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Abstract1

Two-dimensional CFTs and integrable models have an infinite set of conserved2

KdV higher spin currents. These currents can be argued to remain conserved3

under the T T̄ deformation and its generalizations. We determine the flow4

equations the KdV charges obey under the T T̄ deformation: they behave as5

probes “riding the Burgers flow” of the energy eigenvalues. We also study a6

Lorentz-breaking Ts+1T̄ deformation built from a KdV current and the stress7

tensor, and find a super-Hagedorn growth of the density of states.8
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1 Introduction and summary49

The T T̄ deformation of two-dimensional field theories has attracted significant attention50

recently due to its connection to disparate directions of research. It is a universal (and often51

leading) irrelevant operator near the infrared fixed point of renormalization group flows [1–3].52

The T T̄ deformation greatly increases the space of known integrable theories [4–6]. A novel53

deformation of S-matrices [7–9] was understood to be equivalent to the T T̄ deformation of the54

Lagrangian [10–12], and also led to an alternative description as matter coupled to flat space55

Jackiw-Teitelboim gravity. See also [13]. Its relationship to the holographic renormalization56

group was explored in [14–23]. T T̄ -deformed theories and their generalizations share features57

with little string theories that are holographically dual to asymptotically linear dilaton58

backgrounds. This connection was explored in [24–34].59

Partition functions in T T̄ -deformed theories have been computed with a multitude of60

methods. The torus partition function was determined by a path integral over random61

metrics in [11, 35] and it has been proven to be a unique modular covariant partition62

function satisfying certain conditions [36–38]. The S2 partition function was computed63

using large-N factorization in [39, 40] and in the T T̄ -deformed two-dimensional Yang-Mills64

theory in [41], see also [42] for analysis of the theory put on S2. Entanglement entropies65

were computed using the replica trick in [39,43–49].66

Other solvable irrelevant deformations were considered in [50–59]. Closed form La-67

grangians often provide important insight into these deformed theories, and many have been68

constructed in [5,56,57,60–63]. Correlation functions were investigated in [2,16,19,27,54,64].69

The interplay between the T T̄ deformation and supersymmetry was explored in [63, 65–68].70

The S-matrix of various worldsheet theories has been connected to the T T̄ deformation71
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in [69–72]. For a pedagoical introduction, see [73].72

In this paper, we continue the quest of finding solvable examples of spectra of quantum73

field theories deformed by irrelevant operators. The first such example was provided by the74

pioneering papers [4, 5] for T T̄ -deformed theories and a very simple extension was solved75

in [22]. The spectrum of the JT̄ -deformed CFTs was obtained in [28], completing the work76

of [50]. In [56], we used background fields to determine the spectrum of CFTs deformed77

by irrelevant operators built from Jµ, J̄µ, Tµν , where the former are the (anti)holomorphic78

U(1) currents of the theory and the latter is the stress tensor. Some steps in the derivation79

of [56] (and also in the determination of the JT̄ -deformed spectrum in [28]) were conjectural80

and only backed up by various checks. In contrast, in this paper we derive rigorously the81

flow of the quantum KdV charges [74] under the T T̄ deformation, and determine the energy82

spectrum, KdV charges, and asymptotic density of states in the zero momentum sector83

under a Ts+1T̄ deformation starting from a CFT. We often refer henceforth to the theory84

which we start deforming as the seed theory.85

It was shown in [4, 5] that the energy spectrum of T T̄ -deformed relativistic theories on86

the cylinder is governed by the equation87

∂λEn = −π2

(
En∂LEn +

P 2
n

L

)
, (1.1)

where En and Pn are the energy and momentum eigenvalues, L is the circumference of the88

circle, and λ is the deformation parameter. In this paper we derive that the quantum KdV89

charges 〈Ps〉n of the eigenstate |n〉, if present in the seed theory, obey90

∂λ〈Ps〉n = −π2

(
En∂L〈Ps〉n + Pn

s〈Ps〉n
L

)
. (1.2)

The allowed values of s are ±1, ±3, . . . . This equation was also obtained using integrability91

techniques of [5,57]. Our field theory derivation applies more broadly, to the T T̄ deformation92

of any Lorentz-invariant theory that contains at least one higher spin conserved charge,93

and hence rules out the possibility that the evolution equation (1.2) is a miracle of some94

special models.95

There is a beautiful analogy with hydrodynamics. Equation (1.1) is the forced inviscid96

Burgers equation97

∂tu+ u ∂xu = −p
2

x3
, (1.3)

where the right-hand side is the forcing term, and we made the identifications98

u ≡ En , t ≡ π2λ , x ≡ L , (1.4)

and used that Pn = p/L. Then (1.2) is translated to99

∂tPs + u ∂xPs = −sp
x2
Ps , (1.5)

which has the interpretation of particles probing the Burgers flow (but not backreacting100

on it): the left hand side is the material derivative of Ps and the right hand side is a101

forcing term. This equation is referred to as a passive scalar equation in the fluid dynamics102

literature, see the elegant review [75]. Admittedly, we have not encountered the particular103

forcing term in (1.5) in the fluid dynamics literature. For a CFT seed theory, we also solve104

these equations.105

As the second major result of the paper, we obtain the evolution of the spectrum for106

Tu+1T̄ -deformed relativistic theories, where Tu+1 is the current of the KdV charge Pu, in107

the zero momentum sector:108

∂λ〈Ps〉n = 2π2〈Pu〉n∂L〈Ps〉n if Pn = 0 . (1.6)
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We are not able to derive a closed set of equations for sectors with Pn 6= 0 that would109

generalize the equation above. Solving these equations for a CFT seed theory, we find110

that the eigenstates that start their lives as primaries in the CFT exhibit super-Hagedorn111

asymptotic density of states112

ρprimary (E) ≈ exp
(√

#(c− 1)λE(|u|+1)/2
)
, (1.7)

where # is a number that we determine and c is the central charge of the seed CFT.113

Let us indicate the major steps in our derivation of the two main results by giving the114

outline of the paper. Section 2 is largely a review of [4]. We introduce the higher spin115

KdV currents and their charges, operators that have factorizing expectation values, and116

show that deforming a theory by quadratic composites of KdV currents preserve these117

symmetries. New results presented in this section are: the proof of factorization without118

the non-degeneracy assumption on the energy spectrum (which is important for CFTs,119

where there are many states degenerate in energy in a Virasoro module); the proof that120

the (possibly non-abelian) algebra of charges does not get deformed, and hence the KdV121

charges continue to commute in the deformed theory proving a conjecture made in [4];122

and the generalization of the factorization property to new composite operators that are123

products of arbitrarily many factors. In Section 3 we use these results to derive an evolution124

equation for the KdV charges. An important step in the derivation is a novel formula for125

the expectation value of the space component of a KdV current as a length-derivative of126

the KdV charge in Lorentz-invariant theories. In Section 4 we apply results of Section 2127

to a Tu+1T̄ deformation. Superficially similar deformations were analyzed in [57] and our128

results partially agree despite fundamental differences in the two deformations, which we129

explain in Appendix F. Other appendices discuss various technical points used in the main130

text.131

2 Change of KdV currents under irrelevant deformations132

An important property of the class of irrelevant deformations built from an antisymmetric133

product of currents considered in [4] is that they preserve many symmetries of the un-134

deformed theory: any current whose charge commutes with the charges of the currents135

building the deformation can be adjusted so that it remains conserved in the new theory.136

In the case of T T̄ these are the currents that do not involve the coordinates explicitly. See137

Appendix G for a derivation of these facts.138

2.1 KdV currents and the As
σ operators139

Let us consider the T T̄ deformation of a CFT first. Since the dilation current of a CFT,140

j
(D)
µ = Tµνx

µ depends on the coordinates explicitly, dilation is not a symmetry of the141

deformed theory. Similarly the currents whose charges are the Virasoro generators Ln with142

n 6= 0 cannot be adjusted to remain conserved, thus most of the conformal group is lost.143

There is still a remnant of the infinite symmetry algebra in the deformed theory, and the144

maximal commuting set is formed by the KdV currents and charges, which in a CFT take145

the form146

Ts+1 = :T
s+1

2 : + . . .

Ps =
1

2π

∫
dz Ts+1(z) ,

(2.1)
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where the . . . stand for terms that involve derivatives and lower powers of the stress tensor.147

These can be adjusted to remain conserved after deformation, namely148

0 = ∂̄Ts+1 − ∂Θs−1

Ps =
1

2π

∫
(dz Ts+1 + dz̄ Θs−1) .

(2.2)

To show that this is indeed possible we have to review the methods of [4]. We work in the149

Hamiltonian formalism.150

In a CFT the algebra of conserved charges is the universal enveloping algebra of the151

Virasoro algebra U(Vir), which is formed by the sums of products of Ln’s.1 In fact, a152

noncommutative subalgebra of charges generated by
∏
ni
Lni , where

∑
ni = 0 is also153

preserved (with undeformed structure constants) by the T T̄ deformation. We develop this154

direction in Appendix G. In the main text, we focus on the KdV charges only. These155

charges are also preserved in integrable massive deformations of minimal models.156

To avoid needlessly duplicating later equations, we denote by P−s, T−s+1, Θ−s−1 the157

charges and currents denoted by P̄s, Θ̄s−1, T̄s+1 in [4]. For s = 1, we get the left- and158

right-moving combinations of H and P that act as derivatives on local operators with no159

explicit coordinate dependence:160

P±1 = −H ± P
2

,

[P1,O] = −i∂O , [P−1,O] = i∂̄O .
(2.3)

Many derivations below are simplified by using these commutators instead of derivatives.161

Next, we use the fact that the commutativity of charges [Ps, Pσ] = 0 is equivalent to the162

integral of [Ps, dz Ts+1 + dz̄ Θs−1] vanishing on any cycle, hence it is an exact one-form [4],163

which in commutator language can be written as:2164

[Pσ, Ts+1(z, z̄)] = [P1, A
s
σ(z, z̄)] ,

[Pσ,Θs−1(z, z̄)] = −[P−1, A
s
σ(z, z̄)] ,

(2.4)

i.e. the commutators on the LHS give derivatives of a local operator Asσ that is only defined165

up to addition of the identity. The unnatural position of indices in Asσ simplifies notations166

for antisymmetrization later on. From the definitions it follows that167

As1 = Ts+1 , As−1 = −Θs−1 . (2.5)

In Appendix A.1 we analyze some further basic identities obeyed by Asσ. In Appendix B168

we show in Lorentz invariant theories that169

A1
s = s Ts+1 , A−1

s = sΘs−1 . (2.6)

2.2 Factorizing operators170

Let us introduce the bilinear operators of [4]:171

Xst(z) ≡ lim
x→z

(Ts+1(x)Θt−1(z)−Θs−1(x)Tt+1(z)) + (reg. terms) , (2.7)

1There is an antiholomorphic copy as well. These charges are integrals of local holomorphic currents of
the form znTm. These charges in general do not commute with the Hamiltonian H, they are conserved
because their noncommutativity with H is compensated by their explicit time dependence. The maximal
commuting set of these charges are the KdV charges.

2In the notations of [4] our operators Asσ are equal to iAσ,s for 0 < σ, s, iBσ,−s for s < 0 < σ, iĀ−σ,−s
for σ, s < 0, and iB̄−σ,s for σ < 0 < s.
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which are spin-(s+ t) operators. The regulator terms are total derivatives and do not play172

an important role in any of the subsequent results. As we show in Appendix C improvement173

transformations of the currents only change the regulator terms, and hence drop out from174

subsequent results. A special case is the bilinear operator175

Xs,−s(z) ≡ lim
x→z

(
Ts+1(x)T̄s+1(z)−Θs−1(x)Θ̄s−1(z)

)
+ (reg. terms) , (2.8)

that we can informally call “Ts+1T̄s+1” following the precedent set by the usage of T T̄ in the176

literature. These composite operators defined by point splitting have remarkable properties.177

They obey factorization, in joint eigenstates of all KdV charges on the cylinder S1 × R,178

〈n|Xst|n〉 = 〈n|Ts+1|n〉〈n|Θt−1|n〉 − 〈n|Θs−1|n〉〈n|Tt+1|n〉 , (2.9)

where we omitted writing the arguments of operators, as one point functions in eigenstates179

do not depend on the position of the operator. In Appendix A.3 we present an algebraic180

proof of (2.9), which relaxes the assumption of non-degenerate energy spectrum that was181

needed in [4], and also allows for the generalization of factorization to the operator:182

X s1...skσ1...σk
≡ k!

