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Abstract

We connect two different approaches for calculating functional determinants
on quotients of hyperbolic spacetime: the heat kernel method and the quasi-
normal mode method. For the example of a rotating BTZ background, we
show how the image sum in the heat kernel method builds up the logarithms
in the quasinormal mode method, while the thermal sum in the quasinormal
mode method builds up the integrand of the heat kernel. More formally, we
demonstrate how the heat kernel and quasinormal mode methods are linked
via the Selberg zeta function. We show that a 1-loop partition function com-
puted using the heat kernel method may be cast as a Selberg zeta function
whose zeros encode quasinormal modes. We discuss how our work may be
used to predict quasinormal modes on more complicated spacetimes.
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1 Introduction

Functional determinants of kinetic operators are of interest in theoretical physics because
they allow for the study of quantum effects. For example, the 1-loop partition function
for a linearized graviton φ is given by

Z(1) =

∫
Dφe−

1
2

∫
dDx
√
gφ∇2φ =

det∇2
v√

det∇2
sdet∇2

g

, (1)

where ∇2
s, ∇2

v and ∇2
g correspond to the kinetic operators for the scalar, vector, and

graviton, respectively. Functional determinants also underlie the quantum entropy func-
tion [1–3], which encodes quantum corrections to black hole entropies. From a mathe-
matical perspective, functional determinants exhibit the spectral properties of operators
on function spaces and provide a classification of smooth manifolds [4]. Here we study
two different approaches for computing functional determinants – the heat kernel and
quasinormal mode methods – and how they relate to one another via the Selberg zeta
function [5].

The first method we explore is the heat kernel method (see e.g. [6]), which directly
calculates the spectrum of the kinetic operator of a free quantum field ψ via the eigenvalue
equation

∇2ψn = λnψn . (2)

This equation can be rewritten in terms of the heat kernel K, which solves

(∂t +∇2
x)K(t;x, y) = 0 , K(0;x, y) = δ(x, y) , (3)

where t is the heat kernel parameter. The heat kernel is related to the 1-loop correction
to the action:

S(1) = −1

2
log det∇2 = −1

2

∑
n

log λn =
1

2

∫ ∞
0+

dt

t

∫
d3x
√
gK(t;x, x) . (4)

For highly symmetric spacetimes, the differential equation (3) can be easily solved. For
quotients of such spacetimes, such as thermal AdS and the BTZ black hole, the method
of images allows us to calculate the complete heat kernel. This version of the heat kernel
method was employed in [7] to calculate the 1-loop determinant of all locally AdS3 spaces.

The second method we consider, put forth in [8, 9], provides additional insight for
thermal spacetimes. First, we consider Z(1)(∆) as a function of the conformal dimension
∆ in the complex plane. If Z(1)(∆) is a meromorphic function, then we can use the
Weierstrass factorization theorem to write the 1-loop partition function as a product of
zeros and poles, up to an entire function ePol(∆):

Z(1)(∆) = ePol(∆)

∏
∆0

(∆−∆0)d0∏
∆p

(∆−∆p)dp
, (5)

where d0 and dp are the degeneracies of the zeros and poles.
In many cases of interest, Z(1)(∆) is indeed a meromorphic function, but not always

(cf. flat space1). In the case of a scalar field, equation (5) has no zeros. The poles occur
at ∆p where there is a solution to the Klein Gordon equation(

−∇2 + ∆p(∆p − d)
)
φ = 0 (6)

1It is fairly straightforward to see why Z(1)(∆) is not meromorphic in flat space. Consider the partition

function of a scalar field on a two-sphere: Z(1)(∆) =
∏
`(∆ −

`(`+1)

a2
), where a is the size of the sphere.

The flat space limit is obtained by taking the sphere size a → ∞, and we see that the poles accumulate
into a branch cut, rendering the partition function non-meromorphic in this limit.
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which is smooth and single-valued. In general, these ∆p will not correspond to physical
mass values. Instead, as [9] shows, the ∆p occur when the quasinormal modes ω∗(∆p)
coincide with the Matsubara frequencies. For a static thermal background of temperature
T , the 1-loop partition function for the scalar field can then be expressed as

Z(1)(∆) = ePol(∆)
∏
n,∗

(2πinT − ω∗(∆))−1 . (7)

The 2πinT arises from the Euclidean periodicity condition imposed on the fields, and
generalizes to a function ωn(k) of the angular momentum quantum number in stationary
spacetimes [10].

As mentioned in [7], the subject of computing determinants of Laplacians on Rieman-
nian manifolds is now well-studied among mathematicians [11, 12] and physicists [13, 14]
alike. The so-called Selberg trace formula (and associated Selberg zeta function [14, 15])
for a given manifold and kinetic operator calculate the regularized spectrum of that oper-
ator. A Selberg zeta function can be assigned to hyperbolic spacetimes of the form Hn/Γ,
where Γ is a discrete subgroup of SL(2,C) [16]. Such quotient spacetimes are the basis
for holographic constructions at finite temperature, as well as higher genus generaliza-
tions [17].

We show that in the case of H3/Γ, with Γ ' Z, the Selberg zeta function acts as a
bridge between the heat kernel and quasinormal mode methods. This case covers both
the rotating BTZ black hole and thermal AdS3 spacetimes. The relationship between
the heat kernel and the Selberg zeta function was presented in [13], and [18] (in the con-
text of the static BTZ black hole). The relationship between quasinormal modes and
the Patterson-Selberg2 zeta function was presented in [20, 21]. We build on these previ-
ous works constructing a connection between the heat kernel and quasinormal methods.
Furthering these works, we present a continuous connection between the heat kernel and
quasinormal mode methods for calculating 1-loop determinants on hyperbolic quotient
spacetimes.

After reviewing the heat kernel and quasinormal mode methods for computing 1-loop
partition functions, in Section 2 we explicitly connect the heat kernel and quasinormal
mode expressions for both scalar fields and gravitons in the 2+1 dimensional rotating
BTZ black hole background. In Section 3 we explain how these methods are formally
related through the Selberg zeta function: matching the zeros of the Selberg zeta function
to the conformal dimension of the field imposes the condition ω∗ = ωn. We summarize
our conclusions and discuss directions for future work in Section 4.

