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Abstract

We study nanowire-based Josephson junctions shunted by a capacitor and take
into account the presence of low-energy quasiparticle excitations. These are
treated by extending conventional models used to describe superconducting
qubits to include the coherent coupling between fermionic quasiparticles, in
particular the Majorana zero modes that emerge in topological superconduc-
tors, and the plasma mode of the junction. Using accurate, unbiased matrix-
product state techniques, we compute the energy spectrum and response func-
tion of the system across the topological phase transition. Furthermore, we
develop a perturbative approach, valid in the harmonic limit with small charg-
ing energy, illustrating how the presence of low-energy quasiparticles affects
the spectrum and response of the junction. Our results are of direct interest
to on-going experimental investigations of nanowire-based superconducting
qubits.
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1 Introduction

Due to the macroscopic coherence of the superconducting state and their non-linearity
as circuit elements, Josephson junctions are a workhorse of quantum state engineer-
ing [1]. They are the fundamental building block of superconducting qubits [2, 3] like
the transmon [4] and the fluxonium [5]. In these quantum engineering applications, the
superconducting circuit embedding the Josephson junction [6] is operated at frequencies
ω ∼ 5–10 GHz, which are much smaller than the superconducting gap of the electrodes,
∆/h ' 50 GHz for aluminum. As a consequence, quasiparticles are not involved in the
coherent dynamics of the circuit, although their presence influences the relaxation and
dephasing of superconducting qubits [7–17].

New frontiers in superconducting devices force us to reconsider the role of quasiparti-
cles in Josephson junction dynamics. Most notably, the presence of Majorana zero modes
(MZMs)—topologically protected zero-energy quasiparticles that emerge at the ends of
topological superconducting wires [18,19]—can drastically affect the behavior of a super-
conducting circuit. MZMs are able to non-locally encode qubits [18] and, via non-Abelian
braiding [20], allow fault-tolerant processing of quantum information. Therefore, they
form a potential platform for topological quantum computation [21] which is actively
being pursued [22]. A junction between two topological superconductors exhibits a 4π-
periodic Josephson effect [18, 23, 24], a hallmark feature of topological superconductivity
which has been experimentally sought [25, 26]. Several practical schemes for topological
quantum computation rely on the coupling of MZMs across a Josephson junction and on
the use of microwave circuits for control and readout of topological qubits [27–30]. In
conjunction with the growing interest in MZMs, different research groups have developed
and studied superconducting devices with semiconductor-based Josephson junctions either
in nanowires [31,32] or 2DEGs [33], as well as in graphene-based heterostructures [34,35].
These junctions, characterized by few conducting channels and potentially high trans-
parency, can also be used for the development of qubits based on conventional Andreev
bound states (ABSs) [36–40]. The presence of low-energy ABSs in nanowire-based junc-
tions has been directly measured via microwave spectroscopy [41–43].

Understanding present and future experimental developments in this direction calls
for adequate theoretical approaches that can fully incorporate the role of quasiparticles
in the circuit dynamics. In most theoretical descriptions of Josephson-junction dynamics,
quasiparticles are included as a fermionic bath [44] (see Ref. [45] for a recent exception). In
the case of Andreev qubits, detailed models which are amenable to an analytical approach

2



SciPost Physics Submission

are available in simple limits, such as that of a short Josephson junction with a single
conducting channel [37,46–48]. On the other hand, most of the theory literature treating
the presence of MZMs in superconducting circuits [49–66] relies on simple toy-models
with phenomenological terms representing Majorana couplings, bypassing a microscopic
description of the topological phase.

In this paper, we carefully examine this problem using accurate numerical simula-
tions of a microscopic model for a one-dimensional topological superconductor. While
we confirm the applicability of simplified models in certain limits, we find that in other,
experimentally relevant limits they are insufficient to describe the system’s behavior. We
focus on the topological phase transition and on the case of additional subgap Andreev
bound states in the junction, which we expect to generically appear in wires with large
spin-orbit coupling and external magnetic field. We find that the phase transition does
not lead to strong signatures in the response of the capacitively shunted junction, while
additional subgap Andreev states exhibit complex interplay with the plasma modes and
significantly alter the response.

Our numerical simulations are based on matrix product states (MPS) [67–69]. Specifi-
cally, we use the density matrix renormalization group (DMRG) [70–72] and time-evolving
block decimation (TEBD) [73–76] to compute the time-dependent charge correlation func-
tion of a nanowire Josephson junction shunted by a large capacitor (i.e. a transmon circuit)
across the topological phase transition. In the frequency domain, the correlation function
determines the observed spectra in a typical circuit QED (cQED) experiment, making our
method suitable for direct comparison with experimental measurements. This approach
allows us to determine the expected frequency spectra even close to the critical point—a
regime which cannot be captured by existing toy models—and to easily include additional
Andreev bound states.

In order to interpret the results of the MPS simulations, and extending previous stud-
ies [48], we also develop a simple perturbative approach which is valid in the harmonic
limit, i.e. when the charging energy is small compared to the Josephson energy. The
method allows one to derive an effective Hamiltonian for the capacitively shunted junc-
tion, starting from an arbitrary quadratic Hamiltonian describing the quasiparticles. The
effective Hamiltonian takes the form of a generalized Jaynes-Cummings model describ-
ing the interaction between Josephson plasma modes and quasiparticle excitations. This
model describes the energy spectra obtained from the MPS simulations deep in the har-
monic limit quite well, but cannot reproduce non-perturbative effects that arise away from
this limit (and are fully captured by the MPS simulations), such as the charge dispersion
of energy levels and certain couplings between plasma modes and fermionic modes.

The paper is structured as follows. In Sec. 2 we present the setup and the general
model used to describe a nanowire-based Josephson junction shunted by a capacitor, in-
corporating the fermionic degrees of freedom. In addition, we discuss the experimentally
relevant probes and the parameter regimes we will be addressing in this study. As a simple
application of the general model, in Sec. 3 we discuss and review a minimal model with a
single low-energy fermionic mode on each side of the junction, which captures the essential
ingredients of a nanowire in the topological phase. In Sec. 4 we discuss how MPS-based
techniques can be used to calculate the experimentally relevant quantities that probe the
response of the system. We then introduce the microscopic model for the nanowire that
we use in our numerical study, and present the results. In Sec. 5 we consider the limit
of small charging energy, and derive an effective theory based on a perturbative expan-
sion which successfully captures the coupling between the plasma mode and the fermionic
quasiparticles in this limit. We then discuss the effect of non-perturbative corrections.
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Figure 1: Schematic setup: a semiconducting nanowire proximity coupled to a
superconductor, forming a Josephson junction shunted by a capacitor and con-
trolled by the gate voltage Vg. The right half of the wire is connected to a su-
perconducting ground. The dashed line represents the partitioning of the system
used in our theoretical model, see main text for details.

2 Setup and model

The setup we consider is schematically depicted in Fig. 1. A semiconducting nanowire is
proximity-coupled to a grounded superconductor on its right half, and to a floating super-
conducting island on its left half. A short segment in the middle of the wire, which is not in
direct contact to any superconductor, forms a junction between the two superconductors.
The conductance of the junction can be tuned by a gate underneath this middle region.
The voltage on this gate is denoted by Vb and determines the strength of the Josephson
coupling between the floating superconducting island and the grounded superconductor.
The island is shunted by a large capacitance C to the ground. The charge induced on the
island is controlled by a gate with voltage Vg.

The Hamiltonian describing the system is given by

H = Ec(N +Nf,L −Ng)
2 + 1

2c†HBdG(φ) c. (1)

The first term above is the electrostatic energy of the island, with charging energy Ec =
e2/2C and dimensionless gate charge Ng = C Vg/e, where e is the electron charge. The
electrostatic energy is determined by the total number of electrons on the island (counted
from the neutrality point), which is the sum of the number of paired electrons in the su-
perconductor, N , and of the number of electrons in the left segment of the semiconducting
wire, Nf,L (to be better specified below).

The second term in Eq. (1) describes the dynamics of the fermionic degrees of freedom
in the semiconducting wire. The dynamics are prescribed by a Bogoliubov-de Gennes
(BdG) Hamiltonian, HBdG, which includes the coupling between the semiconductor wire
and the superconductors as well as the coupling between the two wire segments across
the junction. For concreteness, we consider a lattice description of the system, such that
HBdG is written in the Nambu basis

c† = (c†i,↑, c
†
i,↓, ci,↑, ci,↓), (2)

where c†i,σ (ci,σ) is the creation (annihilation) operator of an electron on site i with spin
σ.