(
As1[σ1

· · ·Askσk]

)
reg ,

〈n|X s1...skσ1...σk
|n〉 = k!〈n|As1[σ1

|n〉〈n|As2σ2
|n〉 · · · 〈n|Askσk]|n〉 .

(2.10)

Note that X st−1,1 = Xst defined in (2.7). The point-splitting regularization (•)reg is detailed183

in Appendix A.2.184

2.3 Special deformations preserve the KdV charges185

As was stated at the beginning of this section, deforming the theory by Xst preserves186

the symmetries (2.2). The proof proceeds by constructing the deformation of conserved187

currents under the irrelevant deformation. Let us assume that we deform the Hamiltonian188

by
∫
dy X(y) and ask what conditions need to be satisfied so that the current with charge189

Ps remains conserved.190

First we linearize [H,Ps] = 0 in the coupling of X to obtain:191

0 = [δH, Ps] + [H, δPs]

=

∫
dy [X(y), Ps] + [H, δPs] .

(2.11)

This equation can only be satisfied if [Ps, X(y)] is a total derivative, i.e. there exist Y±1192

such that193

[Ps, X(y)] = [P−1, Y−1(y)] + [P1, Y1(y)] , (2.12)

and then194

δPs = −1

2

∫
dy (Y−1(y) + Y1(y)) (2.13)

obeys (2.11) thanks to the fact that the integral of a derivative vanishes, which we use in the195

form
∫
dy [P, Y1(y)− Y−1(y)] = 0. In Appendix D we show that the condition (2.12) (with196

Y±1 local) is enough to ensure that Ps remains the integral of a local conserved current.197

We just saw that the currents remain conserved if X satisfies the condition (2.12). Let198

us check that (2.12) is obeyed for X = Xtu. We remind ourselves that according to (2.10)199

Xtu(y) = 2 lim
x→y

At[−1(x)Au1](y) + (reg. terms) . (2.14)

6
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For details on the regulator terms see Appendix A.2. Using (A.6) we find200

[Ps, X
tu(y)] = [P−1,X tus,1] + [P1,X tu−1,s] , (2.15)

where we used the definition (2.10). From (2.15) we conclude that (2.12) is obeyed with201

Y−1 = X tus,1 and Y1 = X tu−1,s.202

In summary, we have that under Xtu deformation:203

δPs = −1

2

∫
dy
(
X tus,1(y) + X tu−1,s(y)

)
. (2.16)

Because we can add Tσ+1 + Θσ−1, the time component of a conserved current (with204

commuting charge) to the integrand in (2.16), there is some ambiguity in (2.16). Ambiguities205

are discussed and partially resolved in Appendix C. It can be verified that (2.16) leads206

to δP = 0, δH =
∫
dy Xtu(y) as assumed. (If it did not, we would have had to shift Y±1207

found in (2.15) by some conserved current to make the story consistent.)208

A generalization of (2.15), namely (A.14), states in particular that [Ps,X tur,±1] −209

[Pr,X tus,±1] = [P±1,X turs ], which implies210

δ[Pr, Ps] = −[Ps, δPr] + [Pr, δPs] =
1

2

∫
dy
(
[Ps,X tur,1(y) + X tu−1,r(y)]− r ↔ s

)
=

1

2

∫
dy [P1 − P−1,X turs (y)] = 0

(2.17)

where we used that [P1 − P−1,O] = −i∂xO integrates to zero. This proves Smirnov and211

Zamolodchikov’s conjecture in [4] that the T T̄ deformation leaves the (adjusted) KdV212

charges commuting. We explain in Appendix G which parts of the story presented here213

generalize to nonabelian charges that do not commute with the KdV charges and to internal214

symmetry charges.215

We remark that while the operators X s1...skσ1...σk
defined in (2.10) retain many of the nice216

properties of Xtu, deforming by them does not preserve the KdV charges, as the condition217

(2.12) is not satisfied for them. There is one other, somewhat trivial deformation that218

preserves the KdV charges, the deformation by At1 = Tt+1 or At−1 = −Θt−1. Note that219

these operators can also be written as X t±1. These deformations by conserved current220

components correspond to turning on background gauge fields. The condition (2.12) is221

satisfied with Y−1 = 0, Y1 = Ats (for the At1 deformation) and Y−1 = Ats, Y1 = 0 (for the222

At−1 deformation), which is verified from the definitions (2.4). This choice is not good223

enough however, as it leads to δP = πPt. This problem can be taken care of by using the224

ambiguity discussed below (2.16) of adding conserved currents to Y±1. We work out the225

example of At1, as the At−1 case can be treated in complete analogy. We shift226

for s = 1: Y−1 = 0 , Y1 = At1 = Tt+1 ,

for s = −1: Y−1 = Tt+1 , Y1 = At−1 + Θt−1 = 0 ,
(2.18)

which then gives δP = 0, δH =
∫
dy At1 as required.227

3 Evolution of the spectrum of KdV charges228

3.1 Evolution under generic deformations229

In Section 2 we understood how the KdV charges change under irrelevant deformations.230

Let us now choose joint eigenstates |n〉 of the commuting charges Ps, and denote their231

7
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eigenvalues by 〈Ps〉n ≡ 〈n|Ps|n〉. We can use the Hellman-Feynman theorem for the232

infinitesimal deformation δ〈Ps〉n = 〈n|δPs|n〉 to write:233

∂λ〈Ps〉n = −L
2
〈X tus,1(y) + X tu−1,s(y)〉n

=
L

2

(
〈At1 −At−1〉n〈Aus 〉n − 〈Ats〉n〈Au1 −Au−1〉n

)
= π

(
〈Pt〉n〈Aus 〉n − 〈Pu〉n〈Ats〉n

)
,

(3.1)

where we introduced λ as the coupling constant of Xtu, in the first line we used (2.16)234

and the spacetime independence of one point functions in energy eigenstates to evaluate235

the space integral, in the second line we used factorization (2.10), and in the third we236

used (2.5). We obtained an evolution equation for the change in the spectrum of conserved237

charges under irrelevant deformations.3 That such an equation can be derived is already238

remarkable, but to make the equation useful, we have to be able to determine the matrix239

elements 〈Ats〉n.240

While in the main text we focus our attention on KdV charges, we have not used any of241

their particular properties, and (3.1) applies to other conserved charges with the appropriate242

modifications. E.g. flavor symmetry charges Q (namely s = 0) remain fixed: the equation243

gives ∂λ〈Q〉n = 0 because Au0 = 0. A more general framework for charges is worked out in244

Appendix G. However, we leave for future work the incorporation of supersymmetry into245

the algebraic framework used in this paper.246

A note of caution is in order: we have yet to fix the ambiguities corresponding to the247

mixing of conserved charges discussed below (2.16). Without this, (3.1) is just valid for248

one choice of KdV charges. In Lorentz invariant theories (u = −t) we can use spin to249

prevent the KdV charges from mixing with each other. It can be checked that (2.16) and250

hence (3.1) respects spin. In fact, when the seed theory is Lorentz-invariant, we can use251

Lorentz-invariance even for u 6= −t, by assigning a spin to the coupling λ. This spurion252

analysis is performed in Appendix C.253

We have analyzed and solved a problem similar to (3.1) for a family of deformations made254

out of an abelian current and the stress tensor in [56]. There we have also demonstrated255

that our current tools are inadequate to determine 〈Ats〉n in general. In the rest of this256

section we focus on the case X1,−1 = T T̄ . In Section 4 we analyze a special case of (3.1)257

where we can make progress, while we discuss perturbative aspects in Section 4 and in258

Appendix F.259

3.2 Evolution under the T T̄ deformation260

Let us determine the evolution of KdV charges under the T T̄ deformation of a Lorentz261

invariant theory by plugging in t = 1, u = −1 into (3.1). Using (2.6), we obtain262

∂λ〈Ps〉n = −πs (〈Ts+1〉n〈P−1〉n − 〈Θs−1〉n〈P1〉n) . (3.2)

We still have to determine the expectation values 〈Ts+1〉n, 〈Θs−1〉n. The sum of them263

gives264

〈Ts+1〉n + 〈Θs−1〉n =
2π

L
〈Ps〉n , (3.3)

but the difference, 〈Ts+1〉n − 〈Θs−1〉n requires additional input. In general the expectation265

value of the spatial component of a current (which the quantity in question is), 〈Jx〉n does266

3For momentum (P = −P1 + P−1) the second line of (3.1) gives ∂λ〈P 〉 = 0, as required by momentum
quantization.
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not have a universal expression. In [56] we faced this problem for the case of an internal267

symmetry current and of 〈Ttx〉n, and we treated it by introducing background fields. For268

the case of KdV charges, we found another way to proceed.269

Let us first set s = 1. From the interpretation of 〈Txx〉n as pressure, we have270

〈Txx〉n = −∂LEn . (3.4)

Then transforming to complex coordinates,4271

Txx = − 1

2π
((T2 −Θ0)− (T0 −Θ−2)) , (3.5)

and using (3.3) together with the T0 = Θ0 valid in Lorentz invariant theories, we read off272

〈T2〉n − 〈Θ0〉n = −π
(
∂L〈P−1 + P1〉n +

〈P−1 − P1〉n
L

)
= −2π∂L〈P1〉n ,

(3.6)

where in the second line we used (2.3) and that ∂LPn = −Pn/L which follows from273

momentum quantization, Pn ∈ 2πZ
L . Similarly, we get 〈T0〉n − 〈Θ−2〉n = 2π∂L〈P−1〉n.274

This motivates us to compute ∂LPs. In Appendix E we show275

L∂LPs =
−1

2π

∫
dx
(
A1
s −A−1

s

)
modulo [P, •] , (3.7)

which reduces to the equations above for s = ±1. Taking diagonal matrix elements and276

using that ∂L〈Ps〉n = 〈∂LPs〉n (valid in eigenstates of Ps), we find277

∂L〈Ps〉n =
−1

2π
〈A1

s −A−1
s 〉n =

−s
2π

(
〈Ts+1〉n − 〈Θs−1〉n

)
(3.8)

where in the second equality we used (2.6) valid in Lorentz invariant theories.278

From (3.8) and (3.3) we can express 〈Ts+1〉n and 〈Θs−1〉n separately, and plug back279

their expression into (3.2) to find the flow equation:280

∂λ〈Ps〉n = −π2

(
En∂L〈Ps〉n + Pn

s〈Ps〉n
L

)
. (3.9)

This is our main result. Setting s = ±1 and using (2.3) we recover the Burgers equation281

for En, and the fact that Pn remains undeformed:282

∂λEn = −π2

(
En∂LEn +

P 2
n

L

)
, ∂λPn = 0 , (3.10)

where in the second equation we used ∂LPn = −Pn/L. The KdV charges obey linear283

equations, (3.9), which take as an input the energy eigenvalue that solves the nonlinear284

Burgers equation. We provided a hydrodynamical interpretation of these results in the285

Introduction. We find a similar set of evolution equations in Section 4, where we also show286

that (3.9) holds even in the absence of Lorentz invariance in the zero-momentum sector287

(Pn = 0) of the theory.288

Let us start by solving the equations in two special case. We drop the expectation value289

symbols and the n subscript to lighten the notation. If we set P = 0, the equation simply290

propagates the initial data Ps(L) along characteristics determined by E:291

E(λ, L) = E(0)
(
L− π2λE(λ, L)

)
,

Ps(λ, L) = P (0)
s

(
L− π2λE(λ, L)

)
.

(3.11)

4We use the same conventions as in [56]. In (A.9) of that paper, we gave this result.
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In the conformal case we can solve the equations for any eigenstate. The initial conditions292

are293

P (0)
s (L) =

ps

L|s|
, (3.12)

where ps are numbers only dependent on the state, but not on L. The solution of the294

Burgers equation with this initial data is familiar from the literature:5295

E(λ, L) =
1−

√
1− 2eλ̃+ p2λ̃2

λ̃L
, P (λ, L) =

p

L
,

λ̃ ≡ 2π2λ

L2
.

