
SciPost Physics Submission

Crystalline Weyl semimetal phase in Quantum Spin Hall
systems under magnetic fields

Fernando Dominguez1*, Benedikt Scharf1, Ewelina M. Hankiewicz1

1 Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of
Excellence ct.qmat, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

*fernando.dominguez@physik.uni-wuerzburg.de

February 25, 2022

Abstract

We investigate an unconventional topological phase transition that occurs in
quantum spin Hall (QSH) systems when applying an external in-plane mag-
netic field. We show that this transition between QSH and trivial insulator
phases is separated by a stable topological gapless phase, which is protected
by the combination of particle-hole and reflection symmetries, and thus, we
dub it as crystalline Weyl semimetal. We explore the stability of this new
phase when particle-hole symmetry breaking terms are present. Especially,
we predict a robust unconventional topological phase transition to be visible
for materials described by Kane and Mele model even if particle-hole symme-
try is significantly broken.
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1 Introduction

Weyl fermions can be realized as quasiparticle excitations of certain materials, the Weyl
semimetals (WSM). They adopt their name from the analogy with the Weyl Hamiltonian,
i.e. the Hamiltonian of a (3+1)D massless relativistic particle. Recently, this novel phase
has attracted great interest due to its realization in the laboratory [1–15] and due to novel
physics associated with its topologically non-trivial character: Weyl nodes (WN) appear
always in pairs with opposite chirality [16] and a Fermi arc connects them in momentum
space [9, 17–24,24–35].

Weyl semimetals originate from stable accidental crossings between a pair of bands. In
contrast to symmetry protected crossing points, WN are stable to perturbations, which can
only shift their position in reciprocal space but not their presence. These gapless points
carry a quantized topological invariant, which guarantees their stability. The presence
of these stable points can be formally understood by studying the codimension of the
Hamiltonian, i.e. the number of tunable parameters to achieve degeneracy. This number is
sensitive to the symmetries and dimensionality of the Hamiltonian. For example, assuming
a lack of time-reversal symmetry (TRS) and/or inversion symmetry (IS), we can write a
generic two-band Hamiltonian

H(k) = f(k)σ0 +
∑

i=x,y,z

fi(k)σi, (1)

with eigenenergies E± = f(k) ±
√∑

i=x,y,z f
2
i (k) and the Pauli matrices σi spanning

the space of the two bands. Here, the band crossing occurs when fx = fy = fz = 0
are fulfilled.1 In three dimensions (3D), there are four independent parameters available
(kx, ky, kz,m) (three momenta and the mass), and therefore, it is natural to expect a gap
closing for a finite range of m. An example of this is 3D non-centrosymetric topological
insulators, where IS is broken [36]. In contrast, in 2D it is only possible to find at most
one solution by fine tuning (kx, ky,m), instead of a range of points. However, when more
symmetries are involved, a crystalline WSM phase can also emerge in 2D systems at high-
symmetry points or lines [37]. Indeed, it has been recently shown that QSH systems with
twofold rotational symmetry exhibit a WSM phase when an inversion symmetry breaking
contribution is added [38]. Here, the combination of TRS and rotational symmetry relaxes
the conditions to find stable crossing points in a 2D k-space. This crystalline WSM phase
mediates the topological phase transition between the topological and trivial insulator
phases for a finite range of points in the parameter space. In contrast to conventional
topological phase transitions, where the gap closes at one single point in the parameter
space, these transitions are called unconventional. Similar phase transitions can occur
in bilayer setups of Rashba 2D electron gases subject to superconductivity, where a Weyl
phase separates trivial from second order topological superconducting phases in π-junction
Rashba layers [39,40]. Likewise, Floquet Weyl phases can be situated between trivial and
topological Floquet phases [41].

1Note that in the presence of both TRS and IS, every k-point is doubly degenerated, yielding a double
Hilbert space and two extra conditions have to be fulfilled.
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In this paper, we study an unconventional topological phase transition of a QSH sys-
tem driven by an external in-plane magnetic field. This topological phase transition cor-
responds to the TRS broken counterpart of the mentioned IS breaking topological phase
transition [38]. However, in contrast to that case, the difficulty to induce such topological
phase transitions comes from the fact that a magnetic field removes the protection from the
QSH phase giving rise to the opening of a gap. We overcome this difficulty taking advan-
tage of a topological crystalline protection against magnetic fields present in QSH systems
with particle-hole symmetry and a commuting reflection symmetry [42, 43]. Recently,
we found an example of this phenomenon in bismuthene on SiC [42], a hexagonal lat-
tice QSH system that offers exciting prospects for room-temperature applications [44,45].
There, the combination of particle-hole and reflection symmetries prevents the mixing be-
tween counter-propagating edge states preserved only along the armchair boundary [42].
In this paper, we demonstrate that the topological crystalline protection and formation
of crystalline WSM phase occurs in all hexagonal lattice QSH systems described by the
Kane-Mele (KM) Hamiltonian [46–57] and by the Bernevig-Hughes-Zhang (BHZ) model,
although in practice it is difficult to realize particle-hole symmetry (PHS) in semicon-
ductors such as HgTe/CdTe [58–63] or InAs/GaSb [64] quantum wells. Furthermore, we
explore the stability of the crystalline WSM phase when PHS is broken, and predict the
robustness of this phase in systems described by KM model.

