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Abstract

A common problem in a high energy physics experiment is extracting a signal
from a much larger background. Posed as a classification task, there is said to be
an imbalance in the number of samples belonging to the signal class versus the
number of samples from the background class. In this work we provide a brief
overview of class imbalance techniques in a high energy physics setting. Two case
studies are presented: (1) the measurement of the longitudinal polarization fraction
in same-sign WW scattering, and (2) the decay of the Higgs boson to charm-quark
pairs.
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1 Overview

The Large Hadron Collider (LHC) has been an incredibly successful experiment. To date it
has discovered the Higgs boson, and measured hundreds, if not thousands, of other processes
to be consistent with the predictions of the Standard Model (SM) [1]. A common problem in
making these measurements is extracting a signal from a much larger background. Occasionally
in this situation there is a single feature that is powerful enough to discriminate the signal from
the large background. An example of this the Higgs boson decaying to two photons where the
invariant mass of the photon pair is the discriminating observable [2, 3]. More often however
a multi-variate analysis of many features needs to be performed. Machine learning (ML) and
deep learning (DL) are well suited for such tasks. Therefore it is not surprising that ML and
DL have become, and will likely continue to be, an important part of the success of the LHC
program. See Refs. [4, 5, 6, 7] for some recent reviews.

If one treats the extraction of a signal from a much larger background as a classification
problem there is an imbalance in the number of sample belonging to the signal class versus the
number of events from the background class. In the machine learning community techniques
for learning from imbalanced data are well established. There is now even a software package,
imbalanced− learn [8], dedicated to this task. In high energy physics there do not appear
to be many cases where imbalanced learning techniques were explicitly used. However the
measurement of the time-integrated CP asymmetry in D0 → K0

SK
0
S decays by LHCb [9] is one

such example. In particular LHCb classified the D0 decay signal from its background using
the analysis methods developed in Refs. [10, 11]. An alternative approach to classification with
imbalance techniques is using an anomaly detection framework. There are several examples of
this in high energy physics [12, 13, 14, 15].

Given the lack of examples where imbalanced learning techniques were used in high energy
physics the purpose of this note is two-fold. Firstly, in Section 2, we aim to provide a brief
overview of modern class imbalance techniques in a high energy physics setting, introducing
novel loss functions and a data resampling technique. Secondly, we provide two case studies
of how class imbalance techniques can be used in high energy physics settings. The first case,
presented in Sec. 3, is the measurement of the longitudinal polarization fraction in same-sign
WW scattering. We find a significant improvement in the performance of the machine learning
models used in the longitudinal WW study, while no significant improvement in performance is
found in the deep learning models tested. The second study is the decay of the Higgs boson to
charm-quark pairs, which follows in Sec. 4. Our Higgs-to-charm tagger gives a 14% improvement
in the background rejection rate. Another application of these techniques is training directly on
experimental data [16, 17, 18]. Conclusions are then given in Sec. 5. Much of the code for this
project is available at [19].

2 Class Imbalance Techniques

There is no definitive answer to the question: What should one do when dealing with imbalanced
data? The answer will depend on the data in question, see [20] for a study of benchmark
datasets. In this Section we present a few approaches one might try to improve performance on
an unbalanced dataset.

Using the accuracy of a classifier as a metric can be misleading. (See Table. 3 for a glossary
of model evaluation terms used in this work.) Consider a model that predicts that every sample
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to be background. The accuracy of this model is A = 1/(1 + r), where r is the ratio of the
number of signal events to the number of background events. Although this model would be
highly accurate if the data were sufficiently imbalanced, it would not be useful as it says nothing
about the signal, which is what we were interested in to begin with. For this reason accuracy
is not a recommended metric in this setting. The ROC curve is a good general purpose metric,
providing information about the true and false positive rates across a range of thresholds, and
the area under the ROC curve (AUC) is a good general purpose, single number metric. The
AUC score focuses on true negatives, which are less informative than false positives and false
negatives when the data is imbalanced. Therefore we recommend the precision-recall curve
as the metric to use on imbalanced data, or the average precision score if a single number is
preferred.

