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Abstract

We define a gauged non-linear sigma model for a 2-sphere valued field and
a SU(2) connection on an arbitrary Riemann surface whose energy functional
reduces to that for critically coupled magnetic skyrmions in the plane, with
arbitrary Dzyaloshinskii-Moriya interaction, for a suitably chosen gauge field.
We use the interplay of unitary and holomorphic structures to derive a general
solution of the first order Bogomol’nyi equation of the model for any given
connection. We illustrate this formula with examples, and also point out
applications to the study of impurities.
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1 Introduction

This paper has two goals. The first is to show that a large class of models for static
magnetic skyrmions, which includes the most general form of the Dzyaloshinskii-Moriya
(DM) interaction [1, 2], can be formulated as a (non-abelian) gauged non-linear sigma
model and solved explicitly. The second is to study the relevant gauged sigma models
more generally and to explain the interesting differential geometry which lies behind their
solvability.

Magnetic skyrmions [3] represent the most recent and perhaps the richest application
of the concept of topological solitons to condensed matter physics and, potentially, the
technology of future magnetic information storage [4]. There is a vast and rapidly growing
literature on the subject, partly reviewed in [5] and, with a particular emphasis on DM
terms in the notation which we will adopt, in [6]. However, it was only noticed recently
in [7] that, among the large class of mathematical models for magnetic skyrmions, there are
some, called critically coupled in [7], where an infinite family of skyrmion configurations
can be found exactly. These configurations satisfy so-called Bogomol’nyi equations and
may be viewed as generalisations of the Belavin-Polyakov self-dual solitons [8].

Our discussion here is an extension and generalisation of the paper [7], both in terms
of the range of applications and in terms of the underlying mathematics. Instead of the
two-parameter family of DM terms considered in [7] we treat the most general DM term
and point out an application to the study of impurities. At the same time, we clarify
the underlying mathematics by defining the relevant gauged non-linear sigma model in
its most general, geometrically natural form. This leads to a model which we believe to
be of independent interest. It involves a S2-valued field defined on an arbitrary Riemann
surface and coupled to a fixed, non-abelian connection

There is a large literature on gauged non-linear sigma models, but as far as we know the
model and energy functonal we study here has not been considered before. The solutions of
our model obey Bogomol’nyi equations which are similar to those occurring in the abelian
non-linear sigma model of [9] and its generalisations (see e.g. the book [10]) and also in
the non-abelian model considered by Nardelli in [11]. However, our energy functional is
different, and our non-abelian gauge field plays a different role, namely that of an arbitrary
but fixed background.

Magnetic skyrmions are mathematically described as topological solitons in the magneti-
sation field n of magnetic materials. The latter is a map from a surface Σ to the 2-sphere
S2. The energy expression for the magnetisation field n typically involves a Heisenberg or
Dirichlet term (quadratic in derivatives) the crucial DM term (linear in derivatives) and
various potential terms (no derivatives). To be specific, consider the most general form of
such a model in the plane Σ = R2. The energy functional is

E[n] =

∫
R2

1

2
(∇n)2 +

3∑
a=1

2∑
i=1

Dai[∂in× n)a + V (n) dx1dx2, (1)

where V is a potential which includes a Zeeman term and anisotropy terms and D is
the tensor parametrising the DM interaction. It is sometimes called spiralization tensor,
see for example the paper [6], to which we also refer the reader for a discussion of the
associated physics and examples. In order to analyse such a model, it is useful to clarify
the mathematical structures which enter its definition.

In two dimensions, the Dirichlet energy expression only depends on a conformal structure
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of the domain Σ. However, the potential terms require an integration measure, so that
one would expect the full model to depend on a metric structure on Σ. In any case, the
energy expression makes use of the (standard) metric on the target 2-sphere.

The reformulation of the model (1) in [7] for a particular potential and DM term as a
gauged non-linear sigma model only requires a conformal structure on Σ and a choice of
an SU(2) connection. However, its solution in terms of holomorphic data makes essential
use of the complex structure on the target, i.e. of the identification of the 2-sphere with
the complex projective line CP 1. This suggests a more general formulation of the gauged
non-linear sigma model on a Riemann surface Σ and also a more general understanding
of its solution in terms of the interplay between the metric and complex structure on the
target 2-sphere.

In this paper, we give such a formulation and show that the resulting model can always,
at least locally, be solved in terms of an SL(2,C)-valued map which relates holomor-
phic and unitary gauges for a CP 1-bundle over Σ. A similar interplay between unitary
and holomorphic structures is much studied in the context of self-dual connections on
4-manifolds [12, 13], but the 2-dimensional version which we need here is the simplest
example of a general theory of connections, often called Chern connections, which are
compatible with unitary and holomorphic structures on a complex vector bundle, see [14].

Our presentation is organised as follows. We begin, in Sect. 2, with a definition and
discussion of the gauged non-linear sigma model in the most general setting of an arbitrary
Riemann surface Σ. We define the energy functional and derive a lower bound for it in
terms of a topological invariant and the boundary behaviour of the magnetisation field
(provided Σ has a boundary). We then derive a first order Bogomol’nyi equation for
configurations which saturate this bound. In Sect. 3 we begin with a brief review of
relevant complex geometry, in particular the concept of a Chern connection, and then
derive a general formula for solutions of the Bogomol’nyi equation for any given SU(2)
connection. In Sect. 4 we apply the results of Sects. 2 and 3 to magnetic skyrmions by
writing the energy functional (1) for a particular choice of potential (associated to the
spiralization tensor D) as a gauged non-linear sigma model. This requires a translation of
the spiralization tensor D into a SU(2) connection, which we shall explain. We use the
general formula of Sect. 3 to obtain infinite families of exact magnetic skyrmions for any
given spiralization tensor and an associated potential, and discuss some examples. We also
explain how our formalism can be used to define and solve models of topological solitons
interacting with impurities. Our final Sect. 5 contains a conclusion and an outlook.