2 Quasinormal Modes and Heat Kernel: Direct Connection

2.1 Review of Heat Kernel and Quasinormal Mode Methods

2.1.1 Heat Kernel

We begin by reviewing the heat kernel method for computing functional determinants on
a BTZ background, following [7]. For a real massive scalar field of mass m, the heat kernel

2There is a technical difference between Selberg and Patterson-Selberg zeta functions. In hyperbolic
quotient spacetimes in which the volume of the fundamental domain is finite Vol(F) <∞, one can assign
a Selberg zeta function to that spacetime in a more or less straightforward way (cf [14]). The Vol(F) =∞
case is more complicated, but in spacetimes that retain a high degree of symmetry (such as the BTZ black
hole) it is still possible to assign a zeta function to this quotiented spacetime, and this is referred to as
the Patterson-Selberg zeta function [16, 19]. From here on, when we say the Selberg zeta function, it is
implied that we mean the Patterson-Selberg zeta function.
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over H3 can be found by directly solving the heat kernel differential equation (3):

KH3
(t; r) =

1

(4πt)3/2

r

sinh r
exp

(
−(m2 + 1)t− r2

4t

)
. (8)

The 1-loop contribution to the effective action then becomes

S(1) = −1

2
log det(−∇2 +m2) =

1

2

∫ ∞
0

dt

t

∫
d3x
√
gKH3

(t;x, x)

=
1

2
Vol(H3)

∫
dt

t

e−(m2+1)t

(4πt)3/2

=
Vol(H3)

12π
(m2 + 1)3/2 ,

(9)

where the Vol(H3) represents an IR divergence coming from the integral over H3. As
noted in [7], the UV divergence (corresponding to t → 0) can be removed by performing
an analytic continuation of the t integral.

The heat kernel is well suited to compute functional determinants on quotient spaces
of the form M = H3/Γ, including the BTZ black hole and thermal AdS where Γ ' Z.
Since the heat kernel differential equation (3) is linear, the heat kernel on H3/Γ can be
determined using the method of images:

KH3/Γ(t;x, y) =
∑
γ∈Γ

KH3
(t;x, γy) . (10)

For the BTZ and thermal AdS cases, the heat kernel on H3/Z becomes:

KH3/Z(t;x, y) =
∑
k∈Z

KH3
(t; r(x, γkx′)) . (11)

A detailed account of how to find γ from the group theoretic structure of the BTZ black
hole is given in Appendix A.

From (11) the scalar 1-loop determinant on H3/Z is

− log detO =

∫ ∞
0

dt

t

∫
d3x
√
gKH3/Z(t;x, x)

= Vol(H3/Z)

∫ ∞
0

dt

t

e−(m2+1)t

(4πt)3/2
+
∑
k 6=0

∫ ∞
0

dt

t

∫
H3/Z

d3x
√
gKH3

(t; r(x, γkx)) ,

(12)

with O = (−∇2 +m2). The explicit functional determinant found in [7] is

− log detO =

∞∑
k=1

e−2πkτ2
√

1+m2

2k| sinπkτ |2
= 2

∞∑
k=1

|q|k∆

k|1− qk|2
, (13)

where q ≡ e2πiτ , τ = τ1 + iτ2, and ∆ = (1 +
√

1 +m2). In (13) we have dropped the k = 0
contribution, as this infinite volume term can be removed via a counterterm.

Evaluating the sum over images k, the 1-loop partition function for a real scalar field
in a rotating BTZ black hole may be expressed as a product over integers ˜̀, ˜̀′

Z
(1)
scalar(τ, τ̄) = (detO)−1/2 =

∞∏
˜̀,˜̀′=0

1

1− q ˜̀+∆/2q̄ ˜̀′+∆/2
. (14)

In a similar manner, the graviton 1-loop partition function on H3/Z is [7]:

Z(1)
grav(τ, τ̄) =

∞∏
m=2

1

|1− qm|2
. (15)
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2.1.2 Quasinormal Modes

We now briefly outline how to derive the 1-loop partition function via the quasinormal
mode method, following [10]. We restrict ourselves to a real scalar field ϕ in a rotating BTZ
black hole background. The quasinormal modes for higher spin s fields in this background
were computed in [22]. The scalar field behavior near the Euclidean horizon r ∼ r+ is

ϕ(ξ, TE ,Φ) ∼ ξ±ikT e−kTTEe−i`Φ . (16)

Here kT = ωr+−i`|r−|
r2++|r−|2

is the frequency conjugate to the Euclidean time coordinate TE ,

` ∈ Z is the angular momentum quantum number conjugate to the coordinate Φ and ξ is
a radial coordinate defined in Appendix A.

Periodicity of ϕ in the TE direction requires that kT = in for n ∈ Z. Therefore,
solutions (16) will only occur at specific quantized values ωn

3:

−ikT = n⇒ ωn
2π

= 2i
TLTR
TL + TR

n+
TR − TL
TL + TR

`

2π
, (17)

with TL,R = 1
2π (r+ ∓ r−). From (16), we can see that these values correspond to the

ingoing (quasinormal, n > 0) and outgoing (antiquasinormal, n < 0) modes, once we
Wick-rotate to real time. This equation can be rewritten as

ωn
2π

=
in

2
(TR + TL)− (TR − TL)

2
kΦ(n, `) , kΦ(n, `) =

(TR − TL)

(TR + TL)
in− `

π(TR + TL)
, (18)

where we have introduced kΦ(n, `) following the notation of [10].
The ingoing quasinormal mode frequencies of a real scalar field on a rotating BTZ

black hole background are given by [23]

ω∗ = −`− 2πiTR(2p+ ∆) , ω∗ = `− 2πiTL(2p+ ∆) , (19)

while the outgoing antiquasinormal frequencies are given by

ω∗ = −`+ 2πiTR(2p+ ∆) , ω∗ = `+ 2πiTL(2p+ ∆) . (20)

Here p ∈ N and ` ∈ Z.
If Z(1)(∆) is a meromorphic function, then it may be written as a product over its

poles and zeros – a consequence of the Weierstrass factorization theorem (5). For a real
scalar field, Z(1) ∝ (det∇2

s)
−1/2, and thus has no zeros. The determinant will have a zero,

and thus Z(1) will have a pole, whenever the operator ∇2
s has a zero mode. These zero

modes occur when ∆ is tuned such that the Klein-Gordon equation (6) has a smooth,
single-valued solution for ϕ in Euclidean signature which obeys the asymptotic boundary
conditions. We will denote these “good ϕ” by ϕ∗,n, where n labels the mode number in the
Euclidean time direction and ∗ represents all other quantum numbers characterizing the
solution. The associated ∆ for which ϕ∗,n solve the Klein-Gordon equation are likewise
denoted as ∆∗,n. Therefore, poles in Z(1)(∆) occur whenever ∆ = ∆∗,n.

The central result of [9] is the relationship between these Euclidean zero modes ϕ∗,n
and the Lorentzian quasinormal modes, achieved via a Wick rotation. Quasinormal modes
are Lorentzian modes which have purely ingoing behavior at the horizon and satisfy the
asymptotic boundary conditions. Both conditions are only satisfied at a discrete set of fre-
quencies ω∗(∆). For physical ∆, these frequencies generically have both real and imaginary

3We can interpret these ωn as “Matsubara frequencies” in a thermal field theory with rotation, where
the integer ` corresponds to the rotation.
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parts, so quasinormal modes are the damped modes indicating the ringdown of the black
hole. Antiquasinormal modes instead satisfy purely outgoing behavior at the horizon.

