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Abstract

Using elementary graph theory, we show the existence of interface chiral modes
in random oriented scattering networks and discuss their topological nature.
For particular regular networks (e.g. L-lattice, Kagome and triangular net-
works), an explicit mapping with time-periodically driven (Floquet) tight-
binding models is found. In that case, the interface chiral modes are identified
as the celebrated anomalous edge states of Floquet topological insulators and
their existence is enforced by a symmetry imposed by the associated network.
This work thus generalizes these anomalous chiral states beyond Floquet sys-
tems, to a class of discrete-time dynamical systems where a periodic driving
in time is not required.
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1 Introduction

Chiral edge states constitute a ubiquitous signature of the topological properties of many
physical systems. The emergence of such one-way dissipationless modes is well under-
stood in condensed matter with the celebrated bulk-boundary correspondence [1–7]. Ac-
cording to this correspondence, the number of chiral edge modes of a two-dimensional
gapped system is fixed by the value of a topological index, namely the first Chern number,
that characterizes the topological property of the bulk eigenstates parametrized over the
Brillouin zone. While the demonstration of the topological origin of the quantized Hall
conductivity launched the field of topological phases of matter [8–10], the universality of
the bulk-edge correspondence allowed the spread of topological physics beyond condensed
matter physics, from quantum to classical systems of various types. This recent expansion
was made possible in particular thanks to the versatility and the high degree of control of
various artificial crystals or meta-materials in which chiral boundary modes can be directly
probed experimentally [11–17].

Remarkably, the bulk-edge correspondence was recently jostled in periodically driven
quantum systems, also called Floquet systems, in which robust chiral boundary modes may
emerge while the Chern numbers vanish [18]. These unexpected anomalous chiral edge
states, that have no counterpart in static systems, motivated Rudner, Lindner, Berg and
Levin to propose a new bulk-boundary correspondence for periodically driven systems [18],
later formally demonstrated [19], that correctly predict these new topological boundary
modes, but where the seminal Chern numbers are unseated and replaced by more accurate
topological indices. The existence of these anomalous chiral states have been confirmed
since by direct observations in various photonic devices [20–22]. The power of this break-
through is that every chiral edge states are treated on the same footing, whether or not
the topological state is anomalous. But on the same time, it does not help to understand
what is specific to anomalous chiral boundary states neither to engineer one on purpose.

The present work answers these questions beyond the context of Floquet physics, by
considering unitary discrete-time dynamics that are not necessarily periodic in time. The
emergence of anomalous chiral modes is found to be a generic topological property of
arbitrary oriented scattering networks whose meaning can be twofold: they can either
represent a discrete-time Hamiltonian dynamics, or constitute the actual physical systems
through which wave packets propagate. As a result, anomalous chiral modes are not
specific to periodically driven (Floquet) systems. More generally, we show how topological
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properties of a coherent (or quantum) state evolving in a network can simply be inferred
from the properties of the network itself.

Discrete-time dynamics are abundantly used in Floquet topological physics, not only
theoretically where they were first introduced to illustrate the anomalous regime [18, 23]
and its physical consequences [24,25], but also experimentally in classical optics [20,21,26]
as well as in quantum optics [27–29] and cold atoms physics [30, 31] where they are often
referred to as discrete-time quantum walks [30, 32, 33]. Another interest of discrete-time
dynamics is that they constitute the building blocks of arbitrary dynamics, since the
evolution operator of a continuous dynamics can be decomposed as an infinite product of
infinitesimal free evolutions governed by instantaneous Hamiltonians taken at successive
times. Since these Hamiltonians generically do not commute, the evolution operator can
be cumbersome to manipulate. It can thus be convenient to approximate the dynamics
by a finite sequence of unitary operations, as it is currently done numerically to compute
the evolution operator.

This paper is organized as follows: In section 2, we establish a direct mapping between
oriented scattering networks and discrete-time periodic tight-binding models introduced
in the context of Floquet anomalous topological phases [18,23]. This allows us to represent
periodically driven tight-binding models by networks in which we unveil a phase rotation
symmetry [34] that imposes the existence anomalous topological chiral states (section
3). Remarkably, the topological properties of oriented networks one ends up with were
discussed independently in the literature [16, 34–38] ; these mappings thus clarify the
similarities between their topological properties and those of Floquet tight-binding models
[18, 23]. This simple construction also allows us to propose other Floquet tight-binding
models that host anomalous topological states. Furthermore, and more importantly, the
interpretation of the phase rotation symmetry as a simple generic property of the network
allows us to generalize it to arbitrary scattering networks and thus to investigate the
topological properties of discrete-time dynamics beyond Floquet systems. This case is
addressed in section 4 by means of graph theory applied to random networks that preserve
unitarity. The existence of chiral modes that generalize the anomalous ones in the Floquet
case is inferred from simple graphical properties of the graphs. We discuss the topological
nature of this information in section 5 and confirm it by computing the flow induced by
the dynamics in the random graph that is found to be quantized in agreement with the
graph theory approach.

2 Discrete-time dependent tight-binding models as topolog-
ical cyclic oriented scattering networks

2.1 Mapping of a canonical Floquet tight-binding model onto the L-
lattice model

Discrete-time dependent tight-binding models were proposed on the honeycomb lattice [23]
and the square lattice [18] to realize Floquet ”topological insulators”. In these models,
the hopping energy terms J that couple nearest neighbors are successively switched on
and off around each plaquette, therefore inducing a breaking of time-reversal symmetry
in the periodic dynamics. Each time period T is thus decomposed in a finite time-ordered
sequence of constant in time tight-binding Hamiltonians that describe arrays of uncoupled
dimers whose sites are coupled by Ji during a time τi. The bulk (Bloch) Hamiltonian thus
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reads

H(t,k) =


J1h1(k) t0 = 0 < t < t1
J2h2(k) t1 < t < t2
. . .
Jnhn(k) tn−1 < t < tn = T

(1)

where k is the quasi-momentum and hj is an hermitian matrix. Setting the dimensionless
phase coupling parameters θj ≡ Jjτj/~ where the duration τj = tj − tj−1, an evolution
operator Uj(k) = e−iθjhj(k) can be assigned to each time step. These discrete-time de-
pendent tight-binding models have a scattering network representation that we present
now.
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Figure 1: (left) Discrete-time dependent tight-binding model for the square lattice and (right) its scatter-
ing network representation (L-lattice). The successive time steps of duration τi with couplings of amplitude
Ji are represented in the same color than the scattering matrices they generate. A unit cell of the two
lattices is represented by a grey rectangle, and a basis of the Bravais lattice is given by ~e1 and ~e2. Note that
while the tight-binding model has two inequivalent sites per unit cell, the L-lattice has eight inequivalent
oriented links (and four scattering matrices).

