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Abstract

We compute lattice correlation functions for the model of critical dense polymers on a semi-
infinite cylinder of perimeter n. In the lattice loop model, contractible loops have a vanishing
fugacity whereas non-contractible loops have a fugacity α ∈ (0,∞). These correlators are defined as
ratios Z(x)/Z0 of partition functions, where Z0 is a reference partition function wherein only simple
half-arcs are attached to the boundary of the cylinder. For Z(x), the boundary of the cylinder is also
decorated with simple half-arcs, but it also has two special positions 1 and x where the boundary
condition is different. We investigate two such kinds of boundary conditions: (i) there is a single
node at each of these points where a long arc is attached, and (ii) there are pairs of adjacent nodes
at these points where two long arcs are attached.

We find explicit expressions for these correlators for finite n using the representation of the
enlarged periodic Temperley-Lieb algebra in the XX spin chain. The resulting asymptotics as n→ ∞
are expressed as simple integrals that depend on the scaling parameter τ = x−1

n ∈ (0, 1). For small

τ , the leading behaviours are proportional to τ1/4, τ1/4 log τ , log τ and log2 τ .
We interpret the lattice results in terms of ratios of conformal correlation functions. We assume

that the corresponding boundary changing fields are highest weight states in irreducible, Kac or
staggered Virasoro modules, with central charge c = −2 and conformal dimensions ∆ = − 1

8
or

∆ = 0. With these assumptions, we obtain differential equations of order two and three satisfied by
the conformal correlation functions, solve these equations in terms of hypergeometric functions, and
find a perfect agreement with the lattice results. We use the lattice results to compute structure
constants and ratios thereof which appear in the operator product expansions of the boundary
condition changing fields. The fusion of these fields is found to be non-abelian.

Keywords: Loop models, correlation functions, logarithmic conformal field theory
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1 Introduction

A synthetic presentation of the study of critical phenomena, taking into account some of the main
lessons learned during the first half-century following Onsager’s celebrated exact solution of the two-
dimensional Ising model [1], would run roughly as follows: A physical system standing at a second-order
phase transition possesses a continuum limit which is scale invariant [2] and usually also conformally
invariant [3, 4]. It is characterised by a set of critical exponents and universal amplitude ratios that
define a given universality class, characteristic of all systems with a given set of symmetries. The
exponents are related to the eigenvalues of the dilation operator, and they characterise the algebraic
decay of the correlation functions. This operator can be defined either in lattice models (as the transfer
matrix or Hamiltonian) or in the quantum field theory describing the continuum limit, so a paramount
goal of the theoretician is to diagonalise it. In two dimensions, this task can be efficiently accomplished
by identifying suitably tractable lattice models whose spin chain descriptions can be solved exactly by
integrability techniques [5–7], or by studing the properties of suitable highest-weight representations of
infinite-dimensional conformal algebras [3,4,8–10]. The compatibility of the conclusions obtained from
these two approaches has been witnessed in thousands of model studies.

As appealing as this outline may appear, a significant proviso was brought forward in the early
1990’s [11,12]: What happens if the dilation operator is not diagonalisable after all? After a lingering
start, the importance of this question has become increasingly clear in the last two decades [13,14] and
has lead directly to the detailed study of non semi-simple representations of certain algebras, both in
the lattice model [15–17] and conformal field theory (CFT) [18–22] contexts. The latter define what
has become known as logarithmic conformal field theory (LCFT) [23], since the correlation functions
exhibit both power-law and logarithmic factors. Quite remarkably, the interplay between the lattice
models and their continuum limit has turned out to be as tight as ever before, with essentially the
same indecomposable structures appearing in either [24].

A necessary condition for this logarithmic behaviour is provided by non-unitarity. While there are
various ways of providing this ingredient, a very natural and physically relevant context arises in the
study of models formulated in terms of extended degrees of freedom, such as loops and clusters. In this
paper, we shall focus on so-called critical dense polymers [25], of which the basic manifestation is a
single completely-packed closed curve that fills up the whole lattice. It is the first member, LM(1, 2),
of the family of logarithmic minimal models [26], with its central charge and conformal weights given
by

c = −2, ∆r,s =
(2r − s)2 − 1

8
. (1.1)

Theories with c = −2 are the most well understood logarithmic conformal field theories [27–31]. Other
cognate models described by logarithmic CFTs include self-avoiding walks and critical percolation. A
common feature of such lattice models is the appearance of cellular algebras [32] of the Temperley-Lieb
type.

Logarithms in correlation functions were previously found in various lattice models, including the
abelian sandpile model [33–35], critical dense polymers [36–38], critical percolation [39–41] and the
Q-state Potts model [42–44]. In many cases, the results were obtained using conformal arguments and
verified numerically on a computer. Our goal is to provide new examples of such logarithmic behaviour
where the correlators are computed both rigorously from the lattice using the toolbox of integrability,
and using the arguments of conformal invariance extended to the logarithmic theories [45].

In a previous paper [38], we have defined several types of two-point boundary correlation functions
of critical dense polymers. We established their exact finite-size expressions on a semi-infinite strip of
width n and compared the corresponding asymptotic expansions with the field-theoretical predictions.
These correlators describe boundaries with defect points, allowing them to be connected by the loops in
various ways. Some of the correlators turned out to exhibit logarithmic features, while others did not.
The main goal of the present paper is to extend parts of this study to periodic boundary conditions,
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where now the correlation functions are defined on a semi-infinite cylinder of circumference n. An
interesting by-product of this modification is that we can now allow for non-contractible loops with a
generic weight α, while contractible loops are forbidden (they have the dense polymer weight β = 0).
This is also interesting from the CFT perspective, as the relevant conformal correlation functions
involve boundary fields, as in our previous work, but also a bulk field ψα(z, z

∗), which is responsible
for assigning the weight α to the non-contractible loops.

In the usual CFT setting, there is a close connection between conformally invariant boundary
conditions and highest-weight representations in the bulk theory [46,47]. Moreover, a number of strong
results (see, e.g., [48,49] in the loop model context) have been obtained from the principle of modular
invariance, that is, by comparing the equivalent results of a closed evolution operator (i.e. subject
to periodic boundary conditions) acting between two given boundary states with those of an open
evolution operator (with given boundary conditions) acting in periodic imaginary time. Our setup
similarly replaces the open evolution operator of [38] with a closed one, but we keep the defect points
at the boundary. The correct interpretation of our results thus remains within the boundary version
of LCFT. The relation between bulk and boundary theories is much more involved in the LCFT
setting [50,51], and in particular it is known that in bulk LCFT primary operators can mix into Jordan
cells of rank higher than two [52,53].

The outline of the paper is as follows. We start out, in Section 2, by recalling the definition of the
model of critical dense polymers and its connection with the Temperley-Lieb algebra and the XX spin
chain. Due to our setup, we shall need the enlarged periodic version of the Temperley-Lieb algebra,
and shall consider the spin chain with periodic boundary conditions. In Sections 3 and 4, we define two
types of lattice correlation functions, where each insertion point on the boundary involves respectively a
single node or a pair of nearest-neighbour nodes. We find exact expressions for each of these correlators,
compute the leading large-n asymptotics in the form of integral formulae, and extract the limiting cases
of small and large distances. The same correlation functions are then discussed in the context of LCFT
in Sections 5 and 6. Each lattice correlator is understood as a ratio of conformal correlation functions.
We use conformal invariance to obtain differential equations for these conformal correlators and find
that the solutions to these equations precisely reproduce the exact results of Sections 3 and 4. In
Section 7, we study the operator product expansions of the boundary conformal fields and use the
lattice results to compute some of the structure constants. The fusion of the corresponding boundary
conformal fields distinguishes between operators that mark the start and end of arcs attached to the
boundary, and is found to be non-abelian. The paper ends in Section 8 with a discussion of our results
and with concluding comments.

2 Dense polymers with periodic boundary conditions

2.1 Dense polymers and two-point functions

We study the model of critical dense polymers on the m × n cylinder. We draw it in the plane, as
in Figure 1, and choose n to be even. A configuration of the model is the choice of a tile or
for each face of the lattice. The boundary conditions are periodic in the horizontal direction, meaning
that the left and right ends of the rectangle are identified in the planar representation. The top of the
cylinder is decorated exclusively with simple arcs. Labeling the nodes from 1 to n, these arcs connect
the points in the pairs (1, 2), (3, 4), . . . , (n− 1, n). In contrast, the bottom of the cylinder is decorated
with a collection of defects and arcs. Their organisation depends on the correlation function that we
are studying and is detailed below. A loop configuration σ has the weight wσ = αnαδnβ ,0 where nα
and nβ are the numbers of non-contractible and contractible loops in the configuration. A collection
of arcs that connects two defects of the boundary has weight one. The partition function is defined as

Z =
∑

σ

wσ. (2.1)
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1 x=6 1 x=7

Figure 1: Loop configurations on the 10 × 8 cylinder, with the boundary conditions corresponding to
Z0, Z (x = 6) and Z (x = 7).