When ∆ is tuned to ∆∗,n, we find

ω∗(∆∗,n) = ωn . (21)

That is, setting ∆ = ∆∗,n aligns the quasinormal modes with the Matsubara frequencies.
For static spacetimes the Matsubara frequencies are ωn = 2πinT ; for stationary spacetimes
they are given by (17). Consequently, if we know all of the (anti)quasinormal frequencies
as a function of ∆, then we can immediately locate the poles in Z(1)(∆): they are where
∆ is tuned such that ω∗(∆) = ωn.

Using this insight, the 1-loop determinant of a real scalar field on a rotating BTZ black
hole background is given by [10](

ePol

Z(1)

)2

=
∏

n>0,p≥0,`

(ωn + `+ 2πiTR(2p+ ∆))(ωn − `+ 2πiTL(2p+ ∆))

∏
n<0,p≥0,`

(ωn + `− 2πiTR(2p+ ∆))(ωn − `− 2πiTL(2p+ ∆))

∏
p≥0,`

(ω0 + `+ 2πiTR(2p+ ∆))(ω0 − `+ 2πiTL(2p+ ∆)) .

(22)

After some algebraic manipulation and absorbing a factor into Pol(∆) we obtain

Z(1) = ePol(∆)
∞∏

˜̀,˜̀′=0

1

(1− q ˜̀+∆/2q̄ ˜̀′+∆/2)
, (23)

where q ≡ e−2π(2πTL) = e2πiτ , q̄ ≡ e−2π(2πTR) = e−2πiτ̄ , τ = 2πiTL and τ̄ = −2πiTR. In
a similar fashion, [10] wrote the 1-loop partition function for the graviton in the same
background as

Z(1)
grav =

∞∏
˜̀=0

1

(1− q ˜̀+2)(1− q̄ ˜̀+2)
. (24)

Before we move on to show the explicit connection between the heat kernel and quasi-
normal mode methods of computing 1-loop determinants, we highlight how they are dif-
ferent. While the heat kernel method makes explicit use of the group theoretic structure
of the quotient spacetime via the method of images, the quasinormal mode method does
not. More specifically, with the heat kernel method we used that H3/Γ is locally AdS3 and
that the identifications (tE , φ) ∼ (tE , φ+2π) and (tE , φ) ∼ (tE+β0, φ+θ) easily determine
the group element γ ∈ Γ. The quasinormal mode method, on the other hand, requires
a detailed knowledge of the quasinormal modes for a field ϕ on the thermal background.
Nonetheless, the two approaches agree exactly, cf. (22), (14), and (24), (15). This agree-
ment suggests that the quasinormal modes contain information about the group theoretic
structure of the orbifold geometry H3/Γ, and that the heat kernel encodes the quasinormal
modes.

The two methods also differ in how the modular transformation τBTZ → −1/τTAdS

manifests when comparing the thermal AdS3 and BTZ calculations. In the heat kernel
method, Z(1) for thermal AdS is obtained by performing the modular transformation at
almost any point in the calculation. In the quasinormal mode method, the relationship
between the BTZ and thermal AdS 1-loop partition functions via modular transformation
is not apparent until the end of the calculation, as individual normal modes of thermal

6
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AdS do not directly map to individual quasinormal modes of BTZ. The fact that the
collection of normal modes or quasinormal modes lead to a 1-loop partition function of
the same form, which also matches the results determined using the heat kernel method,
again suggests that the modes contain critical information about the underlying quotient
structure of the spacetime.

2.2 An Explicit Connection: Scalars

We now explicitly compare the calculations of the 1-loop determinant of a real scalar
field in a rotating BTZ black hole background via the quasinormal mode and heat kernel
methods. We will find (1) the image sum (11) builds up the logarithm appearing in the
quasinormal mode expressions (25), and (2) the thermal mode sum builds up the integrand
appearing in the heat kernel expression (12).

For calculational ease we study the logarithm of the determinant. From the quasinor-
mal mode method we have [10]

logZ(1) − Pol(∆) =−
∑

n>0,p≥0

{
log(1− qn+pq̄p(qq̄)∆/2) + log

(
1− q̄n+pqp(qq̄)∆/2

)}
−
∑
p≥0

log
(

1− (qq̄)p+∆/2
)
,

(25)

where p ∈ N labels a particular quasinormal mode and n ∈ Z labels the thermal integer in
the regularity condition kT = in. We expand the logarithm by introducing a new integer
k via

log(1− x) = −
∞∑
k=1

xk

k
. (26)

As we will see shortly, k has a physical interpretation: it is the index in the image sum
used in the heat kernel method.

Implementing (26), (25) becomes

logZ(1) − Pol(∆) =

∞∑
k=1

(qq̄)k∆/2

k

[ ∞∑
n=1

(
qkn + q̄kn

)
+ 1

]∑
p≥0

(qq̄)kp

=
∞∑
k=1

(qq̄)k∆/2

k

[
1− (qq̄)k

(1− qk)(1− q̄k)

]
1

(1− (qq̄)k)

=
∞∑
k=1

(qq̄)k∆/2

k

 ∞∑
˜̀,˜̀′=0

qk
˜̀
q̄k

˜̀′

 ,

(27)

where we used a geometric series to get the final line. This expression exactly matches
the result in [7] for a scalar field in thermal AdS, after sending τBTZ → −1/τAdS in q.

From the first line of (27), we can split our expression into three factors: one involving
the thermal number n, one involving the mode number p, and another factor that only
depends on the index k coming from the Taylor expansion of the logarithm. Comparing
to functional determinant as found from the heat kernel (13), we see that k is exactly the
image index in the method of images.

In the last line of (27) there are two terms. The term in brackets is obtained by carrying
out the sums over quasinormal modes, while the other term is independent of n and p.
Both terms have distinct physical interpretations in the heat kernel picture. Multiplying

7
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and dividing (27) by (qq̄)−k/2 we obtain

logZ(1) − Pol(∆) =

∞∑
k=1

(qq̄)k/2(∆−1)

k

[
1

(q−k/2 − qk/2)(q̄−k/2 − q̄k/2)

]
. (28)

Evaluating the term in brackets we find

((q−k/2 − qk/2)(q̄−k/2 − q̄k/2))−1 = (4| sin(πkτ)|2)−1, (29)

and using that
(qq̄) = e2πi(τ−τ̄) = e−4πτ2 , (30)

and ∆− 1 =
√

1 +m2, we arrive at

logZ(1) − Pol(∆) =

∞∑
k=1

e−2πτ2k
√
m2+1

k

[
1

4| sin(πkτ)|2

]
. (31)

This is precisely the method of images result for the 1-loop partition function, (14)4. In
summary, the sum over images in the heat kernel method builds the series expansion for
the logarithms in the quasinormal mode method. Conversely, the combined sums over
the thermal number n and radial number p in the quasinormal mode method build the
integration measure and the heat kernel in (12).