To simplify the treatment of the charging energy, we consider a sharp boundary be-
tween the left part of the wire, which is coupled to the floating superconducting island, and
the right part of the wire, which is coupled to the grounded superconductor. We choose
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to place this sharp boundary at the left end of the junction, as indicated by the dashed
black line in Fig. 1. Although this choice can have a quantitative effect on the spectrum of
the full Hamiltonian (with other parameters held fixed), we expect the qualitative physics
to be insensitive to a specific (but generic) choice for the position of the boundary.

The sites i in the lattice description of the wire are divided into two sets, IL and IR,
depending on whether they belong to the left or to the right part of the wire. The number
of electrons in the left part of the wire is defined as

Nf,L =
∑
i∈IL

(
c†i,↑ci,↑ + c†i,↓ci,↓

)
. (3)

The induced s-wave superconductivity is included in HBdG via pairing terms of the
form ∆eiφci,↑ci,↓+h.c. (if i belongs to the part of the wire coupled to the floating island) or
∆ci,↑ci,↓+h.c. (if i belongs to the part of the wire coupled to the grounded superconductor),
where ∆ is the induced superconducting gap. The pairing vanishes in the junction region.
In what follows we will consider junctions of finite extent as well as junctions consisting
of a single weak link. The operator eiφ (e−iφ) adds (removes) a Cooper pair to (from) the
left superconductor, and is canonically conjugate to the charge operator N , i.e.

[N, e±iφ] = ±2e±iφ. (4)

The pairing terms in HBdG thus commute with the total charge of the floating island,
N + Nf,L, which enters in the charging energy in Eq. (1). On the other hand, hopping
terms in HBdG which connect IL and IR do not commute with the charging energy term.
More general forms of the induced pairing, e.g. a spatial variation of the pairing term
strength or different pairing symmetries, could easily be included.

If the fermionic quasiparticles are gapped and one is interested in the behavior of the
system at frequencies ω far below the excitation energy for quasiparticles, i.e. ω � ∆, then
one may replace the Hamiltonian HBdG with its phase-dependent ground state energy,

EGS(φ) = −1

2

∑
n

εn(φ), (5)

where εn(φ) are the positive energy eigenvalues of HBdG
1. For a weakly transparent

junction, such as the tunnel oxide junctions used in Al-based superconducting devices,
the energy EGS(φ) is well-approximated by the form −EJ cosφ. In this case, one recovers
the canonical superconducting qubit Hamiltonian, H = Ec (N −Ng)

2 − EJ cos(φ). In
the “transmon” limit EJ � Ec, the low-energy excitations of the junction are quantized
charge oscillations—due to Cooper-pair tunneling across the junction—with a character-
istic plasma frequency,

ωp =
√

8EJEc, (6)

and (crucially for qubit applications) a slightly anharmonic spectrum.
If, on the other hand, HBdG has low-energy quasiparticle excitations with energies

εn . ωp, this description is no longer valid. Any correct description must include both
the bosonic and the fermionic low-energy degrees of freedom present in the Hamiltonian
of Eq. (1). Low-energy fermionic excitations naturally appear if the system is driven
into a topological superconducting phase, where zero-energy Majorana modes emerge at
the spatial boundaries between trivial and topological regions in the system. Moreover,
as the system undergoes the topological phase transition between the conventional and

1More precisely, the sum runs over the eigenvalues εn(φ) such that εn(0) > 0, where the index n must
be assigned such that the associated BdG eigenfunctions vary smoothly as φ is varied.
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the topological superconducting phase, the gap in the bulk of the system closes, giving
rise to a continuum of states at energies below the plasma frequency. In general, one
may expect sub-gap quasiparticles to arise quite generically in nanowire-based Josephson
junctions as well as in junctions based on other systems engineered to support topological
superconductivity, such as proximitized surfaces of topological insulators [77]. In these
systems, many competing effects are involved, such as large magnetic fields, spin-orbit
coupling, and interfaces between materials with very different properties, which can lead
to complicated junction spectra even when the system is not tuned to the topological
phase.

In a realistic model of a nanowire, the number of fermionic degrees of freedom appearing
in HBdG(φ) may be too large to treat exactly. However, we expect that the effect of high-
energy quasiparticles at energies εn � ωp can be captured by their contribution to the
phase-dependent ground state energy. Assuming the latter can be approximated by a
cosine dispersion, we rewrite the Hamiltonian in Eq. (1) as

H = Ec(N +Nf,L −Ng)
2 − E0

J cos(φ) + 1
2c†HBdG(φ) c, (7)

where now the fermionic degrees of freedom c correspond to the low-energy degrees of
freedom, and E0

J accounts for the high-energy degrees of freedom.

2.1 Experimental probes and parameters

The dynamics of the junction can be experimentally probed in a circuit quantum elec-
trodynamics (cQED) setup [6], in which the junction is coupled to a microwave resonator
cavity. The system is driven by an AC field, which corresponds to a time-dependent volt-
age Vg in Fig. 1, Vg(t) = Vg + δVg(t). This time-dependent voltage couples to the total
charge operator on the left island, Ntot = N + Nf,L, leading to a small time-dependent
contribution to the Hamiltonian, δH(t) = EcNtot (C/e) δVg(t). We will characterize the
response of the system to this perturbation by the spectral function of the charge operator,

SN (ω) =

∫
dt e−iωt〈0|Ntot(t)Ntot(0)|0〉 =

∑
α

δ(ω − (Eα − E0)) |〈α|Ntot|0〉|2 . (8)

Here, |α〉 denotes an eigenstate of the system with energy Eα, with α = 0 the ground state.
The spectral function exhibits a peak at each transition energy of the system, with the
intensity of the peak related to the matrix element of the total charge operator between
the initial and final states of the transition.

We now discuss interesting parameter regimes for typical cQED circuits which we
consider in our simulations. Transmon qubits typically operate in the regime EJ/Ec ≈ 20
or higher in order to suppress charge noise. Ec typically varies in the 200–500 MHz range,
yielding plasma frequencies in the 5–10 GHz range. Gate-controlled nanowire junctions
allow for a tunable EJ and thus allow a device to be operated not only in the transmon
regime but also in a regime with lower EJ/Ec. The lower the ratio EJ/Ec, the larger
the charge dispersion, i.e. the dependence of the energy levels on the dimensionless charge
Ng. An intermediate ratio EJ/Ec ≈ 5 is interesting since, as shown in Refs. [60, 61], the
presence of Majorana zero modes coupled across the junction is associated with distinct
features in the charge dispersion.

2.2 Gauge transformation

To study the model (1), it is useful to perform a unitary gauge transformation, H 7→
UHU †, with [78]

U = eiφNf,L/2. (9)
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Under this gauge transformation, the number operator N = −2i∂φ transforms as N 7→
N − Nf,L. This simplifies the first term in Eq. (1), which after the transformation is
given by Ec(N − Ng)

2. In addition, the fermion operators that belong to the left island
transform as ci,σ 7→ e−iφ/2ci,σ, while the fermions on the right island are unaffected by
the transformation. Hence, after the transformation, the operators ci,σ with i ∈ IL are
charge-neutral, while the operator N counts the total charge of the superconducting island
and of the left part of the wire.

The effect of the transformation on the terms in HBdG(φ) is the following. The pairing
terms on the left part of the wire, which initially take the form ∆eiφci,↑ci,↓, lose their phase
dependence and are given by ∆ci,↑ci,↓. Meanwhile, terms describing hopping between the

left and the right parts of the wire acquire phase dependence: c†i,σcj,σ′ with i ∈ IL and

j ∈ IR becomes eiφ/2c†i,σcj,σ′ .
We must also discuss the effect of the gauge transformation on the wave functions.

