hh′z = Ah(h−1)(h′−1)h′

(h−1)z(h′−1)

=
D(`D)

0h

(
D(`C)
h−z−1 h′−z−1 −D

(`C)
h−z−2 h′−z−2

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′+1 (115)

V↓↓hh′z = Ah(h−1)(h′+1)h′

(h−1)zh′
=
D(`D)

0h

(
D(`C)
h−z−1 h′−z+1 −D

(`C)
h−z−2 h′−z

)
D(`E)
h′0

D(`D+`C+`E+2)
qz−h−h

′−1 (116)

and where the sums over h is limited by min(`D, L− `D), the sums over h′ is limited by min(`E , L−
`E) and the sum over z is defined differently for the four terms according to the different heights of the
borders of the central region as given by Eq. (107), where zi = z, ` = `C , hi = h±1 and hj = h′±1.
More importantly, we notice that in Eq. (112), for any z, the central states in the first and in the last
term are orthogonal to any other while the central states in the second and third term can overlap, more
explicitly any (z+ 2)-th state of the second term coincides with the z-th state of the third term. These
overlaps produce the coherent off-diagonal terms in the reduced density matrix ρAB .
In order to calculate the mutual information between A and B we have to calculate also ρA and ρB .
This can be done exploiting the tripartition of the ground state, Eq. (17) and Eq. (20),

ρA =
∑
h c

(
qhA(A)

h(h+1)h |↑
c〉 〈↑c|+ qh−1A(A)

h(h−1)(h−1) |↓
c〉 〈↓c|

)
(117)

ρB =
∑
h c

(
qh−1A(B)

(h−1)h(h−1) |↑
c〉 〈↑c|+ qhA(B)

(h+1)hh |↓
c〉 〈↓c|

)
(118)

where, using the same notation of Eq. (20),

A(A)
h(h+1)h =

D(`D)
0h D

(`C+`E+1)
h+1,0

D(`D+`C+`E+2)
q−h (119)

A(A)
h(h−1)(h−1) =

D(`D)
0h D

(`C+`E+1)
h−1,0

D(`D+`C+`E+2)
q−h (120)

A(B)
(h−1)h(h−1) =

D(`D+`C+1)
0h−1 D(`E)

h0

D(`D+`C+`E+2)
q1−h (121)

A(B)
(h+1)hh =

D(`D+`C+1)
0h+1 D(`E)

h0

D(`D+`C+`E+2)
q−h−1 (122)

Colorless case. Let us consider for simplicity the colorless case (q = 1).
From Eq. (112) we can derive the reduced density matrix for the joint system A ∪B after tracing out
the rest of the chain

ρAB = V↑↑ |↑〉|↑〉 〈↑|〈↑|+ V↑↓ |↑〉|↓〉 〈↑|〈↓|+ V↓↑ |↓〉|↑〉 〈↓|〈↑|+ V↓↓ |↓〉|↓〉 〈↓|〈↓| (123)

+VX
(
|↓〉|↑〉 〈↑|〈↓|+ |↑〉|↓〉 〈↓|〈↑|

)
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which, on the basis (|↑〉 |↑〉 , |↑〉 |↓〉 , |↓〉 |↑〉 , |↓〉 |↓〉)t, can be written as

ρAB =


V↑↑ 0 0 0
0 V↑↓ VX 0
0 VX V↓↑ 0
0 0 0 V↓↓

 , (124)

where the coefficients, from Eqs. (113)-(116), are

V↑↑ =
∑
hh′z

V↑↑hh′z , V↑↓ =
∑
hh′z

V↑↓hh′z , V↓↑ =
∑
hh′z

V↓↑hh′z , V↓↓ =
∑
hh′z

V↓↓hh′z (125)

and the crossing term

VX =
∑
hh′z

√
V↑↓hh′z+2 V

↓↑
hh′z =

∑
hh′z

V↓↑hh′z = V↓↑ (126)

which is actually at the origin of the coherence and of the long-distance entanglement between the
spins. One can verify through Eqs. (113)-(116) that