2.3 An Explicit Connection: Gravitons

Similarly, the quasinormal mode method of computing the 1-loop partition function for
massless 3-dimensional gravitons rebuilds the associated heat kernel on a H3/Z back-
ground. The form of the graviton 1-loop determinant is [24]

Z(1)
grav =

(
detT (−∇2 + 2/L2)

detSTT (−∇2 − 2/L2)

)1/2

, (32)

where the denominator is the determinant for symmetric, transverse and traceless rank-2
tensors and the numerator is the determinant for transverse vector fields. The numerator
is a ghost contribution due to the presence of extra gauge redundancies associated with
massless 3-dimensional gravitons. If we use the same steps which led us to (31), we
recover the heat kernel for a massless 3-dimensional graviton living on a (rotating) BTZ
background, as we now show explicitly.

Following the quasinormal mode method presented in [10]5, the logarithm of the 1-loop
partition function for the massless graviton becomes

logZ(1)
grav =

∞∑
˜̀,˜̀′=0

log
[(

1− q ˜̀+2q̄
˜̀′+1
)(

1− q ˜̀+1q̄
˜̀′+2
)]
−
∞∑

˜̀,˜̀′=0

log
[(

1− q ˜̀+2q̄
˜̀′
)(

1− q ˜̀
q̄

˜̀′+2
)]

.

(33)

4We can also compare (31) to (13). The factor of two difference arises because (13) is the functional
determinant of the kinetic operator, while (31) is the logarithm of the 1-loop partition function, and
Z(1) = (detO)−1/2. Had we considered a complex scalar field instead of a real scalar field, there would
not be an additional factor of 1/2 in Z(1).

5We impose the same condition as for the scalar fields in (3.2), except that the conformal dimension
∆ → ∆2 ± 2TR−TL

TR+TL
where ∆2 is the conformal dimension of the graviton. A similar argument holds

for the calculation of the quasinormal mode spectrum for massive spin-1 vector fields, except here the
replacement is ∆→ ∆1 ± TR−TL

TR+TL
. These shifts occur because some low-mode number quasinormal modes

do not Wick-rotate to well-behaved Euclidean modes, as explained in the appendix of [10].

8
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The first sum on the right hand side is

−
∞∑

˜̀,˜̀′=0

log
[(

1− q ˜̀+2q̄
˜̀′+1
)(

1− q ˜̀+1q̄
˜̀′+2
)]

=
∞∑
k=1

∞∑
˜̀,˜̀′=0

1

k
(qk(˜̀+2)q̄k(˜̀′+1) + qk(˜̀+1)q̄k(˜̀′+2))

=
∞∑
k=1

1

k|1− qk|2
(q2kq̄k + q̄2kqk)

=

∞∑
k=1

|q|2k(qk + q̄k)

k|1− q̄k|2
,

(34)

while the second sum on the right hand side of (33) is

−
∞∑

˜̀,˜̀′=0

log
[(

1− q ˜̀+2q̄
˜̀′
)(

1− q ˜̀
q̄

˜̀′+2
)]

=
∞∑
k=1

∞∑
˜̀,˜̀′=0

1

k
(qk(˜̀+2)q̄k

˜̀′
+ qk

˜̀
q̄k(˜̀′+2))

=

∞∑
k=1

q2k + q̄2k

k|1− qk|2
.

(35)

Combining (34) and (35) leads to

logZ(1)
grav =

∞∑
k=1

q2k + q̄2k − |q|2k(qk + q̄k)

k|1− q̄k|2

=

∫ ∞
0

dt

t

∞∑
k=1

2π2τ2

| sin(πkτ)|2
e−(2πkτ2)2/4t

4π3/2
√
t

[
e−t cos(4πkτ1)− e−4t cos(2πkτ1)

]
,

(36)

matching the full 1-loop free energy given in section 4, equation (4.27), in [7]. We can
easily rewrite this quantity as

logZ(1)
grav =

1

2

∫ ∞
0

dt

t
(K(2)(τ, τ̄ ; t)e2t −K(1)(τ, τ̄ ; t)e−2t) , (37)

where we have introduced the heat kernel K(s)(τ, τ̄ ; t) for fields of spin-s [25]:

K(s)(τ, τ̄ ; t) =
∞∑
k=1

2πτ2√
4πt| sin kπτ |2

cos(2πskτ1)e
−(2kπτ2)

2

4t e−(s+1)t . (38)

The sum over images in the heat kernel (38) method rebuilds the power series expansion
for log(1 − x) in the quasinormal mode method, and the combined sum over the radial
quantum number p and thermal integer n in the quasinormal mode method build the
integrand of the heat kernel in (37).

3 Quasinormal Modes and Heat Kernel: Formal Connection

Inspired by the results in the previous section, we now seek a more formal connection
between the quasinormal mode and heat kernel methods for calculating functional deter-
minants of Laplacians. The connection resides in the Selberg zeta function ZΓ, a quantity
that can be assigned to a quotient spacetimeM/Γ with Γ a discrete subgroup of SL(2,C).

9
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For concreteness, we again work in the case of a real massive scalar field in the rotating
BTZ black hole background6. The graviton result is worked out subsequently.

The quantity det(∇2) is divergent as ∇2 is an unbounded operator, so our first task
in computing its spectrum is to regularize it. Though various regularization schemes are
possible (see e.g. [14] and references therein), we will see that zeta function regularization
yields a particularly simple expression for the finite piece of Z(1) in terms of the generalized
Riemann zeta function [26].

We can assign a generalized Riemann zeta function ζ(s) to an invertible operator O
satisfying Oψn(x) = λnψn(x), defined by

ζ(s|O) ≡
∑
n

1

λsn
. (39)

This function is similar to the standard Riemann zeta function, except the sum is taken
over the nonzero eigenvalues of O rather than over the natural numbers. This zeta function
allows us to neatly express the functional determinant detO as

log detO = −∂ζ(s|O)

∂s

∣∣∣∣
s=0

, (40)

and thus the generalized Riemann zeta function is a repackaging of detO itself.
If we also introduce the heat kernel associated with O,

K(t;x, x′|O) =
∑
n

e−λntψn(x)ψ∗n(x′) , (41)

we see that the generalized zeta function is given by the Mellin transform of this heat
kernel [14]:

ζ(s|O) =
1

Γ(s)

∫ ∞
0

ts−1TrK(t;x, x|O)dt . (42)

Here Γ(s) is the gamma function and the trace implies an integral over Kt(x, x|O) with
respect to x.