One might also try to balance the training set either by under-sampling [21, 22, 23, 24, 25] the
majority class, oversampling the minority class [26, 27], or a combination of over- and under-
sampling [28, 29]. Oversampling runs the risk of overfitting, and training with oversampling
takes longer because of the additional data. For these reasons we will focus on under-sampling
in this work. In particular, we will use random under-sampling to create a balanced random
forest [30, 31]. Analogous procedures exist for creating a balanced boosted decision trees [32]
and making balanced batches to feed into a neural network. The algorithm for how the balanced
random forest makes classifications is as follows: (1) take bootstrap samples from the original
dataset, (2) balance each sample by downsampling randomly, (3) learn a decision tree from each
sample, (4) make predictions based on a majority vote. It is the second step of this process
that is absent in a standard random forest. Even if this does not lead to a gain in performance
training is faster with this approach because less data is used.

Lastly, one might consider making changes to the algorithms being used [33, 34, 35]. A
simple example of this is if a metric such as precision, recall, or F1 score is being used, its
decision threshold can be optimized to maximize performance. Another approach is to adjust
the class weights in the loss function, creating a larger penalty for misclassifying an example
from the minority class. Consider the cross entropy loss function used for binary classification1

L = −y log(p)− (1− y) log(1− p), (1)

where y is the ground-truth class with y = 1 for the signal class, and p is the model’s estimated
probability that a given event belong to the signal class. Weighting the loss function can be
implemented as follows

L = −α y log(p)− (1− α)(1− y) log(1− p), (2)

where the class weight hyperparameter, α, takes values between 0 and 1 in this notation. Ref. [36]
took this one step further, introducing the focal loss function

L = −α y(1− p)γ log(p)− (1− α)(1− y)pγ log(1− p), (3)

where the focusing parameter, γ > 0, puts the focus on hard, misclassified examples. In doing
so it down weights the easy-to-classify negatives that can overwhelm a model during training
in the presence of class imbalance. Focal Loss is an optimal classifier just as cross entropy or
mean square error are. One way to see this is Focal Loss produces a concave ROC curve (given
sufficiently large statistics), which is equivalent to being optimized by the likelihood ratio [37].

1The loss function for a single sample is shown to reduce clutter. For tree based models, such as random forest,
our baseline loss function is the CART loss function with Gini impurity not the cross entropy. However the logic
of modifying the baseline loss function is the same.
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3 Longitudinal Polarization Fraction in Same-Sign WW Produc-
tion

3.1 Introduction

Same-sign WW production at the LHC is the vector boson scattering (VBS) process with the
largest ratio of electroweak-to-QCD production. As such it provides a great opportunity to
study whether the discovered Higgs boson leads to unitary longitudinal VBS, and to search
for physics beyond the SM (BSM) [38, 39]. The ATLAS and CMS experiments have observed
electroweak same-sign WW production in the two jet, two same-sign lepton final state in 13 TeV
pp collisions with significances of 6.9σ [40] and 5.5σ [41], respectively. Confirming or refuting
the unitarity of VBS requires not just a measurement of pp→ jjW±W±, but of the fraction of
these events where both W s are longitudinally polarized (LL fraction).

Prospects for the extraction of the longitudinal component of W±W± scattering during the
High-Luminosity phase of the LHC (HL-LHC) were studied in Refs. [42, 43, 44]. The fraction of
longitudinally polarized events is predicted to be only r ≈ 0.07 in the SM at large dijet invariant
mass (mjj) [43] making this a challenging measurement. Using the difference in the azimuthal
angle of the two jets (∆φjj) as a discriminant, the significance for the observation of the LL
fraction is expected to be up to 2.7σ with 3000 fb−1 of integrated luminosity [43].