The structure of the paper is as follows: In Sec. 2, we introduce the KM and BHZ
models. Then, in Sec. 3 we classify and calculate the topological invariants of the afore-
mentioned Hamiltonians, only considering the particle-hole symmetric terms together with
spatial symmetries. In Sec. 4, we study the gap opened by the in-plane magnetic field when
terms that break PHS are present. Additionally, in Sec. 5 we study the effect of disorder on
the two terminal conductance in the unconventional topological phase transition. Finally
in Sec. 6, we explain a potential realization on topoelectrical circuits.

2 Kane-Mele and BHZ models: Hamiltonian and symme-
tries

First, we give a brief overview of the two paradigmatic QSH models studied here, the KM
and BHZ models. For both models, we use a tight-binding (TB) description, set up on a
hexagonal (KM) or square (BHZ) lattice. In addition to the Hamiltonians, we also provide
a brief survey of the symmetries and high-symmetry points involved in each model.

2.1 Kane-Mele model

2.1.1 Particle-hole symmetric terms

The KM model was the first theoretical example of a QSH insulator, synonymously also
referred to as two-dimensional (2D) topological insulator [65,66]. It describes a QSH sys-
tem on a hexagonal lattice, with a single orbital per atom (and spin). Although originally
proposed for graphene [65,66], it has subsequently been used to describe other hexagonal
QSH systems, such as silicene [46–49], germanene [46, 50], stanene [51, 52], or jacutin-
gaite [55]. In reciprocal space, the bulk Hamiltonian of the KM model can be written
as

HKM
0 = fxσx + fyσy + fzσzsz, (2)

where fx = −t
[
1 + 2 cos (kxa/2) cos

(√
3kya/2

)]
, fy = 2t cos (kxa/2) sin

(√
3kya/2

)
, as

well as fz =
(
2λSOC/3

√
3
) [

sin (kxa)− 2 sin (kxa/2) cos
(√

3kya/2
)]

. Here, the direct Bra-
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Figure 1: (Color online) (a) Direct and (b) reciprocal lattice for the honeycomb-based sys-
tems described by the KM Hamiltonian. (c) Direct and (d) reciprocal lattice for the BHZ
Hamiltonian discretized on a square lattice. Here, the time-reversal invariant momenta
Γ0−3 of the hexagonal and square lattices are also indicated.

vais lattice vectors have been chosen as a1 = aex and a2 = −(a/2)ex+(
√

3a/2)ey with the
lattice constant a, such that the x and y directions denote the zigzag (ZZ) and armchair
(AC) directions, respectively [see Fig. 1(a) for the honeycomb lattice and the directions].
The nearest-neighbor hopping amplitude is given by t and the intrinsic spin-orbit coupling
parameter by λSOC. Moreover, we have introduced the Pauli matrices σx,y,z and sx,y,z to
describe the sublattice and spin degrees of freedom, respectively.

Apart from the K and K′ points, the Hamiltonian (2) possesses other high-symmetry
points, namely the time-reversal invariant momenta, which fulfillH(kx, ky) = H(−kx,−ky)
and are given by

Γ0 = (0, 0) , Γ1 =
2π

a

(
0,

1√
3

)
, Γ2 =

2π

a

(
1

2
,− 1

2
√

3

)
, Γ3 =

2π

a

(
−1

2
,− 1

2
√

3

)
.

Note that we have introduced here a generic notation Γi, to make it coincident with the one
used in the BHZ model. In addition, we introduce the reflection-invariant momenta, which
have the property H(kx, ky) = H(kx,−ky) and are given by ky = 0 and ky = 2π/(

√
3a).

An applied in-plane magnetic field H gives rise to a Zeeman term

HZ = B‖ [cos(θ)sx + sin(θ)sy] ≡ B‖sθ, (3)

with the Zeeman energy B‖ and the angle θ between the x direction and the orientation of
the magnetic field. The Zeeman energy is given by B‖ = gµB|H|/2, where µB is the Bohr
magneton, |H| the magnitude of the in-plane magnetic field, and g the material-dependent
g-factor. If g = 2, B‖ = µB|H|.

In the presence of HZ, the reflection and PHS operators are given by

C = σzsz exp(−iθsz)K, (4)

R(x) = σ0sθ, (5)

R(y) = σxsθ, (6)
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where K denotes complex conjugation. The bulk Hamiltonian given by Eq. (2) exhibits
reflection symmetries, i.e.,

R(i)H(k)R−1(i) = H(k), (7)

where i = x, y, k = (kx,ky) and k is equal to k except for its ith-component, which is
reflected (ki → −ki). Note that R(x) and R(y) change with the direction of the in-plane
magnetic field angle θ.

2.1.2 Terms breaking particle-hole symmetry

In systems without superconductivity, PHS is usually broken when additional coupling
terms, present in real materials, are accounted for. In honeycomb lattices, one of the most
important examples for such terms constitutes Rashba spin-orbit coupling

HR = λR
√

3 sin

(
kxa

2

)
cos

(√
3kya

2

)
σxsy − λR

√
3 sin

(
kxa

2

)
sin

(√
3kya

2

)
σysy

+ λR

[
1− cos

(
kxa

2

)
cos

(√
3kya

2

)]
σysx − λR sin

(√
3kya

2

)
cos

(
kxa

2

)
σxsx, (8)

where λR is the Rashba spin-orbit constant.
Another important term breaking PHS in honeycomb lattices is next-nearest-neighbor

hopping, described by the Hamiltonian

HNNN = t′σ0s0

[
cos (kxa) + 2 cos

(
kxa

2

)
cos

(√
3kya

2

)]
, (9)

where t′ is the next-nearest-neighbor hopping amplitude, which in graphene is only a
fraction of the nearest-neighbor amplitude t′ ∼ 0.1t [67]. While there are other terms
breaking PHS, we have focused here on the terms that induce the most sizable gap openings
between the edge states. In addition, we consider the impact of disorder on the two
terminal conductance, see below.