3.1 A Formal Connection: Scalars

We now specialize to the case of a real massive scalar field in a rotating BTZ black hole
background in order to explore the link between the generalized Riemann zeta function and
the Selberg zeta function. This specialization will facilitate comparison with the results
of the previous section7 . Recall that the 1-loop determinant for such a scalar field is, as
in (12)-(13):

−log det∇2
s = ζ

′(e) +
∑
k 6=0

∫ ∞
0

dt

t

∫
H3/Z

d3x
√
gKH3

(t; r(x, γkx))

= ζ
′(e) +

∞∑
k=1

e−2πkτ2
√

1+m2

2n| sinπkτ |2
.

(43)

The term ζ
′(e) represents the k = 0 term of the sum. It is a divergent quantity proportional

to the volume of H3/Z, and its superscript is to remind us that it corresponds to the
identity element of the group action Γ.

6The calculation that we present is equivalent to that of thermal AdS, with the appropriate redefinition
of q, arising from the modular transformation τBTZ → −1/τAdS .

7To generalize this comparison to higher spin fields, see subsection 3.2 for the graviton case and [27]
for spinor fields.

10
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As reviewed in Appendix A, the BTZ black hole (and, equivalently, thermal AdS3) can
be understood as the quotient space MΓ = H3/Γ, with Γ ' Z being the group generated
by (95). The Selberg zeta function ZΓ(s) for orbifold spaces of the form MΓ = Hn/Γ
when Γ is a Kleinian group was derived in [5], whereas [16] worked out the Selberg zeta
function for the BTZ black hole associated with dilations of the Poincaré patch :

ZΓ(s) =
∞∏

k1,k2=0

[
1− e2ibk1e−2ibk2e−2a(k1+k2+s)

]
, (44)

Here a = πτ2, b = −πτ1, and τ = τ1 + iτ2
8 . The infinite product converges for all s.

ZΓ(s) is an entire function, with zeros occurring whenever the argument of the exponential
equals 2πi` for ` ∈ Z. These zeros occur when s = s∗`,k1,k2 , with

s∗`,k1,k2 = −(k1 + k2) +
ib

a
(k1 − k2)− iπ`

a
. (45)

Consider the quantity logZΓ(s). Expanding the logarithm in a Taylor series and
performing two geometric series summations on k1 and k2, we arrive at

logZΓ(s) = −
∞∑
k=1

e−2πkτ2(s−1)

4k| sinπkτ |2
. (46)

Comparing (43) and (46), we obtain:

−log det∇2
s = ζ ′(0|O) = ζ

′(e) − 2 logZΓ(∆) , (47)

where ∆ = 1+
√

1 +m2. This equation is our desired relationship between the Selberg and
generalized Riemann zeta functions. We see that they are related through the divergent
volume contribution ζ

′(e).
We can now elucidate the connection between the Selberg zeta function (and thus the

heat kernel) and quasinormal modes. We repackage the integers k1 and k2 defined in (44)
in terms of two new integers j and n as follows:

n ≥ 0 : k1 + k2 = 2j + n k1 − k2 = ∓n ,
n < 0 : k1 + k2 = 2j − n k1 − k2 = ∓n .

(48)

These shifts produce four different combinations of s∗. For n ≥ 0,

s∗`,n,j = −(2j + n)− in b
a
− iπ`

a
, s∗`,n,j = −(2j + n) + in

b

a
− iπ`

a
, (49)

while for n < 0

s∗`,n,j = −(2j − n)− in b
a
− iπ`

a
, s∗`,n,j = −(2j − n) + in

b

a
− iπ`

a
. (50)

The redefinitions (48) are not ad hoc. Remarkably, the prescription for defining k1 and k2

in terms of j and n is a result from scattering theory, and we urge the interested reader
to see [16] for more details.

We will see below that j and n both have an interpretation in terms of quasinormal
modes. In particular, j becomes the radial quantum number, n plays the role of the
thermal n in the Matsubara frequencies (with n ≥ 0 corresponding to ingoing modes),

8For the BTZ black hole we have a = πr+ and b = π|r−|.
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Selberg zeta integers Interpretation

j (rewriting k1 and k2) QNM radial quantum number p

n (rewriting k1 and k2) Matsubara thermal integer n

` (condition that ZΓ(s∗) = 0) QNM angular quantum number `

Table 1: The dictionary associating the repackaging of Selberg zeta function integers and
their interpretation in terms of quasinormal modes and Matsubara frequencies.

Ingoing (n ≥ 0) Outgoing (n < 0)

ω∗`,j(∆) = `− i
π (a+ ib)(2j + ∆) ω∗`,j(∆) = `+ i

π (a+ ib)(2j + ∆)

k1 + k2 = 2j + n k1 − k2 = n k1 + k2 = 2j − n k1 − k2 = −n

ω∗`,j(∆) = −`− i
π (a− ib)(2j + ∆) ω∗`,j(∆) = −`+ i

π (a− ib)(2j + ∆)

k1 + k2 = 2j + n k1 − k2 = −n k1 + k2 = 2j − n k1 − k2 = n

Table 2: Quasinormal modes and their associated Selberg zeta integer pairings.

and ` is the angular quantum number. For clarity and convenience, these relationships
are recorded in Table 1.

We present evidence for the dictionary presented in Table 1 through three examples: a
real scalar field, a massive spin-2 tensor field and a massive spin-1 vector field in a rotating
BTZ black hole background [10]. The scalar case provides a simple example to illustrate
the dictionary, and we will see that the graviton and vector examples are interesting in
their own right.

The ingoing modes of a scalar field on a rotating BTZ background are (19)

ω∗`,j(∆) = −`− 2πiTR(2j + ∆) , ω∗`,j(∆) = `− 2πiTL(2j + ∆) , (51)

while the outgoing (antiquasinormal) modes are (20)

ω∗`,j(∆) = −`+ 2πiTR(2j + ∆) , ω∗`,j(∆) = `+ 2πiTL(2j + ∆) , (52)

where j ∈ N and ` ∈ Z. To obtain a result that is easily mapped to thermal AdS, we
rewrite ω∗`,j(∆) in terms of a = πr+ and b = π|r−|. Using |r−| = ir−, TR = a−ib

2π2 and

TL = a+ib
2π2 , the ingoing modes become

ω∗`,j(∆) = −`− i

π
(a− ib)(2j + ∆) , ω∗`,j(∆) = `− i

π
(a+ ib)(2j + ∆) , (53)

while the outgoing modes become

ω∗`,j(∆) = −`+
i

π
(a− ib)(2j + ∆) , ω∗`,j(∆) = `+

i

π
(a+ ib)(2j + ∆) . (54)

Each one of these expressions corresponds to a particular choice for the packaging of the
Selberg zeta integers (48). The correct pairings are given in Table 2.