Tr(ρAB) = V↑↑ + V↑↓ + V↓↑ + V↓↓ = 1. (127)

Eq. (123) is indeed the generalization of Eq. (57) and reduces to it for `D = `E = 1 since the first and
he last spins are fixed to be up and down respectively. The eigenvalues of ρAB are V↑↑, V↓↓, and

V± ≡ 1

2

(
V↑↓ + V↓↑ ±

√
4(VX)2 + (V↑↓ − V↓↑)2

)
. (128)

From Eq. (123) and the following reduced density matrices for the regions A and B

ρA = A↑ |↑〉 〈↑|+A↓ |↓〉 〈↓| (129)

ρB = B↑ |↑〉 〈↑|+ B↓ |↓〉 〈↓| (130)

where the coefficients, using Eqs. (119)-(122), are

A↑ =
∑
h

A(A)
h(h+1)h , A↓ =

∑
h

A(A)
h(h−1)(h−1) , B↑ =

∑
h

A(B)
(h−1)h(h−1) , B↓ =

∑
h

A(B)
(h+1)hh

(131)
we can calculate the corresponding entanglement entropies and then the mutual information, IAB =
SA +SB −SAB exactly, by means of Eqs. (113)-(116), (119)-(122), (125), (126), (128), (164), which
is

IAB = V↑↑ logV↑↑+V↓↓ logV↓↓+V+ logV++V− logV−−A↑ logA↑−A↓ logA↓−B↑ logB↑−B↓ logB↓
(132)

Explicit calculation shows that also for very large system size L the mutual information between two
spins in the bulk does not vanishes, as shown in the left panel of Fig. 11. Actually, its asymptotic value
increases when considering two spins located more and more deeply in the bulk (see right panel of
Fig. 11). Actually we expected and verified that increasing `D and `E , so going in the deep bulk, the
probabilities of getting ↑ and ↑ (V↑↑) or ↑ and ↓ (V↑↓) or ↓ and ↑ (V↓↑) or finally ↓ and ↓ (V↓↓) should
become the same and equal to 1/4, since also the probabilities of having one spin ↑ or ↓, both in A
and B, should be 1/2. This means that

ρAB →
1

4


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 , ρA →
1

2

(
1 0
0 1

)
, ρB →

1

2

(
1 0
0 1

)
, (133)
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Figure 11: (Left) Mutual information between two spins in the bulk of a colorless Fredkin chain at
distances `D = `E = 6, 10, 20 from the edges, as a function of the relative distance `C ; (Right) Mutual
information between two spins in the bulk as a function of the distance `D = `E from the edges for
colorless Fredkin chain with size L = 1000.

and consequently, for large system size L and for `D, `E � 1, deeply in the bulk,

IAB →
1

2
log 2 (134)

which is also the same value, IAB ≈ 0.35, obtained for `C = 0 and `D, `E � 1, as shown by the
first points in the left panel of Fig. 11). Eq. (134) is actually the asymptotic value of the curve in the
right panel of Fig. 11. The staircase effect observed in Fig. 11 (right panel) is due to the fact that the
numbers D(`)

hh′ are zero for (`+ h+ h′) odd integers. This feature is also present in other ground-state
quantities like the magnetization and the correlation functions [9, 21].

6.2 Motzkin model

For the integer spin model the coefficients appearing in Eq. (104) are the following

Ah1h2h3h4
z1z2z3

=
M(`D)

0h1
L(`A)
h1h2z1

L(`C)
h2h3z2

L(`B)
h3h4z3

M(`E)
h40

M(L)
qz1+z2+z3−(h1+h2+h3+h4) (135)

where
L(`)
hihjz

=
(
M(`)

hi−z hj−z −M
(`)
hi−z−1hj−z−1

)
(136)