As a canonical example, let us start with the square lattice, depicted in figure 1 (a),
since it is certainly the most discussed in the literature. In that case,

h1(k) =

(
0 eik+

e−ik+ 0

)
, h2(k) =

(
0 eik−

e−ik− 0

)
h3(k) =

(
0 e−ik+

eik+ 0

)
, h4(k) =

(
0 e−ik−

eik− 0

) (2)

with k± = k.e1±e22 . The evolution operators assigned to the successive time-step can be
factorized as

U1(k) = B(k+)S(θ1)B(k+) U2(k) = B(k−)S(θ2)B(k−)
U3(k) = B(−k+)S(θ3)B(−k+) U4(k) = B(−k−)S(θ4)B(−k−)

(3)

where

B(k) =

(
0 ei

k
2

e−i
k
2 0

)
, Sj =

(
cos θj −i sin θj
−i sin θj cos θj

)
(4)

so that each part of the evolution can be split into elementary steps that encode either a
displacement through B(k) or a coupling through the scattering matrix Sj . The (Floquet)
evolution operator after a period from t = 0 to t = T , reads

UF (k) = U4(k)U3(k)U2(k)U1(k) . (5)
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Substituting the Uj ’s by their decomposition (3) yields

UF (k) = B(−k−)S4Te2S3T−e1S2T−e2S1B†(k+) (6)

where Tej is a ”sublattice dependent” translation operator in the directions ±ej/2 that
reads

Tej ≡
(

ei
k.ej
2 0

0 e−i
k.ej
2

)
. (7)

The definition of the Floquet evolution operator is not unique, as it depends on the choice
of origin of time. One can thus choose a different origin by a cyclic permutation of the
unitary steps in (5). Starting the evolution by the translation operation Te2 , one thus
equivalently describes the periodic dynamics by the Floquet operator

ŨF (k) = S4Te2S3T−e1S2T−e2S1Te1 . (8)

The expression (8) has a straightforward interpretation in real space: it shows that the
evolution can be seen as a staggered succession of local scattering processes Sj followed by
a free propagation in the directions ±e1 or ±e2. Representing the scattering processes by
circles, and the free propagations by straight arrows in directions ±ej , one gets a version of
the celebrated scattering matrix network called L-lattice that was introduced by Chalker
and Coddington in the context of the quantum percolation transition between plateaus
of the quantized Hall effect (see figure 1 (b)) [39, 40]. The corresponding Floquet tight-
binding model is superimposed to this network in figure 1 (b) to emphasize the connection
between the two models. The construction of the oriented scattering network from the
discrete-time dependent tight-binding model becomes intuitive: the pairs of sites that are
coupled during a time-step in the tight-binding model are replaced by scattering matrices.
These matrices are then connected by oriented links whose orientation satisfies the time-
ordering of the dynamics. The oriented scattering lattice then obtained thus represents
a periodic (Floquet) dynamics. This periodicity is visible directly on the network since
any path along the oriented links encounters an ordered periodic sequence of scattering
events. For this reason, such networks can be qualified as cyclic. Note that a unit cell
of this oriented lattice contains 4 scattering nodes and 8 oriented links, while the original
tight-binding model only contains 2 inequivalent sublattices.

Finally, alternatively to the Floquet evolution operator and following Chalker, Cod-
dington and Ho, [39, 40], one can write down a ”one-step” evolution operator on the
network as

U(k) ≡


0 0 0 S4Te2

S1Te1 0 0 0
0 S2T−e2 0 0
0 0 S3T−e1 0

 . (9)

in the basis of the 8 oriented links (a1, b1, . . . , a4, b4) where the pair (aj , bj) enters the
scattering matrix Sj . The form of the one-step evolution operator U is reminiscent of
the cyclic structure of the oriented network. The different Floquet evolution operators
(i.e. defined with different origins of time) are then simply inferred by taking U4(k). A
correspondence between the Floquet (or discrete-time quantum walk) point of view given
by (8) and the network point of view given by (9), in particular for the characterization
of their topological properties, is detailed in [34]

Note that the tight-binding model introduced in [18] that gives rise to various Floquet
topological states actually slightly differs from the one introduced here in two ways: first
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the product τjJj = τJ is fixed to a single parameter, and second, a fifth time step is added
during which the couplings J are set to 0 but where a staggered on-site potential is switched
on. Three regimes were found: topologically trivial, Chern insulator, and anomalous. The
version of the model introduced here exhibits the same three regimes. The anomalous
one, which we focus on, is illustrated in figure 4 by its eigenvalues spectrum in a cylinder
geometry, in the case where the scattering parameters are equal θ1 = θ2 = θ3 = θ4.
In this particular case, the size of the unit cell is divided by a factor two so that the
network reduces to the original L-lattice [39,40] for which the topological properties have
been investigated in [34,35,38,41]. In that case, it was found that the evolution operator
exhibits only two distinct topological regimes: trivial and anomalous, exactly like in the
Floquet tight-binding model [18] in the absence of the fifth step.

2.2 Construction of other cyclic oriented scattering networks

One can now easily infer the scattering network representation of other discrete-time de-
pendent tight-binding models. In particular, one can consider a similar periodic stepwise
evolution that was originally proposed on a honeycomb lattice in a pioneering work deal-
ing with Floquet topological states [23]. Following the same lines as in section 2, one
obtains an oriented scattering Kagome network, as shown in figure 2. The topological
properties of this oriented scattering network were discussed in [34, 36]. In particular it
was found that this model exhibits three distinct topological gapped regimes: trivial insu-
lating, Chern insulating and topological Floquet anomalous. Previously, the independent
study of the driven tight-binding model on the honeycomb lattice [23] found the same
three regimes. The coincidence of these results becomes transparent thanks to the explicit
mapping between these two models.
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Figure 2: (left) Discrete-time dependent tight-binding models for the honeycomb lattice and (right)
its scattering network representation (Kagome oriented lattice). The successive steps of duration τi and
amplitudes Ji are represented in the same color than the scattering matrices they generate.

One can go a step further by proposing other periodic discrete-time dependent tight-
binding models together with their cyclic oriented network representation. For instance,
one could think about a triangle lattice, whose coupling between nearest sites switch on
and off trimers in time as depicted in figure 3 (a), where the succession in time of the
different steps is chosen to induce a favored rotation that breaks time-reversal symmetry.
The corresponding scattering network, shown in figure 3 (b), is an oriented triangular
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network.
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Figure 3: (left) Discrete-time dependent tight-binding models for the triangular lattice and (right) its
scattering network representation (triangular oriented lattice). The successive steps of duration τi and
amplitudes Ji are represented in the same color than the scattering matrices they generate.

3 Strong phase rotation symmetry of cyclic oriented net-
works

3.1 Strong phase rotation symmetry

The topological properties of the evolution operator of cyclic oriented networks were de-
tailed in [34]. In particular, it was pointed out for the L-lattice and for the Kagome lattice
that, when the scattering nodes fully transmit the incoming states into one direction only,
so that the lattices consist in arrays of ”classical” disconnected loops, then the Floquet
evolution operator acquires a (strong) phase rotation symmetry that constrains the Chern
number of each band to vanish. It was also found that, at this special symmetry point, the
quantum non-interacting spinless fermionic problem coincides with a strongly interacting
classical counterpart, allowing for instance a well-approximated description of the short
time quantum dynamics from the classical limit even slightly away from the symmetric
point [42].