The logic of our mathematical derivation requires that we begin our discussion with
gauged non-linear sigma models, but readers who are predominantly interested in mag-
netic skyrmions and willing to take the solution formula on trust are invited to skip to
Sect. 4.

2 Gauged sigma models on a Riemann surface

2.1 Conventions

The gauged sigma model we want to consider can be defined on any Riemann surface Σ,
i.e. on any one-dimensional complex manifold, with our without boundary. We will define
the model using invariant notation, but for concrete and explicit expressions we use a local

3



SciPost Physics Submission

complex coordinate z = x1 + ix2. We also use the standard notation

dz = dx1 + ix2, ∂z =
1

2
(∂1 − i∂2), ∂z̄ =

1

2
(∂1 + i∂2). (2)

The Hodge ? operator on 1-forms is determined by the complex structure; in local coor-
dinates it is

?dz = dx2 − idx1 = −idz, ?dz̄ = dx2 + idx1 = idz̄. (3)

Note also that, for any two 1-forms α, β on Σ,

? ? α = −α and α ∧ ?β = β ∧ ?α. (4)

Consider now a principal SU(2)-bundle P over Σ with a connection, and the associated
adjoint bundle as well as the unit 2-sphere bundle P ×Ad S2 in the adjoint bundle. We
think of the fibre S2 as the round 2-sphere of radius 1 inside the Lie algebra su(2), with
SU(2) acting in the adjoint representation. Locally, in an open set U ⊂ Σ, a section of
P ×Ad S2 is a map

n : U → S2 ⊂ su(2), (5)

and the connection is given by a su(2)-valued 1-form A on U . The exterior covariant
derivative of n and the curvature is given by the usual expressions

Dn = dn+ [A,n], F = dA+
1

2
[A,A]. (6)

Gauge transformations are determined locally by functions u : U → SU(2) and take the
form

n→ unu−1, A→ uAu−1 + udu−1. (7)

In local coordinates on Σ, we expand

A = A1dx1 +A2dx2 = Azdz +Az̄dz̄, (8)

where we defined Az = 1
2(A1 − iA2), Az̄ = 1

2(A1 + iA2), and similarly for the curvature

F = F12 dx1 ∧ dx2, F12 = ∂1A2 − ∂2A1 + [A1, A2]. (9)

We use su(2) generators ta = − i
2τa , a = 1, 2, 3, where τa are the Pauli matrices, which

are normalised so that [t1, t2] = t3 + cycl., and also define raising and lowering operators

t+ = t1 + it2, t− = t1 − it2. (10)

These naturally lie in the complexified su(2) Lie algebra, so in sl(2,C). For the inner
product of m,n ∈ su(2) we use a re-scaled trace and write

(m,n) = −2tr(mn), (11)

as well as |n|2 = (n, n). Our normalisation is such that (ta, tb) = δab.
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2.2 Energy and variational equations

The energy functional defining the gauged sigma model we study in this paper is

E[A,n] =
1

2

∫
Σ

(Dn,∧ ? Dn)−
∫

Σ
(F, n), (12)

or, in local coordinates and in terms of Di = ∂i + [Ai, ·], i = 1, 2,

E[A,n] =

∫
Σ

(
1

2
|D1n|2 +

1

2
|D2n|2 − (F12, n)

)
dx1 ∧ dx2. (13)

Clearly, the covariant Dirichlet term depends on the complex structure (through ?), but
the curvature term does not and is topological in that sense. The energy is manifestly
invariant under the gauge transformations (7).

As our notation indicates, we think of the energy as a functional of the connection A and
the section n. Postponing a discussion of boundary terms we initially assume that the
Riemann surface Σ has no boundary. Then variation with respect to the connection gives

δE =

∫
Σ

(Dn,∧ ? [δA, n])− (n, (dδA+ [δA,A])) =

∫
Σ

(δA,∧ ? [n,Dn])− (δA,∧Dn). (14)

Setting this to zero for all δA gives the Euler-Lagrange equation

?[n,Dn] = Dn. (15)

Using (3), this can also be written as

Dz̄n = i[n,Dz̄n]⇔ Dzn = −i[n,Dzn]. (16)

Since [n, ·] is the complex structure in the cotangent space to S2 at n, the equation (15)
is a holomorphicity condition. This will become more obvious and useful when we study
this equation in complex coordinates for S2 in Sect. 3.2.