(3.13)

Once we know the Burgers flow, we can solve for the KdV charges that probe it. In fact we296

do not have to know the explicit form of the solution, (3.13), to verify that297

Ps(λ, L) =

{
ps

(p1)s P1(λ, L)s , (s > 0) ,
ps

(p−1)|s|
P−1(λ, L)|s| , (s < 0) ,

(3.14)

solves (3.9), if we use that P±1(λ, L) satisfies (3.10).298

3.3 A check from integrability and concluding comments299

Integrable field theories provide a useful testing ground of our results. The T T̄ deformation300

changes the two particle S-matrix of an integrable field theory by a simple CDD factor:301

ST T̄ = exp
(
−π2λm2 sinh(θ1 − θ2)

)
S0 , (3.15)

where m is the mass, and θi the rapidities. Plugging this result into the nonlinear integral302

equation that determines the spectrum gives the deformed spectrum in terms of the initial303

one. This computation was done for the energy in [5] and extended to KdV charges and304

other deformations in [57]. Instead of repeating their derivation, we simply copy their305

equations (5.27) and (5.30) in our notation in (F.1), and here we specialize to the T T̄ case306

(corresponding to taking u = 1 in (F.1)). The equation reads307

∂λPk = π2
(
L′∂LPk − k θ′0Pk

)
L′ ≡ P1 + P−1 = −E

θ′0 ≡ −
P1 − P−1

L
=
P

L
.

(3.16)

We recognize that the flow equation is identical to (3.9). This match is a strong check of308

our results. In Appendix F we discuss in detail their deformations with u 6= 1.309

Let us comment on the regimes of validity of the different derivations of (3.9). The310

derivation by [5, 57] applies to the sine-Gordon model and minimal model CFTs. The311

derivation is expected to generalize straightforwardly to any massive integrable model. Our312

derivation applies to the T T̄ deformation of any Lorentz-invariant theory that contains at313

least one higher spin conserved charge. Our derivation rules out the possibility that the314

evolution equation (3.9) is a miracle of some special models.315

A similar relationship holds between the two derivations of the Burgers equation for316

the T T̄ -deformed spectrum: the one by [5] applies to the sine-Gordon model and minimal317

model CFTs, while the one by [4] applies to any field theory.318

5The initial data p±1 are related to e, p by (2.3), i.e. p±1 = − e±p
2

. In a CFT e = 2π
(
h+ h̄− c

12

)
and

p = 2π
(
h− h̄

)
.

10
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4 Non-Lorentz-invariant deformations319

We return to the analysis of (3.1): we study deformations such as Xu,−1 = Tu+1T̄ −Θu−1Θ̄320

(sometimes called Tu+1T̄ for short) that break Lorentz invariance. Specifically, we write321

an evolution equation for the spectrum of zero-momentum states under the X1,u −X−1,u
322

deformation. This incidentally implies that our main result (3.9) holds for zero-momentum323

states even without assuming Lorentz invariance. We then explain why our current methods324

do not allow writing an evolution equation for general states under these deformations.325

Finally, we solve the evolution of zero-momentum states and find the asymptotic density of326

states to shows super-Hagedorn growth.327

Without Lorentz invariance (for u 6= ±1) there is no preferred basis in the space of328

commuting conserved charges, as discussed around (3.1) and in Appendix C. Our results329

in this section apply to the choice of basis, specified by (2.16), for which (3.1) holds.330

Importantly, this choice is preferred if the seed theory is a CFT, as we show in Appendix C.331

This makes it nontrivial to compare our results with those of [57]. What we find in332

Appendix F is that the two papers describe different deformations, even after accounting333

for the possible change of basis. It would be interesting to parametrize the ambiguities in334

our results more completely.335

4.1 Zero-momentum states336

As observed by Cardy [52], Lorentz invariance is not needed to derive the inviscid Burgers337

equation for energy levels of zero-momentum states under the T T̄ deformation. We338

generalize this to the evolution of all KdV charges of zero-momentum states under the339

X1,u−X−1,u deformation. This deformation reduces to the usual T T̄ deformation both for340

u = 1 and for u = −1, and in a CFT it reduces to Tu+1T̄ for u > 0 and T T̄−u+1 for u < 0.341

For the deformation by X1,u −X−1,u, (3.1) gives342

∂λ〈Ps〉n = π
(
〈P1 − P−1〉n〈Aus 〉n − 〈Pu〉n〈A1

s −A−1
s 〉n

)
. (4.1)

The relation (3.8) 〈A1
s −A−1

s 〉n = −2π∂L〈Ps〉n holds without assuming Lorentz invariance.343

As always, there is no general way to determine 〈Aus 〉n. For states |n〉 with zero momentum344

this issue does not show up since 〈P1 − P−1〉n = −Pn = 0, and one has345

∂λ〈Ps〉n = 2π2〈Pu〉n∂L〈Ps〉n if Pn = 0 . (4.2)

For these states, the charge Pu evolves according to the inviscid Burgers equation while all346

other charges describe probe particles riding the Burgers flow. Taking u = ±1 we find that347

our main result (3.9) on the T T̄ deformation holds for zero-momentum states even without348

assuming Lorentz invariance.349

We note that (4.2) also describes the deformation JT̄ − JΘ, which is a special case of350

the family of theories analyzed in [56], in the equation we have to make the replacement351

〈Pu〉n → Qn/(2π), with Qn not evolving with λ due to its quantized nature.6352

It is also interesting to compare with the integrability result (3.16). As we explain in353

Appendix F the deformation described by integrability techniques is not a deformation354

by a local operator, hence is not in the class we consider. Nevertheless, equations (3.16)355

and (4.2) surprisingly agree for states that have zero momentum and 〈Pu〉n = 〈P−u〉n (for356

instance states that are parity-invariant in the seed theory).357

6The λ-independence of Q is consistent with (4.2): if we set s = u, replace 〈Pu〉n → 〈Q〉n/(2π), and use
that ∂L〈Q〉n = 0, we get a consistent equation.
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Finally, an easy calculation shows that the X1,u−X−1,u and X1,v−X−1,v deformations358

commute (in the zero-momentum sector), since the following result is symmetric in u↔ v:359

∂λu∂λv〈Ps〉n = 2π2
(
∂λu〈Pv〉n∂L〈Ps〉n + 〈Pv〉n∂L∂λu〈Ps〉n

)
= 4π4

(
〈Pu〉n∂L〈Pv〉n∂L〈Ps〉n + 〈Pv〉n∂L〈Pu〉n∂L〈Ps〉n + 〈Pv〉n〈Pu〉n∂2

L〈Ps〉n
)
.

(4.3)
In [56] we also studied whether deformations commute and we found some cases where they360

do not. It would be interesting to give a full description of the commutators of different361

Xtu deformations.362

4.2 General states363

The evolution equation (3.1) for KdV charges under anXtu deformation involves expectation364

values of operators Aus . Crucially, these 〈Aus 〉n cannot be determined from the KdV365

charges 〈Pk〉n.366

In a CFT, one checks for instance that367

A3
3 = 4 :T 3:−c+ 2

2
:(∂T )2: + (derivatives) (4.4)

cannot be written in terms of KdV charges. It is not a linear combination of368

T6 = :T 3: +
c+ 2

12
:(∂T )2: . (4.5)

and of other KdV currents. More stringently, its expectation value in low-level descendants369

of primary states is not expressible in terms of the eigenvalue of KdV charges P1, P3, P5370

(dimensional analysis restricts the set of charges to consider).371

The only cases where our main evolution equation (3.1) can be solved with the tools at372

hand are when the dependence on 〈Aus 〉n completely drops out. In Section 3 this happened373

thanks to A±1
s = ±sAs±1. In (4.1) this happened by restricting to the zero-momentum374

subsector. It is conceivable that for some seed theories there would be relations between Aus375

with s, u 6= 0,±1 and some computable quantities. For instance in a massive free scalar one376

actually has Ats ' Ts+t ' Θs+t up to total derivatives. However, one should check whether377

the relation holds after the deformation.378

4.3 Evolution of zero-momentum states379

The evolution equation (4.2) transports KdV charges along characteristics determined380

by Pu (to avoid clutter we leave implicit the dependence on |n〉), so we can simply adapt381

results (3.11) from the T T̄ case and get382

Pu(λ, L) = P (0)
u (L+ 2π2λPu(λ, L)) ,

Ps(λ, L) = P (0)
s (L+ 2π2λPu(λ, L)) .

(4.6)

As for T T̄ the solution with CFT initial conditions is much more explicit. We use the same383

logic as around (3.12). First we set s = u, and using the CFT initial conditions (3.12) we384

find the solution:385

Pu(λ, L) ≡ pufu(puλ̃)

L|u|
, λ̃ ≡ 2π2λ

L|u|+1
, (4.7)

where fu is the unique solution to the polynomial equation386

(xfu(x) + 1)|u|fu(x) = 1 (4.8)
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that obeys fu(0) = 1.7 The other KdV charges probe this flow, and they are given by387

Ps(λ, L) =
ps

L|s|
fu(puλ̃)|s/u| . (4.9)

The JT̄ −JΘ deformation (u = 0) has to be treated separately, and the solution of (4.2) is388

Ps(λ, L) =
ps

(L+ πλQn)|s|
for u = 0 . (4.10)

Note that we get a divergence for λ = −L/(πQn), which is the analog of the branch point389

that we found for u 6= 0, see footnote 7. For the special case of s = ±1 this result agrees390

with what was found for the energy spectrum in [56] with very different methods (see391

also [34]).8 We take this agreement as a check of both the computations presented in this392

section and the methods of [56].393

4.4 The density of states394

It is particularly interesting to consider the asymptotic behavior of the spectrum. For that395

we need to solve (4.8) for x → +∞,9 where we get fu(x) = x−|u|/(|u|+1) + . . . , which for396

puλ̃� 1 gives397

Ps(λ, L) =
ps

L|s|(puλ̃)|s|/(|u|+1)
+ . . . . (4.11)

For puλ̃ negative enough (see footnote 7) we formally get a complex solution, a familiar398

behavior from the study of T T̄ .399

In the CFT, high energy primary states in the zero momentum sector have400

pu = (−1)(|u|+1)/2
(e

2

)|u|
+ . . . , (4.12)

where the inconvenient alternating sign ultimately follows from the sign in the decomposition401

T (x) = −4π2

L2

∑
k e

ikx
(
Lk − c

24δk,0
)
. To have a real asymptotic spectrum, it follows from402

the condition puλ̃ > 0 that λ < 0 for u = ±1,±5, . . . and λ > 0 for u = ±3,±7, . . . .403

Plugging (4.12) into (4.11) for s = ±1 we get (again for puλ̃� 1)404

E(λ, L) =
2

L

(
e

2|λ̃|

)1/(|u|+1)

+ . . . . (4.13)

7One can write a series solution and recast it as a hypergeometric function

fu(x) =

∞∑
j=0

(−x)j

j + 1

(
(j + 1) |u|+ j − 1

j

)

=
|u|

x(|u|+ 1)

(
|u|F|u|−1

(
1

|u|+1
,...,
|u|−1
|u|+1

, −1
|u|+1

1
|u| ,

2
|u| ,...,

|u|−1
|u|

∣∣∣∣ −x (|u|+ 1)|u|+1

|u||u|

)
− 1

)
,

which takes real values for x > xmin ≡ − |u||u| /(|u|+ 1)|u|+1 and has a branch point at x = xmin. Another
way to find this branch point is to compute the discriminant of (4.8), when seen as a polynomial of fu(x).
The discriminant is (−1)|u|(|u|−1)/2x|u|

2−1 |u||u| (x − xmin), which vanishes at xmin, indicating that two
solutions collide for this value of x. This is the analogue of the square-root singularity in the usual Burgers
equation.

8To recover this result from the formulas (6.4) of [56], we take A = 0 corresponding to the JT̄ − JΘ
deformation, then E = (1/L)(s−C/B) = e/(L+ πλQn), where we simply set gJT̄ = −gJΘ = 1, and ` = λ
and specialize to zero momentum. The very attentive reader will notice that we absorbed an i in the
definition of the deformation compared to [56] to make formulas real. In [56] the special A = 0 case was
not analyzed separately, this was first done in [34].