2.2 BHZ model

2.2.1 Particle-hole symmetric terms

The BHZ model has first been proposed to describe the low-energy physics of HgTe/CdTe
quantum-well structures, which in the inverted regime host QSH edge states [59–61, 63].
Not only does the BHZ model describe HgTe/CdTe quantum wells, the first experimentally
demonstrated QSH insulator [59], but also other systems such as InAs/GaSb [64] quantum
wells.

The continuum BHZ model can be discretized on a square lattice to obtain an effective
tight-binding description with lattice constant a [see Figs. 1(c) and (d)]. If only the terms
preserving PHS are taken into account, the resulting Hamiltonian is given by

HBHZ
0 = fxσxsz + fyσys0 + fzσzs0, (10)

where fx = A sin (kxa), fy = −A sin (kya), and fz =M−B cos (kxa)− B cos (kya). Now,
σx,y,z are Pauli matrices that represent the electron-like and heavy hole-like states. As
before sx,y,z are spin Pauli matrices. A, B, and M are material parameters depending
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on the quantum-well thickness d (along the z-direction) and also on the finite lattice con-
stant/step size a. The system becomes topological for M < 2B, which in HgTe quantum
wells occurs if d exceeds a critical thickness.

For the square lattice, the time-reversal invariant momenta are given by

Γ0 = (0, 0) , Γ1 =
π

a
(0, 1) , Γ2 =

π

a
(1, 0) , Γ3 =

π

a
(1, 1) ,

while the reflection-invariant momenta with the property H(kx, ky) = H(kx,−ky) are
given by ky = 0 and ky = π/a.

In the presence of an external in-plane magnetic fieldH, which—if particle-hole symmetric—
has the form of Eq. (3), the Hamiltonian preserves PHS as well as reflection symmetry.
The PHS and reflection operators are described by

C = iσxsz exp(iθsz)K, (11)

R(x) = σ0sθ, (12)

R(y) = σzsθ (13)

for the square lattice. Again, K denotes complex conjugation here.

2.2.2 Terms breaking particle-hole symmetry

In materials described by the BHZ model, there are typically sizable contributions that
break PHS. The most important contribution of these is given by

HD = [E − D cos (kxa)−D cos (kya)]σ0s0, (14)

which describes the asymmetry between the effective masses of the electron- and hole-like
bands. Again, E , D, and M are material parameters depending on the quantum-well
thickness d and the lattice constant a.

Moreover, additional spin-orbit contributions of the quantum-well structure are de-
scribed by [61,68]

HR = ξe
σ0 + σz

2
[sin(kya)sx − sin(kxa)sy] , (15)

where ξe depends not only on the quantum-well width, but also on the lattice constant a.
Finally, the in-plane magnetic field can give rise to a Zeeman term

Hg = B‖,e

[
cos θ

σ0 + σz
2

sx + sin θ
σ0 + σz

2
sy

]
+B‖,h

[
cos θ

σ0 − σz
2

sx + sin θ
σ0 − σz

2
sy

]
(16)

that by itself breaks PHS for B‖,e 6= B‖,h. Here, an in-plane magnetic field H can give
rise to different Zeeman energies B‖,e = geµB|H|/2 and B‖,h = ghµB|H|/2 of the electron-
and hole-like bands, respectively [69]. These different Zeeman energies are due to different
in-plane g factors ge and gh in HgTe quantum wells. As before, θ describes the angle
between the orientation of H and the x axis. Like the other material parameters, the
g factors depend on the thickness d of the quantum well. While there are other terms
breaking PHS, we have focused here on the terms that induce the most sizable gap openings
between the edge states. Finally, we note that bulk inversion asymmetry, described by
HBIA = ∆BIAσysy with the strength ∆BIA [61], can play an important role in the BHZ
model. We find, however, that HBIA does not break PHS and reflection symmetry in
finite strips that are infinite in the y direction. Hence, the edge states remain topologically
protected and gapless in these strips even for ∆BIA 6= 0.
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Figure 2: (Color online) In panel (a), we show the energy spectrum as a function of B‖
for an AC nanoribbon at ky = 0. Here, blue (red) color depicts bulk (edge) states. For
B‖ < Bc1 = |t|, MZ2 is the topological invariant, while for the range 3|t| = Bc2 ≥ B‖ ≥ Bc1,
CZ2 is the topological invariant. In panel (b) we show the creation (black dots) and
annhilation (cross) of the Weyl points in reciprocal space for the KM model. In panels
(c)-(e), we show the energy spectrum as a function of ky for three different magnetic
fields, corresponding to the three different phases from panel (a): Topological insulator,
topological semimetal and trivial insulator.

In the following paragraphs, we will calculate the spectra for AC/ZZ nanoribbons or
finite strips in the BHZ model. To do so, we discretize the Hamiltonian given by Eqs. (2)
and (10) in one of the directions and leave the other direction with the good quantum
number k. Further details are given in App. A.