A complete basis for the Hilbert space of the model (1) is given by |n,~nL, ~nR〉, where
~nL(R) denotes the vector of occupation numbers for the fermionic degrees of freedom on
the left (right) part of the wire, and n ∈ Z is the number of Cooper pairs (counted from
charge-neutrality) in the left superconductor, i.e. N |n,~nL, ~nR〉 = 2n |n,~nL, ~nR〉. A generic
many-body state is thus given (in the original gauge) as

|Ψ〉 =
∑

n,~nL,~nR

Ψ(n,~nL, ~nR) |n,~nL, ~nR〉. (10)

Although we will eventually use this “number basis” in the numerics, it is convenient to
temporarily work in the “phase basis”, formed by the states

|φ,~nL, ~nR〉 = (2π)−1
∑
n

eiφn |n,~nL, ~nR〉. (11)

The wave function coefficients in the phase basis are

Ψ(φ,~nL, ~nR) =
∑
n

eiφnΨ(n,~nL, ~nR). (12)

They are 2π-periodic: Ψ(φ+2π, ~nL, ~nR) = Ψ(φ,~nL, ~nR). The action of the gauge operator
U on a phase basis state is simply

U |φ,~nL, ~nR〉 = eiφnL/2|φ,~nL, ~nR〉, (13)

where nL is the number of electron in the left island. Thus, the gauge transformation
maps the state |Ψ〉 to a new state, |Ψ̃〉 = U |Ψ〉, with wavefunction coefficients

Ψ̃(φ,~nL, ~nR) = eiφnL/2 Ψ(φ,~nL, ~nR). (14)

Because of the extra phase factor, the boundary conditions for Ψ̃ are periodic or anti-
periodic depending on the parity of the number of fermions in the left island [79]:

Ψ̃(φ+ 2π, ~nL, ~nR) = eiπnLΨ̃(φ,~nL, ~nR). (15)

With this new boundary condition, the spectrum of the operator N = −2i∂φ changes from
2Z (in the original gauge) to Z (in the new gauge). This is in agreement with the fact that,
as mentioned above, N must now account for the total charge of the left island and not
only for the part due to the paired electrons. However, this accounting is only consistent
if the parity of N , which we refer to as the bosonic parity and denote by Pb = eiπN , is
the same as the parity of the number of (now charge-neutral) fermions on the left island,
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Figure 2: Minimal model describing a nanowire in the topological phase, with
Majorana zero modes, γi=1,..,4, at the ends of the topological superconducting
regions.

Pf,L = eiπNf,L . That is, in the new gauge every physical state must obey the following
constraint:

Pb|Ψ̃〉 = Pf,L|Ψ̃〉. (16)

Note that, since Pb = eiπN is the operator that translates φ by 2π, the constraint (16) is
simply a rewriting of (15) in a basis-independent form.

Finally, we comment on the effect of the gauge transformation on the calculation of the
spectral function (8). Since, after the gauge transformation, N is the total charge on the
left island, the correlation function that appears in the integral in Eq. (8) is now simply
〈N(t)N(0)〉.

3 Minimal model for a nanowire in the topological super-
conducting phase

We now turn to a minimal realization of Eq. (7), namely the case in which there is exactly
one low-energy fermionic mode on each side of the junction. The setup is chosen to capture
the essential ingredients of a nanowire in the topological phase, hosting one Majorana mode
at each end of each topological segment. We denote the Majorana modes at the ends of the
left (right) island by γ1,2 (γ3,4) as depicted in Fig. 2. Assuming the absence of additional
low-energy fermionic quasiparticles, the effective Hamiltonian, written in the gauge where
the boundary conditions of Eq. (15) hold, is given by:

H = HJ +Hδ +HM , (17)

with

HJ = Ec(N −Ng)
2 − EJ cosφ, (18a)

Hδ = δ(iγ1γ2 + iγ3γ4), (18b)

HM = iγ2γ3EM cos(φ/2). (18c)

The term Hδ couples the Majorana modes within each island. Such a coupling can arise
due to the finite length of each island, and it is chosen to be identical on both islands for
simplicity. In the topological phase, δ vanishes exponentially with the length of each is-
land. The phase-dependent coupling EM cos(φ/2) originates from single-electron tunneling
across the junction. This model was introduced and studied by Ginossar and Grosfeld [60].
In the present work we discuss it in the context of the more general model (1), and address
additional points that were not discussed in detail in Ref. [60].

To solve the model (17), we first deal with HJ and Hδ separately, and then consider the
effect of HM , which couples the bosonic and fermionic excitations. The eigenfunctions of
HJ are known exactly in terms of Mathieu functions (approximate eigenfunctions are also
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immediate to find numerically). Anticipating the role of the boundary conditions (15),
we will find eigenfunctions in the space of 4π-periodic functions. The 2π-periodicity of
HJ implies that [HJ , Pb] = 0, and hence we can choose eigenstates to have well-defined
bosonic parity. We denote the m-th energy eigenstate with even/odd bosonic parity by
|m,±〉b, and the corresponding energy by Em,±. The wave functions ψm,±(φ) = 〈φ|m,±〉b
are given by

ψm,±(φ) =
ei(φNg+πνm,±)/2
√

4π im
meνm,±

(
φ− π

2
,
EJ
2Ec

)
, (19)

where meν(z, q) is the Mathieu function with characteristic exponent ν, and where

νm,± = 1
2 ∓ (−1)m(m+ 1

2)−Ng. (20)

The wave functions satisfy the boundary condition ψm,±(φ+2π) = ±ψm,±(φ). In the limit
EJ � Ec, they reduce to normalized plane waves, ψm,±(φ) ∼ eikm,±φ/

√
4π, with km,+ ∈ Z

and 2km,− ∈ Z. In the opposite limit EJ � Ec, the wavefunctions are localized near the
minima of the potential −EJ cosφ, i.e. near φ = 0 and 2π.

To describe the fermionic sector, we observe that two Majorana modes together form a
fermionic mode, and define its occupation as nij = (1+ iγiγj)/2. A basis for the fermionic
Hilbert space can thus be obtained by arranging the Majorana modes into pairs and
specifying the occupations of the pairs. We focus on the sector with even total fermion
parity, and take the pairs of Majorana modes to be those in the same superconducting
region, such that the basis states also have well-defined fermion parity in each island.
Then, the two possible states are |n12 = n34 = 0〉 and |n12 = n34 = 1〉.

We now define a basis for the full Hilbert space describing both the bosonic and the
fermionic sectors, using states which obey the constraint in Eq. (16):

|m,+〉 = |m,+〉b ⊗ |n12 = n34 = 0〉, (21a)

|m,−〉 = |m,−〉b ⊗ |n12 = n34 = 1〉. (21b)

These states have equal boson parity and fermion parity on each island; for the remainder
of this section, we will refer to this as island parity. The Hamiltonian HJ +Hδ is diagonal
in this basis; the state |m, p〉 has energy Em,p − 2pδ, where p = ±1 is the island parity.
The four lowest-energy states in the regime with δ � ωp (m = 0, 1 and p = ±) are shown
schematically in Fig. 3(a), illustrating the parity constraint.

The coupling term HM is entirely off-diagonal in this basis, since it couples states of
opposite island parity. Its nonzero matrix elements are

〈m,+|HM |m′,−〉 = −ηm,m′ EM , (22)

ηm,m′ =

∫ 4π

0
dφψ∗m,+(φ) cos(φ/2)ψm′,−(φ). (23)

In the limit EJ � Ec, an asymptotic analysis of the integral in (23) shows that the
dominant matrix elements are the diagonal ones, ηm,m = 1−O(z), where z =

√
2Ec/EJ �

1. The matrix elements in which m and m′ differ by an even integer 2` are subdominant,
ηm−`,m+` = O(z`). The matrix elements in which m and m′ differ by an odd integer,
ηm,m+2`+1, are exponentially small in the ratio EJ/Ec. They vanish identically when Ng

is an integer and are largest when Ng is half-integer.
The low-energy spectrum as a function of Ng is shown in Fig. 3(b) in the two limits

of large δ � ωp (left panel) and δ = 0 (right panel). The colored dashed lines correspond
to the spectrum for EM = 0, while the solid black lines correspond to the spectrum in
the presence of a finite EM . The dispersion of energy with Ng can be understood in
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Figure 3: (a) Schematic representation of the basis states defined in Eq. (21) for
m = 0, 1, in terms of the 4π-periodic bosonic wavefunctions ψm,±(φ), and the
occupations of the four Majorana modes present in the system. (b) The energy
spectrum of the Hamiltonian (17), as a function of Ng, for large δ & ωp (left
panel) and for δ = 0 (right panel), with junction parameters set to EJ/Ec = 5.
The colored dashed lines correspond to the spectrum for EM = 0, where the
eigenstates are precisely the states sketched in panel (a), while the solid black
lines are obtained for EM/Ec = 0.3. (c) Excitation spectrum as a function of
δ/ωp for Ng = 0, and the spectral function at δ = 5ωp (blue) and δ = 0 (red).
The spectral function is convolved with a Gaussian with σ/ωp = 10−2.
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terms of instanton tunneling processes between the two minima of the potential at φ = 0

and 2π (quantum phase slips), and has a magnitude proportional to e−
√

8EJ/Ec . The
dispersion of levels with opposite island parity is shifted by one unit along Ng, leading
to level crossings at half-integer values of Ng at δ = 0, see right panel of Fig. 3b. HM

introduces a coupling proportional to EMηm,m(Ng) between states of oppposite parity,
leading to avoided crossings at the degeneracy points.