The observation significance can be improved through the use of deep learning [45, 46].
Ref. [45] regressed on the angles between the charged leptons in their parent boson’s rest frame
and the W boson’s direction of motion, whereas Ref. [46] treated this as a binary classification
problem distinguishing between events where both W s were longitudinally polarized versus when
one or none of the W s were polarized. In the classification setting it is important to keep in
mind that the predicted LL fraction is small, and thus there is an imbalance in the number of
events belonging to the class N(WL) = 2 versus the class N(WL) < 2 (LL class vs. TT+LT
class). We proceed treating this as a classification problem with imbalanced classes.

3.2 Data

Events for the process pp → jjW±W± are simulated with MadGraph5aMC@NLO [47]. 1.6 · 105

events are generated with mjj > 150 GeV and all other parameters fixed to their default values
in MadGraph, i.e.

√
s = 13 TeV. The W s are left undecayed; that is to say the four-vectors of

the W s are used as features rather than the four-vectors of the charged leptons and MET. We
content ourselves with training on less realistic simulated data as we are interested in seeing a
change in performance relative to a baseline, and we will show that our baseline models perform
comparably well to the models in Ref. [46]. We also study what happens when the cuts match
those of the prospective HL-LHC studies [42, 43]. The number of simulated events passing the
following cuts, mjj > 500 GeV and ∆ηjj > 2.5, is approximately 2.5 · 104. We find these cuts
do not qualitatively affect our conclusions, and present our results from the larger simulated
dataset with mjj > 150 GeV.

The four-vectors (Ei, pT,i, ηi, φi) of the two jets and two W s are used as features, i =
{j1, j2,W1,W2}. Note that in this case study the “jets” are partons from the hard scattering
process and are not showered or hadronized. The subscripts 1 and 2 are used to indicate the jet
or W with the larger or smaller transverse momentum, e.g. pT,j1 > pT,j2 . This is an important
feature engineering step that improves the performance of classifiers that is not done by default in
MadGraph. In addition, the following high-level features are added. From the jet system we add
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the invariant mass, the difference in pseudorapidity (∆ηjj), and the difference in the azimuthal
angle. We also add the four-vector (EWW , pT,WW , ηWW , φWW ) and invariant mass (mWW ) of
the WW system, bringing the total number of features to 24. Clearly we have introduced some
redundancy into our set of features. This is done to increase the rate of learning of our models.

3.3 Models and Training

In addition to using ∆φjj as a discriminating observable, we use the following models. For
classical machine learning we use a random forest (RF) as a baseline, and look to use a change
in performance from weighting or balancing. We use the imbalanced− learn [8] implementation
of balanced random forest, and use scikit− learn [48] for the other random forests. A grid
search using a subset of the data is performed to optimize the hyperparameters of the random
forests. The top performing forests have no maximum depth. The deep learning models are
fully-connected neural networks (DNNs) implemented in Keras [49] with a TensorFlow [50]
backend. Our baseline DNN has a cross entropy loss function. The variants we are looking to
test are a DNN with a focal loss function, and a DNN with a cross entropy loss but where the
training batches have been balanced. All of our neural networks have 2 hidden layers each with
150 neurons, He initialization, and ReLU activation functions. Batch normalization is performed
to speed up the learning process, dropout is applied at a 50% rate for regularization, and the
Adam algorithm is used to optimize the parameters of the DNN.

A five-fold cross validation is performed for each for model. The folds are stratified based
on the size of the class imbalance. The classical ML models are trained on a MacBook Pro,
while the DL models are trained on a GPU hosted by Amazon Web Services (p2.xlarge). For
the DNNs, a batch size of 1024 is used in training. We find this is the largest batch size we can
use with this dataset without suffering a loss in performance.2 Training for DNNs runs until
there is no decrease in the loss function for 10 consecutive epochs. An upper limit of 300 epochs
is imposed, but in practice this is never reached.