We denote by Z0 the partition function for the model where the lower segment is identical to
the top segment of the cylinder and is therefore exclusively decorated with simple arcs. We consider
α ∈ (0,∞) for which Z0 6= 0. Likewise, we denote by Z (x) the partition function wherein the
bottom of the cylinder has simple arcs, and two defects inserted in positions 1 and x. Finally, we
denote by Z (x) the partition function where the bottom of the cylinder has two pairs of adjacent
defects in the positions (1, 2) and (x, x + 1), and simple arcs occupying the other nodes. Examples
of configurations for the three partition functions are given in Figure 1. The corresponding two-point
correlation functions are then defined as follows:

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞

Z (x)

Z0
. (2.2)

2.2 The enlarged periodic Temperley-Lieb algebra

Definition of the algebra. This periodic Temperley-Lieb algebra [54–58] is a unital associative
algebra that is used to describe many classes of statistical models on periodic geometries. The ter-
minology and conventions vary, and here we work with the enlarged periodic Temperley-Lieb algebra
EPTLn(α, β) defined in [59]:

EPTLn(α, β) =
〈
I,Ω,Ω−1, ej; j = 1, . . . , n

〉
. (2.3)

Each element of the algebra is associated to a connectivity diagram drawn inside a rectangle that has
periodic boundary conditions in the horizontal direction. For the generators, this identification is

I = ...

1 2 3 n

, ej = ... ...

1 nj j+1

, en =

1 2 3 n

... , (2.4a)

1 2 3 ... n

Ω = ,

1 2 3 ... n

Ω−1 = . (2.4b)

The defining relations of the algebra are

e2j = βej , ejej±1ej = ej , eiej = ejei (|i − j| > 1), (2.5a)

ΩΩ−1 = Ω−1Ω = I, ΩeiΩ
−1 = ei−1, Ωnen = enΩ

n, (Ω±1en)
n−1 = Ω±n(Ω±1en), (2.5b)

where the indices are in the set {1, . . . , n} and taken modulo n. For n even, there are extra relations
which remove each non-contractible loop and replace it by a weight α:

EΩ±1E = αE where E = e2e4 . . . en−2en. (2.6)

Henceforth, we set β = 0 corresponding to the model of critical dense polymers for which con-
tractible loops have a vanishing fugacity.
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Transfer tangle. The transfer tangle for the model of polymers with periodic boundary conditions
is an element of EPTLn(α, 0) defined as

T (u) = . . . . . .u u u

︸ ︷︷ ︸
n

, u = cos u + sinu , (2.7)

where u is the so-called spectral parameter. The isotropic value is u = π
4 , and we use the short-hand

notation T (π4 ) = T . The transfer tangle commutes at different values of u, namely [T (u),T (v)] = 0,
and satisfies

T (u) = Ω
(
I − uH +O(u2)

)
, H = −

n∑

j=1

ej , (2.8)

where H is the Hamiltonian. It also commutes with T (u).

The standard module Wn,0. The algebra EPTLn(α, 0) has a family of standard modules Wn,d

labeled by an integer number d of defects. Our calculations below only require the standard module
with no defects, Wn,0. This module is defined on the vector space generated by link states with no
defects. These are diagrams drawn over a segment where n marked nodes are connected pairwise
by non-intersecting loop segments. The boundary conditions are cylindric, namely periodic in the
horizontal direction so that the loop segments may connect via the back of the cylinder. Here are the
link states for n = 2 and n = 4:

W2,0 : , , W4,0 : , , , , , . (2.9)

We define the action of the elements of EPTLn(α, 0) on the link states via the action of the algebra’s
generators. To compute av with a = ej or a = Ω±1, we draw the connectivity diagram corresponding
to a below v. The new link state is read from the connectivity of the bottom segment. If one (or more)
contractible loop is formed, the result is set to zero. If one (or more) non-contractible loop is formed,
each such loop is erased and replaced by a multiplicative factor of α. Here are examples for n = 4:

= α , = 0 , = . (2.10)

The bilinear Gram form. Let v,w be two link states in Wn,0. Their Gram overlap, denoted v ·w, is
obtained by flipping v vertically and attaching its nodes to those of w. The resulting diagram then has
nα non-contractible loops and nβ contractible loops. The overlap is then defined as v · w = αnαδnβ ,0.
It is then bilinearly extended to all states in Wn,0. The values of the overlaps in the link state basis
are encoded in the Gram matrix. To illustrate, in the bases (2.9), the Gram matrices for n = 2 and
n = 4 are

(
0 α
α 0

)
and




0 0 0 α 0 0
0 0 α 0 α α2

0 α 0 0 α2 α
α 0 0 0 0 0
0 α α2 0 0 α
0 α2 α 0 α 0



. (2.11)

The spin-chain representation Xn. The representation Xn of EPTLn(α, 0) is defined on the vector
space (C2)⊗n. The generators e1, . . . , en−1 are represented by the matrices

Xn(ej) = Ij−1 ⊗




0 0 0 0
0 i 1 0
0 1 i−1 0
0 0 0 0


⊗ In−j−1, j = 1, . . . , n− 1, (2.12)
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where Ij is the identity matrix of size 2j . The representants for en and Ω depend on a twist angle φ,

Xn(en) = t







0 0 0 0
0 i eiφ 0
0 e−iφ i−1 0
0 0 0 0


⊗ In−2


 t

−1, Xn(Ω) = t eiφσ
z
1/2, (2.13)

where t is the translation operator:

t|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 = |v2〉 ⊗ · · · ⊗ |vn〉 ⊗ |v1〉. (2.14)

One can check that the defining relations (2.5) and (2.6) are satisfied, with the weight α of the non-
contractible loops related to the twist angle via the relation

α = 2cos
(φ
2

)
. (2.15)

For α ∈ (0, 2], φ is real and in the range [0, π), whereas for α ∈ (2,∞), φ is purely imaginary in the
range (i0, i∞).

Homomorphism and overlaps. There exists a homomorphism between the standard module Wn,0

and the spin-chain module Xn of EPTLn(α, 0). It is defined via the following local maps:

| 〉 = ω |↑↓〉+ ω−1 |↓↑〉, | 〉 = ω eiφ/2|↓↑〉+ ω−1e−iφ/2|↑↓〉, ω = eiπ/4. (2.16)

For link states with more than one arc, the local map is applied multiplicatively to each arc. For
instance:

| 〉 = e−iφ/2|↑↓↑↓〉+ ω−2e−iφ/2|↑↓↓↑〉+ ω2 eiφ/2|↓↑↑↓〉+ eiφ/2|↓↑↓↑〉. (2.17)

It is well known that this is indeed a homomorphism, namely for each v in Wn,0 we have

Xn(ej)|v〉 = |ejv〉, Xn(Ω
±1)|v〉 = |Ω±1v〉, (2.18)

where α and φ are related as in (2.15). The dual states are then defined as 〈v| = |v〉t
∣∣
φ→−φ. The

spin-chain overlap between v and w then equals the Gram overlap between v and w:

〈v|w〉 = v · w, v,w ∈ Wn,0. (2.19)

2.3 XX Hamiltonian

The periodic XX Hamiltonian with the twist φ is defined as

H = Xn(H) = −
( n−1∑

j=1

σ+j σ
−
j+1 + σ−j σ

+
j+1

)
− eiφσ+n σ

−
1 − e−iφσ−n σ

+
1 . (2.20)

It is hermitian and therefore has real eigenvalues. In terms of the fermions

cj = (−1)j−1

( j−1∏

k=1

σzk

)
σ−j , c†j = (−1)j−1

( j−1∏

k=1

σzk

)
σ+j , (2.21)

it is expressed as

H = −
( n−1∑

j=1

c†jcj+1 + c†j+1cj

)
− ei(

π
2
(n+2Sz+2)+φ)c†nc1 − e−i(π

2
(n+2Sz+2)+φ)c†1cn , (2.22)
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where Sz = 1
2

∑n
j=1 σ

z
j is the magnetisation. Applying a Fourier transform allows us to put H in

diagonal form:

H = −
n∑

k=1

2 cos(θk)η
†
kηk , (2.23)

where

ηk =
1√
n

n∑

j=1

eijθkcj , η†k =
1√
n

n∑

j=1

e−ijθkc†j , θk =





2πk−φ
n

n
2 + Sz odd,

2π(k− 1
2
)−φ

n
n
2 + Sz even.