We now study the behavior of the excitation spectrum for a choice of parameters
that mimics driving the system from a trivial and fully gapped superconducting phase
into a topological phase with well-separated Majorana zero modes. Fixing Ng = 0 and
EJ/Ec = 5, we vary the coupling between the Majorana modes on the same island from
a large value δ � ωp to a small value δ � ωp, and compare the excitation spectrum with
EM = 0 to the one with a small but finite EM � ωp. The resulting spectra are shown in
Fig. 3(c).

For large δ � ωp, the ground state is |0,+〉 and all the states with odd island parity,
|m,−〉, are at high energy. The spectrum of the junction resembles that of a trivial
Josephson junction, with level spacing set by ωp, up to anharmonic corrections. When
δ ≈ ωp/4, there are degeneracies in the spectrum between states |m,−〉 and |m+1,+〉. At
finite EM the coupling between these states is proportional to ηm+1,m, and hence vanishes
for Ng = 0. For δ � ωp, the two states in each doublet, |m,±〉, get closer in energy. In
the limit δ = 0 the energy splitting between these states is set by the larger of the two
energy scales EM and the splitting due to charge dispersion, |Em,+−Em,−|. Note that for
the doublets with odd m, one has Em,− < Em,+ at Ng = 0, and thus the state with odd
island parity crosses the one with even parity in energy as δ is decreased. In Fig. 3(c) this
can be seen as the crossing of the lines corresponding to |1,+〉 (red) and |1,−〉 (green).
At finite EM , the coupling between these states gives rise to an avoided crossing between
them, with size of order ηm,mEM .

Using the excitation spectrum, we calculate the spectral function (8) for δ � ωp and
δ = 0 (see right panel of Fig. 3(c)). When δ � ωp, the ground state is simply |0,+〉. Since
the operator N can only couple states with the same parity, only the spectral lines within
the even parity sector are observed in the spectral response. Once different parity states
couple due to finite EM , additional spectral lines can be observed. In particular, for δ = 0,
both spectral lines in the m = 1 manifold can be observed. Deep in the harmonic limit,
when |Em,+ − Em,−| → 0, the eigenstates are superpositions of states with well-defined
fermionic parity of the junction (i.e. occupation of n23), and due to the total fermionic
parity constraint also of n14. As the charge operator N acts locally at the junction, it
cannot change the occupation of n14, and only a single spectral line is visible again. For
a further discussion of this limit, see Sec. 5.2.

4 Numerical simulations

Building on the picture developed in the previous sections, we now turn to a numerical
study, using DMRG and TEBD, of the spectral function defined in Eq. (8). We will
perform the study on a microscopic model that allows us to treat the behavior both in
the topological phase and in the vicinity of the topological phase transition, as well as
to examine the effect of additional Andreev subgap states in the junction both in the
topological and non-topological regime.

Numerical simulations presented in this work were performed using the ITensor li-
brary [80].
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4.1 Lattice model and numerical techniques

We model the system as a spinful wire with Rashba spin-orbit coupling that is proximity-
coupled to an s-wave superconductor. A large enough Zeeman field perpendicular to the
direction of the spin-orbit coupling drives the system into the topological superconducting
phase [81, 82]. To simplify the numerics, we will consider a single spinful band, while
additional modes that can be present in a real system will be accounted for by the term
−E0

J cosφ in the Hamiltonian (7). Note that the band which is considered explicitly will
also contribute to the Josephson coupling across the junction due to its ground state energy
dispersion with phase, which (in the limit of small transmission through the junction)
can be approximated by −E1

J cos(φ). The total Josephson coupling is then given by
EJ = E0

J +E1
J . In practice, for parameters discussed in the rest of this section E1

J � E0
J ,

and hence EJ ≈ E0
J .

The continuum version of the normal part of the BdG Hamiltonian is given by

H0 =
k2x
2m
− µ+ αkxσy +Bσx. (24)

In our numerical simulations we use a lattice description of the system. To this end,
we introduce the tight-binding parameters corresponding to the hopping amplitude, t =
1/(2ma2), and the spin-orbit coupling, v = α/a, where a is the lattice constant (see
Appendix A for the explicit tight-binding Hamiltonian). Unless otherwise specificed, all
energies hereafter are measured in units of ∆.

We describe the system in the gauge introduced in Sec. 2.2, where the Hilbert space
consists of a lattice of fermionic degrees of freedom and a bosonic degree of freedom
describing the total charge on the floating island. We represent this bosonic mode in the
charge basis and as a single additional site. The occupation of this charge mode depends
on the ratio EJ/Ec, but the number fluctuations grow slowly,

〈
δN2

〉
∼ (EJ/Ec)

1/2 for
EJ > Ec [4], so in practice we find that truncating to 10−20 charge states yields sufficiently
small error. The charging energy term acts only on the bosonic charge state, which is
coupled to the fermionic modes via the hopping terms between the left and the right
parts of the wire, i.e. via eiφ/2c†i,σcj,σ′ with i ∈ IL, j ∈ IR (recall that in the charge

basis the operator eiφ/2 simply changes the charge by one). Hence, if the charge site is
placed at the boundary between the left and the right part of the wire, the Hamiltonian
is local, simplifying the numerical study. The constraint introduced by the boundary
conditions (15) is handled by defining a conserved Z2 quantum number PbPf,L = 1.

To obtain the spectral function SN (ω) as defined in Eq. (8) we first obtain the ground
state |0〉 of the system using DMRG. We then perform time evolution of the state |0̃〉 ≡
N |0〉 in order to obtain the real-time correlation function 〈0|N(t)N(0)|0〉 = e−iE0t〈0̃|eiHt|0̃〉.
For the time evolution, we use TEBD with a 4th order Suzuki-Trotter decomposition with a
time step of dt = 0.02, truncating the MPS wavefunction to bond dimension of Mmax = 50
and truncation error εtr = 10−7. We note that similar numerical techniques could be used
to characterize the correlation function for some other initial state, such as a low-lying
excited state or even a mixed state. This may be of interest to describe experimental
situations where finite temperature or non-equilibrium effects lead to a finite occupation
of excited states. The computational cost of this time evolution is heavily dominated by
the terms of the Hamiltonian that involve the bosonic degree of freedom, which has a
large on-site Hilbert space dimension and thus limits the bond dimension we can treat.
To obtain the spectral function in real frequencies, we typically compute the real-time
correlation function up to times tf ' 400 and use linear prediction methods [83–85] to
extrapolate the real-time correlation function to times ∼ 2tf . We then apply a Gaussian
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Figure 4: (a) Short junction (weak-link) model. The junction comprises a single
link on which the hopping and the spin-orbit coupling are reduced by a factor
κ < 1 compared to their values in the bulk. (b) Spectral function obtained with
DMRG and TEBD for the weak-link model, as a function of the Zeeman energy
B for Ng = 0. Junction parameters in units of ∆ are Ec = 0.1, E0

J = 0.5, and wire
tight-binding parameters are t = 1.5, v = 2, µ = 0, κ = 0.1. The length of each
part of the wire is Nx = 40. In the trivial phase, for B/∆ . Bc/∆ = 1, a single
spectral line is seen, corresponding to the plasma frequency. As the system enters
the topological phase, a second spectral line appears, and an avoided crossing
between the two can be observed (see main text for further discussion). The
red dashed lines correspond, for B < Bc, to the spectral lines expected for a
conventional Josephson junction, and for B > Bc, to those expected for a junction
deep in the topological phase. The latter are obtained using the minimal model
given by the Hamiltonian (17) (see main text for more details).

windowing function and finally perform the Fourier transformation. This allows us to
reach a frequency resolution of order 10−2ωp in the parameter regime we consider.