3.4 Results

Table 1 shows the results of the cross validation with performance being reported as the mean
± the standard deviation of the five folds. Recall the ML models are trained on a CPU, and
DL models are trained on a GPU, accounting for the typically longer training time of the ML
models. As advertised, the models with balanced training data train faster than their unbalanced
counterparts. In particular there is a reduction in training time by a factor of 2-3. The weighted
random forest has a 1% higher average precision than the baseline random forest. However this
is the same size as the standard deviation of the average precision of each model. On the other
hand, the AUC of the balanced random forest shows a 1.5% improvement with respect to the
baseline RF. This difference is significant given the size of the uncertainties. For the DNN with
focal loss there is perhaps a marginal improvement in performance with respect to the baseline
DNN, but this difference is not significant. The balanced batch DNN performs worse than the
baseline DNN likely due to the smaller amount of the training data it uses.

The significance that the LL fraction is non-zero is estimated as follows. We assume 3000 fb−1

of data is collected and that the W s decay to electrons or muons. The discriminant functions
for the various models are shown in Figure 1. These are histograms for a model’s estimated

2With a batch size of 1024 one epoch took about one second on the GPU versus three seconds on the CPU.
Conversely with a batch size of 50 one epoch took about 30 seconds on the GPU versus 15 seconds on the CPU.

5



SciPost Physics Submission

Model Time/Fold [s] Average Precision AUC Significance [σ]

∆φjj 0.2± 0.0 0.081± 0.003 0.647± 0.007 2.4± 0.1

Random Forest 334± 9 0.143± 0.010 0.758± 0.007 4.8± 0.2
Weighted RF 287.3± 1.5 0.153± 0.011 0.767± 0.009 5.0± 0.3
Balanced RF 92.7± 0.8 0.149± 0.009 0.773± 0.007 4.6± 0.4

Deep Neural Network 219± 24 0.230± 0.015 0.820± 0.007 6.5± 0.3
DNN w/ Focal Loss 229± 38 0.232± 0.020 0.821± 0.011 6.3± 0.4

Balanced Batch DNN 89± 17 0.182± 0.013 0.797± 0.008 5.3± 0.3

Table 1: Results of the five-fold cross validation for classifying LL events from TT+LT events
in pp→ jjW±W±. The models with balanced training data train faster than their unbalanced
counterparts, reducing training time by a factor of 2-3. The AUC of the balanced random forest
shows a 1.5% improvement with respect to the baseline RF. This difference is significant given
the size of the uncertainties. See the text more for details.

probability that a given event belongs to the signal class. If this probability is larger than the
decision threshold then that event is predicted to be signal. For metrics that makes predictions,
as opposed to just predicting probabilities, the decision threshold can be optimized to extremize
the score of the metric. The red histograms are for events that are ground truth signal, fLL.
Similarly, the blue histograms are for events that are ground truth background, fTT+LT. The
top row shows the random forest models, and the bottom row shows the deep neural network
models. We fit to the discriminant distributions in Fig. 1, and extract the most likely value of
the LL fraction and its uncertainty using the method of maximum likelihood. The log-likelihood
function is

− log (L(µ)) = −
∑
e

log (µ fLL(pe) + (1− µ) fTT+LT(pe)) (4)

where µ is the LL fraction, and fi is the pdf for the probability that an ML model predicts an
event to be class i. The various models have different levels of confidence in their predictions,
which accounts for the imperfect correlations between a model’s AP and AUC scores and its
significance for a non-zero LL fraction.

Our neural network models and ∆φjj observable outperform the analogous models in Ref. [46].
We find this is primarily due to our less restrictive cut on mjj . The AUC of our models monoton-
ically decreases as the cut on mjj increases reaching values comparable to those found in Ref. [46]
around mjj ∼ 800 GeV. Having identified the mjj cut as the main difference in performance,
it would appear that hadronization effects do not play an important role in the performance
of these models. We note that our neural networks achieves comparable performance to that
of Ref. [46] despite having only two hidden layers instead of 10, which is not surprising given
the relative simplicity of this data. The advantage of having fewer hidden layers is a reduction
in training time. On the other hand, our random forest models underperform compared to the
analogous boosted decision tree of Ref. [46], possible due to being trained on less data or perhaps
simply due to inherent differences between the models. Nevertheless our goal was determine the
change in performance relative to a baseline, which we were able to accomplish.
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Figure 1: Histograms for the probability the event will be predicted to be an LL event when it
is actually an LL event (red distributions) or when it is actually an TT+LT event (blue distri-
butions). The top row shows the random forest models, and the bottom row shows the DNN
models. The various models have different levels of confidence in their predictions, which ac-
counts for the imperfect correlations between a model’s AP and AUC scores and its significance
for a non-zero LL fraction.
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4 Higgs Boson Decays to Charm-Quark Pairs