Such a symmetry is defined as follows: a bulk unitary evolution on the network char-
acterized by the one-step operator U(k) is said to own a strong phase rotation symmetry
if there exists a unitary operator Λ such that

ΛU(k)Λ−1 = ei2π/NU(k) (10)

where N is the number of bands. Notice that, in the context of quantum dynamics in
finite dimensional vector spaces, Λ and U can be interpreted from (10) as two elements of
the Abelian group of unitary rotations in the projective Hilbert space (or ray space) that
identifies two states that only differ from each other by a U(1) phase factor [43]. In that
case, these elements could be interpreted as the exponential of the position and momentum
operators that are represented by the Sylvester’s ”clock” matrix Λ0 and ”shift” matrix P0
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respectively, that read

Λ0 =


λ 0 · · · 0
0 λ2 · · · 0

. . .
...
0

0 · · · 0 λN

 P0 =


0 · · · · · · 0 1
1 0 · · · 0

1
...

. . . 0
0 · · · 0 1 0

 (11)

where λ = ei2π/N . When the values of the scattering parameters are such that a cyclic
oriented network simply consists in an array of classical disconnected loops, then the Bloch
evolution operator can always be factorized in a shift operator form Λ0 (up to a change
of basis encoded though a matrix M). It follows (see appendix A) that the strong phase
rotation symmetry (10) is automatically satisfied and that the symmetry operator is given
by the clock matrix as

Λ = M−1Λ0M (12)

in the original basis of the links in which the ”one-step” evolution operator U(k) is written.
This result guaranties that when the scattering parameters yield a classical config-

uration of disconnected loops in any cyclic oriented scattering network, then the bulk
eigenstates carry a vanishing Chern number [34]. We will see in section 4 that such con-
figurations exist in any unitary scattering network, beyond the cyclic ones.

It is worth noticing that away from this critical point, the strong phase rotation symme-
try breaks down, but the Chern numbers cannot change value by virtue of their topological
nature, unless a gap between eigenvalues of the evolution operator closes.1 This is illus-
trated in figure 4 by the eigenphase spectra of the evolution operator of the three cyclic
oriented networks discussed above in a cylinder geometry. If all the gaps eventually close
simultaneously, the system undergoes a topological transition from the anomalous to the
trivial regime. It was pointed out for the L-lattice that this topological transition coincides
with the percolation transition in the network [35]. According to the mapping established
above, one can now interpret the topological transition between the Floquet anomalous
and trivial regimes in discrete-time tight-binding models as a percolation transition.

3.2 Anomalous Floquet topological interface states

The vanishing of the Chern numbers due to the strong phase rotation symmetry does
not guarantee automatically the existence of an anomalous Floquet topological regime.
Such an anomalous regime is actually ill-defined in a scattering network, since the bulk
winding invariant (that characterizes the full evolution operator over a period) depends on
the choice of the unit-cell in the bulk [34]. Accordingly, the existence of chiral boundary
modes depends on the boundary conditions. This is clear when considering an array of
disconnected loops (strong phase rotation symmetric point), as shown in figure 5; it is
always possible to either add or remove an isolated boundary mode represented by a large
loop that surrounds the array. This arbitrary change of boundary is made by leaving the
array unchanged in the bulk, and thus preserving the topological properties defined in the
bulk.

It is worth noticing that this ambiguity in the definition of the bulk topological index
for the networks is fixed when mapping a discrete-time periodic tight-binding model onto a

1Note that since at the phase rotation symmetric point, the array consists in disconnected loops, no
state can propagate through the system, which guarantees the existence of gaps in the eigenvalue spectrum
of the evolution operator.
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(a) L-lattice (b) oriented Kagome lattice (c) oriented triangular lattice

Figure 4: Eigenvalue phase spectrum ε of the ”one-step” Chalker-Coddington evolution operator (9) for
three cyclic oriented lattices in a cylinder geometry, slightly away from strong phase rotation symmetric
point, as a function of the quasi-momentum in the direction parallel to the edges of the cylinder. The color
code represent the mean position in the corresponding eigenstate, from one edge (red) to the other (blue)
through the bulk (green).

scattering network, since in that case the boundary conditions on the network are imposed
and inherited from the ones of the tight-binding model. In that case, it is not allowed to
modify the boundary of the network arbitrarily, and accordingly, the bulk winding number
of the evolution operator is well-defined and correctly predicts the existence of chiral
boundary modes. As a biproduct, scattering networks allow for more various boundary
conditions than their tight-binding analogues. The reason being that the number of degrees
of freedom increases when mapping the tight-binding models onto the scattering ones, as
already pointed out for the mapping to the L-lattice in section 2.

a1 a2 a3 a4

b4 b3 b2 b1

Figure 5: At the strong phase rotation symmetry point, an anomalous chiral boundary mode in a
scattering network (in green) is disconnected from the rest of the lattice. It can thus be added or removed
without modifying the bulk, by simply changing the size of the system. This is not the case for chiral
boundary modes constrained by Chern numbers.

Nonetheless, it is possible to characterize the topological Floquet anomalous phases in
scattering networks by using the relative bulk indices from side to side of an interface [34].
This approach predicts correctly the number of topologically protected chiral states that
can propagate at the interface of two domains with different bulk topological indices. At
the strong phase rotation symmetric point, this chiral mode appears explicitly visually
at the frontier between two arrays of loops that circulate in opposite directions. For
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example, in the square network, one can consider two domains of clockwise and anti-
clockwise loops, as displayed in figure 6. These two domains therefore both correspond
to a vanishing Chern number regime, because of the strong phase rotation symmetry
they satisfy. Concurrently, they cannot be continuously deformed one into each other.
It follows that a meandering oriented path necessarily exists at the interface between
the two domains. Unlike a boundary mode (see figure 5) this interface mode cannot be
removed (or added) since it has to satisfy the shape of the underlying L-lattice. This is
the representation of an interface anomalous Floquet state whose topological origin has
been discussed for cyclic oriented networks in [34,38].

a1 a2 a3 a4

b4 b3 b2 b1

Figure 6: Two domains of close loops with clockwise (red) and anti-clockwise (blue) circulation. At the
interface a chiral mode (green) of the Floquet anomalous regime appears.

To summarize, phase rotation symmetry allows one to turn the problem of the search
for anomalous Floquet chiral states into the one of the search for disconnected ”meandering
graphs” that emerge at the interface between domains of loops of opposite orientation.
This is of great help to look now for such chiral states in more complexe systems whose
discrete-time dynamics is represented by (or occurs on) random networks, since the latest
problem can be addressed within elementary graph theory. In the next section, we show
that the possible existence of clockwise and anti-clockwise domains of loops is inherent
to arbitrary unitary scattering networks, and that their ”interface” necessarily hosts an
oriented meandering oriented graph, whatever their width. This generalizes the anomalous
Floquet chiral states at the strong phase rotation symmetric point beyond the cyclic
oriented networks that only produce Floquet dynamics.