(2.24)

A full set of fermionic operators is obtained by taking k in the set {1, . . . , n}. In what follows, it is
however convenient to extend the definition of ηk to integer values of k that are negative, using the
periodicity properties ηk+n = ηk and η†k+n = η†k. Then, for φ ∈ [0, π) and φ ∈ (i0, i∞), the groundstate
of H lies in the magnetisation sector Sz = 0 and is given by

|w0〉 =
{
η†(2−n)/4 · · · η

†
(n−2)/4|0〉 n

2 odd,

η†(4−n)/4 · · · η
†
n/4|0〉

n
2 even,

|0〉 = |↓ · · · ↓〉. (2.25)

This state is also the groundstate of the transfer matrix T (u) for 0 6 u 6 π
2 . The corresponding

eigenvalue Λ0 of T = T (π4 ) is [59, 60]

Λ0 =
cos(φ2 )

2n−1

n/2∏

j=1

(1 + tan xj)
n∏

j=n/2+1

(1− tan xj), xj =
π(j − 1

2)−
φ
2

n
. (2.26)

3 Lattice correlators for single entry points

3.1 Refined partition functions

For each loop configuration that contributes to Z (x), the two defects can connect either via the back
or the front of the cylinder. We denote these two possible connections as and and define the
refined partition functions Z (x) and Z (x). The partition function Z (x) decomposes as

Z (x) = Z (x) + Z (x). (3.1)

Let us also define two more partition functions: Z (x) and Z (x). They are defined in a similar way
to Z (x), but with the two defects on the lower boundary attached together to become a long arc, in
the two possible ways. This means that, in the middle panel of Figure 1, the boundary condition at
the lower end of the cylinder is replaced with the following states flipped vertically:

vax = ...
1 x

... , vbx = ...
1 x

... . (3.2)

Clearly, we have (
Z (x)

Z (x)

)
=

(
0 α
α 0

)(
Z (x)
Z (x)

)
. (3.3)

The matrix on the right side is the Gram matrix for W2,0 given in (2.11). We also note that the state
attached to the top of the cylinder in Figure 1 is none other than va2. Its translation by one node is vbn.

We define the refined correlation functions corresponding to and :

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞

Z (x)

Z0
. (3.4)
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In constrast to C (x), these two functions have a well-defined α → 0 limit. Indeed, the numerators
and denominators are polynomials in α with the lowest-degree term proportional to α. In the limit
α → 0, these correlation functions give ratios of partition functions where the configurations with
non-zero weights have a single non-contractible loop, and no contractible loops.

The partition functions Z (x) and Z (x) are expressed in terms of Gram overlaps as

Z (x) = 2mn/2(vax · Tmva2), Z (x) = 2mn/2(vbx · Tmva2), (3.5)

where the factor of 2mn/2 ensures that the tiles have weight 1 and not 1√
2
, as they do in (2.7) for u = π

4 .

Because of the invariance under translation, we can equivalently write

Z (x) = 2mn/2(van+2−x · Tmvbn). (3.6)

These partition functions are then expressed as overlaps in the spin chain:

Z (x) = 2mn/2〈vax|Tm|va2〉, Z (x) = 2mn/2〈van+2−x|Tm|vbn〉, (3.7)

where T = Xn(T ) is the transfer matrix.

3.2 Closed-form expressions in the limit m → ∞

In the limit m→ ∞, the leading contribution to the overlaps comes from the groundstate,

Z (x) ≃ 2mn/2Λm0 〈vax|w0〉〈w0|va2〉, Z (x) ≃ 2mn/2Λm0 〈van+2−x|w0〉〈w0|vbn〉, (3.8)

where ≃ indicates an equality up to terms that are exponentially small in m compared to the leading
term. Because |w0〉 is invariant under translation, we know that 〈w0|va2〉 = 〈w0|vbn〉. The partition
function Z0 is equal to Z (2), and as a result we have

C (x) =
〈vax|w0〉
〈va2|w0〉

, C (x) =
〈van+2−x|w0〉

〈va2 |w0〉
= C (n+ 2− x). (3.9)

We therefore focus on computing C (x). Following (2.16), the state vax is represented in the spin
chain by

〈vax| = 〈0|an−1an−3 · · · ax+1ax−2ax−4 · · · a2
(
ω c1 + (−1)

x−2
2 ω−1cx

)
(3.10)

where
aj = ωcj + ω−1cj+1, ω = eiπ/4. (3.11)

The sign (−1)
x−2
2 of the last factor in (3.10) comes from anticommuting cx with the factors

a2, a4, . . . , ax−2. We have the following identity,

(
ω c1 + (−1)

x−2
2 ω−1cx

)
=

x−1∑

ℓ=1

iℓ−1aℓ, (3.12)

and the following commutation relation:

{aj , η†k} = 2n−1/2 cos
(
θk
2 + π

4

)
e−i(j+1/2)θk . (3.13)

Using Wick’s theorem, we find

〈vax|w0〉 =
x−1∑

ℓ=1

iℓ−1 detM (ℓ) , (3.14a)
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where

M
(ℓ)
jk =





{aℓ, η†k} j = 1,

{a2j−2, η
†
k} j = 2, . . . , x2 ,

{a2j−1, η
†
k} j = x+2

2 , . . . , n2 ,

k ∈ K =

{
{4−n

4 , . . . n4 } n
2 even,

{2−n
4 , . . . n−2

4 } n
2 odd.

(3.14b)

For ℓ even, the determinant is zero, as the first row is identical to the row with label j = ℓ+2
2 . The factors

appearing in (3.13) that are constant or depend only on k can be extracted from the denominator, and
we find

C (x) =
〈vax|w0〉
〈va2 |w0〉

=
∑

ℓ=1,3,...,x−1

(−1)(ℓ−1)/2 det M̃
(ℓ)

det M̃ (1)
, (3.15a)

M̃
(ℓ)
jk =





e−i(ℓ+1/2)θk j = 1,

e−i(2j−3/2)θk j = 2, . . . , x2 ,

e−i(2j−1/2)θk j = x+2
2 , . . . , n2 ,

k ∈ K. (3.15b)

The inverse of the matrix M̃ (1) has the entries

(M̃ (1))−1
kj =

2

n
eiθk(2j−1/2), j = 1, . . . , n2 , k ∈ K. (3.16)

The next step is to multiply M̃ (ℓ) by (M̃ (1))−1 from the right:

[
M̃ (ℓ)(M̃ (1))−1

]
jk

=





δi,(ℓ+1)/2 j = 1,

−2(−1)j+keiφ(2j−2k−1)/n

n sin(πn(2j − 2k − 1))
2 6 j 6 x

2 ,

δj,k
x+2
2 6 j 6 n

2 ,

k = 1, . . . , n2 . (3.17)

This holds for both parities of n
2 . The presence of the Kronecker-δ functions stems from the fact that

the rows of M̃ (ℓ) and M̃ (1) with labels j = 1 and j = x+2
2 , . . . , n2 are identical. The determinant of

M̃ (ℓ)(M̃ (1))−1 thus reduces to the determinant of a matrix of size x−2
2 . Except for the sin(πn (2j−2k−1))

in the denominator, all the other factors can be extracted from the determinant. After simplification,
we find

C (x) =

(−4i

n

)x−2
2

e−
iφ(x+2)

2n e
iπ(x−1)(x+2)

2n

x/2∑

ℓ=1

(−1)ℓ−1e
2iℓ(φ−π)

n detN (ℓ) (3.18a)

N
(ℓ)
jk =

{
(wj − zk)

−1 1 6 k 6 ℓ− 1,

(wj − zk+1)
−1 ℓ 6 k 6

x−2
2 ,

j = 1, . . . , x−2
2 , (3.18b)

where wj = e4iπ(j−
1
2
)/n and zk = e4iπk/n. The determinants are evaluated using Cauchy’s identity:

a
det
j,k=1

( 1

wj − zk

)
=

∏
16j<k6a(wk −wj)(zj − zk)∏a

j,k=1(wj − zk)
. (3.19)

This gives us a closed-form expression for C (x) in terms of a complicated sum, wherein the summand
is written as a ratio of trigonometric functions. Many factors are independent of ℓ and can be factored
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from the sum. After simplification, we find

C (x) =

(−2

n

)x−2
2

∏

16j<k6(x−2)/2

sin
(
2π
n (k − j)

) ∏

16j<k6x/2

sin
(
2π
n (j − k)

)

(x−2)/2∏

j=1

x/2∏

k=1

sin
(
2π
n (j − k + 1

2)
)

(3.20)

×
x/2∑

ℓ=1

cos
(φ
n(2ℓ− x+2

2 )
)

(x−2)/2∏

j=1

sin
(
2π
n (j − ℓ+ 1

2)
)

x/2∏

j=1
j 6=ℓ

sin
(
2π
n (ℓ− j)

)
.