As done for the Fredkin chain, let us consider the case where in A and B there are only a single spin
(`A = `B = 1). Proceeding analogously as done for the half-integer case, using Eq. (104) we get, for
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the ground state of the Motzkin model, the following decomposition

|P(L)〉 =
∑
hh′z

∑
c1... ch
ĉ1... ĉh′

|P(`D)
0h 〉c1,...,ch

[∑
c̄

√
V⇑⇑hh′z |⇑

c̄〉 |P(`C)
h+1h′−1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉 (137)

+
∑
c̄,c̃

√
V⇑⇓hh′z |⇑

c̄〉 |P(`C)
h+1h′+1 (z)〉 c̄ ,ch,...,c1

ĉ1,...,ĉh′ ,c̃
|⇓c̃〉+

√
V⇓⇑hh′z |⇓

ch〉 |P(`C)
h−1h′−1 (z)〉 c(h−1),...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉

+
∑
c̃

√
V⇓⇓hh′z |⇓

ch〉 |P(`C)
h−1h′+1 (z)〉c(h−1),...,c1

ĉ1,...,ĉh′ ,c̃
|⇓c̃〉+

∑
c̄

√
V⇑0
hh′z |⇑

c̄〉 |P(`C)
h+1h′ (z)〉c̄ ,ch,...,c1

ĉ1,...,ĉh′
|0〉

+

√
V⇓0
hh′z |⇓

ch〉 |P(`C)
h−1h′ (z)〉c(h−1),...,c1

ĉ1,...,ĉh′
|0〉+

√
V0⇑
hh′z |0〉 |P

(`C)
hh′−1 (z)〉 ch,...,c1

ĉ1,...,ĉ(h′−1)

|⇑ĉh′ 〉

+
∑
c̃

√
V0⇓
hh′z |0〉 |P

(`C)
hh′+1 (z)〉 ch,...,c1ĉ1,...,ĉh′ ,c̃

|⇓c̃〉+
√
V00
hh′z |0〉 |P

(`C)
hh′ (z)〉 ch,...,c1ĉ1,...,ĉh′

|0〉
]
|P(`E)
h′0 〉ĉh′ ,...,ĉ1

where the coefficients, according to Eq. (135), since L(1)
hh+1 = M(1)

01 = q and L(1)
hh = M(1)

00 =

L(1)
hh−1 =M(1)

10 = 1, are

V⇑⇑hh′z = Ah(h+1)(h′−1)h′

hz(h′−1)

=
M(`D)

0h

(
M(`C)

h−z+1 h′−z−1 −M
(`C)
h−z h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1 (138)

V⇑⇓hh′z = Ah(h+1)(h′+1)h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z+1 h′−z+1 −M
(`C)
h−z h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (139)

V⇓⇑hh′z = Ah(h−1)(h′−1)h′

(h−1)z(h′−1)

=
M(`D)

0h

(
M(`C)

h−z−1 h′−z−1 −M
(`C)
h−z−2 h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1 (140)

V⇓⇓hh′z = Ah(h−1)(h′+1)h′

(h−1)zh′
=
M(`D)

0h

(
M(`C)

h−z−1 h′−z+1 −M
(`C)
h−z−2 h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (141)

V⇑0
hh′z = Ah(h+1)h′h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z+1 h′−z −M
(`C)
h−z h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(142)

V⇓0
hh′z = Ah(h−1)h′h′

(h−1)zh′
=
M(`D)

0h

(
M(`C)

h−z−1 h′−z −M
(`C)
h−z−2 h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(143)

V0⇑
hh′z = Ahh(h′−1)h′

hz(h′−1)

=
M(`D)

0h

(
M(`C)

h−z h′−z−1 −M
(`C)
h−z−1 h′−z−2

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′+1 (144)

V0⇓
hh′z = Ahh(h′+1)h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z h′−z+1 −M
(`C)
h−z−1 h′−z

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′−1 (145)

V00
hh′z = Ahhh′h′

hzh′
=
M(`D)

0h

(
M(`C)

h−z h′−z −M
(`C)
h−z−1 h′−z−1

)
M(`E)

h′0

M(`D+`C+`E+2)
qz−h−h

′
(146)
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On the other hand the reduced density matrix of a single spin inA andB can be determined performing
the tripartition described by Eq. (17)