4.1 Introduction

The second application of class imbalance techniques we explore in this note is to the measure-
ment of Higgs boson decay to charm-quark pairs. Searches for the decay of the Higgs boson to
charm-quarks have produced only weak limits to date. ATLAS reported an upper limit of 110
times the SM rate for the process pp → Zh → `−`+cc̄ [51]. LHCb instead considered the asso-
ciated production of both W s and Zs in range 2 < η < 5, and set a limit of 6,400 times the SM
rate [52]. A result of these weak limits is that direct limits on the charm Yukawa coupling are
correspondingly weak. Stronger bounds can be obtained indirectly, e.g. through global fits [53],
among other methods. However there are assumptions build into any indirect analysis. The
limit on the charm Yukawa coupling at HL-LHC is projected to get down to about 2.2 times the
SM rate [54] (see also [55]). Based on this projection an observation of h → cc̄ is not expected
at HL-LHC motivating ways to improve the analysis, although this projected limit should still
be useful in constraining certain BSM physics.

One reason for the weak limits on h→ cc̄ is in the SM the rate for h→ bb̄ is about 20 times
larger (r ≈ 0.05) than the rate for h→ cc̄ [56]. In contrast with h→ cc̄, the decay of the Higgs
boson to bottom-quarks has been observed by both ATLAS [57] and CMS [58] The analyses of
Refs. [51, 52, 57, 58] rely on tagging the flavor of the jets, which involves discriminating charm
initiated jets from bottom jets, or vice versa, and discriminating heavy from light flavored jets.3

The use of flavor tagging explicitly links the measurements of h→ bb̄ and h→ cc̄ [60, 61].
To perform the flavor tagging LHCb used their standard, state-of-the-art heavy flavor tag-

ger [62], while ATLAS trained boosted decision trees to separate charm from light jets and
charm from bottom jets with a procedure analogous to how they train their standard bottom
tagger [63, 64]. The use of general purpose flavor tagging algorithms is less than ideal for the
specific task of identifying Higgs decays to charms. This was recognized in Ref. [65], which made
a dedicated double-charm tagger for h→ cc̄. We also advocate making a dedicated h→ cc̄ tag-
ger for the following reason. The standard heavy flavor tagging algorithms are not optimized
for the imbalance in the expected number of h → cc̄ versus h → bb̄ events. For example, QCD
produces roughly equal numbers of bottoms and charms at invariant masses relevant for Higgs
physics. Given the statistical nature of heavy flavor tagging, an imbalance in the number of bb̄
and cc̄ decays will lead to worse performance in identifying the Higgs to charm events. As such
this is a well motivated arena for applying class imbalance techniques. Here we are assuming
an SM-like rate for h→ cc̄. If some BSM physics makes the experimental rate for h→ cc̄ much
larger than expected this would invalidate our argument (which would be a small price to pay
for the discovery of the breakdown of the SM). The rest of this case study delivers proof of
principle that it is possible to improve tagging efficiency of h→ cc̄ events through the use of the
class imbalance techniques.

4.2 Data

We consider associated Higgs production at an e+e− collider as an observation of h → cc̄
is not expected at HL-LHC. Specifically, the process under consideration is e+e− → Zh →
`+`−QQ̄ with ` = e and µ, and Q = b or c. A total of 2 · 105 events are simulated with
MadGraph5aMC@NLO [47] with Pythia6 [66] used for parton showering and hadronization. Half

3A complementary approach is to exclusively search for charmed-hadrons [59].
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the simulated events are h → bb̄ and the other half are h → cc̄. We focus on the binary
classification problem of h → cc̄ versus h → bb̄ as existing tagging algorithms perform well at
distinguishing heavy from light flavors, see e.g. [62]. The center-of-mass energy of the collisions
is
√
s = 250 GeV. Jets are clustered using the FastJet [67] implementation of the anti-kt

clustering algorithm [68] with radius parameter R = 0.4. We require at least two jets each
with pT > 10 GeV. Similarly, we require the leptons to be oppositely charged, and to each have
pT > 10 GeV.