3 Unconventional topological phase transition: Crystalline
Weyl semimetal phase

In this section, we explain the phase diagram exhibited by the KM and the BHZ models
with PHS and a commuting reflection symmetry when an external magnetic field is applied.
Here, the system evolves from a TI, characterized by the topological invariant MZ2, to
a trivial insulator. Between these two phases, a Weyl semimetal phase arises for a finite
range of magnetic field Bc2 ≥ B‖ ≥ Bc1. This phase is protected by the combination of

PHS and one of the reflection symmetries: C̃ = R(y)C. In the following paragraphs, we
will explicitly calculate the topological invariants for the KM model. Then, at the end of
this section, we will extend these results to the BHZ model.

3.1 Topological insulator phase

In the absence of any other symmetry, the QSH Hamiltonian H
KM/BHZ
0 always shows a

gap opening in the presence of an in-plane Zeeman field HZ [65]. However, this situation
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D Top. insul. FS1 FS2 FS3

R+ MZ2 MZ MZ2 CZ2

R− 0 0 MZ 0

Table 1: Summary of the topological classifications of both particle-hole symmetric KM
and BHZ Hamiltonians taking into account commuting (R+) and anticommuting (R−)
reflection symmetries. The first column refers to the case where the system is gapped,
while the rest of the columns refers to a gapless Hamiltonian. FS1, FS2 and FS3 reffer
to the position of the accidental crossings, or Fermi surfaces in the reciprocal lattice: For
FS1, the accidental crossing is placed on the mirror plane and at a high-symmetry point.
For FS2, the accidental crossing is on the mirror plane, but away from a high-symmetry
point, and for FS3, the accidental crossing is away from both, high-symmetry points and
the mirror plane.

can change in the presence of extra reflection symmetries, which combine with non-local
symmetries and can modify the topological classification of the Hamiltonian [70, 71]. In
order to account for reflection symmetries in the topological classification, we compute the
commutation relations of the reflection operators, R(x) and R(y), with the remaining bulk
symmetry, i.e. C. Following the notation used in Refs. [70, 71], we assign the labels R± if
R(i) commutes (+) or anticommutes (-) with the particle-hole operator C, i.e. R(x)→ R−
and R(y) → R+. We summarize the topological classification given in Refs. [70, 71] in
Tab. 1. We can see that for topological insulators (first column) we find that R+ [R(y)], is
characterized by a mirror topological invariant MZ2. In turn, R− [R(x)] exhibits always a
trivial phase (0). The rest of the columns will be used below when studying the semimetal
phases.

In order to calculate MZ2, we project the 2D Hamiltonian on the 1D reflection-invariant
momenta and calculate the topological invariant of the resulting 1D Hamiltonians. At the
reflection-invariant momenta [ky = 0 and ky = 2π/(

√
3a)], the effective 1D Hamiltonians

commute with R(y), i.e. [Hky(kx),R(y)] = 0. Therefore, it is possible to use the same

basis that diagonalizes R(y), i.e. URR(y)U †R = diag(12×2,−12×2), to rewrite H(kx, ky) in

a block diagonal basis, i.e. URHky=RIM(kx)U †R = diag
[
H+
ky=RIM(kx), H−ky=RIM(kx)

]
. The

superscripts ± label the reflection parity blocks corresponding to the ±1 eigenvalues.
The topological invariant of the resulting 1D D-class Hamiltonian can be calculated as

in the Kitaev model [72]. Thus, we express H±ky=RIM(kx) in the so-called Majorana basis,
in which the unitary part of the particle-hole operator C = UcK transforms into Uc =
1. At the time-reversal invariant momenta, the Hamiltonian becomes purely imaginary
HM = iA(kx), where A(kx) is a real and antisymmetric matrix, AT = −A [73]. Note that
there is only one time-reversal invariant momentum (kx = 0) that together with ky = RIM
lies inside the first Brillouin zone. Therefore, the invariant is expressed in terms of

(−1)
n±MZ2 = Sign{Pf[A±ky=0(0)]Pf[A±

ky=
2π√
3a

(0)]}, (17)

with

Pf[A±ky=0(0)] = ±B‖ + 3t, (18)

Pf[A±
ky=

2π√
3a

(0)] = ±B‖ − t. (19)

Plugging Eqs. (18) and (19) into Eq. (17), we obtain that n±MZ2
exhibits a topological

insulator phase for B‖ < |t|. This topological invariant n±MZ2
characterizes the topological
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insulating phase until B‖ = Bc1 = |t|. For higher magnetic fields, MZ±2 exhibit different
values at different reflection parities, indicating a change in the topological invariant of
the system [74].

3.2 Crystalline Weyl semimetal phase

Setting the magnetic field at Bc1 = |t| a total of six Weyl points emerge: four placed at the
Γ2, Γ3-points and two at K′ = (2π/a, 0) and K = (−2π/a, 0), see black dots in Fig. 2(b).
Increasing further the magnetic field the Weyl points shift distinguishing two different
regimes: Bc1 ≤ B‖ ≤

√
5|t| and

√
5|t| ≤ B‖ ≤ Bc2. For Bc1 ≤ B‖ ≤

√
5|t| the crossing

points placed at K and K′ split in the vertical axis into two points. Thus, the Weyl points
placed at K (K′) shift towards the points (−2π/a,±2π/

√
3a) [(2π/a,±2π/

√
3a)], where

they annhilate each other for B‖ =
√

5|t|.2 Meanwhile, the crossing points placed at the
Γ2, Γ3-points evolve slowly towards Γ0 = (0, 0), see left panel in Fig. 2(b). In the second
regime (

√
5|t| ≤ B‖ ≤ Bc2), two extra crossing points are created at Γ1 = (0,±2π/

√
3a)

and shift vertically towards Γ0 = (0, 0), where they annhilate together with the remaining
4 crossing points for B‖ = 3|t|, see right panel in Fig. 2(b).