ρA =
∑
h

A(A)
hhh |0〉 〈0|+

∑
h c

(
qhA(A)

h(h+1)h |⇑
c〉 〈⇑c|+ qh−1A(A)

h(h−1)(h−1) |⇓
c〉 〈⇓c|

)
(147)

ρB =
∑
h

A(B)
hhh |0〉 〈0|+

∑
h c

(
qh−1A(B)

(h−1)h(h−1) |⇑
c〉 〈⇑c|+ qhA(B)

(h+1)hh |⇓
c〉 〈⇓c|

)
(148)

where, using the definitions reported in Eq. (67), the coefficients are

A(A)
hhh =

M(`D)
0h M

(`C+`E+1)
h0

M(`D+`C+`E+2)
q−h (149)

A(A)
h(h+1)h =

M(`D)
0h M

(`C+`E+1)
h+1,0

M(`D+`C+`E+2)
q−h (150)

A(A)
h(h−1)(h−1) =

M(`D)
0h M

(`C+`E+1)
h−1,0

M(`D+`C+`E+2)
q−h (151)

A(B)
hhh =

M(`D+`C+1)
0h M(`E)

h0

M(`D+`C+`E+2)
q−h (152)

A(B)
(h−1)h(h−1) =

M(`D+`C+1)
0h−1 M(`E)

h0

M(`D+`C+`E+2)
q1−h (153)

A(B)
(h+1)hh =

M(`D+`C+1)
0h+1 M(`E)

h0

M(`D+`C+`E+2)
q−h−1 (154)

Colorless case. As done for Fredkin chain, let us consider for simplicity the colorless Motzkin
model (q = 1).
From Eq. (138) we can derive the reduced density matrix for the joint system A ∪B after tracing out
the rest of the chain

ρAB = V⇑⇑ |⇑〉|⇑〉 〈⇑|〈⇑|+ V⇑0 |⇑〉|0〉 〈⇑|〈0|+ V0⇑ |0〉|⇑〉 〈0|〈⇑|+ VXu

(
|⇑〉|0〉 〈0|〈⇑|+ |0〉|⇑〉 〈⇑|〈0|

)
+V⇑⇓ |⇑〉|⇓〉 〈⇑|〈⇓|+ V00 |0〉|0〉 〈0|〈0|+ V⇓⇑ |⇓〉|⇑〉 〈⇓|〈⇑|+ VX

(1)
0

(
|⇑〉|⇓〉 〈⇓|〈⇑|+ |⇓〉|⇑〉 〈⇑|〈⇓|

)
+VX

(2)
0

(
|⇑〉|⇓〉 〈0|〈0|+ |0〉|0〉 〈⇑|〈⇓|

)
+ VX

(3)
0

(
|0〉|0〉 〈⇓|〈⇑|+ |⇓〉|⇑〉 〈0|〈0|

)
+ V0⇓ |0〉|⇓〉 〈0|〈⇓|

+V⇓0 |⇓〉|0〉 〈⇓|〈0|+ VXd

(
|0〉|⇓〉 〈⇓|〈0|+ |⇓〉|0〉 〈0|〈⇓|

)
+ V⇓⇓ |⇓〉|⇓〉 〈⇓|〈⇓| (155)

27



SciPost Physics Submission

where, denoting σ, σ′ =⇑, 0,⇓, the coefficients are defined by

Vσσ′ =
∑
hh′z

Vσσ′hh′z (156)

VXu =
∑
hh′z

√
V⇑0
hh′z+1V

0⇑
hh′z = V0⇑ (157)

VX
(1)
0 =

∑
hh′z

√
V⇑⇓hh′z+2V

⇓⇑
hh′z = V⇓⇑ (158)

VX
(2)
0 =

∑
hh′z

√
V⇑⇓hh′z+1V00

hh′z = V00 (159)