We consider two different models for the junction, corresponding to the limits of a
short and a finite-length junction, that will be described in detail below.

4.2 Short junction (weak-link model)

We start from the short junction limit, valid for junctions much shorter than the super-
conducting coherence length, in which the junction can be modeled as a single weak link
between the islands. All hopping terms on this link are reduced by a factor κ < 1 com-
pared to their values in the bulk. The transmission of the junction, and hence EM , is
determined by κ; for small κ, EM is proportional to κ. This setup is shown schematically
in Fig. 4(a). The exact tight-binding Hamiltonian is given in Appendix A.

In Fig. 4(b), we plot the spectral function obtained for this model, as a function of
the Zeeman energy B, for Ng = 0 and E0

J/Ec = 5. In the trivial phase, for B . Bc, a
single spectral line is present (in the frequency range shown) at a frequency ω ≈ ωp, as
expected. As the Zeeman energy is increased and the wire is driven into the topological
phase, a second spectral line appears due to finite EM as discussed in Sec. 3. The avoided
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Figure 5: Spectral function obtained with DMRG and TEBD, for the weak-link
model, as a function of the Zeeman energy B for Ng = 0. Junction parameters in
units of ∆ are Ec = 0.1, E0

J = 0.5, and wire tight-binding parameters are t = 1.5,
v = 0.6, µ = 0, κ = 0.1. The length of each part of the wire is Nx = 40. White
solid lines are the energies of 2-quasiparticle excitations obtained from the BdG
Hamiltonian for a phase difference of φ = 0 between the superconducting islands.
Around the phase transition point Bc/∆ = 1, as the bulk gap is closing, multiple
2-quasiparticle states cross the plasma frequency. However, the effect of these
states on the spectral function is very small. The inset shows a zoom-in on the
region close to the phase transition, on a logarithmic color scale.

crossing between the two spectral lines in Fig. 4(b), which can be observed close to the
topological phase transition at Bc/∆ = 1, is reminiscent of the avoided crossing between
the states |1,+〉 and |1,−〉 in Fig. 3(b).

To validate our numerical results, we overlay on the spectral function the spectral lines
expected deep in the trivial and the topological phase, obtained using the minimal model
discussed in Sec. 3. These are plotted as red dashed lines in Fig. 4(b). For the trivial
phase (B < Bc), the position of the spectral line is calculated from HJ of Eq. (18a) with
Josephson energy set to E0

J . For the topological phase (B > Bc), we use the the Hamil-
tonian (17) with δ = 0 and a value of EM determined numerically from the 4π-periodic
component of the ground state energy deep in the topological phase (more specifically, at
B/∆ = 2), as explained in detail in Appendix B. As can be seen, our numerical results
indeed agree very well with these values in both limits.

4.2.1 Topological phase transition

The finite-size gap at the transition is determined by the spin-orbit coupling strength as
ε ∼ α∆/(BL) (see Ref. [86] for details). For the parameters used to obtain Fig. 4, we have
ε ∼ ωp. To probe the response of the system closer to the continuum limit we consider a
smaller spin-orbit coupling, such that many states cross the plasma frequency close to the
topological phase transition, but still large enough to have a sizable gap in the topological
region. However, we still do not observe any significant features in the spectral response
associated with the gap closing, as can be seen in Fig. 5, where we also plot the energies of
the two-quasiparticle excitations on top of the spectral function. We attribute this to the
fact that the critical states have weak dependence on the phase difference at the junction,
and thus small matrix elements of the charge operator N which determines the spectral
response via Eq. (8). An intuitive picture for this observation is that the critical states
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Figure 6: (a) Finite-length junction model. Sites depicted in blue correspond to
the two parts of the nanowire which are proximitized. The orange sites in the
middle region are not subject to a superconducting pairing term, but otherwise
have the same model parameters as the rest of the wire. The hopping and the
spin-orbit coupling between the proximity-coupled left (right) part of the wire
and the normal junction region are reduced by a factor κL(R) compared to their
values in the bulk. (b) The spectral function for a finite-length junction model
as a function of the Zeeman energy B for Ng = 0. Junction parameters are
Ec = 0.1, E0

J = 0.5, Ng = 0, and wire tight-binding parameters are t = 1.5,
v = 2, µ = 0, κL = κR = 0.3. The length of each part of the wire that is coupled
to a superconductor is Nx = 30, and the length of the junction is W = 6. Red
dashed lines, plotted on top of the spectral function for B < Bc (B > Bc), are
the spectral lines expected deep in the trivial (topological) phase (see main text
for more details). White solid lines are the energies of 2-quasiparticle excitations
obtained from the BdG Hamiltonian for a phase difference of φ = 0 between the
superconducting islands.

are delocalized throughout the entire wire length, and thus have a limited support close
to the junction.

4.3 Finite-length junction

We now consider a finite-length junction, which is modeled as a finite segment of length W
of normal (non-superconducting) wire. The hopping and the spin-orbit coupling between
the left (right) superconducting region of the wire and the junction is reduced by a factor
κL(R) compared to their values in the bulk. The exact tight-binding description of the
model is given in Appendix A and is shown schematically in Fig. 6(a).

In Fig. 6(b) we plot the spectral function obtained for this model. We find that in this
case the structure of the spectral function is more complicated with additional spectral
lines appearing both in the trivial and in the topological phase. To understand this spectral
function, we first obtain the spectrum expected on the basis of the minimal model of Sec. 3
deep in the trivial and topological phase, as we did for the short junction case (see previous
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sub-section for more details). The red dashed lines plotted on top of the spectral function
for B < Bc (B > Bc) correspond to this spectrum. In addition, we plot as white solid
lines the energies of two-quasiparticle excitations, obtained from the tight-binding BdG
Hamiltonian at a phase difference of φ = 0 between the superconducting islands, as a
function of B. These are the fermionic excitations (in the even parity sector) originating
from the second term in the Hamiltonian (1), neglecting the dynamics of the field φ and
the finite charging energy. It can be clearly seen that the lines in the spectral response
originate from avoided crossings between these two types of excitations. In Sec. 5 below,
we will present a perturbative approach that will allow us to understand this coupling and
to calculate the avoided crossings in the harmonic limit, i.e. for EJ/Ec →∞.

5 Effective theory for the coupling between bosonic and
fermionic modes

We now examine the observed avoided crossing betweens the bosonic plasma mode and
fermionic subgap states in more detail. To this end, in Sec. 5.1 we develop a perturbative
theory in the harmonic limit. In Sec. 5.2 we discuss non-perturbative couplings that cannot
be captured by the perturbative expansion, and show their effect on the spectrum of the
problem using a simple model.

5.1 Harmonic expansion

We start from the Hamiltonian (7), where we assumed that the effect of the high-energy
quasiparticles is captured by their contribution to the phase dependent ground state energy
that can be approximated by a cosine dispersion −E0

J cos(φ). In the limit E0
J � Ec, phase

fluctuations are small and centered around φ = 0. Therefore, we can ignore the fact that φ
is a compact variable, and thus also the periodic or anti-periodic boundary conditions (15).
In this approximation, the Ng-dependence of the Hamiltonian can be “gauged away” by
generalizing the gauge transformation (9) to U = eiφ(Nf,L−Ng)/2 and the dependence of
the eigenvalues on Ng is lost.

Expanding the cosine dispersion to lowest order in φ, we denote by H0,b the resulting
harmonic oscillator Hamiltonian acting on the bosonic degree of freedom,

H0,b = EcN
2 + 1

2E
0
Jφ

2 = ω0
p

(
a†a+ 1

2

)
. (25)

Here ω0
p =

√
8E0

JEc, and a† and a are harmonic oscillator raising and lowering operators,

respectively. We will denote the eigenstates of H0,b as |m〉, where m is the occupation
level of the harmonic oscillator.