9The equation does not have a real solution for x→ −∞.
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In a CFT, we know that the density of primaries is asymptotically [76]405

ρprimary (E) ≈ exp

(√
4π2(c− 1)

3
e

)
, (4.14)

where we used that E = e
L in the CFT. Expressing e with the energies of the deformed406

theory from (4.13), we obtain407

ρprimary (E) ≈ exp

√8π4(c− 1) |λ|
3× 2|u|

E(|u|+1)/2

 , (4.15)

for the appropriate sign of λ that depends on the value of u as discussed above. Note that408

the density of states is now independent of L, in stark contrast to the extensive entropy409

expected in local field theories. For u = ±1 the above result is the Hagedorn growth of the410

density of states of the T T̄ -deformed theory [7, 24]. We expect that the total density of411

states including spinning primaries and descendants would exhibit the same behavior, with412

only numerical factors modified.413

A generalization is to deform a CFT by a linear combination
∑

u λu(X1,u − X−1,u).414

Similar calculations10 lead to415

ρprimary (E) ≈ exp

(√
4π2(c− 1)e(E)

3

)
, e(E) = 4π2

∑
u

(−1)
|u|+1

2 λu

(
E

2

)|u|+1

.

(4.16)

Different choices of λu appear to accomodate arbitrarily strong (e.g., doubly exponential)416

super-Hagedorn growth of the density of states.11 However, since our results only concern417

zero-momentum states, they are not sufficient to determine when the deformation remains418

well-defined: there could be divergences in the sum over u for some states.419

In the case of the JT̄ − JΘ deformation the Cardy growth remains, but the central420

charge is replaced by a charge dependent expression:421

ρ (E,Q) ≈ exp

(√
4π2c (1 + πλQ/L)

3
EL

)
if λQ > −L

π
. (4.17)

where we took the full density of states, hence the replacement (c− 1)→ c. This behavior422

was understood in [34].423

The super-Hagedorn growth of the density of states is a novel behavior exhibited by this424

system. The two systems known to us with such growth of density of states is flat space425

quantum gravity in d dimensions, which is expected to have an asymptotic density of states426

ρ(E) = exp
(

#E
d−2
d−3

)
from black holes, and the density of states of p-branes was found427

to grow as ρ(E) = exp
(

#E
2(d−1)
d

)
(with d = p + 1) in the semiclassical approximation428

in [77–80]. We do not suggest that these theories to have much to do with each other.429

10A convenient shortcut goes as follows. Charges are transported along characteristics, specifically
Ps(λ,L) = P

(0)
s

(
L + 2π2∑

u λuPu
)
as in (4.6). High-energy primary states of the CFT obey (4.12)

P
(0)
s ≈ (−1)(|s|+1)/2(E(0)/2)|s|. This relation is transported along characteristics. Now use the definition
e = L′E(0)(L′) valid for any L′ combined with the transport equation to express the initial dimensionless
energy e in terms of the deformed energy E: this gives e =

(
L+

∑
u 2π2(−1)(|u|+1)/2λu(E/2)|u|

)
E. Deleting

the negligible term L from this expression and plugging into the Cardy growth (4.14) for e gives (4.16).
11Even though (4.16) formally allows for depletion of the density of states if λu is fine tuned, the formula

breaks down for those cases due to a Jacobian factor that we neglected, and we expect descendent states to
ruin cancellations either way.
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The result (4.15) however provides extra motivation to study the Tu+1T̄u+1 deformation,430

as these Lorentz invariant theories may give rise to exotic UV asymptotics, which would431

manifest itself in a density of states similar to (4.15). A natural guess based on the simple432

dependence of ρ(E) on λ of (4.15) and dimensional analysis for the density of states in433

these theories is434

ρ(E)
guess
≈ exp

(√
#c |λ|Eu

)
. (4.18)

New ideas will be needed to establish (or rule out) this guess.435
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A The As
σ’s, their collisions and factorization442

A.1 Manipulating As
σ’s443

Let us first derive two simple equations. Combining (2.4) and (2.5), we get:444

[Pσ, A
s
±1(z, z̄)] = [P±1, A

s
σ(z, z̄)] . (A.1)

On the other hand, [Pλ, Pτ ] = 0 and the Jacobi identity imply that445

[Pλ, [Pτ , A
s
σ(z, z̄)]] = [Pτ , [Pλ, A

s
σ(z, z̄)]] . (A.2)

First, we can deduce a symmetry property. To make the derivation easier to parse,446

above the equal signs we write the relation we use. We repeatedly transpose neighboring447

subscripts to find448

[P±1, [Pτ , A
s
σ(z, z̄)]]

(A.2)
= [Pτ , [P±1, A

s
σ(z, z̄)]]

(A.1)
= [Pτ , [Pσ, A

s
±1(z, z̄)]]

(A.2)
= [Pσ, [Pτ , A

s
±1(z, z̄)]]

(A.1)
= [Pσ, [P±1, A

s
τ (z, z̄)]]

(A.2)
= [P±1, [Pσ, A

s
τ (z, z̄)]] .

(A.3)

This implies that [Pτ , A
s
σ(z, z̄)] and [Pσ, A

s
τ (z, z̄)] can at most differ by a constant. Taking449

the expectation value of both quantities in a joint eigenstate of (Pτ , Pσ) gives zero, thus we450

conclude from (A.3) that451

[Pτ , A
s
σ(z)] = [Pσ, A

s
τ (z)] . (A.4)

This also shows more generally that [Pσn , . . . [Pσ1 , A
s
σ0

(z, z̄)] . . . ] is totally symmetric in452

the σi.453

Second, we can establish that the condition (2.12) is obeyed for X = Xtu. We work454

here with the point-splitted version of Xtu and return later to the discussion of regulator455

terms. The key identity is a generalization of (A.4) involving operators Asjσj (zj , z̄j) at k456

different points:457

[P[τ , A
s1
σ1
. . . Askσk]]

[A,BC]=[A,B]C+B[A,C]
=

k∑
j=1

As1[σ1
· · ·Asj−1

σj−1 [Pτ , A
sj
σj ]A

sj+1
σj+1 · · ·A

sk
σk]

(A.4)
= 0 ,

(A.5)
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in which the k + 1 subscripts are totally antisymmetrized. Specializing to k = 2 and458

~σ = (1,−1) we learn that459

[Pτ , A
s1
[1A

s2
−1]] = [P1, A

s1
[τ A

s2
−1]] + [P−1, A

s1
[1A

s2
τ ] ] (A.6)

is a total derivative: this is condition (2.12) for the point-splitted version of Xs1s2 =460

2(As1[1A
s2
−1])reg. Note that for any product other than As1[1A

s2
−1] on the left-hand side we461

would have gotten commutators on the right-hand side beyond just derivatives [P±1, . . . ].462

A.2 Collision limits463

To go from the point-split equation (A.6) to an equation for Xs1s2 itself we need to464

understand collision limits of Asσ operators. Let us define the point-splitted object (here zj465

stands for (zj , z̄j))466

X̃ s1...skσ1...σk
(z1, . . . , zk) ≡ k!As1[σ1

(z1) · · ·Askσk](zk) . (A.7)

We take a derivative with respect to one of the coordinates only (say, the first), keeping467

implicit the position dependence of each Asjσi(zj) for brevity:468

[P±1, A
s1
[σ1

] · · ·Askσk]

(A.4)
= [P[σ1|, A

s1
±1]As2|σ2

· · ·Askσk]

[A,B]C=[A,BC]−B[A,C]
= [P[σ1|, A

s1
±1A

s2
|σ2
· · ·Askσk]]−A

s1
±1[P[σ1

, As2σ2
· · ·Askσk]]

(A.5) on second term
= [P[σ1|, A

s1
±1A

s2
|σ2
· · ·Askσk]] .

(A.8)

The notation means that σi indices (but not ±1) are antisymmetrized in each term. The469

result is a sum of [Pσi , •] and we shall call it a Pσ-commutator. Similarly, derivatives of470

As1[σ1
· · ·Askσk] with respect to any of the zj or z̄j are Pσ-commutators. In fact, (A.8) also471

holds with ±1 replaced by any τ , but we will not use that observation.472

We have just shown that all derivatives of X̃ s1...skσ1...σk
are Pσ-commutators. Let us use the473

OPE474

As1σ1
(z1) · · ·Askσk(zk) =

∑
α

fα(z1 − w, . . . )Os1...sk,ασ1...σk
(w) , (A.9)

written in a basis of functions fα(z1 − w, . . . ) that includes the constant function f0(z1 −475

w, . . . ) = 1. (Typically one can use monomials
∏
i(zi − w)αi .) Antisymmetrizing over476

indices σ1 . . . σk, what we have shown above is that477 ∑
α

∇fα(z1 − w, . . . )Os1...sk,α[σ1...σk] (w) (A.10)

is a Pσ-commutator, where ∇ denotes the vector of all zi and z̄i derivatives. Since fα478

form a basis, we learn that each Os1...sk,α[σ1...σk] is a Pσ-commutator except for α = 0 (constant479

coefficient). Hence,480

X̃ s1...skσ1...σk
(z1, · · · , zk) = X s1...skσ1...σk

(w) +
∑
α 6=0

fα(z1 − w, . . . )
k∑
i=1

[Pσi ,O
s1...sk,α
σ1...σk,i

(w)] . (A.11)

The z-independent term defines a local operator X s1...skσ1...σk
(w), and the other terms are coun-481

terterms. Due to freedom in changing basis, which may add constants to the coefficients fα482

of the counterterms, the operators X are only defined up to Pσ-commutators. Given483

16



SciPost Physics Submission

our construction, the X are totally antisymmetric in their σ indices, but might only be484

antisymmetric in their s indices up to Pσ-commutators.12 Alternatively we could have485

written the OPE in a basis of local operators that splits into the subspace spanned by486

[Pσi ,O(w)] for 1 ≤ i ≤ k with local O(w), and a complement of that subspace. This gives487

another definition of X s1...skσ1...σk
modulo Pσ-commutators.488

Recall now that we are trying to take the collision limit in (A.5), namely in489

[P[σ0
, X̃ s1...skσ1...σk](z1, . . . , zk)] = 0 . (A.12)

We get490

0
(A.11)

= (k + 1)
[
P[σ0

,X s1...skσ1...σk](w)
]

+
∑
α 6=0

fα(z1 − w, . . . )
∑

0≤i 6=j≤k
(−1)j

[
Pσj , [Pσi ,O

s1...sk,α
σ0...σj−1σj+1σk,i′

(w)]
] (A.13)

where i′ = i − 1 if i < j and i′ = i otherwise so that the i′-th subscript of O is σi. One491

could hope to use the symmetry [Pσj , [Pσi ,O]] = [Pσi , [Pσj ,O]] to get terms with i↔ j to492

cancel, but this would require the corresponding O operators to be the same, which they493

are a priori not. Instead, we notice that the equation takes the form of a linear relation494

between f0(z1−w, . . . ) (because the first term is zi-independent) and fα with α 6= 0. Since495

these form a basis by assumption, all of their coefficients in the linear relation vanish. In496

particular we have established the following symmetry for the collision limits:497

[P[σ0
,X s1...skσ1...σk](w)

]
. (A.14)

This then establishes that (A.5) holds in the coincident point limit with regulator terms498

included. As explained around (A.5), this establishes that the Xtu deformation preserves499

the KdV charges through the key condition (2.12).500

A.3 Factorization of matrix elements501

In this appendix we show the factorization property of the composite operators X in502

diagonal matrix elements between energy eigensates. We work in a basis of states |n〉 in503

which all charges Ps are diagonal. We assume that the theory has a non-degenerate spectrum,504

namely that each joint eigenspace of all the charges Ps is one-dimensional. This is a much505

weaker assumption than the assumption in [1] that the energy spectrum is non-degenerate.506

(For instance CFTs have a highly degenrate energy spectrum.)507

Consider basis states |n〉 and |n′〉 of equal Pσ for some σ. The 〈n|•|n′〉 matrix element508

of (A.4), namely [Pτ , A
s
σ] = [Pσ, A

s
τ ], gives509 (

〈Pτ 〉n − 〈Pτ 〉n′
)
〈n|Asσ|n′〉 = 0 , (A.15)

where 〈Pτ 〉n denotes 〈n|Pτ |n〉. From the nondegeneracy assumption we deduce that Asσ is510

diagonal in this sector. The argument applies likewise to the point splitted X operator511

X̃ s1...skσ1...σk
with a slight modification: [Pτ ,X ] is a sum of commutators [Pσi , •] so we need to512

restrict X̃ to a subspace of fixed Pσi for all i. Altogether,513

Asσ restricted to fixed Pσ is diagonal,

X̃ s1...skσ1...σk
restricted to fixed Pσ1 , . . . , Pσk is diagonal.