VX
(3)
0 =

∑
hh′z

√
V⇓⇑hh′zV00

hh′z+1 = V⇓⇑ (160)

Choosing an opportune basis, the reduced density matrix can be written in a block diagonal form as it
follows

ρAB =



V⇑⇑ 0 0 0 0 0 0 0 0
0 V⇑0 V0⇑ 0 0 0 0 0 0
0 V0⇑ V0⇑ 0 0 0 0 0 0
0 0 0 V⇑⇓ V00 V⇓⇑ 0 0 0
0 0 0 V00 V00 V⇓⇑ 0 0 0
0 0 0 V⇓⇑ V⇓⇑ V⇓⇑ 0 0 0
0 0 0 0 0 0 V⇓0 V⇓0 0
0 0 0 0 0 0 V0⇓ V0⇓ 0
0 0 0 0 0 0 0 0 V⇓⇓


, (161)

We verified that Tr(ρAB) = 1. Now, together with the reduced density matrices for the single spins in
A and B

ρA = A⇑ |⇑〉 〈⇑|+A0 |0〉 〈0|+A⇓ |⇓〉 〈⇓| (162)

ρB = B⇑ |⇑〉 〈⇑|+ B0 |0〉 〈0|+ B⇓ |⇓〉 〈⇓| (163)

where the coefficients, related to Eqs. (149)-(154), are

A⇑ =
∑
h

A(A)
h(h+1)h , A0 =

∑
h

A(A)
hhh , A⇓ =

∑
h

A(A)
h(h−1)(h−1) , (164)

B⇑ =
∑
h

A(B)
(h−1)h(h−1) , B0 =

∑
h

A(B)
hhh , B⇓ =

∑
h

A(B)
(h+1)hh , (165)

we can calculate the entanglement entropies and finally the mutual information, IAB = SA + SB −
SAB , exactly. Examples of the exact results for the mutual information shared by two spins in the bulk
have been given in Fig. 12 where it is shown that IAB does not vanish when the distance of the spins
in the bulk goes to zero but it saturates at some values which increase going more and more deeply
into the bulk. Increasing the distances from the edges, `D and `E , we expected and verified that the
probabilities in ρAB factorize

Vσσ′ → AσBσ′ , (166)

and, upon further increasing `D and `E , namely very deeply in the bulk, they become homogeneous,
Vσσ′ → 1

9 and Aσ → 1
3 , Bσ′ → 1

3 . The eigenvalues of ρAB , in this limit, become 1/3, 2/9, 2/9,
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Figure 12: (Left) Mutual information between two spins in the bulk of a colorless Motzkin chain at
distances `D = `E = 1, 2, 3 from the edges, as a function of the relative distance `C ; (Right) Mutual
information between two spins in the bulk as a function of the distance `D = `E from the edges for
colorless Motzkin chain with size L = 100.

1/9, 1/9, 0, 0, 0, 0, so that the entanglement entropy is SAB → 5
3 log 3 − 4

9 log 2. As a result the
asymptotic upper bound for the mutual information between two spins in the bulk is given by

IAB →
1

3
log 3 +

4

9
log 2 . (167)

6.3 General results for any disjoint intervals

The physical explanation of what seen so far, at least for the colorless cases, is the following. Any
state defined on a segment of the chain, |Phh′(z)〉, can be defined by two quantum numbers:
i) the magnetization m = (h′ − h) (the number of up-spins minus the number of down-spins),
ii) the horizon z (the lowest level of the paths),
so that we can write |Phh′(z)〉 = |m, z〉. Considering the decomposition as depicted in Fig. 10, we
have that the ground state written in Eq. (104) can be rewritten schematically as

|P(L)〉 =
∑
{m}{z}

√
A(m, z) |mD, 0〉 |mA, zA〉 |mC , zC〉 |mB, zB〉 |mE , 0〉 (168)

where the sum is such that mD + mA + mC + mB + mE = 0 and is restricted by the request that,
for any set of magnetizations, one has to get a Fredkin or a Motzkin path (therefore, mD has to be
non-negative, as well as any initial sums, for instance mD + mA + .., as a consequence mE has to be
non-positive). The reduced density matrix of A ∪ C ∪B, after tracing over D and E, is