12
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Now we validate the dictionary presented in Table 1. The quantity of interest will be
the difference between the conformal dimension ∆ of the field in question and the zeros
of the Selberg zeta function s∗`,k1,k2 :

∆− s∗`,k1,k2 = ∆ + (k1 + k2)− ib

a
(k1 − k2) +

iπ`

a
. (55)

As a concrete example, consider the ingoing mode

ω∗`,j(∆) = `− i

π
(a+ ib)(2j + ∆) , (56)

and its corresponding integer transformation

k1 + k2 = 2j + n k1 − k2 = n . (57)

Combining (55)-(57), we arrive at:

∆− s∗n,`,j =
iπ(ω∗`,j(∆)− `)

(a+ ib)
+

(a− ib)
a

n+
iπ`

a
. (58)

We learn that tuning ∆ to the zeros of the Selberg zeta function is equivalent to tuning
the quasinormal modes to the quantity:

ω∗`,j(∆) =
in

aπ
(a2 + b2)− ib

a
` , (59)

The righthand side of this equation is exactly the Matsubara frequencies ωn for a thermal
field theory that includes rotation (as reported in (17)). No matter which quasinormal
mode/integer transformation pair we choose from Table 2, we always arrive at Equation
(59). Notice that when there is no rotation (b = 0), we recover the results reported
in [20,28]

∆− s∗n,`,j =
iπ

a
ω∗`,j(∆) + n . (60)

Setting ∆ = s∗n,`,j leads to

ω∗`,j(∆) = − a

iπ
n = 2πiTn . (61)

That is, the quasinormal modes ω∗`,j(∆) are mapped to the Matsubara frequencies ωn
exactly when ∆ is identified with the zeros of the Selberg zeta function. In summary, we
see that the Selberg zeta function is the vehicle that takes us between the heat kernel and
quasinormal mode methods of computing functional determinants.

3.2 A Formal Connection: Gravitons

We now write the 1-loop partition function for the massless graviton in terms of Selberg
zeta functions, as in [27]; we extend this work by making the connection to quasinormal
modes. The essential structure of the Selberg zeta function is independent of the field
species, i.e., it only depends upon the background geometry. The primary difference
comes from swapping the scalar conformal dimension ∆ with, as we will show, “effective”
conformal dimensions for the graviton and vector ghost.

First, we relate the 1-loop partition function for the graviton Z
(1)
grav to the Selberg zeta

function [16]

ZΓ(∆) =
∞∏

k1,k2=0

[
1− e2ibk1e−2ibk2e−2a(k1+k2+∆)

]
=

∞∏
k1,k2=0

[
1− qk2/2q̄k1/2|q|∆

]
, (62)

13
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just as we did for the scalar in (47). We start from the logarithm of the 1-loop partition
function (36), and use q2k = e−2ka[2(1+ib/a)] to find

logZ(1)
grav =

∞∑
k=1

e−2ka∆
m2<0
2

k|1− qk|2
−
∞∑
k=1

e−2ka∆
m1<0
1

k|1− qk|2
+ c.c.

= log

(
ZΓ(∆m1<0

1 )ZΓ(∆m1>0
1 )

ZΓ(∆m2<0
2 )ZΓ(∆m2>0

2 )

)
.

(63)

Here we have introduced

∆m2<0
2 = 2

(
1 + i

b

a

)
= ∆2 − 2

TR − TL
TR + TL

, ∆m1<0
1 = 3 + i

b

a
= ∆1 −

TR − TL
TR + TL

,

∆m2>0
2 = 2

(
1− i b

a

)
= ∆2 + 2

TR − TL
TR + TL

, ∆m1>0
1 = 3− i b

a
= ∆1 +

TR − TL
TR + TL

.

(64)

Following the notation in [10], here ∆2 = |m2| + 1 and ∆1 = |m1| + 1 are the conformal
dimensions for a massive graviton and massive spin-1 ghost, respectively. The physical
case of a massless graviton can be obtained by setting m2

2 = 1 and m2
1 = 4; we then find

the physical values ∆2 = 2 and ∆1 = 3.
The quantities ∆mi<0

i ,∆mi>0
i are “effective” conformal dimensions of a massive spin

field. By effective, we mean that the condition ω∗ = ωn can be brought to the same
form as a real scalar field by shifting ∆i → ∆mi<0

i or ∆mi>0
i , as expressed in (64). This

shift depends on the sign of mi as the quasinormal modes depend on the sign of mi.
We will show how the effective conformal dimensions arise from the condition ω∗ = ωn
momentarily,9 but here we see the effective conformal dimensions naturally arise as the
argument of the Selberg zeta functions.

As we observed for a real scalar field on the rotating BTZ black hole background in
(59), when we tune the effective conformal dimensions ∆mi<0

2 ,∆mi>0
2 to the zeros of the

Selberg zeta function, we find that the quasinormal modes ω∗ associated with the higher
spin field in question are identified with the thermal (Matsubara) frequencies ωn.

First we show again how ∆mi<0
i = s∗ leads to ω∗ = ωn for a scalar, and then we use this

language to prove the statement for the graviton and vector field. We begin by rewriting
s∗ in terms of familiar quantities. For specificity, we work with the ingoing mode (49)

s∗`,n,j = −(2j + n)− in b
a
− iπ`

a
. (65)

and with positive angular momentum k. The other cases work very similarly. For positive
` we may express s∗ as

s∗`,n,j = −2j − n+ ikΦ(n, `) , (66)

where we have used kΦ(n, `) from (18). Then

∆− s∗`,n,j = 2j + ∆ + n− ikΦ(n, `) = 0 . (67)

Identifying j as the radial mode number, this equation is the condition that ωn = ω∗, for
the specific case of the ingoing quasinormal mode (56). The identical result is obtained
upon choosing any mode in (49) and (50).

9This shift is also discussed in an appendix of [10], where it shown to arise from a regularity condition
on the low-thermal number quasinormal modes for mode number j less than the spin.
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Scalar 2j + ∆ + n− ikΦ(n, `) = 0

Vector 2j + ∆1 + (n+ 1)− ikΦ(n, `) = 0

Graviton 2j + ∆2 + (n+ 2)− ikΦ(n, `) = 0

Table 3: The condition ω∗ = ωn for ingoing modes for scalar, vector and graviton fields
with angular momentum quantum number `.