(A.16)

12Relatedly, when point-splitting we only showed that the OPE is regular (up to Pσ-commutators) when
antisymmetrizing the σi: antisymmetrizing the si instead may not give a well-defined operator.
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Next, insert a complete set of states in a diagonal matrix element of X̃ s1...skσ1...σk
:514

〈n|X̃ s1...skσ1...σk
|n〉 =

∑
m

〈n|As1[σ1
|m〉〈m|As2σ2

. . . Askσk]|n〉 . (A.17)

Then consider one of the off-diagonal terms (m 6= n) and let Pτ be one of the charges515

for which Pτ (n) 6= Pτ (m). Such a charge exists by our non-degeneracy assumption.516

Then we can perform a calculation very similar to (A.8) but using additionally that517

[Pσ, |m〉〈m|] = 〈Pσ〉m|m〉〈m| − |m〉〈m|〈Pσ〉m = 0. We find518 (
〈Pτ 〉n − 〈Pτ 〉m

)
〈n|As1[σ1

|m〉〈m|As2σ2
. . . Askσk]|n〉

= 〈n|
[
Pτ , A

s1
[σ1

]
|m〉〈m|As2σ2

. . . Askσk]|n〉
(A.4)
= 〈n|

[
P[σ1|, A

s1
τ

]
|m〉〈m|As2|σ2

. . . Askσk]|n〉
(A.5)
= 〈n|

[
P[σ1|,

(
As1τ |m〉〈m|A

s2
|σ2
. . . Askσk]

)]
|n〉 = 0 .

(A.18)

Therefore the sum (A.17) above restricts to |m〉 = |n〉. An induction on k shows a519

factorization property generalizing those for Xtu proven in [1, 4]:520

〈n|X̃ s1...skσ1...σk
|n〉 = k! 〈n|As1[σ1

|n〉〈n|As2σ2
|n〉 · · · 〈n|Askσk]|n〉 . (A.19)

Note that we have omitted the positions of these operators because derivatives with respect521

to these positions vanish in diagonal matrix elements. We can now take the coincident522

point limit in X̃ : the regulator (and finite but ambiguous) terms of the form [Pσi , •] drop523

out in diagonal matrix elements. Hence524

〈n|X s1...skσ1...σk
|n〉 = 〈n|X̃ s1...skσ1...σk

|n〉 , (A.20)

which combined with (A.19) concludes the proof of factorization.525

Zamolodchikov in [1] proved the factorization of diagonal matrix elements of T T̄ −ΘΘ̄526

only in states that have no energy and momentum degeneracy. An improvement here is that527

the equation holds for all states whose degeneracy can be lifted by any set of commuting528

local conserved charges.13
529

B Proof of (2.6) in Lorentz-invariant theories530

By construction, As1 = Ts+1 and As−1 = −Θs−1. We show here that in Lorentz-invariant531

theories the operators A±1
s are given by (2.6), namely532

A1
s = sTs+1 and A−1

s = sΘs−1 , (B.1)

provided one suitably improves the symmetry current (Ts+1,Θs−1) by adding a total533

derivative
(
[P1, U

s],−[P−1, U
s]
)
with U s given later in (B.14). A surprising side-effect534

of (B.1) is that it fixes a preferred choice of improvements for all higher-spin currents535

(s 6= 0, 1,−1), because A±1
s are not affected by improvements of (Ts+1,Θs−1). Improvements536

are discussed in detail in Appendix C.537

13For example, consider a theory with flavor symmetry su(2) and consider an irreducible representation R
of su(2) inside the Hilbert space. Our reasoning shows the factorization property for eigenstates of
iσ3 ∈ su(2), but also by symmetry for eigenstates of any other element of su(2). How can the non-linear
property of factorization hold for all these linearly-related states in R at the same time? The key is that T
and T̄ and T T̄ commute with su(2) hence are multiples of the identity when acting on R.
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Let us first derive a consequence of (B.1). These relations can be stated as sAs±1 = ±A±1
s .538

Combined with (A.4) [Pu, A
s
t ] = [Pt, A

s
u] we get539

[P±1, sA
s
t ] = [Pt, sA

s
±1] = [Pt,±A±1

s ] = (same with s↔ t) , (B.2)

so derivatives of the difference sAst − tAts vanish. This difference is thus a multiple of the540

identity, hence must be zero unless its spin s+ t is the same as that of the identity operator.541

In that case (s+ t = 0) the multiple of the identity can be absorbed into the definition of542

A∓s±s, for instance by normalizing their ground state expectation value to zero. Altogether,543

we conclude544

sAst = tAts . (B.3)

It remains to prove (B.1). For s = ±1, (B.1) is immediate. Our strategy for other spins545

is to show that A1
s − sTs+1 and A−1

s − sΘs−1 have vanishing ∂x derivative, as we state546

in (B.15) and (B.22). Then these local operators must be multiples of the identity, hence547

vanish because their spin is non-zero (s± 1 6= 0). In the special case s = 0 one determines548

A±1
0 = 0 through their derivatives [P±1, A

±1
0 ] = [P0, A

±1
±1] = 0, where we used that a flavor549

symmetry charge P0 commutes with all stress tensor components A±1
±1. Henceforth we focus550

on spins s 6= 0,−1, 1.551

Throughout our proof of (B.1) we write equal-time commutators of local operators as14
552

[A(x), B(y)] =
∑
n≥0

On(A,B; y)∂nx δ(x− y) . (B.4)

Notice for instance that O0(A,B; y) and −O0(B,A; y) differ by derivatives since553

O0(A,B; y) =

∫
dx [A(x), B(y)] = −

∫
dx [B(y), A(x)] = −

∑
n≥0

∂nyOn(B,A; y) . (B.5)

B.1 Computing some derivatives554

First we work out555

∂xA
1
s(x) = i[P1 − P−1, A

1
s(x)]

= i[Ps, T2(x) + Θ0(x)]

=
i

2π

∫
dy [Ts+1(y) + Θs−1(y), T2(x) + Θ0(x)]

(B.5)
= − i

2π

∑
n≥0

∂nxOn(T2 + Θ0, Ts+1 + Θs−1, x)

(B.6)

and likewise556

∂xA
−1
s = − i

2π

∑
n≥0

∂nxOn(T0 + Θ−2, Ts+1 + Θs−1) . (B.7)

All terms except the n = 0 ones are manifestly x-derivatives. Let us check the n = 0 terms557

also are:558

−i
2π
O0(T2 + Θ0, Ts+1 + Θs−1) = −i[P1, Ts+1 + Θs−1] = −i[P1 − P−1, Ts+1] = −∂xTs+1 ,

−i
2π
O0(T0 + Θ−2, Ts+1 + Θs−1) = −i[P−1, Ts+1 + Θs−1] = i[P1 − P−1,Θs−1] = ∂xΘs−1 .

(B.8)
14We sometimes denote On(A,B) without specifying the point y when that point is clear from context.
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Thus, when restricted to n ≥ 1, the sums in (B.6) give ∂x(A1
s + Ts+1) and ∂x(A−1

s −Θs−1).559

From these we want to subtract derivatives of (s+ 1)Ts+1 and (s− 1)Θs−1 respectively.560

To make factors of spin appear, we consider commutators with the spin operator S561

acting by rotations around the point x. By definition,15
562

S = i

∫
dy (y − x)Ttt(y) (B.9)

so we can express [S,A(x)] for any local operator A(x) in terms of the commutator563

[Ttt(y), A(x)]:564

[S,A(x)] = i

∫
dy (y − x)

∑
n≥0

On(Ttt, A;x)∂ny δ(y − x) = −iO1(Ttt, A;x) . (B.10)

From the fact that Ts+1 and Θs−1 have spins s± 1 we learn that565

(s+ 1)Ts+1 = −iO1(Ttt, Ts+1) ,

(s− 1)Θs−1 = −iO1(Ttt,Θs−1) .
(B.11)

We obtain that derivatives of A1
s − sTs+1 and A−1

s − sΘs−1 are quite complicated:566

∂x(A1
s − sTs+1) = i∂xO1(Ttt, Ts+1)− i

2π

∑
n≥1

∂nxOn(T2 + Θ0, Ts+1 + Θs−1) ,

∂x(A−1
s − sΘs−1) = i∂xO1(Ttt,Θs−1)− i

2π

∑
n≥1

∂nxOn(T0 + Θ−2, Ts+1 + Θs−1) .

(B.12)

B.2 Improvement567

It is not immediately obvious how to absorb right-hand sides into an improvement of568

(Ts+1,Θs−1). Because 2πTtt = T2 + Θ0 + T0 + Θ−2, the sum of these equations simplifies569

and gives second derivatives and higher:570

∂x(A1
s +A−1

s − sTs+1 − sΘs−1) = −i
∑
n≥2

∂nxOn(Ttt, Ts+1 + Θs−1) . (B.13)

This is precisely as expected because the time component Ts+1 + Θs−1 of a current is571

shifted by a space derivative upon improvements. For s 6= 0 the right-hand side of (B.13)572

is absorbed by using the following improved current (in the main text we drop the hats)16
573

T̂s+1 = Ts+1 + [P1, U
s] , Θ̂s−1 = Θs−1 − [P−1, U

s] ,

U s :=
1

s

∑
n≥2

∂n−2
x On(Ttt, Ts+1 + Θs−1) and U0 := 0 .

(B.14)

Explicitly,574

∂x(A1
s +A−1

s − sT̂s+1 − sΘ̂s−1) = 0 . (B.15)
15We left the point of origin x implicit in our notation for S. S is the charge corresponding to the rotation

current jµ(y) ≡ εαβ(y − x)αTβµ that is conserved by virtue of the symmetry of the stress tensor. Since the
coordinates x, y are not well-defined on the cylinder, the expression we gave for S only makes sense locally,
but our calculations are local so doing them on the plane would be equivalent.

16For s = ±1 the left-hand side of (B.13) vanishes by construction, so the right-hand side must vanish.
This is difficult to prove by direct calculations.
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B.3 Space component575

Next we prove the analogous equation for the space components, namely with the signs576

of A−1
s and Θ̂s−1 flipped. We first compute the improvement term in sTs+1 − sΘs−1,577

namely s[P1 + P−1, U
s]. It involves the operator [P1 + P−1,On(Ttt, Ts+1 + Θs−1)], which,578

by definition of On, is the n-th term in the following commutator579 [
P1 +P−1, [Ttt(x), Ts+1(y) + Θs−1(y)]

]
=
∑
n≥0

[P1 +P−1,On(Ttt, Ts+1 + Θs−1; y)]∂nx δ(x−y) .

(B.16)
Applying the Jacobi identity and the conservation equations for Ttµ and Ts+1±Θs−1 gives580 [

∂xTtx(x), Ts+1(y) + Θs−1(y)
]
− i
[
Ttt(x), ∂y(Ts+1(y)−Θs−1(y))

]
. (B.17)

The space derivatives ∂x and ∂y can be pulled out of the commutators, which can then581

both be expanded as
∑

n≥0On(. . . ; y)∂nx δ(x− y) with appropriate arguments. Moving the582

derivatives back into the sum gives583 ∑
n≥0

((
On(Ttx, Ts+1 + Θs−1; y) + iOn(Ttt, Ts+1 −Θs−1; y)

)
∂n+1
x δ(x− y)

− i∂yOn(Ttt, Ts+1 −Θs−1; y)∂nx δ(x− y)

)
.

(B.18)

Equating coefficients of ∂nx δ(x− y) in (B.16) and (B.18) teaches us that for n ≥ 1584

[P1 + P−1,On(Ttt, Ts+1 + Θs−1)]

= On−1(Ttx, Ts+1 + Θs−1) + iOn−1(Ttt, Ts+1 −Θs−1)− i∂xOn(Ttt, Ts+1 −Θs−1) .
(B.19)

We conclude that585

s[P1 + P−1, U
s] =

∑
n≥2

∂n−2
x

[
P1 + P−1,On(Ttt, Ts+1 + Θs−1)

]
= iO1(Ttt, Ts+1 −Θs−1) +

∑
n≥1

∂n−1
x On(Ttx, Ts+1 + Θs−1) .