4 Chiral interface states beyond periodic dynamics from
graph theory

In this section, we justify geometrically the possible existence of domains of loops of
opposite orientations in arbitrary disordered scattering networks (not necessarily periodic
lattices), and show that they necessarily lead to the existence of an interface chiral state.
Oriented networks models were originally introduced in physics to precisely tackle the
percolation transition in disordered systems [39]. The disorder was then included through
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random scattering coefficients in the L-lattice model. Here we follow a different strategy,
by considering arbitrary scattering networks where the connectivity of the nodes is also
random. The approach is based on elementary graph theory that we succinctly remind
below to the readers that are unfamiliar with these concepts [44].

4.1 A brief introduction to Eulerian graphs

4.1.1 Walk on a graph

A graph G is a set of vertices and of pairs of vertices called edges. To avoid any confusion
with the actual edges (i.e. boundaries) of the physical system that are also discussed in
the article, the edges of the graph will be referred to as links in the following as they
connect two vertices. The graphs we are concerned with are said to be simple (i.e. there
is at most one link that connects two vertices), planar (i.e. purely two-dimensionnal),
connected (i.e. there is no isolated vertex) and oriented (i.e. an orientation is assigned to
each link). Physically, this orientation captures the sens of evolution of the dynamics: the
component of a state on a given link at time t will be scattered at the vertex pointed by
the orientation of this link during the next step-time evolution t + 1. This succession of
links and nodes during the evolution is called a walk.

4.1.2 Definition of an Eulerian graph

If there exists a closed walk that visits all the links of the graph exactly once, then the
graph is called Eulerian, and the closed walk is called an Eulerian circuit. A necessary
and sufficient condition for the graph to be Eulerian is that the number of links at any
vertex is even. An example of such a graph is displayed in figure 7 (a). Since physically,
each vertex of the graph describes a unitary scattering process, it follows that the number
of links pointing toward a vertex equals the number of links pointing backward. As a
consequence all the graphs of interest for this study are Eulerian.

4.1.3 Two-colour theorem

An Eulerian graph can also be thought of as a two-colored graph, meaning that exactly two
colors are required to color its faces such that two adjacent faces always carry different
colors. This is sometimes refered to as the two-colour theorem. Obviously, there is a
bijective mapping between the colors of the faces of the graph and the orientation of the
links delimiting these faces, so that an orientation – say (−) for clockwise and (+) for
anti-clockwise – can be equivalently assigned to each face, as shown in figure 7 (a).

4.1.4 Bi-partite dual graph

It can be useful to introduce the dual graph G∗ of G. By construction, its vertices are given
by the faces of G, and its links relate these vertices by crossing the links of G, as shown
in figure 7 (b). Note that, according to the standard definition [44], the ”exterior” of the
graph is considered itself as a face, hence the existence of a blue vertex (whose position
has been chosen arbitrary) that is connected to several red vertices. As a consequence, a
walk on the dual graph is tantamount to a succession of ”jumps” between adjacent faces
of G. It follows that G is Eulerian if and only if G∗ is bipartite, i.e. the vertices of G∗ can
be colored with exactly two colors such that its links only connect two vertices of different
colors. This property is used in appendix C to prove of the result the property 1 on the
existence of a chiral interface mode.
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(a) (b)

(c) (d)

Figure 7: (a) Example of an oriented Eulerian graph G. The faces have been colored according to
the orientation of the links. (b) Dual graph G∗ of G. (c) Minimal Veblen decomposition of G. (d) Other
possible decomposition whose one of the cycle follows the boundary of the graph. Its orientation is opposite
to those of the minimal cycles that surround the faces of the original graph G, but the same as the ones of
the minimal Veblen decomposition (c).

4.1.5 Veblen decomposition and phase rotation symmetry

In the following we will use another important property, known as Veblen’s theorem [45].
This theorem states that it is always possible to decompose a planar Eulerian graph as a
union of disjoint simple cycles (i.e. closed walks containing as many edges as vortices).
These cycles can simply be seen as polygons. This is the generalization of the domains
of loops depicted in figures 5 and 6 where all the loops can now differ in size and shape.
Physically, such a situation is again achieved when tuning the scattering parameters in a
”fully reflecting” or ”classical” configuration where, at each vertex, the scattering matrix
has exactly one non-vanishing element of modulus 1 per line and per column. When the
network is a periodic lattice, the Veblen decomposition corresponds to a strong phase
rotation symmetric point as discussed in the previous sections.

For an arbitrary Eulerian graph, several such decompositions are possible. Of impor-
tance is the ”minimal decomposition” illustrated in figure 7 (c) where each simple cycle
surrounds a face of the original graph. Such a decomposition is unique, and we shall refer
to it as the minimal Veblen decomposition. Clearly, for such a decomposition, all the
cycles have a well defined orientation (+ in the example of figure 7 (c)) so that there is no
ambiguity to talk about the orientation of the graph itself. Interestingly, the same graph
also admits another Veblen decomposition where the simple cycles surround other faces of
the original graph with an opposite orientation, and where an extra cycle delimiting the
boundary of the graph necessarily exists (see figure 7 (d)). These two decompositions cor-
respond to the two strong phase rotation symmetric points discussed in the case of lattices,
and the boundary cycle corresponds to the chiral edge mode of the anomalous Floquet
phase. Note that this boundary cycle has an opposite orientation to those of the simple
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cycles that it encloses; its orientation is the one of the minimal Veblen decomposition.

4.2 Interface chiral Eulerian circuits

As argued in section 3 for oriented lattices, it is more meaningful to look for interface
chiral modes than boundary chiral modes, since the existence of the latest depend on
the boundary conditions of the graph. On the language of graphs, these interface chiral
modes constitute Eulerian walks. We shall show that two domains of opposite orientation
necessarily host an oriented Eulerian walk at their interface, whatever the shape and the
size of the interface.

To do so, let us consider an arbitrary Eulerian graph, and let us split it into three
domains nested into each other, as in figure 8 (a) and (b). The faces of the three domains
have been colored with two colors to highlight that each domain remains an Eulerian graph.
The separation between the domains is made by two oriented closed walks (circuits): the
circuit C1 delimit the interior domain D1 and the circuit C2 delimit the exterior domain
D2. The interface graph left in between is noted I. The two circuits that surrounds it are
not included in its definition: they belong to D2 or D1. We want to establish under which
condition the interface graph I constitutes or hosts an interface chiral mode.

Importantly, there is a choice of orientation for each circuit. The two examples dis-
played in figure 8 (a) and (b) correspond to two different orientations for the larger circuit
C2. Note that the orientation of the circuits C1 and C2 fixes the orientation of the domains
D1 and D2 respectively, by fixing their Veblen decomposition. In particular, D1 and D2

have opposite orientations if and only if C1 and C2 have the same orientation. Concretely,
in figure 8 (a) and (b), the domain D1 has a clockwise orientation since its Veblen decom-
position is made of the disconnected union of blue polygons. For the same reason, the
orientation of D2 is counter-clockwise in figure 8 (a) and clockwise in figure 8 (b).