The four-vector of each lepton and the two leading jets are used as features. Here we use the
mass, m, of the jet or lepton instead of the particle’s energy, which was used in the same-sign
WW case study. It is unlikely that the mass of the jet could be measured with enough precision
in an actual experiment to distinguish a charm initiated jet from a bottom jet. However the mass
of the jet is a proxy for the lifetime of the initiating particle of the jet, which is a feature flavor
tagging algorithms exploit, see e.g. [51]. The four-vectors of the dilepton and dijet systems,
which reconstruct the Z and Higgs bosons, respectively, are also included in our feature set.
A cut on the invariant mass of the jets is imposed, 95 < mjj/GeV < 155, to concentrate
on resonant Higgs production. All of the above cuts and requirements reduce the number of
simulated events to approximately 8.9 · 104. We include ∆R =

√
(ηj1 − ηj2)2 + (φj1 − φj2)2

between the two jets as a feature as well as the rescaled mass drop observable, ISY , and the
radius of the dijet system, Rjj ,

ISY =
max(mj1,mj2)∆R

mjj
, Rjj =

mjj(pT,j1 + pT,j2)

pT,jj
√
pT,j1pT,j2

. (5)

Lastly, as bottom- and charm-quarks are oppositely charged, we look at the charge of the jets
as defined in [69]

Qjκ =
1

(pT,j)κ

∑
p∈j

Qp(pT,p)
κ (6)

where the charge, Q, of a jet, j is the pT weighted sum of the charges, Q, of all the partons, p,
in the jet. We use κ = 0.4 in this work. Of course only the overall magnitude of the jet charges
differ between bottom and charm Higgs decays. Therefore, in addition to the charge of each jet,
we include the product of the jet charges, the absolute value of the difference of the jet charges,
and the charge of the dijet system, bringing our total number of features to 30.

4.3 Models and Training

Our heavy flavor tagging model is a LightGBM [70] (LGBM), which is a gradient boosted decision
tree where the trees are grown in a depth first rather than breadth first fashion. The name Light
comes from the fact that the training time is often greatly reduced with this construction of
the trees. Our model combines a mere 50 trees in series, and each tree is allowed to have a
maximum depth of 10 with all other hyperparameters fixed to their default values. We take as
our baseline heavy flavor tagger a LightGBM with an unweighted loss function, and compare its
performance against a LightGBM with weighting α = 1− r.

For model evaluation we again perform a stratified five-fold cross validation. We test three
scenarios. In the first test we assume the rate for h → cc̄ in equivalent to the rate for h → bb̄.
Here we use the baseline LGBM with unweighted loss function. In this case there is no class
imbalance implying there must be some BSM physics in this scenario. We randomly select
4.0 · 104 bottom and 4.0 · 104 charm events from our full simulated dataset, and perform the
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cross validation on this sample. For the second test we again use the unweighted, baseline
model, but perform the cross validation on dataset with SM-like class imbalance. In particular
we randomly select 4.0 · 104 bottom and 2.0 · 103 charm events from our full simulated dataset.
For the third and final test we reuse the dataset from the second test, but use our class imbalance
optimized LGBM with weighting hyperparameter α = 1− r ≈ 0.95.