3.3 Asymptotic behaviour

We compute the asymptotic behaviour of (3.20) as n→ ∞ with the ratio of x and n fixed. We achieve
this by setting τ = x−1

n and sending n to infinity with τ fixed in the range (0, 1). As a first step, we

write all the sine functions in terms of the cardinal sine function s[x] = sin(x)
x . The products of integers

that appear are then rewritten in terms of the Gamma and Barnes functions:

Γ(z + 1) = z Γ(z), G(z + 1) = Γ(z)G(z). (3.21)

The result simplifies to

C (x) =
G(x2 )G(

x+2
2 )G2(12 )

G2(x+1
2 )

(x−2)/2∏

j=0

s[2πn (j + 1
2)]

s[2πn j]

(x−2)/2∏

j=0

(x−2)/2∏

k=0

s[2πn (j − k)]

s[2πn (j − k − 1
2 )]

×
(x−2)/2∑

ℓ=0

cos
(φ
n(2ℓ− x−2

2 )
)

s[2πn (ℓ+ 1
2 )]

Γ(ℓ+ 1
2)Γ(

x−1
2 − ℓ)

Γ(ℓ+ 1)Γ(x2 − ℓ)

(x−2)/2∏

j=0

s[2πn (j − ℓ− 1
2)]

s[2πn (j − ℓ)]
, (3.22)

where we use the convention s[0] = 1. The large-z asymptotics of G(z) is

logG(z) =

(
(z − 1)2

2
− 1

12

)
log(z − 1)− 3(z − 1)2

4
+
z − 1

2
log(2π) +

1

12
− logA+O

(
z−1

)
(3.23)

where A is the Glaisher-Kinkelin constant. This yields

G(nτ+1
2 )G(nτ+3

2 )

G2(nτ+2
2 )

=
(nτ

2

)1/4
+O(n−3/4). (3.24)

To compute the asymptotics of the products in (3.22), we use the 1/n expansions

(nτ−1)/2∑

j=0

log s[2π(j−a)n − b] = n

∫ τ/2

0
dx log s[2πx− b] +

(
a+ 1

2)(log s[b]− log s[πτ − b]
)
+O(n−1), (3.25a)

(nτ−1)/2∑

j,k=0

log s[2π(j−k−a)n ] = n2
∫∫ τ/2

0
dxdy log s[2π(x− y)] + (a2 − 1

6) log s[πτ ] +O(n−1), (3.25b)
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which are obtained from the Euler-Maclaurin formula. This yields

(x−2)/2∏

j=0

s[2πn (j + 1
2 )]

s[2πn j]
= s[πτ ]1/2 +O(n−1),

(x−2)/2∏

j,k=0

s[2πn (j − k)]

s[2πn (j − k − 1
2 )]

= s[πτ ]−1/4 +O(n−1). (3.26)

To evaluate the asymptotic behaviour of the sum in (3.22), we first change the summation index to
z = ℓ

n , so that the sum goes from 0 to τ with increments of 1
n . We have the following asymptotics

(x−2)/2∏

j=0

s[2πn (j − 1
2)− 2πz]

s[2πjn − 2πz]
=

s[2πz]1/2

s[π(τ − 2z)]1/2
+O(n−1). (3.27a)

Γ(nz + 1
2 )Γ(

nτ
2 − nz)

Γ(nz + 1)Γ(nτ+1
2 − nz)

=
1

n

1

z1/2( τ2 − z)1/2
+O(n−2). (3.27b)

The first is obtained from (3.25a) and the second from the known asymptotic expansion of log Γ(z).
As n → ∞, the sum has a well-defined limit in terms of an integral. Putting all the results together
yields

C (x)
∣∣∣
x=nτ+1

= n1/4 sin(πτ)1/4(2π)3/4G2(12)

∫ τ/2

0
dz

cos
(
φ(2z − τ

2 )
)

sin(2πz)1/2 sin
(
π(τ − 2z)

)1/2 +O(n−3/4).

(3.28)
This is our final formula for the asymptotics for generic values of τ in (0, 1). The results are displayed
in Figure 2.

We analyse its behaviour in the limiting cases τ → 0+ and 1−. The former is easily evaluated to

C (x)
∣∣∣
x=nτ+1

n≫1, τ→0+−−−−−−−→ (nτ2 )1/4πG2(12 ). (3.29)

The latter requires closer scrutiny, as the integral in (3.28) diverges for τ = 1. Let us denote this
integral by J . To obtain its asymptotics for τ → 1−, we first use the reflection symmetry of the
integrand under z → τ

2 − z:

J =

∫ τ/2

0
dz

cos
(
φ(2z − τ

2 )
)

sin(2πz)1/2 sin
(
π(τ − 2z)

)1/2 = 2

∫ τ/4

0
dz

cos
(
φ(2z − τ

2 )
)

sin(2πz)1/2 sin
(
2π(z + 1−τ

2 )
)1/2 . (3.30)

We substract and add a counter-term in the form of an integral wherein the numerator and denominator
are simpler:

J = 2

∫ τ/4

0
dz

[
cos

(
φ(2z − τ

2 )
)

sin(2πz)1/2 sin
(
2π(z + 1−τ

2 )
)1/2 − cos φ2

2πz1/2(z + 1−τ
2 )1/2

]
+

∫ τ/4

0
dz

cos φ2
πz1/2(z + 1−τ

2 )1/2
.

(3.31)
The first integral has a well-defined limit for τ → 1, whereas the second one is evaluated explicitly:

J ≃ 2

∫ 1/4

0
dz

[
cos

(
φ(2z − 1

2 )
)

sin(2πz)
− cos φ2

2πz

]
+

2cos(φ2 )

π
log

(√1− τ
2 +

√
τ
2√

1− τ

)
(3.32)

where ≃ indicates an equality up to terms of order (1− τ)1. The logarithmic divergence as τ → 1− is
explicit in the last term. This yields

C (x)
∣∣∣
x=nτ+1

n≫1, τ→1−−−−−−−−→ n1/4(1− τ)1/42−1/4G2(12)
(
K − α log(1−τ2 )

)
, (3.33)
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C (x)

τ = x−1
n

Figure 2: The correlation function C (x) for φ = 1. The points are the exact values for n = 200. The
blue, yellow and purple solid curves are respectively drawn from (3.28), (3.29) and (3.33).

where

K = 2π

∫ 1/2

0
dy

(
cos

(
φ(y − 1

2)
)

sinπy
− cos(φ2 )

πy

)
. (3.34)

Recalling from (3.9) that C (x) = C (n + 2 − x), the final results for the asymptotics of these
correlation functions for 1 ≪ x≪ n are

C (x)
1≪x≪n−−−−−→ (x2 )

1/4πG2(12), C (x)
1≪x≪n−−−−−→ (x2 )

1/4G2(12)
(
α log n+K − α log(x2 )

)
. (3.35)

The first has a pure power-law behaviour, namely it is proportional to x−2∆ with ∆ = −1
8 . The second

has the same power-law exponent as the first, but with an added logarithmic dependence upon the
position x. The conformal interpretation of these results is discussed in Section 5.