ρACB = TrDE |P(L)〉 〈P(L)| (169)

=
∑
{m,m′}
{z,z′}

√
A(m, z)A(m′, z′) |mA, zA〉 |mC , zC〉 |mB, zB〉 〈m′A, z′A| 〈m′C , z′C | 〈m′B, z′B|

where the central magnetizations are restricted by

mC = − (mD + mE + mA + mB) (170)

m′C = −
(
mD + mE + m′A + m′B

)
(171)
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therefore
〈m′C , z′C |mC , zC〉 = δ(m′A+m′B),(mA+mB) δz′C ,zC (172)

namely, the overlap is one if the total magnetizations in A and B are the same. This constraint implies
that there are coherent terms in the reduced density matrix for A and B after integrating over C. As
a result the reduced density matrix ρAB can be written in a block diagonal form, where each block is
defined by a magnetization sector,

ρAB =



V`S

.

V`S−i

. . .

V−`S

 (173)

The blocks V`S−i are square matrices defined by the maximum total magnetization

`S = max(mA + mB) = `A + `B (174)

and the index i which runs differently for the integer or half-integer cases, i.e. i = 0, 2, 4, . . . , 2`S,
for the Fredkin model, and i = 0, 1, 2, . . . , 2`S, for the Motzkin model, namely there are (`S + 1)
square blocks for the Fredkin case and (2`S + 1) blocks for the Motzkin one. The dimension of
ρAB is [(`A + 1)(`B + 1)] × [(`A + 1)(`B + 1)] for the Fredkin model and [(2`A + 1)(2`B + 1)] ×
[(2`A + 1)(2`B + 1)] for the Motzkin model.

The dimension of the blocks V`S and V−`S is 1, while the dimensions of the other blocks are larger
for sectors with smaller modulus of the spin. In general terms, Vn is a dn × dn matrix, with

dn =

`A∑
h=−`A

Θ[`B + n− h] Θ[`B − n + h] (175)

where the sum runs over h with step 1 for the Motzkin and step 2 for the Fredkin, and Θ[n] = 1 for
n ≥ 0 and Θ[n] = 0 otherwise. Defining

VmAmB
hh′zAzBz

=
D(`D)

0h L
(`A)
h (h+mA) zA

L(`C)
(h+mA) (h′−mB) z L

(`B)
(h′−mB)h′ zB

D(`E)
h′0

D(`D+`A+`C+`B+`E)
(176)

where L`hh′z is given by Eq. (106) for the colorless Fredkin model and

VmAmB
hh′zAzBz

=
M(`D)

0h L
(`A)
h (h+mA) zA

L(`C)
(h+mA) (h′−mB) z L

(`B)
(h′−mB)h′ zB

M(`E)
h′0

M(`D+`A+`C+`B+`E)
(177)

where L`hh′z is given by Eq. (136) for the colorless Motzkin model, the diagonal and the off-diagonal
matrix elements of Vn, with n = mA + mB = m̃A + m̃B , on the basis of all possible magnetization
configurations {(mA,mB)}, are the following

V(mA,mB)(mA,mB) =
∑
hh′{z}

VmAmB
hh′zAzBz

, (178)

V(mA,mB)(m̃A,m̃B) =
∑
hh′{z}

√
VmAmB
hh′zAzBz

Vm̃Am̃B
hh′z̃Az̃Bz

(179)
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For `A, `B � `D, `E one verifies that the matrix elements of the blocks lose their dependence on `C
and become