4.4 Results

The results of our three h → cc̄ tagging tests are given in Table 2 with the rows from top to
bottom corresponding to the 1st, 2nd, and 3rd scenarios described in previous subsection. For
each scenario we consider two signal efficiency working points, a looser selection of εh→cc̄ =
TPR = 0.2 and a tighter selection of εh→cc̄ = 0.8. We report the background rejection rate,
εh→bb̄ = FPR, for each of these working points. The inverse of the background rejection rate
is largest in the scenario without class imbalance. The performance of both tagging models is
worse in the presence of class imbalance. However the weighted LGBM outperforms the baseline
tagging model in the presence of class imbalance, demonstrating proof of principle that class
imbalance techniques can be used to improve the performance of algorithms used to identify
h → cc̄ events. In particular, there is a 14% increase in 1/εh→bb̄ with loose selection criteria
when the class imbalance optimized model is used.

We also report the average precision, and average precision normalized by the imbalance
ratio. The average precision is significantly higher in the scenario without class imbalance.
However when the average precision is normalized to the imbalance ratio, which constitutes the
näıve expectation for the AP score, higher values are found when the data is imbalanced.

Lastly, we investigate which features are important for the classification. Using the feature
importance of the LGBM the charges of the heavy flavor jets and the associated engineered
features do not play a significant role in discriminating charm initiated jets from bottom jets.
This is in contrast with studies of light flavored jets [71]. A possible explanation for this is the
heavy flavored hadrons have more possible decay chains.4 In particular, a neutral meson may
oscillate or there might be a cascade decay that spoils the correlation between the charges of the
partons in the jet and the charge of the particle that initiated the jet. Again using the feature
importance of the LGBM, we find the the four-vectors of the leptons and the four-vector of the
reconstructed Z boson also do not play a major role in discriminating charm initiated jets from
bottom jets.

5 Discussion

Extracting a signal from a much larger background is a common problem in high energy physics.
Posed as a classification task, there is said to be an imbalance in the number of samples be-
longing to the signal class versus the number of samples from the background class. Imbalanced
learning techniques are not commonly used, explicitly anyways, in high energy physics. Given
this lack of use we first provided a brief overview of modern class imbalance techniques in a high
energy physics setting, introducing novel loss functions and a data resampling technique. We
then presented two case studies illustrating these techniques. The first study is the measurement
of the longitudinal polarization fraction in same-sign WW scattering. We found a significant

4This is one of the main systematic uncertainties in measuring asymmetric heavy quark hadroproduction [72,
73, 74, 75].
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Model α r εh→cc̄ 1/εh→bb̄ Average Precision AP/r

LightGBM 1
2 1

0.2 38.8± 2.6
0.719± 0.004 0.7± 0.0

0.8 1.7± 0.0

LightGBM 1
2 0.05

0.2 30.9± 5.2
0.166± 0.008 3.3± 0.2

0.8 1.6± 0.1

Weighted LGBM 1− r 0.05
0.2 35.1± 8.9

0.161± 0.011 3.2± 0.2
0.8 1.5± 0.1

Table 2: The results of our three h→ cc̄ tagging tests. We report the background rejection rate,
εh→bb̄ = FPR, for two signal efficiency working points, εh→cc̄ = TPR = 0.2(loose), 0.8(tight).
There is a 14% increase in 1/εh→bb̄ with loose selection criteria when the class imbalance opti-
mized model is used, 3rd versus 2nd row, demonstrating proof of principle that class imbalance
techniques can be used to improve the performance of algorithms used to identify h→ cc̄ events.
We also report the AP , and AP/r, which is given to one decimal place for better readability.

improvement in the performance of the classic ML models used in the longitudinal WW study,
while no significant improvement in performance was found in the deep learning models tested.
With that being said our neural networks achieves comparable performance to that of Ref. [46]
despite having only two hidden layers instead of 10. Given that there are only O(10) features
in this dataset it is not surprising that a very deep network did not continue to improve perfor-
mance. Having fewer hidden layers with all else being equal results in a reduction in training
time. The second case is the decay of the Higgs boson to charm-quark pairs. We delivered proof
of principle that it is possible to improve tagging efficiency of h → cc̄ events through the use
of the class imbalance techniques. In particular, our Higgs-to-charm tagger with loose selection
criteria gave a 14% improvement in the background rejection rate.
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A Glossary

See Table 3 for a glossary of model evaluation terms used in this work.
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