These stable accidental crossing points may appear in a 2D system because of both,
the lack of TRS and the presence of PHS and a commuting reflection symmetry. This
results effectively in a reduction of the number of allowed Pauli matrices to formulate
the Hamiltonian. We can understand this by writing the eigenenergies of Eq. (2) [and
Eq. (10)] in the presence of a Zeeman term, that is

E± = ±
√(√

f2x + f2y −B‖
)2

+ f2z . (20)

which correspond to the eigenenergies from a Hamiltonian containing only two Pauli ma-
trices, and therefore, there are only two conditions for the closing of the gap: f2x +f2y = B2

‖
and fz = 0. Since the number of independent parameters exceeds the number of condi-
tions, we expect to close the gap for a finite range of magnetic fields.

These accidental crossings lie in general off high-symmetry points and outside the
reflection planes (FS3, see Tab. 1) and thus, alone, the reflection symmetry cannot protect
Fermi surfaces. However, a combination of PHS and reflection symmetry, i.e. C̃ = R(y)C
does [74]. This operator transforms the Hamiltonian as

C̃H(kx, ky)C̃−1 = −H(−kx, ky). (21)

Therefore, C̃ can be understood as an effective PHS acting within the 1D Hamiltonian,
where ky is treated as an extra parameter of the model. For this reason, we can de-
fine a topological invariant nCZ2 analogous to the Kitaev model that is ky-dependent.
This topological invariant can only change across the gap-closing points, and gives rise
to Fermi arc states that connect two Fermi points. Thus, we first write the Hamiltonian
in the Majorana basis, i.e. the basis that transforms C̃′ = K. In this basis, the Hamil-
tonian becomes antisymmetric at the x−reflection-invariant momenta kx = 0 and 2π/a,
i.e. H ′(kx = RIM) = i Akx=RIM (ky), which allows to define the topological invariant nCZ2

as

(−1)nCZ2
(ky) = Sign{Pf[Akx=0]Pf[Akx= 2π

a
]}, (22)

2Due to the periodicity of the reciprocal space, it is fulfilled (±2π/a, 2π/
√

3a) = (±2π/a,−2π/
√

3a),
where the Weyl modes anhilate each other.
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Figure 3: Panels (a) and (b) show the phase diagrams of nCZ2 as a function of ky and
B‖ for the KM and BHZ model, respectively. Blue areas correspond to nCZ2 = 1, while
the yellow areas to nCZ2 = 0. Thus, blue areas show the extension of the Fermi arcs in
reciprocal space for a given B‖. In the BHZ model we used A = 182.25 meV, B = 343 meV
and M = 586 meV.

with

Pf[Akx=0] = B2
‖ − 5t2 − 4t2 cos(

√
3ky/2a), (23)

Pf[Akx= 2π
a

] = B2
‖ − 5t2 + 4t2 cos(

√
3ky/2a). (24)

This topological invariant sets the conditions to observe Fermi arcs connecting the Weyl
points described above. In Fig. 3 we evaluate numerically Eq. (22) and show the extension
of the Fermi arc as a function of B‖/|t| and kya. From these results, we observe that the
Fermi arcs appear centered at ky = 0 for B‖ = Bc1, connecting the Weyl points that appear

around K′ = (2π/a,±δ) and K = (−2π/a,±δ). Here, δ goes from 0 up to 2π/
√

3a as B‖
goes from |t| up to

√
5|t|, where the Fermi arcs extend over the whole reciprocal lattice.

For B‖ =
√

5|t|, the Fermi arcs connect the new Weyl points created at Γ1. Increasing B‖
further, nCZ2 predicts the annhilation of these Weyl points at ky = 0 for B‖ = 3|t|.

We confirm these results numerically in Fig. 2(a), where we show the energy spectrum
of an AC nanoribbon as a function of the in-plane magnetic field B‖ at ky = 0. Consistent
with the calculation of the topological invariants, we observe the presence of zero energy
states for B‖ ≤ 3|t|, see Fig. 3. Then, in Figs. 2(c) and (d), we show three representative
examples of the energy dispersion in each phase: In panel (c), B‖ = 0.4|t| and the energy
dispersion is that of a topological insulator. Panel (d) with B‖ = 1.4|t| shows a crystalline
Weyl semimetal and panel (e) with B‖ = 3.4|t| a trivial insulator.