This relationship extends to the massive graviton and vector, as we now show. Con-
centrating again on the ingoing mode with postive angular momentum, and also specifying
to the massive graviton with m2 < 0 as in (64), we observe

∆m2<0
2 − s∗`,n,j = 2j + ∆m2<0

2 + n− ikΦ(n, `) = 0 . (68)

We recover the condition ωn = ω∗ for the graviton reported in Table 3 by shifting n→ n+2
in (68). The massive vector also works the same way. Specifying to m1 < 0 and thus
effective conformal dimension ∆m1<0

1 as in (64), we find

∆m1<0
1 − s∗`,n,j = 2j + ∆m1<0

1 + n− ikΦ(n, `) = 0 . (69)

This equation is also equivalent to ωn = ω∗, as stated in Table 3, after shifting n→ n+ 1
in (69).

At first glance, it seems strange that the Selberg zeta function zeros provide access
to the quasinormal modes of general spin s fields, when the function itself depends only
upon the spacetime, not the field content. However, while the Selberg zeros s∗ and the
Matsubara frequencies ωn are only dependent upon the spacetime, the effective conformal
dimension ∆mi

i and the quasinormal mode frequencies ω∗ depend on the spin of the per-
turbing field. Thus the statement that ∆mi

i − s∗ = 0 implies ω∗ = ωn can hold for fields
of any spin because the shift in ∆mi

i is accounted for by a corresponding shift in ω∗.
We can generalize our expression of the 1-loop partition function in terms of Selberg

zeta functions in (63) to other quotient geometries H3/Γ for any discrete subgroup Γ of the
isometry group PSL(2,C) of H3. The only change is an additional product over γ ∈ P,
where P is a set of representatives of the primitive conjugacy classes of γ:

Z
H3/Γ
(1),grav =

∏
γ∈P

ZγΓ(∆m1<0
1 )ZγΓ(∆m1>0

1 )

ZγΓ(∆m2<0
2 )ZγΓ(∆m2>0

2 )
, (70)

where

ZγΓ(∆γ) =

∞∏
k1,k2=0

[
1− qk2/2γ q̄k1/2γ |qγ |∆γ

]
. (71)

Here we made the substitution q → qγ in (44), where qγ are the eigenvalues of primitive
generators γ of the discrete subgroup Γ ⊂ SL(2,C) [7]. We emphasize that, in general,
the effective conformal dimension ∆γ will depend on the primitive γ.

4 Discussion

We have demonstrated the relationship between the heat kernel and quasinormal mode
methods for calculating 1-loop determinants, both directly and formally. The examples we
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considered were the scalar and graviton fields in a rotating BTZ black hole background.
First, we showed that (1) the quasinormal mode sums build up the integrand of the heat
kernel integral, and (2) the image sum of the heat kernel builds up the logarithms in the
quasinormal mode expression. Building upon previous work, we demonstrate that the
Selberg zeta function of a given quotient spacetime Hn/Γ acts as a bridge between the
quasinormal mode and heat kernel methods. Tuning the effective conformal dimensions
∆mi<0
i or ∆mi>0

i to the zeros of the Selberg zeta function s∗ is equivalent to tuning the
quasinormal modes ω∗ to the Matsubara frequencies ωn of the spacetime.

Using the formalism of Section 3, we may potentially predict quasinormal modes on
more complicated quotient spacetimes Hn/Γ, such as higher dimensional generalizations of
the rotating BTZ black hole. As far as we know, quasinormal modes in such backgrounds
are currently unavailable in the literature. If we know any two of (1) the Selberg zeta
function of the spacetime, (2) the Matsubara frequencies and (3) the quasinormal modes,
we can construct the third. We expect this predictive process to work for fields of all spin,
including fermions.

Beyond considering higher dimensional manifolds of the form Hn/Γ, we also hope to
adapt our formalism to non-hyperbolic quotients M/Γ that possess sufficient symmetry.
Product spacetimes may be a particularly interesting and straightforward extension, as
many are expressible as quotients. We leave this for future work.

Since spacetimes of the form H3/Γ are of interest in the study of holography, specifically
when finding bulk quantum corrections to holographic entanglement entropy [29], one
might hope that connections made in this work could circumvent challenges that arise in
analytic calculations of 1-loop corrections to holographic Rényi entropies. However, it is
difficult to express the eigenvalues of the Schottky generators q in terms of boundary field
data, so we leave this application to future work.

The relationship between quasinormal modes and the Selberg zeta function might
further the understanding of quantum chaos in holographic field theories. Black hole
quasinormal modes are dual to poles in the retarded two-point function of the correspond-
ing operators in the dual field theory [23, 30]. Furthermore, if the field theory exhibits
properties of chaos [31], the quasinormal modes are related via holography to the Ruelle
resonances of the quantum theory [32], which control the decay of the two-point autocor-
relation function of an operator O. Indeed, Ruelle defined his own zeta function ζR(s),
which generalized certain properties of the Selberg zeta function ζS(s) [33], and in the case
of constant curvature manifolds is related to ζS(s) via [15,34]:

ζR(s) =
ζS(s)

ζS(s+ 1)
. (72)

The zeros and poles of the Ruelle zeta function are related to the Pollicott–Ruelle res-
onances, while the singularities of the Selberg zeta function correspond to quasinormal
modes and thus eigenvalues of the Laplacian (see [35] and references therein). The Sel-
berg trace formula and zeta function also appear in the literature on chaos [15], and so
perhaps the results presented here will have further applications in that subfield. We leave
the study of both of these connections for future work.

While this work was in preparation, we became aware of another work which connects
the standard heat kernel approach and normal/quasinormal mode method of computing
1-loop determinants [36]. While [36] connects these methods in the context of higher
dimensional hyperbolic spacetimes using elements of Sturm-Liouville theory, we relate
them in the context of 2 + 1-dimensional hyperbolic quotient spacetimes via the Selberg
zeta function. We expect our two complementary approaches will facilitate future work.
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A BTZ Group Structure

In the body of this article we make extensive reference to the rotating BTZ black hole.
Let us therefore briefly review the geometry of the BTZ black hole (for a longer review,
see [37]). The rotating BTZ black hole in Boyer-Lindquist coordinates is given by

ds2 =
r2

(r2 − r2
+)(r2 − r2

−)
dr2 −

(r2 − r2
+)(r2 − r2

−)

r2
dt2 + r2

(
dφ− r+r−

r2
dt
)2

, (73)

where we have set the AdS radius L = 1, and where the locations of the inner and outer
horizons r− and r+ are given by

r2
+ + r2

− = M , r2
+r

2
− =

J2

4
, (74)

with M and J being the mass and angular momentum of the black hole, respectively.
Note that we require the angular variable φ to be periodic φ ∼ φ+ 2π.