(B.20)

Returning to (B.12) and using Ttx = Txt we work out586

∂x(A1
s −A−1

s − sTs+1 + sΘs−1)

= i∂xO1(Ttt, Ts+1 −Θs−1) +
∑
n≥1

∂nxOn(Txt, Ts+1 + Θs−1) = ∂x(s[P1 + P−1, U
s]) , (B.21)

namely587

∂x(A1
s −A−1

s − sT̂s+1 + sΘ̂s−1) = 0 . (B.22)

Since if the space derivative of an operator with spin vanishes, it must be the zero operator,588

(B.15) and (B.22) conclude the proof of (2.6).589

C Ambiguities590

In this Appendix we collect results about ambiguities that we encountered in our derivation.591

First we present four ambiguities, the most problematic being the ambiguity in choosing the592

basis of conserved charges. For a Lorentz-invariant seed theory we use Lorentz invariance593

and a spurion analysis to partly resolve this basis ambiguity. For a CFT seed, dimensional594

analysis mostly eliminates the remaining basis ambiguity. In cases where we are eventually595

unable to resolve some of the ambiguity, our equations are only valid for the specific choice596

of basis that we prescribe.597
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C.1 Four ambiguities598

Conserved currents are only defined up to improvement transformations. Under an improve-599

ment (Ts+1,Θs−1)→ (Ts+1+∂Os,Θs−1+∂̄Os), we get using (2.4) that Asσ → Asσ+i[Pσ,Os].600

Let us now take antisymmetric combinations of the Asσ’s that define the operator X s1...skσ1...σk
601

modulo Pσ-commutators (see Appendix A.2). Under an improvement the point-splitted602

operator is shifted as603

X̃ s1...skσ1...σk
→ X̃ s1...skσ1...σk

+
k∑
i=0

k!As1[σ1
. . . A

si−1
σi−1 [Pσi ,Osi ]A

si+1
σi+1 . . . A

sk
σk] , (C.1)

where each term in the sum can be rewritten as [Pσi , . . . ] using (A.5). The change in604

the collision X s1...skσ1...σk
due to improvements can thus be absorbed into the regulator terms605

(Pσ-commutators), as claimed below (2.7).606

Note that the ambiguity in the choice of these regulator terms drops out from diagonal607

matrix elements in joint eigenstates of KdV charges, since 〈n|[Pσ,O]|n〉 = 0. In fact, under608

an improvement none of the expectation values on either side of the factorization property609

(A.19)–(A.20) are affected:610

〈n|X s1...skσ1...σk
|n〉 = k! 〈n|As1[σ1

|n〉〈n|As2σ2
|n〉 · · · 〈n|Askσk]|n〉 . (C.2)

There is a trivial ambiguity in the definition of Asσ, the shift by multiples of the identity:611

Asσ → Asσ + asσ1. Because (2.5) fixes as±1 = 0, the ambiguity does not affect Xst = X tu−1,1.612

However, it changes X s1...skσ1...σk
by mixing it with combinations of X of fewer indices. The only613

case relevant to us is X tus,±1 → X tus,±1 + 2a
[t
sA

u]
±1: the variation (2.16) of Ps under the Xtu

614

deformation is constructed from it and we get615

∂λPs → ∂λPs − πatsPu + πausPt . (C.3)

This mixing of charges is a special case of the ambiguities discussed next.616

Finally, we focus on an ambiguity that is not easily resolved. The algebra of local617

conserved charges is in general non-abelian (for instance in case of non-abelian flavor618

symmetry); for our purposes we need to choose a maximal commuting subalgebra that619

includes the Hamiltonian and momentum. Within this subalgebra, we still have to choose620

a basis. While any function of the charges Ps is conserved, only their linear combinations621

plus shifts by the identity must derive from a local conserved current. Let us implement622

the change δPs =
∑

tMstPt + LNs
2π 1, with δP±1 = 0 (so M±1,t = N±1 = 0) to respect623

momentum quantization and the fact that our deformations are always specified by how624

they act on the energy, with no ambiguity. It shifts local operators as follows:625

δAsσ =
∑
t

MstA
t
σ +

∑
t

MσtA
s
t +Nsδσ,11 ,

δX s1s2σ1σ2
=
∑
t

(
Ms1tX ts2σ1σ2

+Ms2tX s1tσ1σ2
+Mσ1tX

s1s2
tσ2

+Mσ2tX
s1s2
σ1t

)
+ 2

(
Ns1δ1,[σ1

As2σ2] −Ns2δ1,[σ1
As1σ2]

)
,

(C.4)

where the shift of Asσ is a particular choice that preserves (2.5). There are other satisfactory626

choices, as discussed around (C.3).627

This basis ambiguity enters as follows in the story presented in the main text. The628

definition of Y±1 in (2.12) is ambiguous by the addition of conserved currents, and this629

leads to a freedom of adding a linear combination of conserved currents to (2.16). We630
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consider below various conditions on the seed theory or on the deformation and determine631

how much they reduce the ambiguity. This may be useful when comparing our results to632

other approaches, as such approaches may only respect some of the conditions that we use633

to uniquely characterize our choice of deformation.634

C.2 Lorentz invariance, spurions and dimensional analysis635

Consider first the Lorentz-preserving Xu,−u deformation of a relativistic theory. One may636

not add multiples of the identity to any charge: indeed, the identity could only be added to637

current components of spin 0, namely Θ = Θ0 and Θ̄ = T0, but these are fixed by δP±1 = 0.638

In addition, one may only linearly combine currents of the same spin, namely shift ∂λPs by639

αs(λ)Ps for some coefficients αs (more generally a combination of all charges of the same640

spin). If the seed theory is a CFT, dimensional analysis eliminates the ambiguity because641

it only allows a singular αs(λ) ∼ 1/λ. For a massive theory, αs can depend nontrivially on642

the dimensionless combination of the mass scale µ of the seed theory and the irrelevant643

coupling λ. In the absence of a nonabelian charge algebra, no physical principle forbids644

such rescaling, but there is a minimal choice (2.16) that we employ in this paper.17 In the645

T T̄ case it is also the natural definition of charges that emerges in the integrability context646

in [5,57]. If we have a nonabelian algebra, as it is the case for a CFT seed theory, we cannot647

rescale the different generators arbitrarily as that would violate the commutation relations.648

The choice made in (2.16) is compatible with the preservation of the algebra as shown in649

Appendix G. In summary, equation (3.9) giving the evolution of KdV charges under the650

T T̄ flow is unambiguous for a CFT seed, and otherwise its only ambiguity is to scale each651

KdV charges. This ambiguity is frozen by our choice (2.16).652

It is still worth contemplating how easy would it be to recognize the evolution considered653

in this paper, if we were handed the spectrum of the theory with a different choice of rescaling.654

Since the rescaling acts the same way on each eigenvalue, the ratio of two eigenvalues is655

unambiguous, and it would readily lead to the identification of the deformation and the656

rescaling used.657

Next, consider a relativistic seed theory, but deform it by an arbitrary Xtu. The key to658

using Lorentz-invariance of the original theory is to promote the coupling λ to a background659

field (also called a spurion) that has spin −t − u, so that the action is deformed by the660

Lorentz-invariant combination
∫
d2xλXtu. To illustrate how the spurion helps, note that661

our minimal prescription for ∂λPs is an integral of operators X tus,±1 of spin s+ t+ u ± 1,662

consistent with the spins of the current components ∂λTs+1 and ∂λΘs−1. Using the same663

idea, the only mixing ambiguities in the Xtu deformation of a relativistic seed are664

∂λPs → ∂λPs +
∑
k≥1

αs,kλ
k−1Ps+k(t+u) (C.5)

for some coefficients αs,k (more generally one should allow in each term any charge of the665

same spin as Ps+k(t+u)). Without further input these ambiguities cannot be eliminated.666

If the seed is a CFT then we use dimensional analysis: λ has dimension − |t| − |u| while667

Ps has dimension |s|. Only terms with |s+ kt+ ku| = |s|+ k |t|+ k |u| are dimensionally668

consistent. This condition means (s, kt, ku) have the same sign or are zero.669

17For deformations other than T T̄ this statement must be qualified: (2.16) does not fully define a
choice of charges. The ambiguity Ats → Ats + ats1 resurfaces. Lorentz-invariance only allows a−ss 6= 0,
and because of (B.3) it requires a−ss = −as−s. Plugging into (C.3) for the Xu,−u deformation we find
∂λPu → ∂λPu + πa−uu Pu and ∂λP−u → ∂λP−u − πau−uP−u. This means that (2.16) does not fully define
a choice of charges Pu and P−u: specifically one could rescale both of them (by the same factor because
a−uu = −au−u). This caveat does not affect our results: for the T T̄ deformation, a−1

1 = 0 because of (2.5),
so (2.16) fully defines all ∂λPs.
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In particular, the Xtu deformations of a CFT with tu < 0 have no ambiguity.670

For tu > 0 deformations of a CFT (say, t, u > 0), Xtu vanishes because it is an671

antisymmetric combination of holomorphic currents. The deformation thus ought to be672

trivial, but our general prescription (2.16) turns out to mandate a change of basis among673

holomorphic currents. Indeed, it sets ∂λPs to an integral of operators X tus,±1. For s < 0674

this vanishes because Ats and Aus vanish, as Ps is built from a different Virasoro algebra675

than Pt and Pu. For s > 0 however, the operator X tus1 may be non-zero: it is simply a676

holomorphic conserved current. We see that our general prescription is in this case not a677

“minimal” choice of how charges are deformed, as one could have taken simply ∂λPs = 0.678

(This minimal choice cannot be generalized to non-CFTs.) The spurion and dimensional679

analysis above simply teaches us that for s < 0, ∂λPs = 0 is not ambiguous, while for s > 0680

the variation ∂λPs has the full ambiguity (C.5). That ambiguity is enough to relate the681

choice made in (2.16) to the minimal choice.682

C.3 Ambiguities for Section 4683

Our spurion analysis (for relativistic seeds) and dimensional analysis (for CFT seeds)684

extends to linear combinations of deformations by assigning separate spins and dimensions685

to all of the coupling constants. In particular let us discuss the X1,u −X−1,u deformation686

of Section 4, taking for definiteness u > 1 (the case u = 1 is T T̄ ). For the case of a CFT687

seed we will eliminate the whole ambiguity.688

Assume first that we start from a Lorentz-invariant theory. The couplings λ± of X±1,u
689

have different spins −u∓ 1. A charge Ps can thus be mixed with λk+λl−Ps+k(u+1)+l(u−1) for690

k, l ≥ 0. We can now reduce to a single coupling λ± = ±λ and write the ambiguity as691

∂λPs → ∂λPs +
∑
m≥1

λm−1
m∑
k=0

αs,m,kPs+m(u−1)+2k . (C.6)

This ambiguity cannot be eliminated without further assumptions.692

For a CFT seed we can eliminate these ambiguities completely. Among ambiguities (C.6)693

allowed by the spurion analysis, dimensional analysis (where λ has dimension −u− 1) only694

allows those with |s|+m(u+ 1) = |s+m(u− 1) + 2k|. Using the triangle inequality one695

has696

|s+m(u− 1) + 2k| ≤ |s|+m(u− 1) + 2k ≤ |s|+m(u+ 1) , (C.7)

with equality if and only if k = m and s ≥ 0. Thus, (C.6) becomes697

∂λPs → ∂λPs +
∑
m≥1

λm−1αs,mPs+m(u+1) for s ≥ 0 . (C.8)

Focus on states |n〉 that start out as primary states in the CFT. Our evolution equation (4.2)698

preserves 〈Ps − P−s〉n = 0. In contrast, any shift (C.8) spoils this because the charges699

Ps+m(u+1) all have positive spins and their expectation values all have different scalings in700

terms of the state’s energy. The condition of preserving 〈Ps − P−s〉n = 0 thus characterizes701

our deformation when the seed is a CFT.702

D Existence of local currents generating the KdV charges703

In this Appendix we show that if X satisfies (2.12) then Ps remains conserved and the704

integral of a local current. The conservation equation (2.2) in the canonical formalism takes705
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the form706

0 = [P−1, Ts+1] + [P1,Θs−1] , (D.1)

which we linearize in the coupling of X to obtain707

0 = [δP−1, Ts+1] + [P−1, δTs+1] + [δP1,Θs−1] + [P1, δΘs−1] . (D.2)

Quantization of the momentum implies δP = 0, and using δH =
∫
dy X(y) together with708

(2.3) implies that δP±1 = −1
2

∫
dy X(y), reducing (D.2) to709

0 = −1

2

∫
dy [X(y), Ts+1(x) + Θs−1(x)] + [P−1, δTs+1(x)] + [P1, δΘs−1(x)] . (D.3)

The commutator of two local operators can in general be written as710

[Ts+1(x) + Θs−1(x), X(y)] =
∑
n≥0

On(y) ∂nx δ(x− y) . (D.4)

Integrating this commutator over x gives O0(y) = 2π[Ps, X(y)]. In (D.3) we need the711

integral of this expression in y:712 ∫
dy [X(y), Ts+1(x) + Θs−1(x)] = −2π[Ps, X(x)]− ∂x

(∑
n≥1

∂n−1
x On(x)

)
= −2π[Ps, X(x)] + i[P−1 − P1,

∑
n≥1

∂n−1
x On(x)] ,

(D.5)

where we used (2.3). Plugging this result back into (D.3) we see that we can satisfy that713

equation only if the condition (2.12) is obeyed. Putting (D.5), (2.12), and (D.3) together714

we get that18
715

δTs+1(x) = −πY−1(x) +
i

2

∑
n≥1

∂n−1
x On(x) ,

δΘs−1(x) = −πY1(x)− i

2

∑
n≥1

∂n−1
x On(x) .