Because of its corona shape, the interface graph I is not simply connected. An interface
chiral mode would thus consist in a circuit in I that winds around D1. In the following,
we shall refer to the circulation of I as the property such that any Eulerian circuit in I
surrounds its central face. One can thus ask under which condition the circulation of I
is non-zero. The answer to this question only depends on the relative circulation of the
delimiting contours C1 and C2 as follows (see Appendix C)

Property 1. The circulation of I is opposite to the orientation of C1 and C2 when they
are identical. Otherwise, the circulation of I is zero.

In other words, when the two surrounding domains D1 and D2 have opposite circu-
lation, an Eulerian circuit that winds around the central domain can be found in the
interface graph. In general, this circuit is not unique, but whatever its peculiar sinuosity,
it has to wind around D1 with the same fixed orientation. There is no Eulerian circuit
that does not wind around D1. This is the case of I1 in figure 8 (c) that has been extracted
from the figure 8 (a). In contrast, an Eulerian circuit such as I2 depicted in figure 8 (d),
for which D1 and D2 have the same orientation, cannot wind around D1. Two examples
of such Eulerian circuits are shown in figures 9 (a) and (a’). Note that in the second case,
it may be possible to find a winding circuit which is not Eulerian. In that case, other
circuits can be found with the opposite orientation so that the total vanishing circulation
of the graph is preserved. This is illustrated in figure 9 (b’).

More generally, any decomposition of the interface graph must preserve the circulation.
In particular, when the circulation vanishes, a minimal Veblen decomposition can be found,
thus preventing the existence of any winding oriented graph, as illustrated in figure 9
(d’). In contrast, a non-zero circulation prevents the minimal Veblen decomposition: in
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I1

D2

D1

(a)

I2

D2

D1

(b)

I1

W = 1

(c)

I2

W = 0

(d)

Figure 8: Eulerian graph E . Each face is a assigned to a color or equivalently to an orientation (red +
and blue −). (a) Circuits C1 and C2 have the same circulation (clockwise). (b) Circuits C1 and C2 have
opposite circulation. The domain D1 is the same in (a) and (b). (c) and (d): the two interface graphs
I1 and I2 extracted from figures (a) and (b) respectively (and slightly enlarged for clarity) have different
winding numbers.

addition to the disconnected cycles, any decomposition into elementary cycles yields a
winding circuit with a fixed orientation, as displayed in figures 9 (c) and (d).

This can be rephrased by the following rule

Property 2. There exists a single oriented surrounding circuit in I
⇔ I does not allow a minimal Veblen decomposition

The Eulerian circuits discussed above are a particular case of such oriented surrounding
circuit. This property allows one to simply evaluate graphically whether an arbitrary
corona graph hosts a chiral circuit.

5 Topological aspects

5.1 Winding number of the graph

The existence of oriented surrounding circuits that prevent the minimal Veblen decom-
position of the interface graph, like the Eulerian circuit, are other manifestations of an
interface chiral mode. They cannot be reduced to a cycle around one of the face of the
original interface graph. Instead they have to surround the interior of the corona. In that
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I1

(a)

I1

(b)

I1

(c)

I2

(a’)

I2

(b’)

I2

(c’)

Figure 9: Interface graph I1 (top) and I2 (bottom). (a) and (a’) are Eulerian circuits that wind and
does not wind respectively around the central face. (b’) decomposition of I2 into a clockwise and a counter
clockwise circuits. (b) and (c) are examples of non-minimal Veblen decompositions”of I1. (c’) is the
minimal Veblen decomposition of I2.

sense, they constitute non contractile loops. The next step is to encode the existence of
these non contractile loops with winding number of the interface graph.

Let us define geometrically the winding numberW of the graph I by the algebraic sum
of the linking numbers given by the intersections of the oriented links of the graph with any
semi-infinite line (not necessarily straight) starting from the central face of I. Examples
with W = 1 and W = 0 are shown in figures 8 (c) and (d) for I1 and I2. Following the
lines of the appendix C, one can rephrase the property 1 as

Property 3. There exists a (counter-)clockwise oriented surrounding circuit (i.e. chiral
interface mode) in I ⇔ W = (−)1

according to our sign convention. The absence of chiral interface mode is then encoded
by W = 0, which is satisfied if (and only if ) C1 and C2 have opposite orientations. Being
defined as a purely geometrical quantity of the interface graph, W is invariant under
the choice of scattering amplitudes at the nodes. In particular, it remains invariant for
all the decompositions depicted previously: Eulerian circuits and Veblen decompositions.
This winding number thus correctly accounts for the existence of an oriented interface
mode whose existence is only fixed by the difference of orientations of the two surrounding
domains.

Notice that, alternatively, a rotation number could also be defined to characterize the
circuits in I that wind around the central face (see appendix B).

5.2 Quantized flow on the graph

In the previous section, we have characterized the circulation of a finite oriented Eule-
rian graph that constitutes the interface between two domains. The analysis was purely
performed by means of elementary geometry and graph theory. All the graphs that were
considered so far could be thought physically as the representations of non-periodic clas-
sical dynamics, since a state at a given link is fully transmitted to a single next link. This
corresponds to very specific models, for which the scattering amplitudes at the nodes are
chosen to be either 0 or 1.
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This is of course not the case in general for a coherent dynamics, where the scattering
amplitudes are complex numbers |z| < 1 that must only satisfy the unitarity of the scatter-
ing matrix at each vertex. However, we will show in that section that these simple graph
properties derived in section 4.2 actually fully characterize the flow Φ that is entailed by
the coherent dynamics occurring in the interface graph I.

5.2.1 State |Ψ〉 on the graph

Let us label each link of the graph by an integer n ∈ [1, N ]. A state |Ψ〉 of the system
decomposes on the basis {|n〉}, and thus lives in the Hilbert spaceH = `2(N ;C). This state
evolves through the step-evolution operator U ∈ U(N), similarly to (9), that describes the
discrete dynamics on the finite oriented graph. U is obtained by interpreting each vertex of
the graph as a unitary scattering process between m incoming states |in〉 and m outgoing
states |out〉, in and out referring to the directions of the oriented edges that meet at the
vertex. During the evolution, the components of a state |Ψ〉 at time t are transmitted at
time t + 1 onto the adjacent oriented links according to the scattering coefficients at the
nodes that preserve unitarity. Thus, in general, a state localized on a single edge at time
t is split at time t+ 1 between the different outgoing edges of the node. This is what we
mean by a coherent dynamics by opposition to a classical dynamics for which a state on
a given link at time t is fully transmitted to only one adjacent link at time t + 1, as in
the previous section. Finally, one should stress that the step-evolution operator accounts
for all the scattering processes occurring at all the nodes of the network simultaneously;
if one thinks about a random graph as a network through which a wave packet spreads,
one thus implicitly assumes a synchronisation for all the nodes to scatter simultaneously.