The variation with respect to n, using δn = [ε, n] to preserve |n| = 1 and neglecting
boundary terms gives

δE =

∫
Σ

(Dδn,∧?Dn)−(δn, F ) = −
∫

Σ
(δn, (D?Dn+F )) = −

∫
Σ

(ε, [n,D?Dn+F ]). (17)

Setting this to zero for all ε leads to the variational equation

[n,D ? Dn+ F ] = 0. (18)

It is not difficult to check that the first order equation (15) actually implies the second
order equation (18). Applying ? to (15) and differentiating, we obtain

D ?Dn = −D[n,Dn] = −[Dn,Dn]− [n,D2n] = −[Dn,Dn]− [n, [F, n]], (19)

where we suppressed the wedge product in the commutator of Lie algebra-valued 1-forms.
Now we use that [Dn,Dn] is in the direction of n to deduce

[n,D ? Dn] = −[n, [n[F, n]]] = −[n, F ], (20)

as claimed. The equation (15) is therefore the only equation we need to consider. We now
show that it can also be interpreted as a Bogomol’nyi equation in this model.
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2.3 The Bogomol’nyi equation

The logical dependence of the two variational equations can be understood better by
noting that (15) can also be obtained via a Bogomol’nyi argument. To show this, we need
’t Hooft’s identity [15] relating the integrand for the degree,

4πdeg[n] =

∫
Σ

1

2
(n, [dn, dn]), (21)

to its covariant version:

1

2
(n, [Dn,Dn]) =

1

2
(n, [dn, dn]) + (F, n)− d(A,n). (22)

Now use (4) and the cyclical property of the triple product to note

((Dn− ?[n,Dn]),∧ ? (Dn− ?[n,Dn])) = 2(Dn,∧ ? Dn)− 2(n, [Dn,Dn]). (23)

This allows us to write the energy as

E[A,n] =
1

4

∫
Σ

((Dn−?[n,Dn]),∧?(Dn−?[n,Dn]))+
1

2

∫
Σ

(n, [Dn,Dn])−
∫

Σ
(F, n). (24)

Combining this with the identity (22), we deduce

E[A,n] =
1

4

∫
Σ

((Dn−?[n,Dn]),∧?(Dn−?[n,Dn]))+
1

2

∫
Σ

(n, [dn, dn])−
∫
∂Σ

(A,n), (25)

with the last term of course vanishing when Σ has no boundary. We conclude that the
energy is bounded below by terms which only depend on topology (the degree of n) or on
boundary behaviour (if there is a boundary). If both are kept fixed, the energy is minimised
iff the first order equation (15) holds. The energy of such Bogomol’nyi configurations is

EB[A,n] =
1

2

∫
Σ

(n, [dn, dn])−
∫
∂Σ

(A,n). (26)

The equation (15) is thus seen to be a Bogomol’nyi equation in the general sense of
characterising minima of energy functionals subject to topological or boundary conditions
[16]. Such equations usually imply the variational equations. This is the case here, too,
but in a somewhat unusual way. The Bogomol’nyi equation of the model is the variational
equation (15) with respect to the connection, and implies the second order variational
equation with respect to the field n, as we already showed.

The Bogomol’nyi equation (15) clearly does not uniquely determine both the connection
and the section n. It is easy to write down infinitely many solutions for the connection A
for any given smooth section n in the form

A = an− (p[n, dn] + q ? dn) + r(?[n, dn] + dn), (27)

where a is a 1-form and p, q, r are real functions, with r arbitrary but p, q satisfying
p + q = 1. The choice A = 0 is possible when ?[n, dn] = dn, and is then realised with
p = q = 1

2 , and a = 0, r = 0. This is expected because in that case n satisfies the ungauged
Bogomol’nyi equation.

Note that the 1-form [n, dn] is naturally associated to n as the Levi-Civita connection on
the plane bundle orthogonal to n inside the trivial bundle Σ×su(2), and that the remaining
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terms other than an are obtained from the Levi-Civita 1-form by applying the complex
structures ? on the domain or [n, ·] on the target. Also note that gauge transformations
g = exp(αn) which fix n (so α is a function) determine gauge equivalent solutions for fixed
n.

Alternatively, one can use transformations (7) to rotate n in a fixed direction (say t3) in
the Lie algebra on some open set U ∈ Σ. In this gauge, A is determined by the algebraic
condition

?[t3, [A, t3]] = [A, t3]. (28)

Solving for A when n is given may be of interest in some applications, e.g. when one
would like a particular configuration to be a solution in the presence of an impurity, see
our discussion in Sect. 4.4. However, we will now focus on the opposite situation where A
is a given background gauge field, and we solve (15) for n in this background.

2.4 Boundary terms

So far we have ignored boundary terms which arise in the derivation of the variational
equations for the functional (12). When Σ does have a boundary ∂Σ, boundary terms will
generally only vanish if we impose a suitable boundary condition. When Σ is an open set
- such as C, or the upper half-plane - we need to impose suitable fall-off conditions as we
approach ‘infinity’. In order to discuss these matters in any detail we would need to fix
the surface Σ and the background gauge field A we want to consider. We will not do this
here, but make some general observations.

The boundary term which arises in the variation (17) of (12) with respect to n is∫
∂Σ

(δn, ?Dn) =

∫
∂Σ

(ε, ?[n,Dn]). (29)

If ∂Σ is an actual boundary and we impose a Dirichlet boundary condition n|∂Σ = n∞ this
term vanishes because we must require δn = 0 on the boundary. However, when Σ = C,
the requirements lim|z|→∞ n(z) = n∞ and lim|z|→∞ ε(z) = 0 are not sufficient to ensure
the vanishing or even well-definedness of the integral (29): when the gauge potential A
does not vanish in the limit |z| → ∞ the term in the integrand of (29) containing A may
have a non-zero integral even when ε vanishes in this limit. The situation can be improved
by considering the modified energy functional

Ẽ[A,n] =

∫
Σ

1

2
(Dn,∧ ? Dn)− (F, n) +

∫
∂Σ

(A,n). (30)