It is important to remark at this point that until now we have discussed the symmetries
and topological invariants of the bulk Hamiltonian, and therefore, these arguments apply
in principle to both ZZ and AC boundary conditions. However, one has to realize that
ZZ boundary condition does not preserve the reflection symmetry R(y). Thus, we expect
that ZZ nanoribbons always exhibit a trivial phase in the presence of magnetic fields.
Conversely, AC boundary conditions preserve both reflection symmetries R(x) and R(y).
In the next section, we will confirm these symmetry arguments by diagonalizing ZZ and
AC nanoribbons in the presence of an in-plane magnetic field and couplings that break
PHS.
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3.3 Extension of the analysis to the BHZ model

A similar topological phase transition is observed in the particle-hole symmetric BHZ
model with a good quantum number ky. In this case, its origin is quite surprising and
counterintuitive because the geometry of the BHZ model is that of a square lattice and
thus, one would expect a similar behavior along both boundaries. However, there is a
mathematical difference between both boundaries, which arises due to the TRS of the
BHZ Hamiltonian, see Eq. (10). Under this condition, different pseudospin Pauli ma-
trices σx (real) and σy (imaginary) acquire a different spin functional form sz and s0,
respectively. Then, because of this difference, the reflection operators acquire a different
pseudospin functional form, i.e. R(x) = σ0sθ, while R(y) = σzsθ, which gives rise to dif-
ferent commutation relations between R(x/y) and C, i.e. R(x) → R− and R(y) → R+.
Now, only the infinite mass boundary condition Mx = σz (with good quantum number
along the y-direction) commutes with R(x) and R(y), and therefore, all the topological
properties obtained for AC edge states in the KM model apply to the BHZ model for finite
strips that are infinite along the y direction.

Here, the TI phase extends up to Zeeman energies of B‖ < |M− 2B|. As the Zeeman
energies are further increased, the system enters the crystalline WSM phase. This is
also illustrated by Fig. 3(b), which shows the corresponding topological invariant nCZ2

computed from Eq. (22) and

Pf[Akx=0] = B2
‖ − (B −M+ B cos(kya))2 −A2 sin2(kya),

Pf[Akx= 2π
a

] = B2
‖ − (B +M−B cos(kya))2 −A2 sin2(kya).

In this case, a pair of Weyl points emerges at the Γ point in the bulk spectrum. With
increasing B‖, these Weyl points split and move along the ky axis: One Weyl point tends
to ky = π/a, while the other tends to ky = −π/a. At ky = ±π/a, the two Weyl point
merge and are annihilated.

Moreover, additional Weyl points appear as B‖ is increased, similar to the KM model.
For the BHZ model, however, the number and position of the additional Weyl points
in the bulk spectrum depends on the ratio between A and B. The ratio B/A also de-
termines the extent of the crystalline WSM phase: In the typical case of |A| < |B|,

Figure 4: (Color online) Effective g-factors as a function of the PHS breaking term pa-
rameter λ for the KM [panel (a)], we used next nearest neighbor and Rashba, while for
the BHZ model [panel (b)], the assymetric mass D and the Rashba spin orbit coupling.
For the parameters used in the calculation, we refer to the main text. In the BHZ model
we used A = 182.25 meV, B = 343 meV and M = 676 meV.
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the semimetal phase exists for |M − 2B| < B‖ < |M + 2B|, which is also the case
shown in Fig. 3(b). If |A| > |B| (not shown here), the semimetal phase exists for
|M − 2B| < B‖ <

√
A2(A2 +M2 + 2MB)/(A2 − B2). In this case, the transition from

the semimetal phase to the trivial phase occurs at a Zeeman energy larger compared to
the case of |A| < |B|.

4 Breaking particle-hole symmetry: Estimation of the ef-
fective g-factor

In the presence of PHS breaking terms, the topological states are no longer protected and
an external magnetic field is, in principle, able to open a gap. We characterize the stability
of the removed protection through the effective g∗ factor, which is the ratio between the
gap opened (∆i) in the (previously protected) AC or y directions, and gaps ∆⊥ opened in
the (unprotected) ZZ or x directions, i.e. g∗ = ∆i/∆⊥.

In Fig. 4 we show g∗ as a function of the PHS breaking parameter, generically called λ.
In general, this value changes slightly with the applied magnetic field, thus, we average g∗

over a range of magnetic fields. We have used the PHS breaking terms introduced in Sec. 2,
i.e. in the KM model we have used the Rashba and next-nearest neighbor Hamiltonians.
Then, for the BHZ model, the asymmetric Zeeman, Rashba and asymmetric masses. As
expected, the numerical results for g∗ confirm the topological invariant analysis from the
previous section: g∗ = 0 for λ = 0 with g∗ increasing proportionally to λ. Furthermore,
a direct comparison between g∗ in the KM and BHZ models reveals no further difference,
i.e. g∗BHZ ∼ g∗KM. However for the experimentally relevant parameters, the BHZ model
exhibits a larger particle-hole asymmetry (λ/|M − 2B| ∼ 25) than in the KM model
(λ/λSOC ∼ 0.1). Therefore, we expect to observe almost perfectly protected edge states,
reminiscent of this topological crystalline protection for the KM model, while for the BHZ
model there are almost no difference between both boundaries, i.e. g∗BHZ ≈ 1 for realistic
parameters.

In the KM model, the PHS breaking term that gives rise to a larger gap is the Rashba

Figure 5: Energy spectra of AC nanoribbons in the presence of Rashba SOC and an applied
magnetic field in x-direction (θ = 0) [(a) and (b) panels] and y-direction (θ = π/2) [(c)
and (d) panels]. We used B‖ = 0.8|t| in the topological insulator phase, and B‖ = 1.2|t|
in the crystalline Weyl semimetal phase.
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SOC, given in Eq. (8). As we mentioned above, in the worst scenario the magnetic field
can mix counterpropagating modes giving rise to the opening of a gap, see Fig. 5 (a)
and (b). However, there is an anisotropic effect of the Zeeman splitting coming from the
fact that to lowest order in momentum ky, the reflection symmetry R(y) is conserved [42].
Thus, when the magnetic field is parallel to the AC boundary (By or θ = π/2) the gap
does not open and it is in principle possible to observe the topological phase transition,
see Fig. 5 (c) and (d).