One useful form of the BTZ line element is

ds2 = dξ2 − sinh2 ξdT 2 + cosh2 ξdΦ2 , (75)

which can be arrived at by making the coordinate transformation

tanh2 ξ =
r2 − r2

+

r2 − r2
−

T = r+t− r−φ Φ = r+φ− r−t . (76)

We may also write the BTZ geometry in Poincaré patch coordinates

ds2 =
1

z2
(−dy2 + dx2 + dz2) , (77)

where
x = tanh ξ coshTeΦ , y = tanh ξ sinhTeΦ , z = sech ξeΦ , (78)

or equivalently,

x =

(
r2 − r2

+

r2 − r2
−

)1/2

cosh(r+t− r−φ) exp(r+φ− r−t) ,

y =

(
r2 − r2

+

r2 − r2
−

)1/2

sinh(r+t− r−φ) exp(r+φ− r−t) ,

z =

(
r2

+ − r2
−

r2 − r2
−

)1/2

exp(r+φ− r−t) .

(79)

In this article we will be interested in the Euclidean BTZ black hole. Under the
Euclideanization scheme t→ −itE and J → −iJE , we have r− → i|r−|, and, consequently,

T → −iTE , Φ→ Φ , (80)
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and
x→ x , y → −iyE , z → z . (81)

In order for the coordinate transformation (79) to be regular at r = r+ we require the
identification

tE ∼ tE + β0 , φ ∼ φ+ θ , (82)

where

β0 =
2πr+

r2
+ − r2

−
, θ =

2π|r−|
r2

+ − r2
−
. (83)

In the context of Euclidean quantum field theory, β0 is interpreted as a finite temperature,
while θ is the angular potential. This identification is equivalent to TE ∼ TE + 2π, which
allows the coordinate transformation (76) at ξ = 0 to be regular. It is often helpful to
combine the two parameters (β0, θ) into a single complex quantity τ = 1

2π (θ + iβ0).
The identifications

φ ∼ φ+ 2π , (tE , φ) ∼ (tE + β0, φ+ θ) , (84)

allow for the BTZ black hole to be understood as a quotient of AdS3 by the set of integers
Z, where Z is generated by an element γ ∈ SL(2,C), an isometry group of H3, such that

γ(y, w)→ (|q|−1z, q−1w) , (85)

where we have defined the complex coordinate w ≡ x+ iyE on the Euclideanized Poincaré
patch of the BTZ black hole,

ds2 =
1

z2
(dz2 + dwdw̄) , (86)

and introduced q ≡ e2πiτ . Geometrically we may picture the Euclidean space M = H3/Z
as a solid torus of constant negative curvature.

It is interesting see how each of the identifications (84) affect the coordinates (x, yE , z).
A straightforward exercise reveals that (tE , φ) ∼ (tE , φ+ 2π)

x→ x′ = [x cos(2π|r−|)− yE sin(2π|r−|)] e2πr+

yE → y′E = [yE cos(2π|r−|) + x sin(2π|r−|)] e2πr+

z → z′ = ze2πr+

, (87)

while the (tE , φ) ∼ (tE + β0, φ+ θ) behaves as the identity transformation:

x ∼ x , yE ∼ yE , z ∼ z . (88)

We can write these two transformations in a more suggestive form:
x′

y′E

z′

 = γ


x

yE

z

 =


e2a 0 0

0 e2a 0

0 0 e2a




cos 2b − sin 2b 0

sin 2b cos 2b 0

0 0 1



x

yE

z

 , (89)

with
2a ≡ r+θ − |r−|β0 = 0 , 2b ≡ r+β0 + |r−|θ = 2π , (90)

corresponding to the (tE , φ) ∼ (tE + β0, φ+ θ) identification and

2a ≡ 2πr+ 2b ≡ 2π|r−| , (91)
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associated with the (tE , φ) ∼ (tE , φ+2π) identification. It is clear from here that (tE , φ) ∼
(tE+β0, φ+θ) identification can be understood as a identity transformation, while (tE , φ) ∼
(tE , φ + 2π) identification can be understood as a composition of a rotation in R2 with
complex eigenvalues e±2ib, and a dilation e2a. The above observation suggests a group-
theoretic interpretation of coordinate transformations induced by the identifications of the
BTZ black hole. Following [16], we can make this more precise.

Let A ∈ SL(2,C). We say that A is loxodromic when trA ∈ C/R, i.e., if the entries of
A are real then A is not loxodromic. Next, fix a, b ∈ R with a 6= 0 and define

γ = γ(a,b) ≡

ea+ib 0

0 e−(a+ib)

 ∈ SL(2,C) . (92)

By the above definition, γ is loxodromic unless b = πn for n ∈ Z, in which case γ is said
to be hyperbolic. We can then define the discrete subgroup Γ = Γ(a,b) ∈ SL(2,C) as the
group generated by γ when γ is loxodromic; precisely

Γ ≡ {γn|n ∈ Z} . (93)

In the context of the BTZ black hole, we see that the identification (tE , φ) ∼ (tE , φ+2π)
can be understood as the transformation generated by the elements of ΓBTZ with a =
πr+ and b = π|r−|. Meanwhile, the identification (τ, φ) ∼ (τ + β0, φ + Φ), an identity
transformation, has a = 0, and b = 2π, in which case the associated γ is not loxodromic.

Next define the orbifold
MΓ = H3/Γ . (94)

The standard linear fractional action of SL(2,C) on H3, under Γ, is restricted to

γn ·


x

y

z

 =


e2an(x cos 2bn− y sin 2bn)

e2an(x sin 2bn+ y cos 2bn)

e2anz

 . (95)

This means that MΓ is the space H3 with two points p1, p2 ∈ H3 identified if p1 = γn · p2

for some n ∈ Z.
The orbifold MΓ may also be obtained from the fundamental domain F

F = {(x, y, z) ∈ H3, 1 ≤
√
x2 + y2 + z2 ≤ e2a} . (96)

The fundamental domain is obtained by identifying points on the upper hemisphere of
radius 1 with their images on the upper hemisphere of radius e2a under the action of the
generator γn of Γ [17]. In this context, a is understood as the length of the geodesic
segment which projects to a single closed geodesic on the quotient MΓ.

Using a > 0, we find that the hyperbolic volume of the fundamental domain F ,

vol(F ) ≡
∫
dx dy dz

z3
, (97)

is infinite. One can show this explicitly using spherical coordinates – x = ρ cos θ cosϕ, y =
ρ cos θ sinϕ, z = ρ sin θ with θ ∈ [0, π/2] and ϕ ∈ [0, 2π]. When the volume of the fun-
damental domain of F associated with orbifold MΓ is infinite, Γ is said to be a Kleinian
subgroup of SL(2,C).

Therefore, the Euclidean BTZ black hole with the given Γ (93) can be understood as
the orbifold MΓBTZ

= H3/ΓBTZ ' H3/Z for Kleinian group ΓBTZ. In other words, the
periodicity of φ means, in group theoretic terms, that the Euclidean BTZ black hole can
be regarded as the quotient space MΓBTZ

under the action of ΓBTZ on H3.
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