We now expand HBdG(φ) around φ = 0,

c†HBdG(φ)c = c†
[
HBdG(0) + φH ′BdG(0) + · · ·

]
c. (26)

We denote the zeroth order term in this expansion by H0,f and diagonalize it to obtain

H0,f = 1
2c†HBdG(0) c =

∑
i

εi

(
Γ†iΓi − 1

2

)
. (27)

Here, the operators Γ†i (Γi) create (annihilate) quasiparticle excitations with non-negative

energies εi. We define a corresponding Nambu spinor Γ† = (Γ†i ,Γi) and denote the single-
particle unitary that diagonalizes HBdG(0) by V , i.e. c = V Γ. We will denote the
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Figure 7: (a) Excitation spectrum and (b) spectral function obtained using the
harmonic expansion for a finite-length junction with the same parameters as in
Fig. 6. The black dashed lines in (a) correspond to the excitation energies of
the unperturbed Hamiltonian, while the blue solid lines are obtained including
the perturbation to lowest order in φ. The truncated basis used here consists
of two lowest energy harmonic oscillator states and two-quasiparticle fermionic
states constructed from four lowest energy single-particle states. For presentation
purposes we plot the spectral function in (b) convolved with a Gaussian with
σ = 5× 10−3.

eigenstates of H0,f as |~ν〉, where ~ν = (νi), with νi ∈ {0, 1}, is the vector of occupations of
the quasiparticle levels. In particular, the ground state will be denoted as |~0〉. The excited

states are then given explicitly as |~ν〉 =
∏
i(Γ
†
i )
νi |~0〉.

We take the sum H0 = H0,b +H0,f as the unperturbed Hamiltonian for the problem.
Note that since H0,b(f) acts solely on the bosonic (fermionic) degrees of freedom, the
eigenstates of H0 are simply the tensor products |m,~ν〉 ≡ |m〉 ⊗ |~ν〉. Their unperturbed
energies are given by

Em,~ν = mω0
p +

∑
i

νiεi + const. (28)

The second term in the expansion (26) acts as a perturbation to H0, which we denote
as δH. This term introduces a coupling between the bosonic and fermionic degrees of
freedom. Noting that the phase φ has the representation φ =

√
z(a + a†), where z =

(2Ec/E
0
J)1/2 is a small parameter, and using the basis |~ν〉 for the fermionic states, δH can

be written as
δH = 1

2

√
z(a+ a†) Γ†

[
V †H ′BdG(0)V

]
Γ. (29)

The matrix elements of H ′BdG(0) are related to the dispersion of the quasiparticle levels
with the phase across the junction, and hence to the current carried by these levels.
The perturbation δH introduces a coupling between the states |m,~ν〉 and |m′, ~ν ′〉 when
m′ −m = ±1, with a matrix element proportional to 〈~ν|Γ†[V †H ′BdG(0)V ]Γ|~ν ′〉.

The problem can now be easily tackled numerically, solving the Hamiltonian H0 + δH
with a truncated basis consisting of low-energy many-body states. The spectral function
SN (ω) of Eq. (8) can also be computed numerically using that, in the harmonic limit,
N = i(a†−a)/

√
z. The spectrum and the spectral function calculated for the finite-length

junction model (see Sec. 4.3) using this approach are plotted in Fig. 7, for the same model
parameters as in Fig. 6.

Comparing Figs. 6 and 7, we find that many of the qualitative features appearing in
the spectral function are reproduced within the harmonic expansion. In particular, the
characteristic behavior of the spectral function near avoided level crossings can be easily
understood. For concreteness, consider a crossing between the unperturbed levels |1,~0〉 and
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|0, ~ν〉 as the magnetic field B is tuned through some value B0. Near the crossing, we may
approximate the unperturbed energies as E1,~0(B) ≈ ω0

p and E0,~ν(B) ≈ ω0
p + 2λ(B − B0),

where 2λ ≡ E′0,~ν(B0). Including the perturbation δH and solving the resulting two-level

problem, we obtain hybridized eigenstates of the form |±〉 = a±(B)|1,~0〉 + b±(B)|0, ~ν〉
with energies

E±(B) = ω0
p + λ(B −B0)±

√
λ2(B −B0)2 + zζ2, (30)

where ζ = |〈~0|Γ†[V †H ′BdG(0)V ]Γ|~ν〉|. The brightness of the spectral line corresponding to
the transition |0〉 → |±〉, where |0〉 denotes the ground state, is proportional to |〈±|N |0〉|2.
This matrix element is just |a±(B)|2 /z:

|〈±|N |0〉|2 =
1

2z

(
1∓ λ(B −B0)√

λ2(B −B0)2 + zζ2

)
. (31)

The intensity of the two spectral lines is thus identical at the degeneracy point, B = B0,
and becomes more and more asymmetrical away from the degeneracy point.

At the same time, since Fig. 6 was obtained for E0
J/Ec = 5, i.e. not very deep in

the harmonic limit, some features are not captured correctly. First, in Fig. 7 the plasma
frequency is higher than Fig. 6. This discrepancy, which also shifts the exact positions of
some of the avoided crossings, can be explained by the anharmonic correction to the plasma
frequency that is brought by the fourth-order expansion of −E0

J cosφ, δω0
p ≈ −Ec [4], and

which is automatically included in the MPS simulations of Sec. 4. Second, we note the
level crossing at B/∆ ≈ 2.7 and ω/∆ ≈ 0.6 in Fig. 7, which is avoided in Fig. 6 (near
B/∆ ≈ 2.3 and ω/∆ ≈ 0.5). The fact that this crossing is not avoided within the
harmonic expansion can be understood as follows. Since φ appears in HBdG(φ) only in
the phases of the terms that hop fermions between the left and right parts of the wire,
the perturbative couplings in δH only involve fermion quasiparticle levels with support at
the junction and are thus local. On the other hand, we find that the two states involved
in the crossing differ in the occupation of fermion modes far away from the junction and
thus cannot be coupled in the harmonic expansion. In Sec. 5.2, we will discuss how the
avoided crossing can be understood in terms of non-perturbative effects. To show that
both discrepancies are due to the relatively low value of E0

J/Ec, in Appendix C we compare
the spectral function obtained using the exact MPS simulation and the one obtained using
the harmonic expansion for a higher value E0

J/Ec = 20, and show that there is an excellent
agreement between the two.

Finally, we note that in principle it should be possible to systematically improve the
perturbative expansion in z by including the higher-order terms which were so far neglected
in Eq. (26) as well as in the expansion of the cosine potential. In general, the n-th order
term introduces a coupling between the states |m,~ν〉 and |m′, ~ν ′〉 with |m′ −m| ≤ n. In
addition, it can cause a shift in the eigenvalues, even away from level crossings. However,
in order to be consistent, the expansion would have to take into account the contribution
of the low-energy fermionic degrees of freedom to the plasma frequency as well as the
coupling between the low- and high-energy degrees of freedom which were separated in
Eq. (7); thus, it appears to be a challenging approach.

5.2 Non-perturbative couplings

We now address the non-perturbative couplings that are not captured within the harmonic
expansion. As mentioned in passing in Sec. 3, non-perturbative corrections arise due to
quantum phase slips between the minima of the potential energy at φ = 0 and φ = 2π.
In the case of the standard qubit Hamiltonian Ec(N − Ng)

2 − EJ cosφ, it is well-known
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Figure 8: Spectrum of the Hamiltonian (32) projected onto the low-energy sub-
space, for EJ/Ec = 5, EM/Ec = 1. We take ε(B) = ω̄ + λ(B/B0 − 1) with
λ/Ec = 3 and the coupling ζ = 0.1. Black dashed lines correspond to the spec-
trum of H̃, while the blue solid lines correspond to the spectrum of H̃ + H̃ζ . In
(a) we artificially set the magnitude of the charge dispersion δ1 to zero, thus ne-
glecting all non-perturbative corrections, while in (b) the spectrum with finite δ1
is plotted. Once non-perturbative corrections are taken into account, hybridiza-
tion between |e+〉 and |e−〉 (due to finite charge dispersion) results in the avoided
crossing between the hybridized states |ẽ±〉 and |f±〉.

that, in the limit EJ � Ec, quantum phase slips give rise to the charge dispersion of the

energy levels with magnitude ∝ e−
√

8EJ/Ec [4]. This effect is, for instance, visible in the
energy spectra of Fig. 3(b). These corrections are non-perturbative, as manifested by their
singular dependence ∝ e−c/z on the expansion parameter z of the previous Section.