5.2.2 Flow operator

Let us introduce a flow operator Φ̂ that counts the net flow through a transverse section
of I towards a region P , of the scattering amplitudes of a state that evolves according to
the evolution operator U . The flow Φ entailed by the coherent dynamics in the corona
graph can then be defined as

Φ ≡ tr Φ̂ . (13)

Essentially, the flow operator Φ̂ is defined with a projector P that selects the half infinite
region P of the system toward which the flow is directed, and reads Φ̂ = U−1PU − P
[38, 46, 47]. When considering a flow along an infinite boundary, the trace of Φ̂ is an
integer that corresponds to the number of boundary modes flowing along the edge. This
integer was shown to be a topological index that enters the celebrated bulk-boundary
correspondence, even in a dynamical regime where the system is periodically driven in time
[19]. The expression of the flow above would however always yield zero in a finite graph I
because of the periodicity of the corona along the edge. Indeed, the projector P necessarily
defines two cross sections of I. As a consequence, every state that enters through one
section will eventually exit through the other one, so that the two contributions cancel. In
finite size systems, it is thus necessary to introduce a second projector Q in the definition
of the flow, that restricts it through only one section of I, as depicted in figure 10 (a) [48].
A possible definition of the flow for a finite graph is then

Φ̂ = QU−1PUQ−QPQ . (14)

At this stage, one needs to define more precisely the section through which the flow is
defined. Any section must be a line that connects the interior of the corona to the exterior.
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As the links of the graph are associated to the basis elements of the Hilbert space, it is
natural to impose the section line to avoid the links and thus to cross the nodes.

P

Q

(a)

N in
P⊥

Nout
P⊥

N in
P

Nout
P

P

(b)

Figure 10: (a) Domains of application of the projectors P (light red colored background) and Q (thick
graph). The flow is considered through the nodes of a cross section of the graph (dashed line), toward the
light red domain. (b) Sketch of a node on the cross section.

5.2.3 Quantized flow in the interface graph

Since each node of the section contributes additively to the flow, let us focus on a single
node; the final result being straightforwardly inferred by summing the contributions of
the different nodes on the cross section line. As sketched in figure 10 (b), let us denote by
N in
P the number of in-coming links to the node that are located in the region P and by

N in
P⊥ the number of in-coming links that are located in the other side of the section. In the

same way, let us denote by Nout
P (resp. Nout

P⊥ ) the number of out-going oriented links that

leave the node in the region where P (resp. P⊥) applies. Therefore, unitarity imposes the
conservation rule

N in
P +N in

P⊥ = Nout
P +Nout

P⊥ . (15)

The flow operator applies on a state |Ψ〉 that decomposes on a basis given by the links
of the graph. Let us write |pi〉in to refer to the base state i ∈ [1, N in

P ] localized on a link
oriented toward a node of the section, in the domain where the projector P applies, and let
us write |pi〉out with i ∈ [1, Nout

P ] in the case where the orientation of the link is reversed.
In the same way, we shall write |p⊥i 〉in/out to refer to a base state i localized on a link in
the domain where the projector P does not apply. The evolution operator on the graph
around the section takes the unitary matrix form

UQ =

(
RP TPP⊥
TP⊥P RP⊥

)
(16)

where the block RP encodes the reflection amplitudes in the domain where P applies, that
is from states |p〉in to states |p〉out , whereas TPP⊥ denotes the transmission amplitudes
through the section from states |p⊥〉in to states |p〉out. Then one infers that

PUQ |pi〉in =

Nout
P∑
j=1

(RP)ji |pj〉out (17)

17



SciPost Physics Submission

and thus

QU†PUQ |pi〉in =

Nout
P∑
j=1

(RP)ji

N in
P∑

k=1

(R†P)kj |pk〉in +

N in
P⊥∑
k=1

(T †PP⊥)kj |p⊥k 〉in

 (18)

The contributions to the trace of Φ̂ are given by ignoring the terms proportional to |p⊥k 〉in
and only keeping k = i in the sum, so that one ends up with

in 〈pi| Φ̂ |pi〉in =︸︷︷︸
trace

Nout
P∑
j=1

|(RP)ji|2
− 1 (19)

where the equality only holds for the terms that contribute to the trace. The same
calculation can be carried out when considering now the incoming states |p⊥i 〉in from
the other side of the section, and one finds

in 〈p⊥i | Φ̂ |p⊥i 〉in =︸︷︷︸
trace

Nout
P∑
j=1

|(TPP⊥)ji|2 . (20)

The trace of Φ̂ can be finally obtained by summing over all the N in = N in
P +N in

P⊥ incoming
states |i〉in from the two sides of the section

Φ =
N in∑
i

in 〈i| Φ̂ |i〉in (21)

=

N in
P∑
i

in 〈pi| Φ̂ |pi〉in +

N in
P⊥∑
i

in 〈p⊥i | Φ̂ |p⊥i 〉in (22)

=

Nout
P∑
j=1

N in
P∑
i

|(RP)ji|2 +

N in
P⊥∑
i

|(TPP⊥)ji|2
−N in

P (23)

where (19) and (20) have been inserted to get the last line. This expression simplifies by
using the unitarity of UQ (16), that implies

N in
P∑
i

|(RP)ji|2 +

N in
P⊥∑
i

|(TPP⊥)ji|2 =

N in∑
i=1

|(UQ)ji|2 = 1 (24)

so that one finally gets

Φ = Nout
P −N in

P (25)

This result shows that the flow that is entailed by the coherent dynamics in the corona
is quantized. Importantly, it does not depend neither on the choice of the cross section
nor on the values of the scattering parameters that can thus be random. Instead, it is
straightforwardly inferred by the structure of the graph itself. For instance, one can easily
check that Φ = +1 for the graph displayed in figure 10.

Remarkably, this integer number counts the circulation in the corona introduced in
section 4.2, and as such, coincides with the winding number W of the graph I, that is

Φ =W . (26)
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This makes explicit the equivalence between the flow of the coherent dynamics on a graph
and a topological property of the graph itself that can be obtained purely geometrically.
Note that, consistently, these two quantities are defined by using an arbitrary line that
crosses the graph.

Both definitions of the flow Φ and of the winding number W depend on a convention
that fix their sign: the flow depends on which side of the cross section we choose to
apply the projector P, and the winding number is arbitrarily counted positively with the
definition we gave in section 4.2, that givesW = +1 when a loop is anti-clockwise oriented.
Keeping this convention for W, and choosing P to apply on the anti-clockwise side of the
section, as we did above, allows us to finally write (26).