4 Lattice correlators for double entry points

4.1 Refined partition functions

For each loop configuration that contributes to Z (x), the four defects can connect in six possible
ways, according to the six link states of W4,0, see (2.9). We thus define six refined partition functions,
one for each connectivity of the defects:

Z (x) = Z (x) + Z (x) + Z (x) + Z (x) + Z (x) + Z (x). (4.1)

To compute these refined partition functions, we define six more partition functions. These are defined
similarly to Z (x), but with the following link states flipped vertically and attached to the lower
boundary of the rectangle:

vcx = ...
1 x

... , vdx = ...
1 x

... , (4.2a)

vex = ...
1 x

... , vfx = ...
1 x

... , (4.2b)

vgx = ...
1 x

... , vhx = ...
1 x

... . (4.2c)
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We denote them Z (x), Z (x), Z (x), Z (x), Z (x) and Z (x). We have the following
decompositions: 



Z (x)

Z (x)

Z (x)

Z (x)

Z (x)

Z (x)




=




0 0 0 α 0 0
0 0 α 0 α α2

0 α 0 0 α2 α
α 0 0 0 0 0
0 α α2 0 0 α
0 α2 α 0 α 0







Z (x)
Z (x)
Z (x)
Z (x)
Z (x)
Z (x)



. (4.3)

The matrix appearing on the right side is the Gram matrix for W4,0 given in (2.11). Clearly, we have

Z (x) = Z0, Z (x) = Z (x) = Z (n), (4.4a)

Z (x) = Z (n+ 2− x), Z (x) = Z (n+ 2− x). (4.4b)

Indeed, for the link states , and , either the nodes 1 and 2 are tied together or the nodes
x and x + 1 are tied together, or both. The corresponding partition functions reduce to partition
functions with fewer entry points. The resulting correlation functions, obtained by dividing by Z0 and
taking the limit m → ∞, were computed in Section 3 and are independent of x. There are therefore
only two new independent quantities to compute:

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞

Z (x)

Z0
. (4.5)

The partition functions in the numerators in (4.5) are expressed in terms of spin-chain overlaps as

Z (x) = 2mn/2〈vdx|Tm|va2〉, Z (x) = 2mn/2〈vfx|Tm|va2〉. (4.6)

4.2 Closed-form expressions in the limit m → ∞

In the limit m→ ∞, the leading contribution for the overlaps is

Z (x) ≃ 2mn/2Λm0 〈vdx|w0〉〈w0|va2〉, Z (x) ≃ 2mn/2Λm0 〈vfx|w0〉〈w0|va2〉, (4.7)

and therefore

C (x) =
〈vdx|w0〉
〈va2 |w0〉

, C (x) =
〈vfx|w0〉
〈va2 |w0〉

. (4.8)

The states vdx and vfx are represented in the spin chain by

〈vdx| = 〈0|an−1an−3 · · · ax+2ax−2ax−4 · · · a3
(
ω c2 + (−1)

x−3
2 ω−1cx

)(
ω c1 + (−1)

x−1
2 ω−1cx+1

)
, (4.9a)

〈vfx| = 〈0|an−1an−3 · · · ax+2ax−2ax−4 · · · a3
(
ω c2 + (−1)

x−3
2 ω−1cx

)

×
(
ω−1eiφ/2c1 + (−1)

x−1
2 ω e−iφ/2cx+1

)
. (4.9b)

As a result, we have

C (x) = ω2f1,2 + (−1)
x−3
2 f1,x + (−1)

x−3
2 f2,x+1 + ω−2fx,x+1, (4.10a)

C (x) = eiφ/2f1,2 + eiφ/2ω−2(−1)
x−3
2 f1,x + e−iφ/2ω2(−1)

x−3
2 f2,x+1 + e−iφ/2fx,x+1, (4.10b)

where

fa,b =
detP (a,b)

detM (1)
, P

(a,b)
ij =





{ca, η†k} j = 1,

{cb, η†k} j = 2,

{a2j−3, η
†
k} j = 3, . . . , x+1

2 ,

{a2j−1, η
†
k} j = x+3

2 , . . . , n2 ,

k ∈ K. (4.11)
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We use (3.13), remove from the determinant some of the factors that depend on k, and find

fa,b =
det P̃ (a,b)

det M̃ (1)
, P̃

(a,b)
jk =





e
−iaθk

2 cos(
θk
2
+π

4
)

j = 1,

e
−ibθk

2 cos(
θk
2
+π

4
)

j = 2,

e−iθk(2j−5/2) j = 3, . . . , x+1
2 ,

e−iθk(2j−1/2) j = x+3
2 , . . . , n2 ,

k ∈ K. (4.12)

All the rows of P (a,b) except for the first two appear in M (1). Using (3.16), we find

Q
(a,b)
jℓ =

[
P̃ (a,b)(M̃ (1))−1

]
jℓ
=





1

n

∑

k∈K

eiθk(2ℓ−a−1/2)

cos(θk2 + π
4 )

j = 1,

1

n

∑

k∈K

eiθk(2ℓ−b−1/2)

cos(θk2 + π
4 )

j = 2,

δj,k+1 j = 3, . . . , x+1
2 ,

δj,k j = x+3
2 , . . . , n2 .

(4.13)

The determinant of Q(a,b) thus reduces to the determinant of a 2× 2 matrix:

fa,b = (−1)
x−3
2 det



Q

(a,b)
1,1 Q

(a,b)
1,(x+1)/2

Q
(a,b)
1,2 Q

(a,b)
2,(x+1)/2


 =

(−1)
x−3
2

n2

∑

k,ℓ∈K
e−i(aθk+bθℓ)

e
3
2
iθk+iθℓ(x+

1
2
) − e

3
2
iθℓ+iθk(x+

1
2
)

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )
.

(4.14)

After simplifications, this yields

C (x) =
2

n2

∑

k,ℓ∈K

(
cos(θℓ+θk2 )− cos

(
(x− 1

2)θℓ − (x− 3
2 )θk

)

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )

+ (−1)
x−1
2

sin
(
(x− 3

2 )θℓ +
θk
2

)
− sin

(
(x− 1

2)θℓ −
θk
2

)

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )

)
, (4.15a)

C (x) =
2

n2

∑

k,ℓ∈K

(
sin(θℓ+θk2 + φ

2 )− sin
(
(x− 1

2 )θℓ − (x− 3
2)θk +

φ
2

)

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )

+ (−1)
x−3
2

cos
(
(x− 3

2 )θℓ +
θk
2 + φ

2

)
− cos

(
(x− 1

2 )θℓ −
θk
2 + φ

2

)

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )

)
. (4.15b)

Many of these double sums can be reduced to single sums. For instance,

∑

k,ℓ∈K

cos(θℓ+θk2 )

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )
=

∑

k,ℓ∈K

cos(θℓ2 + π
4 ) sin(

θk
2 + π

4 ) + cos(θk2 + π
4 ) sin(

θℓ
2 + π

4 )

cos(θk2 + π
4 ) cos(

θℓ
2 + π

4 )

=
∑

k,ℓ∈K
tan(θk2 + π

4 ) + tan(θℓ2 + π
4 ) = n

∑

k∈K
tan(θk2 + π

4 ). (4.16)
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The other terms are simplified using similar ideas, and after some algebra we find

C (x) =
4

n

(n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
sin2

(
(x− 1)

(
π
n(k +

1
2) +

φ
2n

))
, (4.17a)

C (x) =
4 sin(φ2 )

n

(n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
sin2

(
(x− 1)

(
π
n(k +

1
2 ) +

φ
2n

))

+
2cos(φ2 )

n

(n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
sin

(
2(x− 1)

(
π
n(k +

1
2 ) +

φ
2n

))

− 2 cos(φ2 )

n2

[ (n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
cos

(
2(x− 1)

(
π
n(k +

1
2 ) +

φ
2n

))]2
(4.17b)

− 2 cos(φ2 )

n2

[ (n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
sin

(
2(x− 1)

(
π
n(k +

1
2 ) +

φ
2n

))]2

+
2cos(φ2 )

n2

[ (n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)]2
− cos(φ2 )

2
.

In the second expression, some of the double sums could not be simplified to single sums and were
instead rewritten as the square of single sums. We simplify these expressions further using the identity

sin( ℓξn )

cos( ξn)
=

ℓ−1∑

t=0

(−1)t sin
( ξ
n(ℓ− 1− 2t)

)
, ℓ even. (4.18)

After some manipulations, we find

C (x) =
4

n

(x−3)/2∑

t=0

cos
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

) , (4.19a)

C (x) =

(
4 sin(φ2 )

n
+

8Y (n) cos(φ2 )

n2

) (x−3)/2∑

t=0

cos
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

)

− 8 cos(φ2 )

n2

([ (x−3)/2∑

t=0

cos
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

)
]2

+

[ (x−3)/2∑

t=0

sin
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

)
]2)

, (4.19b)

where

Y (n) =

(n−2)/2∑

k=0

cot
(
π
n(k +

1
2) +

φ
2n

)
. (4.20)
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4.3 Asymptotic behaviour

We compute the asymptotics for τ = x−1
n with τ ∈ (0, 1) and n→ ∞. We find

1

n

(x−3)/2∑

t=0

cos
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

) =
1

2π

(
log(nτ) + log 2 + γ

)
+ I1(τ) +O(n−1), (4.21a)

1

n

(x−3)/2∑

t=0

sin
(φ
n(2t+ 1)

)

sin
(
π
n(2t+ 1)