The inclusion of the boundary term means that the modified energy is bounded below by
the integral defining the degree, see (25). Now variation with respect to n gives

δẼ = −
∫

Σ
(δn, (D ?Dn+ F )) +

∫
∂Σ

(δn, (?Dn+A)). (31)

Using again δn = [ε, n] we only need to assume the Bogomol’nyi equation (15) on the
boundary to obtain

δẼ = −
∫

Σ
(δn, (D ?Dn+ F )) +

∫
∂Σ

(ε, dn). (32)

Comparing the new boundary term with (29) we observe that the modification of the
energy expression has removed the troublesome term in (29) involving the gauge potential.
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In summary, the modified energy functional (30) is a better starting point for a well-
defined variational problem in the presence of a boundary, though the details will depend
on the surface and boundary under consideration. Requiring the Bogomol’nyi equation in
the boundary region and mild fall-off conditions for ε and and dn are sufficient to remove
boundary terms which arise in the variation. The bulk equations for n are, of course, the
equations (18) already derived in the absence of a boundary.

3 Solving the Bogomol’nyi equation

3.1 Holomorphic versus unitary structures

We will now show how to solve the Bogomol’nyi equation (15) for a given connection.
The idea is to exploit the interplay between a holomorphic and a unitary structure on a
complex vector bundle over Σ, and the special properties of the unique connection, often
called the Chern connection, which is compatible with both. The underlying theory is
covered, for example in [13,14] and also more informally in [12].

We consider only the setting which is relevant for our discussion, so look at holomorphic
C2-bundles over Σ with a unitary structure (a Hermitian inner product on the fibres).
Any such vector bundle, denoted E in the following, has an associated projective bundle;
this is a holomorphic CP 1-bundle and, with the unitary structure, will be identified with
the S2-bundle P ×Ad S2 of Sect. 2.1. We use the standard notation of ∂ and ∂̄ for the
exterior derivative followed by projection onto differential forms of type (1, 0) and (0, 1)
on Σ, so in our local coordinates and applied to functions f ,

∂f = ∂zfdz, ∂̄f = ∂z̄fdz̄. (33)

Now consider a connection on the vector bundle E. The associated covariant derivative
D = d+A can be split into

∂A = ∂ +Azdz, ∂̄A = ∂̄ +Az̄dz̄, (34)

where A = Azdz + Az̄dz̄ is simply the split (8) of the matrix-valued 1-form A into forms
of type (1, 0) and (0, 1). Such a connection is called unitary if it preserves the Hermitian
inner product on the fibres, and it is called compatible with the holomorphic structure of
E if ∂̄A ~w = 0 for every holomorphic section1 ~w of E. If a connection is compatible with
both structures then, in a unitary gauge (a local choice of an orthonormal basis of the
fibre), the gauge potential has to satisfy the anti-Hermiticity condition

(Auz̄dz̄)
† = −Auzdz. (35)

On the other hand, in a holomorphic gauge (a local choice of a holomorphic basis of the
fibre), we have

∂̄Ah = ∂̄. (36)

It is now straightforward to check that any connection which is compatible with both the
unitary and the holomorphic structure must have curvature of type (1, 1). This follows
by a short computation which is important for us and which we therefore spell out. The

1Sections of a bundle E over Σ are holomorphic if they are holomorphic as maps from Σ into the total
space of the bundle E.
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gauge change from the holomorphic to the unitary gauge must be via a locally defined
map g : U ⊂ Σ→ GL(2,C) satisfying

∂̄Au = ∂̄ + g∂̄g−1. (37)

But then the condition (35) fixes the connection uniquely and implies an explicit formula
for the gauge potential in the unitary gauge, valid in the open set U ⊂ Σ:

Au = g∂̄g−1 + (g−1)†∂g†. (38)

This shows in particular that if Au is the gauge potential of an SU(2) connection, then g
has determinant 1 and is therefore SL(2,C)-valued. This expression for a gauge potential
in two dimensions is also frequently used in the physics literature on planar SU(2) Yang-
Mills theory, see e.g. [17].

We can transform back, using g−1, from the unitary to the holomorphic gauge to deduce
the (1, 0) component and hence the entire gauge field in the holomorphic gauge as

Ah = g−1(g−1)†∂g†g + g−1∂g = h−1∂h, (39)

where we defined h = g†g. The matrix h is manifestly Hermitian and positive definite, and
defines Hermitian inner product on the fibre in the holomorphic gauge [13]. The curvature
2-form then comes out as

F = ∂̄(h−1∂h), (40)

which is manifestly of type (1, 1) (and will remain so after gauge transformations), as
claimed.

One can also prove the converse result [12, 13]. If a complex vector bundle E over a
complex manifold, with a unitary structure, has a connection which is unitary and has
curvature of type (1, 1) then there is a unique holomorphic structure on E such that the
connection has the forms (38) and (39) in the unitary and holomorphic gauge respectively.