This analysis was led for an interface graph that is considered disconnected from the
two domains D1 and D2. This is only achieved with special values of the scattering param-
eters, and in particular when D1 and D2 are in a Veblen decomposition. As in the cyclic
case, where this decomposition corresponds to a strong phase rotation symmetric point,
one can reasonably expect that the existence of the circulating chiral flow survives beyond
this particular case, even though the quantized flow is certainly not strictly confined in
the interface graph anymore, but may leak a bit into D1 and D2. One can also expect
that a percolation transition in one of the two domains is a sufficient condition for the
chiral flow to disappear.

6 Conclusion

We have shown the existence of chiral modes of topological origin in disordered scattering
networks. The approach, based on graph theory, allows one to reduce the physical prob-
lem of the search for topological modes arising in two-dimensional unitary discrete-time
dynamics (or quantum walk) to the simpler graphical ones assigned to Eulerian graphs,
namely, Eulerian circuits, Veblen decompositions and the winding of a graph as defined in
this paper. This reduction is motivated by the existence of a strong phase rotation sym-
metry that emerges in cyclic periodic oriented lattices at specific values of the scattering
parameters and that yields anomalous Floquet topological interface states. Indeed, when
the periodicity is recovered, we have explicitly shown the mapping from the discrete-time
tight-binding models that are commonly used to investigate anomalous Floquet topologi-
cal physics, to scattering networks models of the Chalker-Coddington type. In that sense,
this work generalizes the concept of anomalous Floquet topological states to a class of
dynamical systems where the periodicity in time is not required.

The graph approach also reveals a difference between chiral modes of a Chern phase
and chiral modes of the anomalous one. The former are therefore somehow ”more subtile”
or ‘’less obvious” so to speak, while, conversely, anomalous chiral states are therefore
much simpler to implement in a given network (e.g. photonic or acoustic) as they can be
engineered from a fully reflecting interface. In that perspective, the anomalous chiral states
are therefore found to be rather common and ubiquitous in arbitrary unitary networks.

Besides, since the analysis is also based on finite graphs, it also does not require
the notion of a bulk invariant, and can thus be applied to finite size systems of small
size. Finally, the approach applies for a given arbitrary (Eulerian) graph, so that the
topological properties exist for a given configuration of disorder; there is therefore no need
for an average over disorder configurations (in space or time) to recover the topological
properties. From this perspective, topological disordered networks can thus somehow be
seen as dynamical analogues of the recently introduced amorphous topological insulators
[49].
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Several directions seem natural for future works. Among them, it would be for instance
interesting to investigate a continuous limit of these arbitrary Eulerian oriented graphs be-
yond the original Chalker-Coddington model [50], in order to explore the conditions for the
existence of topological properties in non-periodic unitary dynamical quantum systems.
Another question to be answered is the one of graphs that would yield more than one
chiral interface state. This seems to be achieved pretty naturally by allowing the graphs
to be non simple, meaning that two nodes can be related by more than one oriented link.
It seems straightforward to increase the value of the a winding number as W → nW by
multiplying each oriented link n times. The question looks however more puzzling when
this multiplication differs from link to link. Finally, all along this work, it was assumed a
synchronization of the dynamics, meaning that all the components of a state on the graph,
that live on the links, change simultaneously in time. We could imagine a less restrictive
physical situation where a wave packet actually propagate in a graph whose links have
different lengths so that the different scattered states reach the nodes at different times.
Unlike the calculation of the quantized flow (25), the graph theory arguments developed
in section 4.2 seem however independent of any synchronisation.

Acknowledgements
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A Construction of the phase rotation symmetry operator
for cyclic lattices

The existence of loops here is reminiscent of the cyclic structure of the network, which
originates itself from the periodic driving in the original Floquet tight-binding model.
Different loops-configurations are obtained by considering the succession of links aj and
bj in the unit cell. Exemples of such loops, going clockwise and anti-clockwise are shown
in figure 6. Consider a domain of identical loops. The bulk evolution operator can always
factorise as

U(k) = B(k)P (27)

where B(k) is a diagonal unitary matrix encoding the phases (including the Bloch phases)
accumulated from one link to another, and where P is a unitary matrix that owns one and
only one coefficient 1 on each of its raws and each of its columns. Generically such matrices
represent the elements of the permutation group (or symmetric group SN ∈ SU(N)), which
indeed captures the loop structure.One can always re-order the successive links of the loops
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by a change of basis P0 = MPM−1 so that

P0 =


0 · · · · · · 0 1
1 0 · · · 0

1
...

. . . 0
0 · · · 0 1 0

 . (28)

We notice that the eigenvalues of P0 are the N roots of unity {λ, λ2, · · · , λN} with λ =
ei2π/N . From there, one defines the diagonal matrix Λ0 that lists these eigenvalues as

Λ0 = diag
(
λ, λ2, · · · , λN

)
. (29)

It follows that

Λ0P0 =


0 · · · · · · 0 λ
λ2 0 · · · 0
... λ3

...
. . . 0

0 · · · 0 λN 0

 (30)

and also

(P0Λ0)
−1 =


0 λ−1 · · · 0
... 0 λ−2 · · · 0

. . .
. . .

0 λ1−N

λ−N 0 · · · 0 0

 (31)

so that
Λ0P0 (P0Λ0)

−1 = λ Id (32)

and thus
ΛP (PΛ)−1 = λ Id (33)

after the change of basis

Λ ≡M−1Λ0M (34)

The matrices B(k) and Λ being diagonal, they commute, so that one infers from (33) that
the evolution operator associated to this configuration of loops satisfies

ΛU(k)Λ−1 = λU(k) . (35)

This is precisely the phase rotation symmetry defined in Eq (10). It follows that the N
bands of U(k) carry a vanishing first Chern number, as long as the bands do not cross when
varying the parameters θj ’s away from the critical value for which the loop configuration is
obtained. This result does not depend on the parity of N (while N was implicitly assumed
even in [34]). This reenforces the link between the loops and the phase rotation symmetry,
as we have an explicit expression of the operator Λ in terms of the eigenvalues of P0 and
the shape of the loops encoded into P .

The reasoning above not only relates the loops configuration to the phase rotation
symmetry, but also shows how to obtain an explicit expression of the phase-rotation sym-
metry operator in a concrete situation. As an example, consider the two domains of
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disconnected loops represented in figure 6 in the L-lattice. They are defined by blue clock-
wise cycles c1 : a1 → a2 → a3 → b4 → b1 → b2 → b3 → a4 and red counter-clockwise
cycles c2 : a1 → a2 → a3 → a4 → b1 → b2 → b3 → b4 respectively. These loops beeing
made of 8 steps, this fixes λ = ei

2π
8 . The factorization (27) of the bulk evolution operator

(9) in each domain defines the permutation matrices P associated to each domain of loops
as

Pc1 =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


Pc2 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


(36)

The matrix M , that accounts for the change of basis, can then be obtained as M =
BA−1 where A and B satisfy P = AΛ0A