5 Conductance in the presence of disorder

In addition to the previously studied particle-hole symmetry breaking terms, we now ex-
plore the impact of disorder and a Zeeman field on the quantized conductance G = 2e2/h
of the helical edge states. The presence of disorder in crystalline topological insulators
has a negligible impact on their topological protection because, in average, reflection sym-
metries are conserved [71]. However, in our case, the presence of disorder also breaks
particle-hole symmetry and therefore, it is necessary to check its impact on the quantized
conductance. To this aim, we use standard Green’s function methods, and calculate the
linear conductance of a system consisting of two semi-infinite leads [75] coupled through
a finite scattering sector where we introduce disorder through a local random potential
vimp(x, y), with maximum value of |vimp|. Here, the linear conductance at zero tempera-
ture is given by the well-known expression

G =
4e2

h
Tr[ΓLG

r
cΓRG

a
c ], (25)

where Gr,ac are the retarded and advanced Green’s functions for the section c. Note that
due to current conservation, the calculations do not depend on the chosen section c.
Moreover, ΓL,R = 2Im{Σa

L,R} are the imaginary parts of the left- and right-self-energies
Σa
L,R = VCLg

r,a
LLVLC, and the terms VCL/R,L/RC represent the tunnel couplings between

the left/right (right/left) and the section c. Besides, the trace runs over the transversal
direction of the junction.

In Fig. 6 we show the linear conductance for the Kane-Mele model as a function of
the Fermi energy (a,c) and the Zeeman energy (b,d) for λR = 0 (a,b) and λR = 0.15t
(c,d). In the absence of Rashba spin-orbit coupling (a,b), we observe that for small dis-
order strength relative to the insulating gap λso, i.e. vimp/λso ∼ 0.1, the conductance
remains approximately quantized G = 2e2/h for B < Bc1. Note that this is not neces-
sarily a small disorder strength, because materials like bismuthene exhibit a gap of the
order λso ∼ 1 eV [44, 45]. For larger disorder strengths, the conductance reduces without
the opening of a gap. Furthermore, we note that the conductance becomes more reduced
the closer the Fermi energy is to the bulk states. Thus, presumably the lack of protection
comes from the coupling between the edge and bulk states. This is in contrast to the im-
pact caused by previously studied terms that break particle-hole symmetry, which couple
counterpropagating states giving rise to a gap at the crossing point, with the consequent
drop in conductance, see Fig. 6(c). In Figs. 6 (b) and (d) we show the linear conductance
for EF = 0 as a function of the Zeeman energy in the absence and presence of Rashba
spin-orbit coupling, (b) and (d) respectively. For magnetic fields above B > Bc1 = |t|,
the conductance at EF = 0 drops since the semimetallic phase does not exhibit a quan-
tized longitudinal conductance. In order to explore the stability of the semimetallic phase
one needs to perform Hall conductance calculations, which are beyond the scope of this
contribution.
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Figure 6: Linear conductance for the Kane-Mele model as a function of the Fermi energy
with B = 0.25t (left panels) and as a function of the Zeeman energy B/t with EF = 0.0
(right panels) with different disorder strengths vimp/λso = 0.1, 0.2, 0.3, 0.4, 0.5. In the
top panels, the calculations are performed for λR = 0.0, while for the bottom panels
λR = 0.15t. All conductance calculations are the result of the average over 100 realizations
in a disordered slab of length 150a0.

6 Potential realization in topoelectrical circuits

Above, we have shown that the combination of PHS and reflection symmetry along a given
edge gives rise to an unconventional phase transition in both, the KM or BHZ models.
Here, a Weyl semimetal phase separates a crystalline topological insulator phase from a
trivial phase. There are, however, several issues which prevent this transition from being
observed experimentally: First, this transition occurs in systems with PHS, which in real
systems is broken, for example, by disorder (see Sec. 5 above), by the asymmetry between
conduction and valence band effective masses in the BHZ model, or next-nearest neighbor
hopping in the KM model. Second, even for particle-hole symmetric systems the Zeeman
energies required to enter the Weyl semimetal phase are huge, corresponding to magnetic
fields of 103-104 T for typical g factors.

While it is thus unlikely to observe such transitions in real systems, one could test our
predictions in novel metamaterials such as topoelectrical circuits. The recently demon-
strated topoelectrical circuits, for example, allow one to transfer and study topological
concepts from quantum-mechanical to classical electronic systems [76–79]. Here, circuits
consisting of resistor, inductor and capacitor components are described by a circuit Lapla-
cian, similar to the Hamiltonian of a quantum mechanical system [76]. By engineering
such circuits appropriately, one can thus realize the particle-hole symmetric cases of the
KM and BHZ models studied here and also mitigate the detrimental effects of disorder.
Likewise, the circuits allow for an implementation of the topoelectrical equivalents to huge
Zeeman energies. Another class of metamaterials that offers the possibility of observing
the phenomena predicted in this manuscript are optical lattices of cold atoms, which can
be used to mimick condensed matter systems [80–82].
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Conclusions