In one complex dimension, any connection has curvature of type (1, 1) and it follows that
the unitary connections on Σ which we considered in Sect. 2 define a complex structure
on the total space of the S2-bundle P ×Ad S2 over Σ. Since we are interested in SU(2)
connections, they can always locally be expressed in the form (38) for g : U → SL(2,C).
This is the result which we will put to practical use in the next section. As a final
preparation we recall the Iwasawa decomposition of g ∈ SL(2,C) via

g = uρ, (41)

with u ∈ SU(2) and ρ an upper-triangular matrix with unit determinant of the form

ρ =

(
λ c
0 1

λ

)
, λ ∈ R+, c ∈ C. (42)

Since the unitary factor u acts as an overall unitary gauge transformation in (38) we can
express any Hermitian gauge potential on Σ up to SU(2) gauge transformation locally as

A = ρ∂̄ρ−1 + (ρ−1)†∂ρ†, (43)

where ρ is a matrix-valued function of the form (42).
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3.2 Holomorphic structure of the gauged sigma model

In order to apply the theory of the previous section to the gauged sigma model of Sect. 2,
we need a little more notation. We write vectors in C2 as

~w =

(
w1

w2

)
, (44)

and use the standard Hermitian product 〈~v, ~w〉 = v1w̄1 +v2w̄2 on C2. The Hopf projection
maps the unit sphere S3 in C2 to the unit sphere S2 in the Lie algebra su(2) via

π : S3 ⊂ C2 → S2 ⊂ su(2), ~w 7→ n = Wt3W
−1, W =

(
w1 −w̄2

w2 w̄1

)
, (45)

or, with n = n1t1 + n2t2 + n3t3,

n1 + in2 = 2w2w̄1, n3 = |w1|2 − |w2|2. (46)

The standard action of u ∈ SU(2) on C2,

u : C2 → C2, ~w 7→ u~w, (47)

induces the adjoint action,

u : su(2)→ su(2), n 7→ unu−1 = R(u)n, (48)

which preserves the inner product (11) in su(2).

We use the conventions of [7] to define a stereographic coordinate w ∈ C ∪ {∞} for the
2-sphere by projection from the south pole,

w = St(n) =
n1 + in2

1 + n3
, (49)

with inverse

n1 + in2 =
2w

1 + |w|2
, n3 =

1− |w|2

1 + |w|2
. (50)

One checks that the Hopf projection (45) followed by stereographic projection can now
also be written as

St ◦ π : ~w 7→ w =
w2

w1
. (51)

An element

g =

(
a b
c d

)
∈ SL(2,C) (52)

acts on ~w ∈ C2 by ordinary matrix multiplication

g : ~w 7→ g ~w, (53)

and on our projective coordinate w by fractional linear transformation, which we write as

w 7→ g[w] :=
c+ dw

a+ bw
. (54)

For u ∈ SU(2) ⊂ SL(2,C), this action agrees with (48) when w and n are related via
the stereographic map (49). However, non-unitary elements in SL(2,C) act as conformal
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transformations which do not preserve the round metric induced by the embedding S2 ⊂
su(2).

To write the gauged non-linear sigma model in terms of the stereographic coordinate w,
we note that our sl(2,C) Lie algebra generators (10) are explicitly

t+ = t1 + it2 =

(
0 −i
0 0

)
, t− = t1 − it2 =

(
0 0
−i 0

)
, t3 =

(
− i

2 0
0 i

2

)
. (55)

Writing their action on the projective coordinate w simply as juxtaposition, we have, for
general t ∈ sl(2,C),

tw =
d

dε

∣∣∣∣
ε=0

exp(εt)[w], t ∈ sl(2,C), (56)

and compute
t−w = −i, t3w = iw, t+w = iw2. (57)

Defining the Lie algebra components (as opposed to the 1-form components (8)) of the
gauge potential A via

A =
1

2
(A+t− +A−t+) +A3t3, (58)

and similarly for the curvature

F =
1

2
(F+t− + F−t+) + F3t3, (59)

we can write the covariant derivative as

Dw = dw +Aw = dw − i

2
A+ + iA3w +

i

2
A−w

2, (60)

and have the identity

(A,n) =
wF− + w̄F+ + F3(1− |w|2)

1 + |w|2
. (61)

Using the standard expression for the Dirichlet term in terms of stereographic coordinates
[16], the energy (12) of the gauged non-linear sigma model then takes the form

E[A,w] =

∫
Σ

2
Dw ∧ ?Dw
(1 + |w|2)2

−
∫

Σ

wF− + w̄F+ + F3(1− |w|2)

1 + |w|2
, (62)

and the identity (22) reads

2i
Dw ∧Dw
(1 + |w|2)2

= 2i
dw ∧ dw

(1 + |w|2)2
+
wF− + w̄F+ + F3(1− |w|2)

1 + |w|2

− d
(
wA− + w̄A+ +A3(1− |w|2)

1 + |w|2

)
. (63)

With
(Dw − i ? Dw) ∧ ?(Dw − i ? Dw) = 2Dw ∧ ?Dw − 2iDw ∧Dw, (64)

the energy can be therefore be written as

E[A,w] =

∫
Σ

(Dw − i ? Dw) ∧ ?(Dw − i ? Dw)

(1 + |w|2)2
+ 2i

∫
Σ

dw ∧ dw
(1 + |w|2)2

−
∫
∂Σ

wA− + w̄A+ +A3(1− |w|2)

1 + |w|2
. (65)

11
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The second term is 4π times the degree of w, and the last term is a boundary term. If
both degree and boundary behaviour are kept fixed, minima of the energy are therefore
determined by the equation

Dw = i ? Dw ⇔ Dz̄w = 0, (66)

where we used the basic properties (3) of the ?-operator on 1-forms. This is the Bogo-
mol’nyi equation (15) in stereographic coordinates, as can also be checked by explicitly
changing coordinates according to (50) in (15).