(D.6)

E Rescaling space716

We show here how KdV charges respond to a rescaling of space. Specifically we show717

L∂LPs =
−1

2π

∫
dx
(
A1
s −A−1

s

)
+ [P,W] (E.1)

for some nonlocal operator W , which however does not influence diagonal matrix elements718

in eigenstates, since 〈n|[P, •]|n〉 = 0. One way to reach this equation is to start from719

L∂LH = −
∫
dxTxx and apply the general machinery (2.12) with X = −Txx to determine720

how KdV charges can be adjusted to remain conserved. A minimal choice is (E.1). However,721

this approach leaves a lot of ambiguity because the KdV charges could be mixed under this722

18The corrections to the currents coming from Y±1 in (D.6) were given in an explicit form in [4], while
the terms coming from the On(x) were referred to as contact term corrections in a footnote.
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deformation. We take a different, more direct, approach here to show (E.1) that avoids this723

mixing ambiguity. As in (B.4), we will use the notation724

[A(x), B(y)] =
∑
n≥0

On(A,B; y)∂nx δ(x− y) . (E.2)

Let us start with the left-hand side of (E.1). The action of a local spatial translation725

y 7→ y′ = y + ε(y) on a local operator B is to shift it as726

B(y′) = B(y) +

[∫
dx ε(x)Txt(x), B(y)

]
+O(ε2) . (E.3)

Integrating with measure dy′ = (1 + ∂yε)dy gives727 ∫
dy′B(y′) =

∫
dy

(
B(y) + ∂yεB(y) +

[∫
dx ε(x)Txt(x), B(y)

])
+O(ε2) . (E.4)

To rescale space L→ (1 + ε)L we take ε(x) = εx. We compute the commutator using (E.2):728

729 [∫
dxxTxt(x), B(y)

]
=

∫
dxx

∑
n≥0

On(Txt, B; y)∂nx δ(x− y)

= yO0(Txt, B; y)−O1(Txt, B; y)

= iy[P,B(y)]−O1(Txt, B; y) .

(E.5)

Altogether,730

L∂L

∫
dy B(y) =

∫
dy
(
B(y)−O1(Txt, B; y)

)
+ [P,W] (E.6)

for W = i
∫
dy y B(y). In particular, taking B = 1

2π (Ts+1 + Θs−1), whose integral is Ps, we731

get732

L∂LPs = Ps −
1

2π

∫
dyO1(Txt, Ts+1 + Θs−1; y) + [P,W] . (E.7)

Next we work out the right-hand side of (E.1). We compute733

∂x(A1
s −A−1

s )
(2.3)
= i[P1 − P−1, A

1
s −A−1

s ]
(2.4)
= i[Ps, T + Θ− Θ̄− T̄ ] = −2π[Ps, Txt]

(2.2)
=

∫
dy [Txt(x), Ts+1(y) + Θs−1(y)]

(E.2)
=
∑
n≥0

∂nxOn(Txt, Ts+1 + Θs−1;x) .
(E.8)

The term n = 0 is a derivative, like the other terms:734

O0(Txt, Ts+1 + Θs−1;x) =

∫
dy [Txt(y), Ts+1(x) + Θs−1(x)] = −∂x

(
Ts+1(x) + Θs−1(x)

)
,

(E.9)
so we get735

A1
s −A−1

s = −
(
Ts+1(x) + Θs−1(x)

)
+
∑
n≥1

∂n−1
x On(Txt, Ts+1 + Θs−1;x) (E.10)

up to shifts by multiples of the identity (the only local operator whose ∂x derivative736

vanishes). Then737

−1

2π

∫
dx
(
A1
s −A−1

s

)
= Ps −

1

2π

∫
dxO1(Txt, Ts+1 + Θs−1;x) . (E.11)

We are done showing (E.1), because the right-hand sides of (E.7) and (E.11) agree up to738

[P,W].739
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F A comment on an integrability result740

We show here that the evolution equation (3.16) found in [57] using integrability describes741

some deformation that is outside the class of operator deformations that we study. Our742

results cannot be compared. Let us copy their equation for the u-th deformation here in743

our notations:744

∂λ〈Pk〉n = π2
(
L′∂L〈Pk〉n − k θ′0〈Pk〉n

)
,

L′ ≡ 〈Pu〉n + 〈P−u〉n − π2(u− 1)λ
(
〈Pu〉n − 〈P−u〉n

)
θ′0 ,

θ′0 ≡ −
〈Pu〉n − 〈P−u〉n

L− π2(u− 1)λ (〈Pu〉n + 〈P−u〉n)
.

(F.1)

where we used the translation Iu → −Pu, τ → −π2λ, R→ L and kept their notation for745

L′, θ′0. Because it reproduces results on the T T̄ and JT̄ deformations19 the authors naturally746

suggested that for general spin u it might describe the X1,−u (plus Xu,−1) deformations.747

We give a general argument based on translation invariance that shows that (F.1) cannot748

correspond to adding to the action the integral ∂λS =
∫
d2xO(x) of any local operator O749

and working with charges of local conserved currents. We then give a more restricted750

argument that the equation cannot describe Xu,−1 and/or X1,−u deformations, based on751

the observation that (F.1) does not involve the A±uk operators. This might help determine752

what the deformation described by (F.1) actually is in the operator language.753

F.1 Nonlocality of the deformation or the charges754

Assume that (F.1) described adding to the action the integral ∂λS =
∫
d2xO(x) of a local755

operator O and working with charges of local conserved currents. Then invariance under756

translation along the (compact) spatial direction would be preserved, so momentum P757

would remain quantized, hence λ independent:758

〈P 〉n = 〈P 〉◦n , (F.2)

by which we mean the momentum of the original CFT state |n〉◦. In the CFT, P =759

−P1 + P−1.760

While in our framework we kept −P1 + P−1 equal to momentum P (the quantized761

charge of spatial translation), (F.1) leads to762

〈−P1 + P−1〉n
(F.1)
= 〈P 〉◦n −

2π2λ

L
〈PuP−1 − P1P−u〉n +O(λ2) (F.3)

where we simplified a derivative by using that momentum depends on L as 〈−P1 +P−1〉◦n ∼763

1/L. In an updated version of [57] another momentum P̌ is also defined, and it is found764

not to depend on λ and hence coincides with the momentum we are using in the main text.765

The relation between P̌ and P in [57] is the same (to linear order) as what we find in (F.3);766

what we are showing below is that P̌ and P defined in [57] cannot both be integrals of local767

currents.768

We would thus have two conserved charges: −P1 + P−1, and momentum P . Their769

difference would be a conserved charge as well, namely there would exist a conserved current770

Jµ such that (we divided by πλ for later convenience)771

〈Jt〉n =
4π2

L2
〈PuP−1 − P1P−u〉n +O(λ) . (F.4)

19More precisely, for a CFT the u→ 0 limit has a four-parameter generalization, and a choice of these
parameters gives the usual JT̄ deformation.
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Notice in passing that for u = 1 the right-hand side cancels out and one can simply have772

Jµ = 0. For u 6= 1 there is no cancellation and the right-hand side is the eigenvalue of773

PuP−1 − P1P−u in the state |n〉. Each Pk is an integral of a local operator over the spatial774

circle, so this quadratic combination is an integrated two-point function of components of775

currents. There is no reason to expect such an integrated two-point function to reduce to776

the one-point function of a well-chosen operator.777

Let us make the argument sharp when starting from a CFT, for instance a minimal778

model: after all, the integrability results apply equally well to these theories. In a CFT779

with no further symmetry the KdV charges have odd spins u ∈ 2Z + 1.780

Consider first u > 0 and focus on a primary state with conformal dimensions h, h̄. In781

that state, 〈Pu〉◦n = (2π/L)u((−h)(u+1)/2 + . . . ) and 〈P−u〉◦n = (2π/L)u((−h̄)(u+1)/2 + . . . )782

are polynomials of degree (u+ 1)/2 in h and h̄, respectively, so783

〈Jt〉n = (−1)(u+3)/2
(2π

L

)u+3(
h̄h(u+1)/2 − hh̄(u+1)/2 + . . .

)
+O(λ) . (F.5)

In a generic CFT, conserved charges split into a sum of a holomorphic and an antiholomorphic784

charges, and their one-point function in a primary state is of the form f(h, c) + g(h̄, c). For785

u > 1, (F.5) is not of this form, so the current Jµ cannot exist. This concludes our proof in786

that case.787

For u < 0, the matrix element 〈Jt〉n is a sum of terms 〈PuP−1〉◦n and 〈P1P−u〉◦n that788

each involve only one of the chiral Virasoro algebras. However there is no way to write789

these terms as the expectation value of a local conserved current. Let us see this explicitly790

for u = −1. Note that since |n〉 is an eigenstate of P1,791

〈P1〉2n = 〈P 2
1 〉n = 〈(L0 − c/24)2〉n at λ = 0 , (F.6)

which cannot be equal for all states to a linear combination of792 ∫
dx :∂kT∂lT : = #L2

0 + #L0 + # + 2ik−l
∞∑
m=1

mk+lL−mLm (F.7)

because the sum of L−mLm cannot cancel in all states.793

We conclude that (F.1) cannot describe in general for u 6= 1 the evolution of local794

charges under a deformation that respects periodic translation invariance and locality. If795

(F.1) describes the effect of field-dependent changes of coordinates as proposed in [57], then796

it is perhaps not surprising that periodicity of the space coordinate is not preserved. It may797

be the case that the deformation only makes sense on the plane rather than the cylinder.798

Another possibility may be that the charges 〈Pk〉n appearing in (F.1) are not integrals of799

local conserved currents.800

F.2 Linear order around a CFT801

While our proof above rules out deformations by arbitrary local operators it is instructive802

to look more carefully at why the integrability equation (F.1) does not correspond to a803

deformation by X operators.804

Let us consider deformations of CFT to linear order by a combination of Tu+1T̄ and805

T T̄u+1 (for u > 0), namely by αX−1,u +βX1,−u for some coefficients α, β. As we explained,806

our formalism expresses the variation of KdV charges in terms of operators Ats. In a CFT,807

these operators vanish when signs of s and t differ, and furthermore they have the symmetry808
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tAts = sAst derived in (B.3). This allows us to write (3.1) as809

〈Pk〉n = 〈Pk〉◦n + πλ
(−2παk

L
〈Pu〉◦n〈Pk〉◦n + β〈P1〉◦n〈A−uk 〉

◦
n

)
+O(λ2) for k < 0 ,

〈Pk〉n = 〈Pk〉◦n + πλ
(
−2πβk

L
〈P−u〉◦n〈Pk〉◦n + α〈P−1〉◦n〈Auk〉◦n

)
+O(λ2) for k > 0 ,

(F.8)
where the superscript ◦ denotes CFT quantities. At this point we must remember that (3.1)810

is only one choice of how to deform KdV charges in such a way as to keep them conserved:811

one can add to it other conserved charges of the CFT, as discussed in detail in Appendix C.20
812

In contrast, using that the k-th KdV charge scales as L−|k| in the CFT, the integrability813

result (F.1) gives814

〈Pk〉n
(F.1)
= 〈Pk〉◦n −

2π2λk

L
〈Pu〉◦n〈Pk〉◦n +O(λ2), for k < 0 ,

〈Pk〉n
(F.1)
= 〈Pk〉◦n +

2π2λk

L
〈P−u〉◦n〈Pk〉◦n +O(λ2), for k > 0 .