−1 and P0 = BΛ0B
−1. These matrices are easily

found explicitly as

B =



λ8 λ8 λ8 λ8 λ8 λ8 λ8 λ8

λ7 λ6 λ5 λ4 λ3 λ2 λ λ8

λ6 λ4 λ2 λ8 λ6 λ4 λ2 λ8

λ5 λ2 λ7 λ4 λ λ6 λ3 λ8

λ4 λ8 λ4 λ8 λ4 λ8 λ4 λ8

λ3 λ6 λ λ4 λ7 λ2 λ5 λ8

λ2 λ4 λ6 λ8 λ2 λ4 λ6 λ8

λ λ2 λ3 λ4 λ5 λ6 λ7 λ8



Ac1 =



λ8 λ8 λ8 λ8 λ8 λ8 λ8 λ8

λ4 λ8 λ4 λ8 λ4 λ8 λ4 λ8

λ7 λ6 λ5 λ4 λ3 λ2 λ λ8

λ3 λ6 λ λ4 λ7 λ2 λ5 λ8

λ6 λ4 λ2 λ8 λ6 λ4 λ2 λ8

λ2 λ4 λ6 λ8 λ2 λ4 λ6 λ8

λ λ2 λ3 λ4 λ5 λ6 λ7 λ8

λ5 λ2 λ7 λ4 λ λ6 λ3 λ8


Ac2 =



λ8 λ8 λ8 λ8 λ8 λ8 λ8 λ8

λ4 λ8 λ4 λ8 λ4 λ8 λ4 λ8

λ7 λ6 λ5 λ4 λ3 λ2 λ λ8

λ3 λ6 λ λ4 λ7 λ2 λ5 λ8

λ6 λ4 λ2 λ8 λ6 λ4 λ2 λ8

λ2 λ4 λ6 λ8 λ2 λ4 λ6 λ8

λ5 λ2 λ7 λ4 λ λ6 λ3 λ8

λ λ2 λ3 λ4 λ5 λ6 λ7 λ8


(37)

leading to the phase rotation symmetry operators

Λc1 = diag(λ, λ5, λ2, λ6, λ3, λ7, λ8, λ4) (38)

Λc2 = diag(λ, λ5, λ2, λ6, λ3, λ7, λ4, λ8) (39)

for the two disjoint domains.

B Rotation number

The circulation of a cycle could also be defined geometrically with the rotation number.
There are several ways to evaluate the rotation number of an oriented polygon. One of
them is to consider the sum of the deflection wedges θj,j+1 between two consecutive links
j and j + 1 (see figure 11 (a)), that is

R =
1

2π

∑
j

θj,j+1 ∈ Z . (40)
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This number is an integer whose value may be different than ±1 if the polygon has self

θ1,2

θ2,3

θ3,4

θ4,5

θ5,6
θ6,7

θ7,11

2

3

4

5

6 7

R = 1

(a)

R = 0

(b)

Figure 11: Oriented polygon without and with self-intersection (a) and (b). The deflection angles are
depicted in gray.

intersections, that is when the planar condition is released, as illustrated in figure 11 (b).
Unlike the winding number, the rotation number of a closed loop does not depend on a
choice of origin, and thus allows one to unambiguously define the orientation of the loop
as the sign of R, but would fail to capture some winding circuits in the case of non-planar
graphs (that we do not consider in this work).

C Demonstration of Property 1

Let us split the property 1 into two parts as

Property 4. The circulation of I is non-zero if and only if C1 and C2 have the same
circulation.

and

Property 5. when an Eulerian circuit in I does wind around C1, its circulation is opposite
to those of C1 and C2.

To demonstrate the property 4, we use the Eulerian property of the total graph E , by
coloring each face with two colors. Then we notice that the adjacent faces to any circuit
on E necessarily have the same color when they lie on the same side of the circuit. This
is clearly shown in figure 8 where e.g. all the adjacent faces to C1 that belong to D2 are
of type + when the circulation of C2 is clockwise (figure 8 (a)) and of type − when it is
anti-clockwise (figure 8 (b)).

This said, one has to distinguish two situations, depending on the circulations of C1
and C2, as illustrated in figure 8 (a) and (b).

First, consider that the circuits C1 and C2 have the same circulation. In that case,
the outer adjacent faces to C1 (namely the faces whose surrounding links belong to both
D1 and I) have a different color than the outer adjacent faces to C2 (i.e. the faces whose
surrounding links belong to both D2 and I). In the example of figure 8 (a), the outer
adjacent faces to C1 are red whereas the outer adjacent faces to C2 are blue. This provides
an interface graph I1 that is represented alone in figure 8 (c) for clarity. Therefore, I∗1,
the dual graph of I1, is delimited by sites of different colors (see figure 12 (a)). As a
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I∗1

(a)

I∗2

(b)

Figure 12: Dual graphs of I1 and I2. These graphs are bipartite since I1 and I2 are Eulerian. The
interior and exterior nodes of the graphs are highlighted by colored rings rather than colored points.

consequence, any ”transverse” walk W in I∗ that connects both sides of I∗1 has an odd
length (odd number of links). This means that W crosses an odd number of links of
I1. It follows that any Eulerian circuit in I1 must cross W an odd number of times, and
therefore, it has to wind around C1. This proves the sufficient condition of the property 4.

The demonstration of the necessary condition can be obtained by showing that its
contrapositive is true. Consider now that C1, and C2 do not circulate in the same direction
(see figure 8 (d)). It follows that any ”transverse” walk W in I∗ that connects both sides
of I∗ has now an even length. This is the case of I∗2, the dual graph of I2 (see figure 12
(b)), and thus, it crosses an even number of links of I2. We conclude that, in that case,
any Eulerian circuit in I2 does not wind around C1.

This proves the property 4.

Next, to prove property 5, consider a transverse walk W on I∗ that starts from a
site on the inner border and ends up at a site of the outer border. Then let us assign a
”chirality” + or − to each step of W in order to capture the orientation of the links of I
that are crossed during the walk. More precisely, we could define this chirality as being
given by the sign of the wedge product between a colinear vector to a link travelled on I∗

during a step of W , with a colinear vector to the link that is crossed in I. That way, the
chirality of a transverse path on I∗, given by the product of the chiralities of each of its
steps, measures the unbalance between clockwise and counter-clockwise closed walks in I.
Importantly, the chirality of the transverse walks on I∗ does not depend on the choice on
the specific path across I.

When C1 and C2 have an opposite circulation, then any transverse walk W in I∗ has
a vanishing chirality, as expected, since the chiralities of the steps compensate pairwise.
In contrast, when C1 and C2 have the same circulation, this number is non zero: if their
rotation number is −1, then the chirality of any transverse walk on I∗ that starts from a
site on the inner border and ends up at a site of the outer border is +1 (as illustrated in
figures 8 (a) and (c)), meaning that any Eulerian circuit on I circulates counter-clockwise.2

In the same way, this weight is found to be −1 when the rotation number of C1 and C2
is +1, implying a clockwise circulation for any Eulerian circuits on I. This proves the
property 5.

2Consistently, the weight of any transverse walk in I∗ that starts from a site of the outer border and
ends up at a site of the inner border is −1.
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