A key feature of the equation (66), which was not obvious in the formulation (15), is its
gauge invariance under the larger group of SL(2,C)-valued gauge transformation

Az̄ 7→ gAz̄g
−1 + g∂z̄g

−1, w 7→ g[w], (67)

where g : U ⊂ Σ→ SL(2,C), and we used the notation (54) for fractional linear transfor-
mations.

3.3 A general solution

We can now apply the geometrical considerations of Sect. 3.1 to solve the Bogomol’nyi
equation (66) for a given su(2)-connection A on the principal bundle P as follows. We
consider the C2-bundle associated to P via (47). By the results of Sect. 3.1, the connec-
tion A defines a holomorphic structure on this bundle, and hence also on the associated
projective CP 1-bundle. Locally, we can go to a holomorphic gauge via an SL(2,C) gauge
transformation. In this gauge ∂̄A = ∂̄, so that the Bogomol’nyi equation (66) can easily
be solved.

Explicitly, this means that, for a given unitary connection A, we need to find a locally
defined map

g : U ⊂ Σ→ SL(2,C), (68)

so that the anti-holomorphic component of A is

Az̄ = g∂z̄g
−1. (69)

Then the Bogomol’nyi equation (66) becomes simply

∂z̄w + g∂z̄g
−1w = 0. (70)

Using again our notation (54) for the action of g on w by fractional linear transformations,
this means that f = g−1[w] is a holomorphic function. Thus we obtain the general solution,
valid in some open set U ⊂ Σ, as

w = g[f ], with f : U → CP 1 holomorphic. (71)

The field n can then be reconstructed via (50). We will illustrate this formalism in the
next section by applying it to models of magnetic skyrmions, written as gauged non-linear
sigma models.

12
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4 Applications to magnetic skyrmions and impurities

4.1 Critically coupled models for any given DM term

In the remainder of the paper we focus on models defined in the plane Σ = C. For our
solution of the gauged sigma model, both holomorphic and unitary gauges can be chosen
globally in this case and therefore we obtain a global solution of the form (71).

In order to apply our method to magnetic skyrmions we consider the general model already
introduced in the Introduction, but now write the energy in Lie algebraic notation, which
simply means interpreting the magnetisation vector n as a unit length element n of the
Lie algebra su(2), and writing vector products as commutators:

ES [n] =

∫
R2

1

2
|∂1n|2 +

1

2
|∂2n|2 +

3∑
a=1

2∑
i=1

Dai[∂in, n]a + V (n) dx1dx2. (72)

Here the index a refers to the components with respect to Lie algebra basis ta introduced
in Sect. 2.1, so

[∂in, n]a = (ta, [∂in, n]). (73)

In order to have a translation-invariant theory, we assume that the spiralization tensor D
is constant.

We now write the model (72) as a gauged non-linear sigma model for a translation-invariant
SU(2) gauge potential

A = A1dx1 +A2dx2, (74)

where A1, A2 are Lie-algebra valued constants. Noting that the curvature is

F = [A1, A2] dx1 ∧ dx2, (75)

the energy functional (13) of the gauged non-linear sigma model takes the form

E[A,n)] =

∫
R2

(
1

2
|∂1n|2 +

1

2
|∂2n|2 − (A1, [∂1n, n])− (A2, [∂2n, n])

+
1

2
|[A1, n]|2 +

1

2
|[A2, n]|2 − (n, [A1, A2])

)
dx1dx2. (76)

The key step in the translation from magnetic skyrmions to gauged non-linear sigma
models is the identification of the gauge field with the spiralization tensor according to

Ai = −
3∑

a=1

Daita, i = 1, 2. (77)

In other words, the spiralization tensor is interpreted as minus the matrix obtained when
expanding A1, A2 in the basis ta of su(2). This prescription should be viewed as special
case of the more natural three-dimensional situation, where we have a further component
A3 of the gauge field and the spiralization tensor is minus the 3 × 3 matrix representing
the linear map which takes the basis elements ta into Ai, i = 1, 2, 3.

The DM term can then be written in terms of the gauge field as

3∑
a=1

2∑
i=1

Dai[∂in, n]a = −
2∑
i=1

(Ai, [∂in, n]). (78)

13



SciPost Physics Submission

If we now pick the potential

VA(n) =
1

2
|[A1, n]|2 +

1

2
|[A2, n]|2 − (n, [A1, A2]), (79)

then the energy functional (72) for magnetic skyrmions with the potential V = VA equals
the expression (76) with the particular gauge field (77). This observation is one of the key
results of this paper, and allows us to obtain stationary points of the magnetic skyrmion
energy (72) by solving the Bogomol’nyi equation (66) for the gauged non-linear sigma
model with gauge field (77). The choice of potential (79) for any given spiralization tensor
generalises the notion of ‘critically coupled’ introduced [7], and we will use this term to
describe the solvable models of magnetic skyrmions defined by (72) with V = VA.

Solving the Bogomol’nyi equations turns out to be straightforward. Noting that

Az̄ =
1

2
(A1 + iA2) = g∂z̄g

−1, (80)

for constant A1 and A2, is solved by

g = exp(−1

2
(A1 + iA2)z̄), (81)

we obtain the general solution from (71). Noting that Az̄ is generally a complex, traceless
2× 2 matrix, the explicit form of g as a 2× 2 matrix can be calculated by noting that Az̄
is conjugate (by a SL(2,C) matrix) either to a diagonal matrix with equal and opposite
complex eigenvalues (the generic case) or to a nilpotent matrix. We consider and interpret
the special cases where Az̄ is nilpotent or has purely imaginary eigenvalues in some detail
below.