In this Section, we examine in detail an example for how these non-perturbative correc-
tions can prominently affect the microwave response in the topological phase. In particu-
lar, we show that non-perturbative effects can resolve level crossings that are not resolved
perturbatively, leading to the appearance of avoided crossings in the spectral response.
The basic physics of this phenomenon is as follows: consider a level crossing between two
given states |e+〉 and |f+〉, as in Fig. 8(a), which are not coupled by perturbative terms
local at the junction. If non-perturbative effects cause |e+〉 to hybridize with a third state
|e−〉 that does couple perturbatively to |f+〉, this will lead to a non-perturbative avoided
crossing, as seen in Fig. 8(b).

As a concrete example, we extend the minimal model presented in Sec. 3 to include an
additional fermionic mode localized (for simplicity) on the right island. We assume that
this mode couples to the Majorana mode on the left island via single-particle tunneling
across the junction. The Hamiltonian is then given by

H = HJ +HM +Hε +Hζ , (32)

where

HJ = EcN
2 − EJ cosφ, (33a)

HM = iγ2γ3EM cos(φ/2), (33b)

Hε = ε c†c, (33c)

Hζ = iζ γ2
(
c eiφ/2 + h.c.

)
, (33d)

and we have implicitly set Ng = 0. Here, c† (c) is the creation (annihilation) operator for
the extra fermionic mode, ε is its energy, and ζ is its coupling strength to the Majorana
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mode on the left island. We assume that the energy ε is comparable to the plasma
frequency ωp, and that it can be tuned by an external parameter (such as the Zeeman
energy B, as in the previous section). Writing the additional fermion operator in terms of
Majorana operators, c = (γ5 + iγ6)/2, we rewrite Hζ as

Hζ = iζ γ2
(
γ5 cos(φ/2)− γ6 sin(φ/2)

)
. (34)

Analogously to the basis defined in Eq. (21) that was used to study the four-Majorana
model in Sec. 3, we can define a basis for the full Hilbert space of this model that satisfies
the parity constraint (16) and diagonalizes HJ +Hε:

|m;n12, n34, nc〉 = |m, (−1)n12〉b ⊗ |n12, n34, nc〉. (35)

Here, |m,±〉b are the bosonic states defined in Sec. 3 and correspond to the m-th energy
eigenstate of HJ with even/odd bosonic parity and energy Em,±; n12 and n34 are the
occupation numbers encoded in the MZMs of the left and right island, nij = (1+ iγiγj)/2;
and nc is the occupation number of the extra fermionic mode.

In the harmonic limit EJ/Ec → ∞, δm ≡ Em,+ − Em,− → 0 and thus, for each m,
the states with different n12 but equal nc become degenerate eigenstates of HJ + Hε.
Furthermore, in this limit, HM has non-vanishing matrix elements only between states
with the same m. Restricting our discussion to low energies (namely, to states with
energies up to order ωp), in the harmonic limit the eigenstates of HJ +Hε +HM are given
by:

|g±〉 ≡
|0; 000〉 ± |0; 110〉√

2
, (36a)

|e±〉 ≡
|1; 000〉 ± |1; 110〉√

2
, (36b)

|f±〉 ≡
|0; 011〉 ± |0; 101〉√

2
. (36c)

At a large but finite EJ/Ec, the energy levels of HJ acquire a finite charge dispersion,

|δm| ∼ Ec (EJ/Ec)
m
2
+ 3

4 e−
√

8EJ/Ec . (37)

This non-perturbative energy splitting grows with m, allowing us to consider for simplicity
the regime |δ0| � |δ1| ≈ EM , and to neglect δ0. Projecting the first three terms of the
Hamiltonian (32) onto the basis (36), we obtain (up to a constant shift)

H̃ = Hg +He +Hf , (38)

with

Hg =−η0,0EM
(
|g+〉〈g+| − |g−〉〈g−|

)
, (39a)

He = ω̄
(
|e+〉〈e+|+ |e−〉〈e−|

)
−η1,1EM

(
|e+〉〈e+| − |e−〉〈e−|

)
+δ1

(
|e+〉〈e−|+ |e−〉〈e+|

)
, (39b)

Hf = ε(B)
(
|f+〉〈f+|+ |f−〉〈f−|

)
−η0,0EM

(
|f+〉〈f+| − |f−〉〈f−|

)
. (39c)

Here, ηm,m are the overlap integrals defined in Eq. (23) and ω̄ is the average energy dif-
ference between the m = 0 and m = 1 bosonic states, [(E1,+ − E0,+) + (E1,− − E0,−)] /2.
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In the harmonic limit ω̄ → ωp. We see that |g±〉 and |f±〉 are still eigenstates of H̃, but
He mixes |e±〉; its eigenstates, to lowest order in q ≡ δ1/(2η1,1EM ), are given by

|ẽ+〉 ≈ |e+〉 − q|e−〉, (40a)

|ẽ−〉 ≈ |e−〉+ q|e+〉. (40b)

At this point, we can understand why, as pointed out in Sec. 3, the two spectral lines
in the topological phase are only visible away from the harmonic limit. To this end, note
that the charge operator N couples |g+〉 to |e+〉 but not to |e−〉; on the other hand, it
couples |g+〉 to both |ẽ+〉 and |ẽ−〉.

Finally, we consider a finite coupling ζ. Projecting Hζ onto the basis (36), we obtain

H̃ζ = iζ χ0,1

(
|f+〉〈e−| − |f−〉〈e+|

)
+ h.c., (41)

where, similarly to Eq. (23), χm,m′ is the overlap integral

χm,m′ =

∫ 4π

0
dφψ∗m,+(φ) sin(φ/2)ψm′,−(φ), (42)

with ψm,±(φ) ≡ 〈φ|m,±〉b. Note that H̃ζ only couples |e+〉 to |f−〉 and |e−〉 to |f+〉. Thus,
in the harmonic limit, or more specifically for vanishing δ1, there is no avoided crossing
between |e+〉 and |f+〉, as can be seen in Fig. 8(a). Away from the harmonic limit, the
magnitude of the avoided crossing between |ẽ+〉 and |f+〉 is

|〈ẽ+|H̃ζ |f+〉| ≈
ζ χ0,1 δ1
2η1,1EM

. (43)

This avoided crossing is clearly visible in Fig. 8(b). It is manifestly non-perturbative, and
vanishes in the harmonic limit.

6 Conclusions and Outlook

We have carefully studied the response of a capacitively shunted topological Josephson
junction, using a combination of accurate numerical techniques and theoretical approaches
that allow us to incorporate a microscopic description of the topological phase. Our results
indicate that detecting the signatures of the topological phase in the transmon-like setup
of Fig. 1, as proposed for instance in Ref. [60] and also as described in Sec. 3, can be
complicated by two factors. First, we do not find strong signatures of the topological
transition itself on the simulated frequency spectra of the junction. Second, the presence
of non-topological Andreev bound states can hinder the signatures of coupled Majorana
zero-modes at the Josephson junction in the measurable low-frequency spectrum. Our
simulations show that this second problem becomes particularly relevant in parameter
regimes that tend to have a higher density of sub-gap states that couple to the phase
degree of freedom.

For a quantitative understanding of experiments performed on nanowire Josephson
junctions, including the electrostatic environment and the presence of multiple sub-bands
can be very important. While the numerical calculations presented here are based on an
effective one-band model of a Majorana nanowire, the methods themselves can in principle
be applied to more realistic models. This is particularly true for the perturbative approach
described in Sec. 5, which can take as input low-energy BdG spectra obtained from large-
scale microscopic simulations of realistic devices. For future research, it would also be
valuable to find a way to systematically include the contribution of quantum phase slips
without resorting to an intensive MPS calculation, and to consider the case in which the
nanowire Josephson junction hosts a quantum dot with finite charging energy.
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A Tight-binding model

The tight-binding Hamiltonian describing the spin-orbit coupled nanowire forming the
Josephson junction used in the simulations is given by

HBdG(φ) = HSC,L +HJ(φ) +HSC,R, (44)

where HSC,L(R) describe the left (right) regions of the wire that are proximity coupled to
a superconductor, and HJ describes the junction.

For concreteness, we write down the Hamiltonian after the gauge transformation de-
fined in Eq. (9). The Hamiltonian in the superconducting regions is given by

HSC,L(R) =−
i0+Nx−2∑
i=i0,s,s′

[
c†i,s(tδs,s′ + ivσys,s′)ci+1,s′ + h.c.