We have studied an unconventional topological phase transition in QSH systems in an in-
plane magnetic field. This phase transition consists of three different phases: a topological
insulator phase, a crystalline Weyl semimetal phase, and a trivial phase. The key point
to induce this topological phase transition is the presence of a topological crystalline
protection, which prevents counter-propagating modes from mixing when a magnetic field
is applied. This protection appears through the combination of PHS and a commuting
reflection symmetry. We have calculated the topological invariants within Kane-Mele and
BHZ models for QSH edge states and crystalline Weyl semimetal. Moreover, we have
studied the stability of the crystalline protection, when adding particle-hole symmetry
breaking terms. We find that the crystalline edge state protection and the unconventional
topological phase transition is robust for the KM model. The discussed protecion might be
manifested in transport measurements [42, 83] and can also be important for generating
Majorana modes [84]. Since the predicted magnetic fields to observe crystalline Weyl
semimetal phase are quite high, we believe that one of new venues where this phase might
be easier to detect are topological circuits [76].
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A Discretization

In order to check our arguments about the different phases and their topological invariants
determined from the bulk Hamiltonians given in Secs. 2.1 and 2.2, we also compute the
energy spectra of nanoribbons and finite strips, respectively. The Hamiltonians for these
can be obtained by preforming 1D Fourier transformations of the bulk Hamiltonians from
Secs. 2.1 and 2.2.

For the KM model and our choice of basis vectors, a1 = aex and a2 = −(a/2)ex +
(
√

3a/2)ey, a Fourier transform with respect to
√

3ky/2 yields nanoribbons with ZZ edges
along the x direction, a finite number of lattice sites along the y direction, and a good
momentum quantum number kx. By a Fourier transform with respect to kx/2, on the
other hand, we obtain nanoribbons with AC edges along the y direction, a finite number
of lattice sites along the x direction, and a good momentum quantum number ky. The ZZ
and AC directions and their corresponding coordinate axes are shown in Fig. 1(a).

Similarly, for the BHZ model a finite strip with a finite width in y direction and a
good quantum number kx can be obtained by a Fourier transform of the k-dependent bulk
Hamiltonian with respect to ky. Conversely, Fourier transforming the bulk Hamiltonian
with respect to kx yields a finite strip with a good quantum number ky and a finite width
in x direction. The directions are depicted in Fig. 1(c). In all calculations we have used a
lattice constant of a = 2 nm and N = 299 sites, resulting in a ribbon of 600 nm.
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J. Schneeloch, G. Gu and T. Valla, Chiral magnetic effect in zrte5, Nature Physics
12, 550 (2016), doi:10.1038/nphys3648.

[33] Q.-D. Jiang, H. Jiang, H. Liu, Q.-F. Sun and X. C. Xie, Topological
imbert-fedorov shift in weyl semimetals, Phys. Rev. Lett. 115, 156602 (2015),
doi:10.1103/PhysRevLett.115.156602.

[34] C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han and Y. Ran, When chiral photons
meet chiral fermions: Photoinduced anomalous hall effects in weyl semimetals, Phys.
Rev. Lett. 116, 026805 (2016), doi:10.1103/PhysRevLett.116.026805.

[35] S.-B. Zhang, J. Erdmenger and B. Trauzettel, Chirality josephson current due to a
novel quantum anomaly in inversion-asymmetric weyl semimetals, Phys. Rev. Lett.
121, 226604 (2018), doi:10.1103/PhysRevLett.121.226604.

[36] S. Murakami, Phase transition between the quantum spin hall and insulator phases
in 3d: emergence of a topological gapless phase, New Journal of Physics 9(9), 356
(2007), doi:10.1088/1367-2630/9/9/356.

[37] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane and R.-J. Slager, Topological
classification of crystalline insulators through band structure combinatorics, Phys.
Rev. X 7, 041069 (2017), doi:10.1103/PhysRevX.7.041069.

[38] J. Ahn and B.-J. Yang, Unconventional topological phase transition in two-
dimensional systems with space-time inversion symmetry, Phys. Rev. Lett. 118,
156401 (2017), doi:10.1103/PhysRevLett.118.156401.

[39] Y. Volpez, D. Loss and J. Klinovaja, Rashba sandwiches with topological supercon-
ducting phases, Phys. Rev. B 97, 195421 (2018), doi:10.1103/PhysRevB.97.195421.

[40] Y. Volpez, D. Loss and J. Klinovaja, Second-order topological superconduc-
tivity in π-junction rashba layers, Phys. Rev. Lett. 122, 126402 (2019),
doi:10.1103/PhysRevLett.122.126402.

[41] J. Klinovaja, P. Stano and D. Loss, Topological floquet phases in
driven coupled rashba nanowires, Phys. Rev. Lett. 116, 176401 (2016),
doi:10.1103/PhysRevLett.116.176401.

18

https://doi.org/10.1103/PhysRevB.89.075124
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1088/1367-2630/18/5/053039
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevLett.115.156602
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevLett.121.226604
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevLett.118.156401
https://doi.org/10.1103/PhysRevB.97.195421
https://doi.org/10.1103/PhysRevLett.122.126402
https://doi.org/10.1103/PhysRevLett.116.176401


SciPost Physics Submission

[42] F. Dominguez, B. Scharf, G. Li, J. Schäfer, R. Claessen, W. Hanke, R. Thomale
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Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang and L. W. Molenkamp, Single
valley dirac fermions in zero-gap hgte quantum wells, Nat. Phys. 7(5), 418 (2011),
doi:10.1038/NPHYS1914.
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