Regarding the general case, we note that, if

Az̄ =
1

2

(
λ+ iω 0

0 −λ− iω

)
, (82)

then the general solution (71) is

w = e(λ+iω)z̄f(z), (83)

for some holomorphic map f . If Az̄ is conjugate to (82) via a constant h ∈ SL(2,C)
then the corresponding solution is obtained by acting with h on (83) via fractional linear
transformations according to (54); the magnetisation field is obtained via (49) as before.

4.2 Axisymmetric DM interactions

The Dirichlet energy term in (72) is invariant under translations, reflections and rotations
in the plane and under reflections and rotations (about any axis) of the magnetisation field
n. The DM interaction breaks this symmetry, and for generic but constant spiralization
tensors the breaking is maximal, leaving only the translational symmetry intact. However,
for particular choices of D, the DM term is invariant under rotations and reflections in
the plane and simultaneous rotations and reflections of the magnetisation vector n. The
symmetry group is isomorphic to O(2) and we call such DM terms axisymmetric. They
are easily characterised in terms of our gauge potential A. The DM term is axisymmetric
if and only if a spatial rotation of the gauge field

A1 7→ cosβ A1 + sinβ A2, A2 7→ − sinβ A1 + cosβ A2, (84)

14
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can be written as a rotation in the su(2) Lie algebra, i.e., by a conjugation of A1 and A2

with a SU(2) matrix. This is the case if and only if

|A1|2 = |A2|2, (A1, A2) = 0, (85)

i.e. if A1, A2 and [A1, A2] form an, up to scale, orthonormal basis of su(2). In this case,
there exists a rescaling by κ > 0 and a SU(2) matrix u so that

κut1u
−1 = A1, κut2u

−1 = A2, κ2ut3u
−1 = [A1, A2]. (86)

The DM term is then invariant under spatial rotations (84) and the simultaneous rotation
of the magnetisation vector according to

n 7→ R(u)R3(β)R(u)−1n, (87)

where R(u) is the SO(3) matrix associated to the SU(2) matrix u via (48) and R3(β) is
the rotation about t3 by β. It is also invariant under reflections

A1 7→ A1, A2 7→ −A2, n 7→ R(u)S13R(u)−1n, (88)

where S13 is the reflection in the 13 plane. Note also that the potential (79) takes a
particularly simple form when (85) holds:

VA(n) =
1

2κ2

(
κ2 − (n, [A1, A2])

)2
. (89)

The condition (85) also leads to a considerable simplification in the solution of the model.
It is easy to check that it is equivalent to the matrix Az̄ being nilpotent and therefore
conjugate (via the SU(2) matrix u) to a matrix of the form(

0 ∗
0 0

)
, (90)

for some complex entry ∗. This is the case considered in [7], which dealt with the DM
term

3∑
a=1

2∑
i=1

Dai[∂in, n]a = κ cosα wB + κ sinα wN , (91)

where

wB = n1∂2n3 − n2∂1n3 + n3(∂1n2 − ∂2n1),

wN = −n1∂1n3 + n2∂2n3 + n3(∂1n1 + ∂2n2). (92)

In our notation this corresponds to the spiralization tensor

D = κ

 cosα sinα
− sinα cosα

0 0

 , (93)

and hence
A1 = −(cosα t1 − sinα t2) A2 = −(sinα t1 + cosα t2), (94)

or, with the conventions (55),

Az̄ = −1

2
κeiαt+ =

(
0 i

2κe
iα

0 0

)
. (95)
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In this case the potential is simply

VA(n) =
κ2

2
(1− n3)2. (96)

To apply our method of solution, we note that

g = exp
(κ

2
eiαz̄t+

)
=

(
1 − i

2κe
iαz̄

0 1

)
(97)

solves (69) for the gauge field (95). Thus, the general solution (71) is given in terms of a
holomorphic function f : C→ CP 1 and the fractional linear transformation (54) as

w = g[f ] =
f

1− i
2κe

iαz̄f
. (98)

In terms of v = 1/w this is

v = − i
2
κeiαz̄ +

1

f
, (99)

which, after re-naming f → 1/f , is the general solution found and discussed in [7].

In the more general case (85), the solutions of the model are obtained from solutions (98)
by rotating with R(u). However, the physics is quite different. Even if both A1 and A2 are
in the t1t2-plane, the two possible directions of [A1, A2] lead to different chiralities [6,7]. In
the generic case, we obtain a linear combination of ‘in plane’ and ‘out of plane’ DM terms.
This illustrates that a rotation, which is a change of gauge in the gauged sigma model,
can make a physical difference in the interpretation as a model of magnetic skyrmions.

4.3 Rank one DM interaction

The spiralization matrix D, still assumed to be constant, has rank 1 when A1 and A2 are
constant and collinear, so when

[A1, A2] = 0. (100)

In this case, the curvature F of A vanishes. As a result, the gauge field can be removed
entirely by a gauge transformation. The solutions are then related to the Belavin-Polyakov
solitons of the O(3) sigma model [8] (holomorphic or anti-holomorphic maps Σ → CP 1)
by space-dependent SU(2) transformations. Our general formula (71) reproduces the
solutions related to holomorphic maps. For example