) = I2(τ) +O(n−1), (4.21b)

Y (n)

n
=

1

π

(
log n− log π − ψ(12 + φ

2π )
)
+O(n−1), (4.21c)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, γ is the Euler-Mascheroni constant, and

I1(τ) =
1

2

∫ τ

0
dt

(
cos(φt)

sin(πt)
− 1

πt

)
, I2(τ) =

1

2

∫ τ

0
dt

(
sin(φt)

sin(πt)

)
. (4.22)

From (4.19a), we obtain

C (x)
∣∣∣
x=nτ+1

=
2

π

(
log(nτ) + log 2 + γ + 2π I1(τ)

)
+O(n−1). (4.23)

The functions I1(τ) and I2(τ) have the following asymptotic behaviour for τ → 0+:

I1(τ) =
πτ2

8

[
1

3
−

(φ
π

)2
]
+O(τ4), I2(τ) =

φτ

2π
+O(τ3). (4.24)

For τ → 1−, we have

I1(τ) =− cosφ

2π
log(1− τ) + cos2(φ2 )

∫ 1/2

0
dt

(cos(φt)
sin(πt)

− 1

πt

)
+

sinφ

2

∫ 1/2

0
dt

sin(φt)

sin(πt)

− cos2(φ2 ) log 2

π
+

1

2π
(1− τ)(1− φ sinφ) +O

(
(1− τ)2

)
. (4.25)

The asymptotic behaviour for C (x) is then given by

C (x)
∣∣∣
x=nτ+1

n≫1, τ→0+−−−−−−−→ 2

π

(
log(nτ) + log 2 + γ

)
, (4.26a)

C (x)
∣∣∣
x=nτ+1

n≫1, τ→1−−−−−−−−→ 2

π

(
log n− cosφ log(1− τ)− cosφ log 2 + γ

)
+ K̂, (4.26b)

where

K̂ =
(
2 cos(φ2 )

)2
∫ 1/2

0
dt

(
cos(φt)

sin(πt)
− 1

πt

)
+ 2 sinφ

∫ 1/2

0
dt

sin(φt)

sin(πt)
. (4.27)

Likewise from (4.19a), we obtain

C (x)
∣∣∣
x=nτ+1

=
2

π2

[
cos(φ2 )(log n)

2 − cos(φ2 )
(
(2π I2(τ))2 + (γ + 2π I1(τ) + log 2 + log τ)2

)

+
(
γ + 2π I1(τ) + log 2 + log(nτ)

)(
π sin(φ2 )− 2 cos(φ2 )(log π + ψ(12 + φ

2π ))
)]

+O(n−1). (4.28)
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C (x)

τ = x−1
n

C (x)

τ = x−1
n

Figure 2: The correlation functions C (x) and C (x) for φ = 1. The points are the exact values
for n = 200. In the left panel, the blue, orange and purple solid curves are drawn from (4.23), (4.26a)
and (4.26b). In the right panel, the blue and orange curves are drawn from (4.28) and (4.29).

In the limit τ → 0+, this yields

C (x)
∣∣∣
x=nτ+1

n≫1, τ→0+−−−−−−−→ 2

π2

[
cos(φ2 )(log n)

2 − cos(φ2 )
(
(γ + log 2 + log τ)2

)
(4.29)

+
(
γ + log 2 + log(nτ)

)(
π sin(φ2 )− 2 cos(φ2 )(log π + ψ(12 + φ

2π ))
)]
.

The results are plotted in the right panel of Figure 2. As expected from (4.4b), C (x) is symmetric
under the transformation τ → 1 − τ . This is not immediately obvious from (4.28), but can be shown
using the identities

I1(1− τ) =− cosφ

2π

(
log τ − log 2 + 2π I1(τ)

)
− I2(τ) sin φ− log(1−τ2 )

2π

− cos2(φ2 )

π
(γ + log π + 2 log 2 + ψ(12 + φ

2π )) +
sinφ

4
, (4.30a)

I2(1− τ) =− sinφ

2π

(
γ + log 2 + log π + log τ + ψ(12 + φ

2π ) + 2π I1(τ)
)
+ I2(τ) cos φ+ 1

2 sin
2(φ2 ).

(4.30b)

Recalling from (4.4) that C (x) = C (n+2−x), the final results for the asymptotics for 1 ≪ x≪ n
are

C (x)
1≪x≪n−−−−−→ 2

π

(
log x+ log 2 + γ

)
, (4.31a)

C (x)
1≪x≪n−−−−−→ 2

π

(
2 cos2(φ2 ) log n− cosφ log x

)
+ K̂, (4.31b)

C (x)
1≪x≪n−−−−−→ 2

π2
(γ + log 2 + log x)

(
π sin(φ2 )− 2 cos(φ2 )

(
log n+ log π + ψ(12 + φ

2π )
))

(4.31c)

− 2 cos(φ2 )

π2
(
γ + log 2 + log x

)2
.

These lattice correlators have a purely logarithmic behavior. The power-law behavior is thus absent,
consistent with the conformal weight ∆ = 0. We discuss the conformal interpretation of these results
in Section 6.
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5 Conformal correlators for single entry points

5.1 Preliminaries

In this section, we provide an interpretation of the lattice results of Section 3 in terms of logarithmic
conformal field theory. We denote by V the semi-infinite cylinder drawn in the plane. We claim that,
in the conformal description, the lattice correlation function C (x) is a ratio of correlation functions
on V:

C (x21) = lim
x3→i∞

〈φ (x1)φ (x2)ψα(x3, x
∗
3)〉V

〈ψα(x3, x∗3)〉V
, (5.1)

where x21 = x2 − x1.
The fields φ (x) and φ (x) are chiral primary fields of conformal weight −1

8 that live on the
boundary. As their labels suggest, their insertion on a boundary respectively marks the start or end of
a long boundary arc. In our derivation below, we assume that these fields are highest weight states |φ〉
in irreducible representations of the Virasoro algebra with c = −2 and ∆ = ∆1,2 = −1

8 . By contrast,
ψα(z, z

∗) is a field that lives in the bulk and is therefore not chiral. It changes the weight of the
loops encircling the point z from 0 to α. Its action is therefore non-local. The derivation below uses
the method of images [46] and works with the assumption that correlators involving ψα(z, z

∗) on the
upper-half plane are equal to correlators on the full plane with this field replaced by ψα(z)ψα(z

∗),
where ψα(z) is a primary field. The calculations below strongly support this claim and will allow us to
extract the value of the conformal weight ∆ of ψα(z) as a function of α, see (5.36). The transfomation
laws of the fields under conformal maps are

φ(z) 7→ φ(y) =
(dy
dz

)1/8
φ(z), ψα(z) 7→ ψα(y) =

(dy
dz

)−∆
ψα(z), (5.2)

and the two-point functions are

〈φ(z1)φ(z2)〉 = κ̃φφ(z2 − z1)
1/4, 〈ψα(z1)ψα(z2)〉 =

κψψ

(z2 − z1)2∆
, (5.3)

where κ̃φφ and κψψ are constants. The fields φ (x) and φ (x) transform identically under conformal
transformations. As we shall see in Section 7.1, the distinction between these two fields lies in their
fusion rules and in the values of the structure constants. For convenience, their labels are omitted in
this section.

The conformal map from V to the upper-half plane H is

z(x) =
sin

(
π
n(x− x1)

)

sin
(
π
n(x2 − x1)

) sin(
πx2
n )

sin(πxn )
. (5.4)

It is illustrated in Figure 3. The points x1 and x2 are sent to 0 and 1, whereas the point at x = i∞ is
mapped to a finite point in the upper-half plane:

lim
x→i∞

z(x) = eiπx1/n
sin(πx2n )

sin
(
π
n(x2 − x1)

) . (5.5)

The derivative of this transformation is

dz(x)

dx
=
π

n

sin
(
πx1
n

)
sin(πx2n )

sin
(
π
n(x2 − x1)

)
sin(πxn )2

. (5.6)
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x1 x2

x V

x 7→ z(x)−−−−−→

z(x1)=0 z(x2)=1

×
z(i∞)

−∞ ∞

z H

Figure 3: The map z(x) from the semi-infinite cylinder V to the upper half-plane H.