(F.9)

In both of these lines we recognize one of the terms in (F.8) (with α = 1 = −β) but not815

the term 〈P−1〉◦n〈Auk〉◦n for k > 0 (and its complex conjugate for k < 0). As discussed in816

Section 4.2, 〈Auk〉◦n cannot be determined from the integrals of motion 〈Pk〉◦n. What is less817

immediate is whether the term 〈P−1〉◦n〈Auk〉◦n could be fully absorbed by the freedom to818

shift ∂λ〈Pk〉n by a conserved charge,21 possibly combined with a change of α, β.819

This can be ruled out tediously in an ad-hoc manner by considering the case where |n〉820

is a primary state of conformal dimensions h, h̄ and working out the leading powers of h821

and h̄ in each expectation value. The question then boils down to whether there could be822

some coefficient γ such that823

〈P−1〉◦n〈Auk〉◦n + γ〈P−u〉◦n〈Pk〉◦n
= #(h̄+ . . . )

(
h(u+k)/2 + . . .

)
+ #γ

(
h̄(u+1)/2 + . . .

)(
h(k+1)/2 + . . .

) (F.10)

is 〈Q〉◦n for some conserved charge Q (here # denote known coefficients). Since the leading824

monomials cannot cancel for u > 1, by the same logic as around (F.5), (F.10) does not825

have the form f(h, c) + g(h̄, c) of the expectation value of a conserved charge.826

Thus, (F.1) would need significant modifications involving 〈Auk〉n to describe the Tu+1T̄827

or T T̄u+1 deformations.828

G Nonabelian symmetries829

In the main text we exclusively work with a chosen commuting subset of the conserved830

charges. Here we discuss what changes for charges Qa that do not commute. Most831

20In fact, dimensional analysis and spurion analysis together rule out such mixing for the αX−1,u+βX1,−u

deformation (u > 0). Since Xs,t (s, t > 0) vanish in a CFT, it is not possible to distinguish (at linear
order around the CFT) the αX−1,u + βX1,−u deformation from a sum of this deformation and of any
Xs,t (s, t > 0). While the couplings of Xs,t are invisible in the Hamiltonian at this order, they weaken
dimensional and spurion analysis because of their varied dimensions and spins. These couplings allow a
large class of mixing ambiguities. We thus move on with the proof without using dimensional and spurion
analysis.

21In fact, this essentially happens in Section 4. To linear order around a CFT the deformation studied
there is X−1,u, corresponding to α = 1 and β = 0 here, and we focus there on the zero-momentum sector.
In that sector we can check 〈P−1〉◦n〈Auk〉◦n = 〈P1〉◦n〈Auk〉◦n = (L/2π)〈X 1u

1k 〉◦n + 〈Pk〉◦n〈Pu〉◦n(2π/L). The first
term is a shift by the conserved charge of the holomorphic current X 1u

1k . The second is expressed in terms
of charges that we have control on. Away from the zero-momentum sector this switch to holomorphic
quantities is not possible.
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prominenly this includes non-abelian flavor symmetries. Another example is the full set of832

monomials built from T and its derivative in a CFT: this forms a non-abelian extension of833

the KdV charges.834

We learn that it only makes sense to deform by bilinears combinations Xab of currents835

when the corresponding charges Qa and Qb commute. Along the deformation, one can836

preserve the charges Qc that commute with both of these, and the structure constants of837

these charges are not deformed. For instance, the T T̄ deformation preserves the full charge838

algebra (non-abelian flavor symmetries and perhaps more surprisingly the non-abelian KdV839

charge algebra of a CFT) including its structure constants.840

G.1 The operators A841

We denote structure constants as fabc, so that [Qa, Qb] = fab
cQc.842

Because [Qa, Qb]−fabcQc = 0, the integral of [Qa, Jb,zdz−Jb,z̄dz̄]−fabc(Jc,zdz−Jc,z̄dz̄)843

on any cycle vanishes, hence this one-form is exact. Namely,844

[Qa, Jb,z(z, z̄)]− fabcJc,z(z, z̄) = −i∂Aab(z, z̄),
[Qa, Jb,z̄(z, z̄)]− fabcJc,z̄(z, z̄) = i∂̄Aab(z, z̄)

(G.1)

where Aab are some (local) operators defined up to shifts by multiples of the identity. We845

also denote Aab = A(Qa, Jb) to emphasize that the operator depends on a choice of charge846

and a choice of current, which are two somewhat asymmetric inputs. The Ats operators847

considered in the main text are special cases of Aab. With this notation it is easy to check848

that849

A(P1, J) = Jz and A(P−1, J) = Jz̄ (G.2)

up to the shift-by-identity freedom. Improving the currents affects A(Qa, Jb) as follows:850

(Jd,z, Jd,z̄)→ (Jd,z +∂Od, Jd,z̄− ∂̄Od) =⇒ A(Qa, Jb)→ A(Qa, Jb) + i[Qa,Ob]− ifabcOc .
(G.3)

In another appendix we showed a symmetry property (A.4) [P[s, A
u
t]] = 0 for the case851

of commuting charges. To show it the main point was to show the ∂ and ∂̄ derivatives852

vanished. Let us follow the same strategy when structure constants are non-zero. We work853

out854

−2i∂[Q[a, Ab]c] = 2
[
Q[a, [Qb], Jc,z]

]
− 2
[
Q[a, fb]c

dJd,z
]

= fab
d
[
Qd, Jc,z

]
− fbcd[Qa, Jd,z] + fac

d[Qb, Jd,z]

= −i∂
(
fab

dAdc − fbcdAad + fac
dAbd

) (G.4)

where the first equality is the definition (G.1), the second equality uses the Jacobi identity855

and [Qa, Qb] = fab
dQd, and the last equality expresses each commutator [Qa, Jb,z] =856

fab
cJc,z − i∂Aab before using a cancellation fabdfdce − fbcdfade + fac

dfbd
e = 0 that is due857

to the Jacobi identity [[Qa, Qb], Qc]− [Qa, [Qb, Qc]] + [Qb, [Qa, Qc]] = 0. Together with the858

analogous result for i∂̄, this means that859

[Qa, Abc]− [Qb, Aac]−
(
fab

dAdc + fcb
dAad + fac

dAbd
)

(G.5)

is a translationally-invariant but local operator, hence a multiple of the identity. This860

reduces to the definition of Abc upon specializing to Qa → P±1 and using (G.2): this861

uses that structure constants fabc vanish when Qa = P±1, because any conserved charge862

commutes by definition with these charges.22 Another interesting case is when Qa, Qb and863

22To be more precise this assumes that currents do not depend explicitly on coordinates; otherwise the
conservation equation ∂tQa = 0 and the trivial equation ∂xQa = 0 do not translate to [P±1, Qa] = 0.
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Qc commute. Then all structure constants drop out, so the operator is traceless23 hence864

vanishes. In other words,865

[Q,A(Q′, J ′′)] = [Q′, A(Q, J ′′)] when [Q,Q′] = [Q,Q′′] = [Q′, Q′′] = 0 . (G.6)

G.2 The operators X and deformations866

Consider a pair of conserved currents Ja and Jb. For the same reason as the usual T T̄ −ΘΘ̄867

collision, we can define Xab = (εµνJa,µJb,ν)reg by point-splitting, modulo total derivatives.868

Indeed, conservation leads to869

∂z
(
Ja,z(z, z̄)Jb,w̄(w, w̄)− Ja,z̄(z, z̄)Jb,w(w, w̄)

)
= (∂z + ∂w)

(
Ja,z(z, z̄)Jb,w̄(w, w̄)

)
+ (∂̄z + ∂̄w)

(
Ja,z̄(z, z̄)Jb,w(w, w̄)

)
,

(G.7)

hence the collision εµνJa,µJb,ν is independent of the offset (z − w, z̄ − w̄), modulo total870

derivatives. Amusingly we did not need to assume that the charges Qa and Qb commute.871

Now deform the action by Xab. The key question is which symmetries Qc can be872

preserved. As we showed in (2.12), the condition is that [Qc, Xab] needs to be a total873

derivative. One can compute874

[Qc, Xab] = fca
dXdb + fcb

dXad + i∂(Ja,z̄Acb−AcaJb,z̄)reg + i∂̄(Ja,zAcb−AcaJb,z)reg . (G.8)

A word of warning: the bilinears Ja,µAcb − AcaJb,µ regulated by point splitting have875

significantly more ambiguities than those we discuss in Appendix A.2 for the case of876

commuting charges.877

In order for the deformation to make sense beyond linear order, the symmetries Qa and878

Qb that define the deformation must themselves be preserved by the deformation. Setting879

c = a and c = b we see that the above commutator is only a total derivative if [Qa, Qb] is880

both proportional to Qa and to Qb, hence is simply zero.881

We learn that it only makes sense to deform by bilinears Xab of commuting currents.882

Then, apart from fine-tuned cases where fcadXdb+fcb
dXad somehow cancels, the charges883

that are preserved by the Xab deformation are the charges Qc that commute with Qa and Qb.884

An important special case is for the T T̄ deformation: charges can be preserved if and only885

if they commute with P±1, namely the corresponding currents do not depend explicitly on886

coordinates.887

G.3 Structure constants are preserved888

Under a deformation by Xab (with [Qa, Qb] = 0), consider two charges Qc and Qd that889

commute with Qa and Qb. In other words, these four charges commute pairwise except Qc890

and Qd, whose commutator we wish to study. Ignoring regulator terms (which work out in891

the same way as explained in Appendix A.2) we have892

δ[Qc, Qd] = [Qc, δQd] + [δQc, Qd]

=
i

2

∫
dx
[
Qc, Ja,tAdb −AdaJb,t

]
− (c↔ d)

=
i

2

∫
dx
(

[Qc, Ja,t]Adb + Ja,t[Qc, Adb]− [Qc, Ada]Jb,t −Ada[Qc, Jb,t]− (c↔ d)
)

(G.9)
23In this infinite-dimensional setting the trace is ill-defined. One can consider instead the expectation

value in any common eigenstate of Qa and Qb.
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where we simply expanded the commutators. Rewriting the commutators [Q, J ′t] =893

∂xA(Q, J ′), and using (G.5) to rewrite [Qc, Adb] − [Qd, Acb] = fcd
eAeb (other structure894

constants vanish), we get895

δ[Qc, Qd]=
i

2

∫
dx
(
∂xAcaAdb−∂xAdaAcb+Ja,tfcdeAeb−fcdeAeaJb,t−Ada∂xAcb+Aca∂xAdb

)
.

(G.10)
The first two and last two terms combine into x derivatives, while the middle two terms896

are simply fcdeδQe. Altogether, δ
(
[Qc, Qd]− fcdeQe

)
= 0, namely structure constants do897

not change. This is in harmony with the conjecture in [4] that the T T̄ deformation leaves898

the KdV charges commuting, which we showed in (2.17) in a less abstract language.899

In Appendix C we analyze ambiguities that affect the definition of currents, charges900

and Aab appearing throughout the paper. In this appendix we worked with the specific901

fixing of ambiguities and saw that the symmetry algebra remains undeformed. If we were902

to reintroduce ambiguities, the nonabelian structure would get deformed. Hence, if a903

nonabelian algebra is preserved, requiring it to remain undeformed is an efficient principle904

to fix the ambiguities.905
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