A1 = at3, A2 = A3 = 0, a ∈ R, (101)

leads to the potential

V (A) =
a2

2
(n2

1 + n2
2) =

a2

2
(1− n2

3), (102)

and the general solution

w = e−
i
2
az̄f(z), (103)

where f an arbitrary holomorphic function. The simplest case is f = 1, and leads to the
skyrmion configuration

n =

 sech
(
a
2x2

)
cos
(
a
2x1

)
− sech

(
a
2x2

)
sin
(
a
2x1

)
tanh

(
a
2x2

)
 . (104)
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This is a kink interpolating between the ‘up’ and the ‘down’ vacuum of the potential in
the x2-direction and rotating in the x1-direction at the same time. One can get rid of the
kink (leading to a helix) or of the rotation (leading to a pure kink) by choosing

f(z) = e−i
a
2
z or f(z) = ei

a
2
z. (105)

If one picks
f(z) = e−i

a
2
zrn(z), (106)

where rn is a rational map of degree n, one obtains

w = e−iax1rn(z), (107)

i.e. a rational map modulated by a helix in the x1-direction. This describes a Belavin-
Polyakov multi-soliton [8] modulated by a helix.

4.4 Impurities as non-abelian gauge fields

To end our discussion of applications, we indicate how the interaction of Belavin-Polakov
solitons with impurities can also be described in terms of the gauged non-linear sigma
model introduced in this paper. Unlike in the application to magnetic skyrmions, the
non-abelian connection will need a non-trivial spatial variation to model an impurity.

In the recent paper [18], the authors study mathematical models for Belavin-Polakov
solitons which interact with impurities in a way which preserves supersymmetry. The
first order equation for solitons in the presence of an impurity proposed in that paper is
rather similar to (66), but with a given impurity configuration instead of a gauge field.
We will now derive the impurity equation of [18] from our Bogomol’nyi equation (66),
explain how to pick the gauge field to reproduce the impurities studied in [18] and point
out generalisations.

Extending the discussion of [18] to an arbitrary Riemann surface, and using the complex
notation introduced in Sect. 3.2 to parametrise CP 1 in terms of C ∪ {∞}, the impurity
field considered in [18] is a map

σ : Σ→ CP 1. (108)

Further adapting conventions so that the soliton field u considered in [18] is our field w̄,
the simplest equation of [18] for a configuration w coupled to such an impurity is

∂z̄w + σ = 0. (109)

To see that this is a special case of our Bogomol’nyi equation (66), we use the expansion
(60) to write (66) as

∂z̄w −
i

2
(A+)z̄ + i(A3)z̄w +

i

2
(A−)z̄w

2 = 0, (110)

where we remind the reader that the indices +,−, 3 refer to the Lie algebra components
(58). To obtain (109) we simply need to pick

− i
2

(A+)z̄ = σ, (A3)z̄ =
i

2
(A−)z̄ = 0, (111)

which amounts to

Az̄ =

(
0 0
σ 0

)
, Az =

(
0 −σ̄
0 0

)
. (112)
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One checks that this connection can be expressed according to (69) in terms of the
SL(2,C)-valued map

g =

(
1 0

−
∫
σdz̄ 1

)
, (113)

so that our general solution (71) in this case is

w = f −
∫
σdz̄, (114)

with f again holomorphic. This is the obviously the general solution of (109), and was
also derived and studied in [18]. However, as also discussed in [18] simple properties like
total energy and degree of configurations like (114) are rather subtle, despite the explicit
form, echoing a similar observation regarding exact magnetic skyrmions in [7].

The authors of [18] also discuss Bogomol’nyi equations for solitons interacting with im-
purities which contain products of the impurity field and the soliton field. In our general
equation (110) this would simply amount to picking a connection A with a non-trivial
component A3. Our general solution again applies. The possibility of interactions which
are quadratic in the soliton field correspond to a non-trivial component A− of the gauge
field. This does not appear to have been considered in the literature on impurities, but
would seem equally natural from our point of view.

5 Conclusion

In this paper we introduced and studied the gauged non-linear sigma model defined by
the energy functional (12). We showed that it provides a framework for systematically
studying solvable theories of magnetic skyrmions with any given DM interaction term. We
also indicated that it provides a natural language for solvable theories of Belavin-Polyakov
solitons interacting with impurities.

We showed how to solve the first order Bogomol’nyi equation (66) of the gauged non-
linear sigma model by exploiting the relation between holomorphic and unitary gauges.
This leads to the explicit formula (71) for local solutions. In the application considered
here we assumed Σ = C, in which case we obtain infinitely many globally defined magnetic
skyrmions for any given spiralization tensor, and similarly infinitely many globally defined
solitons in the presence of any given impurity.

Summed up as a slogan, our results show that the geometry behind both DM interactions
and impurities in the O(3) sigma model is a Chern connection. They also suggest that DM
interactions and impurities may be different aspects of the same underlying physics, and
that tools used in the study of one may be usefully applied to the other. For example, the
supersymmetric nature of the model for impurities studied in [18] suggests that the non-
abelian sigma model studied here also has a natural supersymmetric extension. This may,
in turn, have interesting implications for magnetic skyrmions in the theories we studied
here.

From a mathematical, and possibly also physical, point of view it would certainly be of
interest to repeat our analysis on more general Riemann surfaces, and to study global
properties of solutions (71) there. This requires a choice of unitary connection. As we
explained, such connections define complex structures on C2-bundles and hence on as-
sociated CP 1-bundles over such Riemann surfaces, which provides a natural geometrical
interpretation for any chosen connection.
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It would also be interesting to consider Riemann surfaces with boundary, and to clarify
the correct boundary conditions in each case. We only briefly touched on the relevant
issues in Sect. 2.4 of this paper.
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