V(mA,mB)(m̃A,m̃B) →

√
D

(`A)
mA D

(`B)
mB D

(`A)
m̃A

D
(`B)
m̃B

2`A+`B
(180)

for the Fredkin model, where

D
(`)
m =

(
`

`+|m|
2

)
p`+m (181)

with pn = (1−mod(n, 2)) which selects even integers, as introduced before, while

V(mA,mB)(m̃A,m̃B) →

√
M

(`A)
mA M

(`B)
mB M

(`A)
m̃A

M
(`B)
m̃B

3`A+`B
(182)

for the Motzkin model, where

M
(`)
m =

∑̀
k=|m|

(
k

k+|m|
2

)(
`
k

)
pk+m (183)

Notice that D(`)
m = D(`)

hh+m, for large h, namely for h > `, and, analogously, M(`)
m = M(`)

hh+m, for
h > `. Both quantities are the number of some lattice paths starting from (0, 0) and ending at (`,m)
without constraints. One can verify that

∑̀
m=−`

D
(`)
m = 2` (184)

∑̀
m=−s

M
(`)
m = 3` (185)

which are the numbers of all possible configurations of ` 1
2 -spins and ` 1-spins, respectively. Remark-

ably, we find that all off-diagonal terms in each block are written in terms of the diagonal probabilities,
therefore these coherent terms persist for any set of lengths. In particular, looking at Eqs. (180), (182),
we notice that the blocks identifying the magnetization sectors, when deeply in the bulk, become sin-
gular matrices, since any two rows or columns are equal except for a factor. As a result only a single
eigenvalue of a generic block Vn is not zero, therefore, it is given by

Tr Vn =

`A∑
i=−`A

D
(`A)
i D

(`B)
n−i

2`S
=

D
(`S)
n

2`S
(186)

for the Fredkin case, and

Tr Vn =

`A∑
i=−`A

M
(`A)
i M

(`B)
n−i

3`S
=

M
(`S)
n

3`S
(187)

for the Motzkin case. We have found, in this way, the non-zero (`S + 1) eigenvalues of the reduced
density matrix ρAB of A ∪ B in the deep bulk for the colorless Fredkin model and the non-zero
(2`S + 1) eigenvalues of ρAB for the colorless Motzkin model. As a result, the entropy, deeply inside
the bulk, becomes

SAB → −
`S∑

n=−`S

[
D

(`S)
n

2`S
log

(
D

(`S)
n

2`S

)]
(188)
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for the Fredkin model, and

SAB → −
`S∑

n=−`S

[
M

(`S)
n

3`S
log

(
M

(`S)
n

3`S

)]
(189)

for the Motzkin one. As we will see these entropies are the same of those obtained for a single
subsystem of size `S = `A + `B .

Let us consider now the reduced density matrices of the two regions A and B, separately, which
are diagonal matrices with elements obtained by tripartition

ρA =

A
(`A) . . . 0
...

. . .
...

0 . . . A(−`A)

 , ρB =

B
(`B) . . . 0
...

. . .
...

0 . . . B(−`B)

 , (190)

where

A(m) =
∑
h

D(`D)
0h D

(`A)
hh+mD

(`C+`B+`E)
h+m,0

D(`D+`A+`C+`B+`E)
, B(m) =

∑
h

D(`D+`A+`C)
0h−m D(`B)

h−mhD
(`E)
h0

D(`D+`A+`C+`B+`E)
(191)

for the Fredkin model, and

A(m) =
∑
h

M(`D)
0h M

(`A)
hh+mM

(`C+`B+`E)
h+m,0

M(`D+`A+`C+`B+`E)
, B(m) =

∑
h

M(`D+`A+`C)
0h−m M(`B)

h−mhM
(`E)
h0

M(`D+`A+`C+`B+`E)
(192)

for the Motzkin model. Also in this case, for A and B very far apart from the edges, the coefficients
become

A(m) → D
(`A)
m

2(`A)
, B(m) → D

(`B)
m

2(`B)
(193)

A(m) → M
(`A)
m

3(`A)
, B(m) → M

(`B)
m

3(`B)
(194)

for the Fredkin and Motzkin cases respectively. As a result the entanglement entropies of the two
subsystems have the same form of Eqs. (188) and (189), namely