]

+

i0+Nx−1∑
i=i0,s,s′

c†i,s
(
− (µ− 2t)δs,s′ +Bσzs,s′

)
ci,s′

+

i0+Nx−1∑
i=i0

(∆ci,↑ci,↓ + h.c.) , (45)

where i0 = 1 (i0 = Nx + W + 1) for the Hamiltonian describing the left (right) region,
and W denotes the number of the sites in the junction. The hopping amplitude, t, and
the spin-orbit coupling, v, are related to the continuum parameters by t = 1/(2ma2) and
v = α/a, where a is the lattice constant.

In the main text, we consider two different models for the junction. For the short
junction (weak link) model studied in 4.2, W = 0 and the Hamiltonian for the junction is
given by,

HJ = −κeiφ/2
∑
s,s′

c†Nx,s
(tδs,s′ + ivσys,s′)cNx+1,s′ + h.c., (46)

where Nx is the rightmost site of the left superconducting region, and Nx+1 is the leftmost
site of the right superconducting region.
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Figure 9: Energies of the ground state (E0; blue dashed line), and the first excited
state (E1; green dashed line), obtained using the BdG spectrum, calculated for the
weak-link tight binding model (see Appendix A). Tight binding parameters used
are the same as in Fig. 4, with a Zeeman energy B = 2Bc = 2. The approximate
crossings in the spectrum at φ = π, 3π allow us to define a 4π-periodic ground
state energy E4π, plotted as the solid red line.

For the finite-length junction model studied in 4.3, the Hamiltonian for the junction is

HJ =− κL
∑
s,s′

[
eiφ/2c†Nx,s

(tδs,s′ + ivσys,s′)cNx+1,s′ + h.c.
]

−
Nx+W−1∑
i=Nx+1,s,s′

[
c†i,s(tδs,s′ + ivσys,s′)ci+1,s′ + h.c.

]

+

Nx+W∑
i=Nx+1,s,s′

c†i,s(−(µ− 2t)δs,s′ +Bσzs,s′)ci,s′

− κR
∑
s,s′

[
c†Nx+W,s

(tδs,s′ + ivσys,s′)cNx+W+1,s′ + h.c.
]
. (47)

B Extracting EM

In order to extract an effective EM from the tight binding model of the junction, we
diagonalize the BdG Hamiltonian and calculate the energies of the ground state and first
excited state as functions of the phase φ defined on a 4π-periodic domain (see Fig. 9). In
a Josephson junction geometry and for an infinite wire, the model of Eq. (24) would give
an Andreev level crossing of at φ = π + 2πn (where n ∈ Z), leading to the 4π-periodicity
of the ground state. For a finite system, the crossings will be avoided, with the splitting
determined by the coupling between the Majorana modes at the junction and those at
the far ends of the wire. Nevertheless, If the system is deep in the topological phase (in
practice we consider a Zeeman energy of magnitude B = 2Bc), the avoided crossings at
φ = π, 3π will be small enough to allow us to define a 4π-periodic ground state energy,
E4π(φ). An effective EM is then defined as

EM ≡
1

2π

∫ 4π

0
E4π(φ) cos(φ/2). (48)

.
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Figure 10: Spectral functions obtained using (a) MPS simulations and (b) the har-
monic expansion (taking into account the anharmonic corrections to the plasma
frequency), for a finite-length junction model, as a function of the Zeeman energy
B for Ng = 0. Junction parameters in units of ∆ are Ec = 0.05, E0

J = 1, and wire
tight-binding parameters are t = 1.5, v = 2, µ = 0, κL = κR = 0.3. The length
of each part of the wire that is coupled to a superconductor is Nx = 20, and
the length of the junction is W = 6. (a) Red dashed lines, plotted on top of the
spectral function for B < Bc (B > Bc), are the spectral lines expected deep in the
trivial (topological) phase. White solid lines are the energies of 2-quasiparticle
excitations obtained from the BdG Hamiltonian for a phase difference of φ = 0
between the superconducting islands. (b) Dashed lines correspond to the exci-
tation spectrum obtained within the perturbative approach. For presentation
purposes a convolution with a Gaussian with σ = 5 · 10−3 is performed.

C Numerical results in the harmonic limit

In Fig. 10 we plot the spectral function obtained from the MPS simulations in the harmonic
limit, E0

J/Ec = 20, and the spectral function obtained using the harmonic expansion for
the same parameters. To highlight the agreement between the two for the strength of the
couplings between the plasma mode and the fermionic quasiparticle excitations, we take
into account the anharmonic corrections that shift the energy of the first excited state
with respect to the plasma frequency in the harmonic limit ωp =

√
8EJEc, by δωp ≈ −Ec.

This is achieved by including the next order term in the expansion of the cosine potential,
namely −EJφ4/24 = −EJz2

(
a+ a†

)
/24, as part of the bosonic Hamiltonian H0,b, given

in Eq. (25).

References

[1] Y. Makhlin, G. Schön and A. Shnirman, Quantum-state engineering with Josephson-
junction devices, Rev. Mod. Phys. 73, 357 (2001), doi:10.1103/RevModPhys.73.357.

[2] M. H. Devoret and J. M. Martinis, Implementing qubits with superconduct-
ing integrated circuits, Quantum Information Processing 3(1-5), 163 (2004),
doi:10.1007/s11128-004-3101-5.

[3] J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031
(2008), doi:10.1038/nature07128.

24

http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1007/s11128-004-3101-5
http://dx.doi.org/10.1038/nature07128


SciPost Physics Submission

[4] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin and R. J. Schoelkopf, Charge-insensitive qubit
design derived from the Cooper pair box, Phys. Rev. A 76, 042319 (2007),
doi:10.1103/PhysRevA.76.042319.

[5] V. E. Manucharyan, J. Koch, L. I. Glazman and M. H. Devoret, Fluxonium:
Single Cooper-pair circuit free of charge offsets, Science 326(5949), 113 (2009),
doi:10.1126/science.1175552.

[6] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin and R. J. Schoelkopf, Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum
computation, Phys. Rev. A 69, 062320 (2004), doi:10.1103/PhysRevA.69.062320.

[7] J. Aumentado, M. W. Keller, J. M. Martinis and M. H. Devoret, Nonequilibrium
quasiparticles and 2e periodicity in single-Cooper-pair transistors, Phys. Rev. Lett.
92, 066802 (2004), doi:10.1103/PhysRevLett.92.066802.

[8] R. Lutchyn, L. Glazman and A. Larkin, Quasiparticle decay rate of Josephson charge
qubit oscillations, Phys. Rev. B 72, 014517 (2005), doi:10.1103/PhysRevB.72.014517.

[9] M. D. Shaw, R. M. Lutchyn, P. Delsing and P. M. Echternach, Kinetics of nonequi-
librium quasiparticle tunneling in superconducting charge qubits, Phys. Rev. B 78,
024503 (2008), doi:10.1103/PhysRevB.78.024503.

[10] J. M. Martinis, M. Ansmann and J. Aumentado, Energy decay in superconducting
Josephson-junction qubits from nonequilibrium quasiparticle excitations, Phys. Rev.
Lett. 103, 097002 (2009), doi:10.1103/PhysRevLett.103.097002.

[11] G. Catelani, R. J. Schoelkopf, M. H. Devoret and L. I. Glazman, Relaxation and
frequency shifts induced by quasiparticles in superconducting qubits, Phys. Rev. B 84,
064517 (2011), doi:10.1103/PhysRevB.84.064517.

[12] M. Lenander, H. Wang, R. C. Bialczak, E. Lucero, M. Mariantoni, M. Neeley, A. D.
O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin et al., Measurement
of energy decay in superconducting qubits from nonequilibrium quasiparticles, Phys.
Rev. B 84, 024501 (2011), doi:10.1103/PhysRevB.84.024501.

[13] L. Sun, L. DiCarlo, M. D. Reed, G. Catelani, L. S. Bishop, D. I. Schuster, B. R.
Johnson, G. A. Yang, L. Frunzio, L. Glazman, M. H. Devoret and R. J. Schoelkopf,
Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon
qubit, Phys. Rev. Lett. 108, 230509 (2012), doi:10.1103/PhysRevLett.108.230509.
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