SA → −
`A∑

n=−`A

[
D

(`A)
n

2`A
log

(
D

(`A)
n

2`A

)]
, SB → −

`B∑
n=−`B

[
D

(`B)
n

2`B
log

(
D

(`B)
n

2`B

)]
(195)

for the Fredkin model, and

SA → −
`A∑

n=−`A

[
M

(`A)
n

3`A
log

(
M

(`A)
n

3`A

)]
, SB → −

`B∑
n=−`B

[
M

(`B)
n

3`B
log

(
M

(`B)
n

3`B

)]
(196)

for the Motzkin model. We can easily calculate the mutual information, IAB = SA + SB − SAB ,
shared by two generic disjoint intervals A and B of sizes `A and `B , from Eqs. (188) and (195) for
the colorless Fredkin model and from Eqs. (189) and (196) for the colorless Motzkin model. Some
results for the mutual information for the two cases with disjoint regions of same sizes, `A = `B , are
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Figure 13: Mutual information between two regions of spins deep inside the bulk of a colorless Fredkin
(red bottom line) and Motzkin (blue top line) chain as a function of the subsystem sizes `A = `B ,
obtained from Eqs. (188), (195) and Eqs. (189), (196).

plotted in Fig. 13. For `S = 2, namely for `A = `B = 1, one recovers the results in Eqs. (134) and
(167).

We have shown that the entropy for A ∪ B behaves as if the two regions compose a single unit
subsystem of size `A + `B , no matter how far the two regions are. The effect of the off-diagonal
coherent terms in the reduced density matrix is to glue together, through the central region, the two
subsystems.

As a final result, for ` � 1, approximating the binomial factors with a Gaussian distribution and
the sums with the integrals, we get

−
∑̀
n=−`

[
D

(`)
n

2`
log

(
D

(`)
n

2`

)]
≈ 1

2
log `+ log

(
2

√
π

3

)
(197)

−
∑̀
n=−`

[
M

(`)
n

3`
log

(
M

(`)
n

3`

)]
≈ 1

2
log `+ log

(
2

√
e π

3

)
(198)

therefore, the mutual information, IAB = SA + SB − SAB , from Eqs. (188), (195), (197) and
Eqs. (189), (196), (198), becomes

IAB ≈
1

2
log

(
`A`B
`A + `B

)
+ log

(
2

√
π

3

)
, (Fredkin) (199)

IAB ≈
1

2
log

(
`A`B
`A + `B

)
+ log

(
2

√
e π

3

)
, (Motzkin) (200)

for the Fredkin and the Motzkin spin chains respectively. These approximations are in perfect agree-
ment with the results reported in Fig. 13. Surprisingly, the latter results for the mutual information
have the same form of the logarithmic negativity and of the mutual information for conformal field
theories [26] of two adjacent intervals.
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7 Conclusions

In this paper we have shown that the ground states of the novel quantum spin models under study
exhibit a robust non-local behavior, the long-distance entanglement, in addition to the violation of
cluster decomposition property. Since the mutual information gives a upper bound for the squared
connected correlation functions, our results are in agreement with analytical [9,21] and numerical [16]
results on the long-distance behavior of some spin correlators. The strong entanglement shared by any
segments of the spin chains survives at infinite distances either if the subsystems are located close
to the edges or inside the bulk. This anomalous behavior has not been observed previously in the
continuum version of the models [16] while we resorted to an exact calculation in order to reveal
it, taking afterwards the continuum limit. This peculiar non-local behavior takes origin from the
presence of off-diagonal coherent terms in the reduced density matrix which do not vanish in the
thermodynamic limit, but which are missing in the continuum description. Intriguingly, we show that
the mutual information of two disjoint subsystems inside the bulk of these spin chains does not depend
on their distance and has the same form of the logarithmic negativity and of the mutual information
for conformal field theories of two adjacent subsystems in an infinite system. This finding strengthens
the belief that these models, which in spite of being described by local short-range Hamiltonians show
non-local behaviors, can be promising tools for quantum information technologies.
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