5.2 Differential equation for the four-point function

We consider the correlation functions appearing in (5.1), but defined on H. Using the method of images,
the correlation functions on H are equal to correlation functions in the full complex plane:

〈φ(z1)φ(z2)ψα(z, z∗)〉H = 〈φ(z1)φ(z2)ψα(z)ψα(z∗)〉C, 〈ψα(z, z∗)〉H = 〈ψα(z)ψα(z∗)〉C. (5.7)

We proceed to compute the four-point function

G = 〈φ(z1)φ(z2)ψα(z3)ψα(z4)〉C. (5.8)

We use the known techniques of conformal field theory to compute four-point functions of primary
fields in the case where one of them has a null descendant [3, 4]. The conformal Ward identities are

( 4∑

i=1

∂

∂zi

)
G = 0,

( 4∑

i=1

zi
∂

∂zi
+∆i

)
G = 0,

( 4∑

i=1

z2i
∂

∂zi
+ 2∆izi

)
G = 0, (5.9)

and imply that G is of the form

G =
(z2 − z1)

1/4

(z4 − z3)2∆
G̃(η), η =

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
, (5.10)

where η is the cross-ratio. Because |φ〉 has the null descendant (2L2
−1−L−2)|φ〉 at level two, G satisfies

the second-order partial differential equation

[
2
∂2

∂z21
−

4∑

i=2

( 1

z1 − zi

∂

∂zi
+

∆i

(z1 − zi)2

)]
G = 0. (5.11)

This differential equation is rewritten as an ordinary differential equation for G̃(η):

η(1− η)G̃′′(η) + (1− 3η
2 )G̃

′(η)− ∆

2

η

1− η
G̃(η) = 0. (5.12)

By setting
G̃(η) = (1− η)ρ/2F (η), ρ = 1

2(1−
√
1 + 8∆), (5.13)

we find that F (η) satisfies the hypergeometric differential equation

z(1− z)F ′′(z) +
(
c− (1 + a+ b)z

)
F ′(z)− abF (z) = 0 (5.14)

for
a = ρ, b = 1

2 , c = 1. (5.15)
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For c generic, the two solutions are 2F1(a, b; c|z) and z1−c 2F1(1 + a − c, 1 + b − c; 2 − c|z). For
c = 1, these two solutions coincide and a second independent solution [61] is given by

H(a, b|z) = 2F1(a, b; 1|z) log z +
∞∑

k=0

(a)k(b)kz
k

(k!)2
(
ψ(a+ k) + ψ(b+ k)− 2ψ(1 + k)

)
(5.16)

where ψ(x) is the digamma function. The general solution is a linear combination of these two solutions.
Before continuing, let us immediately use the transformation laws (5.2) of the fields to obtain the

form of the lattice correlator on the cylinder. This computation is achieved by first considering the
insertion points of the fields ψα(x3, x4) on V to be in finite positions x3 and x4, instead of ±i∞. This
yields

〈φ(x1)φ(x2)ψα(x3, x4)〉V =
(
n
π sin

(
π
n(x2 − x1)

))1/4(
n
π sin

(
π
n(x4 − x3)

))−2∆
(1− η)ρ/2F (η), (5.17a)

〈ψα(x3, x4)〉V =
(
n
π sin

(
π
n(x4 − x3)

))−2∆
κψψ . (5.17b)

For x4 = x∗3 and x3 → i∞, the expression sin
(
π
n(x4 − x3)

)
diverges. However, the ratio of these

correlation functions, as in (5.1), has a well-defined limit. In the same x3, x4 limit, the cross-ratio is
given by

η = 1− e2πiτ , τ =
x2 − x1

n
. (5.18)

The parameter τ is the same as the one that was defined in Section 3.3. It lies in the range (0, 1). As τ
explores this range, η takes complex values and draws a counterclockwise circle of unit radius around
the point η = 1, starting and ending at the origin. We therefore have

C (x21) =
1

κψψ
G̃(1− e2πiτ ). (5.19)

The hypergeometric function 2F1(a, b; c|η) has a branch cut on the real η-axis for η > 1, which the
circle crosses at η = 2, for τ = 1

2 . One way to obtain a smooth function for C (x21) is to search for

two solutions to the differential equation, one for τ ∈ (0, 12) and another for τ ∈ (12 , 1), and to impose
that the function be smooth at τ = 1

2 .
Before proceeding with this plan, we note that, instead of (5.13), one can choose to set

G̃(η) = F̃
( η

4(η − 1)

)
. (5.20)

Then the function F̃ (z) satisfies (5.14) with

a =
ρ

2
, b =

1− ρ

2
, c = 1. (5.21)

The general solution is again given by a linear combination of 2F1(a, b; 1|z) and H(a, b|z) for the
appropriate values of a and b. This basis of solutions is more convenient because, for z1 = 0, z2 = 1,
z3 = z(i∞) and z4 = z(−i∞), the expression

η

4(η − 1)
= sin2(πτ) (5.22)

is real for τ ∈ (0, 1). In this basis, the argument z of the two solutions remains real and bounded in (0, 1].
It makes contact with the endpoint of the branch cut at τ = 1

2 . The derivative of 2F1

(ρ
2 ,

1−ρ
2 ; 1| sin2(πτ)

)

with respect to τ is discontinuous at τ = 1
2 , and likewise for H

(ρ
2 ,

1−ρ
2 | sin2(πτ)

)
, so we search for

separate solutions on the two sub-intervals. We write the general solution as

C (x21) =
(
n sin(πτ)

)1/4 ×





A1 2F1

(ρ
2 ,

1−ρ
2 ; 1| sin2(πτ)

)
+A2H

(ρ
2 ,

1−ρ
2 | sin2(πτ)

)
τ < 1

2 ,

B1 2F1

(ρ
2 ,

1−ρ
2 ; 1| sin2(πτ)

)
+B2H

(ρ
2 ,

1−ρ
2 | sin2(πτ)

)
τ > 1

2 ,

(5.23)
where A1, A2, B1, B2 are constants to be determined.
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5.3 Solving for the unknowns and verifying smoothness

Near z = 0, the functions 2F1(a, b; 1|z) and H(a, b|z) behave as

2F1(a, b; 1|z) = 1 +O(z), H(a, b|z) = log(z) +
(
ψ(a) + ψ(b) + 2γ

)
+O(z). (5.24)

We fix A1, A2, B1, B2 by imposing that the expression (5.23) for C (x21) has the same asymptotic
behaviour, for τ → 0+ and τ → 1−, as the result we obtained from the lattice, see (3.29) and (3.33).
We find

A1 =
π3/4

21/4
G2(12 ), A2 = 0, B2 = −α

2

G2(12)

(2π)1/4
, (5.25a)

B1 =
G2(12 )

(2π)1/4

[
K + α

(
log 2π + γ + 1

2

(
ψ(ρ2 ) + ψ(1−ρ2 )

))]
. (5.25b)

The only remaining unknown is the conformal weight ∆. It is fixed by imposing that the solution
is continuous at τ = 1

2 :

(A1 −B1) 2F1(
ρ
2 ,

1−ρ
2 ; 1|1) = B2H(ρ2 ,

1−ρ
2 |1). (5.26)

The left side is evaluated using the relation

2F1(a, b; c|1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c − b)
, Re(c− a− b) > 0. (5.27)

To evaluate the right side, we use the identity

H(a, b|z) = lim
c→1

( ∂

∂a
+

∂

∂b
+ 2

∂

∂c
+ ψ(a) + ψ(b)− 2ψ(c)

)
2F1(a, b; c|z). (5.28)

Combining this with (5.27) yields

H(a, b|1) = Γ(1− a− b)

Γ(1− a)Γ(1− b)

(
ψ(a) + ψ(b) − ψ(1− a)− ψ(1− b)

)
. (5.29)

The equality (5.26) then simplifies to

K = π − α
(
log 2π + γ + 1

2

(
ψ(2−ρ2 ) + ψ(1+ρ2 )

))
. (5.30)

We compare this with the integral expression (3.34) for K, which we now rewrite in terms of
digamma functions:

K = 2π

∫ 1/2

0
dy

cos
(
φ(y − 1

2)
)
− cos(φ2 )

sinπy
+ 2π cos(φ2 )

∫ 1/2

0
dy

(
1

sin(πy)
− 1

πy

)
(5.31)

= eiφ/2L(φ) + e−iφ/2L(−φ) + α(2 log 2− log π)

where

L(φ) = 2πi

∫ 1/2

0
dy

e−iφy − 1

eiπy − e−iπy
= −

∫
e
−iπ

e
i0

dt

t1/2
t
φ

2π − 1

1− t
=

∫ 1

−1

dt

t1/2
t
φ

2π − 1

1− t

=

∫ 1

0

dt

t1/2
t
φ
2π − 1

1− t
+

∫ 1

0

dt

t1/2e−iπ/2

t
φ
2π e−

iφ
2 − 1

1 + t

= ψ(12 )− ψ( φ2π + 1
2)− iπ

2 + ie−iφ/2
(
ψ( φ4π + 3

4)− ψ( φ4π + 1
4)
)
. (5.32)
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At the last step, we used the following integral formula for the digamma function:

ψ(z) = −γ +

∫ 1

0
dt

1− tz−1

1− t
, Re(z) > 0. (5.33)

The corresponding expression for K is simplified using properties of ψ(z):

ψ(1 − z)− ψ(z) = π cot πz, ψ(2z) = log 2 + 1
2

(
ψ(z) + ψ(z + 1

2)
)
, ψ(12 ) = −2 log 2− γ. (5.34)

We find
K = π − α

(
log 2π + γ + 1

2

(
ψ(34 + φ

4π ) + ψ(34 − φ
4π )

))
. (5.35)

Comparing with (5.30), we see that the equality is satisfied for ρ = 1
2 ± φ

2π , both of which lead to the
following value for the conformal weight:

∆ =
(φπ )

2 − 1

8
. (5.36)

This is precisely the value expected from Coulomb gas arguments. Indeed, the groundstate of the trans-
fer matrix of the six-vertex model with periodic twisted boundary condition in the zero-magnetization
sector has precisely this conformal dimension [62, 63]. We also note that, with these values of ρ, the
expression for B1 in (5.25b) simplifies to

B1 = −π
3/4

21/4
G2(12) = −A1. (5.37)

All the unknowns have been solved for. It remains to check that the expression (5.23) is a smooth
function of τ at τ = 1

2 , namely

lim
τ→(1/2)−

dkC (x21)

dτk
= lim

τ→(1/2)+

dkC (x21)

dτk
, k = 1, 2, . . . . (5.38)

It in fact suffices to check that the equality holds for k = 1. Indeed, the function C (x21) satisfies the
same second-order differential equation in each of the two sub-intervals. The higher-order derivatives
at τ = 1

2 are then uniquely fixed by C (x21) and
d
dτC (x21) at this point. The continuity of C (x21)

and of its first derivative at τ = 1
2 therefore implies that all the higher-order derivatives are continuous

and that the function is smooth at this point.
The equality (5.38) for k = 1 boils down to

lim
τ→1/2

d

dτ

∞∑

k=0

(a)k(b)k sin
2k(πτ)

(k!)2
(
ψ(a+ k) + ψ(b+ k)− 2ψ(1 + k)

)
= 0. (5.39)

This identity is readily verified by applying the derivative to each term in the sum, rewriting the result
in terms of a differential operator acting on a hypergeometric function similarly to (5.28), and finally
evaluating the limit τ → 1

2 using (5.27).
We have therefore produced a prediction for C (x21) using conformal invariance. By plotting the

corresponding curve alongside the exact data for n = 200, we find that the expression (5.23) with the
constants fixed as in (5.25a) and (5.37) precisely reproduces the solid curve in Figure 2. It is indeed
non-trivial that the solution obtained from conformal invariance, which is defined separately on the
two sub-intervals, is equal to the integral expression (3.28), which is defined with a unique expression
on the full interval.

To prove that the two expressions are equal, we check that the function in (3.28) satisfies the
differential equation predicted by conformal field theory. Rewriting (5.12) as a second-order differential
equation in τ and setting ∆ to its value (5.36), we find that the following identity should hold:

( d2

dτ2
+ π cot(πτ)

d

dτ
+ 2π2∆

)
J = 0, (5.40)
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where J is defined in (3.30). With a simple rescaling of the integration variable, it is expressed as

J =
1

2

∫ 1

0
dz

τ cos(φτ2 (1− 2z))

sin(πτz)1/2 sin(πτ(1− z))1/2
. (5.41)

The differential operator in (5.40) can then be applied to the integrand. After a bit of work, we find
that (5.40) translates to

1

4

∫ 1

0
dz

d

dz

[
π cos

(φτ
2 (1− 2z)

)
sin

(
πτ(1− z)

)1/2
sin(πτz)1/2

sin(πτ)

(
(1− z)2

sin
(
πτ(1− z)

)2 − z2

sin(πτz)2

)

− 2φz(1 − z) sin
(φτ

2 (1− 2z)
)

sin
(
πτ(1− z)

)1/2
sin(πτz)1/2

]
= 0. (5.42)

The expression in the bracket vanishes at z = 0 and z = 1, so the equality indeed holds.
As a result, the lattice expression for C (x21) is a linear combination of the two hypergeometric

solutions on each of the sub-intervals, as in (5.23). It is a continuous function of τ and, by construction
of the conformal solution in terms of the lattice data, the constants A1, A2, B1 and B2 are equal to
those given in (5.25a) and (5.37). This concludes the proof that the lattice and conformal expressions
for C (x21) are equal.

6 Conformal correlators for double entry points

6.1 Preliminaries

In the conformal picture, the lattice correlation functions C (x) and C (x) are ratios of conformal
correlation functions on the semi-infinite cylinder:

C (x21) = lim
x3→i∞

〈µ (x1)µ (x2)ψα(x3, x
∗
3)〉V

〈ψα(x3, x∗3)〉V
, (6.1a)

C (x21) = lim
x3→i∞

〈ω (x1)ω (x2)ψα(x3, x
∗
3)〉V

〈ψα(x3, x∗3)〉V
. (6.1b)

The evidence given below will support the following claims for the conformal interpretation:

(a) The fields µ (z) and µ (z) form a pair of highest weight states of dimension ∆ = ∆1,3 = 0.
One of these fields belongs to a Kac module and the other belongs to a staggered module.

(b) The field ω (z) is a logarithmic highest weight state in a staggered module, also with ∆ = 0.

The structure and specifics of these representations are described in Section 6.2.
The transformation law for ω(z) under a conformal transformation z 7→ y(z) involves its primary

partner ϕ(z):

ω(z) 7→ ω(y) =

(
ω(z)− λϕ(z) log

(dy
dz

))
. (6.2)

In CFT derivations, the value of λ can be adjusted by changing the normalisation of the field ω(z), so
it is common to fix λ = 1. In the current context, however, the field ω(z) arises from the lattice with
a natural normalisation, so we leave λ free. We will in fact compute its value below, see (6.23). The
invariance under the global conformal transformations fixes [12] the two-point functions to

〈ω(z1)ω(z2)〉C = κωω − 2λκω log z21, 〈ω(z1)ϕ(z2)〉C = κω, 〈ϕ(z1)ϕ(z2)〉C = 0. (6.3)
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Likewise, the three-point functions involving two fields ψα and one field of the pair (ϕ,ω) are fixed by
conformal invariance to

〈ϕ(z1)ψα(z2)ψα(z3)〉C =
κψψ

z2∆32
, 〈ω(z1)ψα(z2)ψα(z3)〉C =

κωψψ − λκψψ log(z21z31z32
)

z2∆32
. (6.4)

In the context of loop models, the boundary field ϕ(z) has a simple interpretation: It inserts
a simple half-arc at the point z on the boundary. The Dirichlet boundary conditions that we
are considering consist of a macroscopic collection of these simple arcs. The insertion of ϕ(z) on
such a boundary is thus trivial. This implies that, in any correlator involving other fields, if ϕ(z)
appears, it can be simply removed, with the corresponding correlator independent of the position z.
For instance, from (6.3), we have 〈ω(z)〉C = κω. For generic value of β, the one-point function 〈ϕ(z)〉V
then corresponds to the partition function of the loop model on the cylinder, with all loops (contractible
and non-contractible) having fugacity β. This partition function vanishes for β = 0, implying that the
one-point function of ϕ(z) equals zero at this value.

6.2 Representations of the Virasoro algebra at c = −2

This subsection discusses the structure of five modules over the Virasoro algebra with c = −2 and
∆ = 0. The Loewy diagrams of these modules are given in Figure 4. To start, let us consider the
module M defined from the free action of the Virasoro generators Lm, m 6 0, on two highest-weight
states |ϕ〉 and |ω〉 satisfying

L0|ϕ〉 = 0, L0|ω〉 = λ|ϕ〉, Lm|ϕ〉 = Lm|ω〉 = 0, m > 0. (6.5)

The state |ϕ〉 and its descendants generate a submodule of M isomorphic to the Verma module of
highest weight ∆ = 0, which we denote by V. This submodule is reducible. In particular, it has the
singular vector L−1|ϕ〉 at level 1 and the singular vector (L2

−1−2L−2)L−1|ϕ〉 at level 3. This last state
is a descendant of L−1|ϕ〉, which is consistent with the known structure for this Verma module for
c = −2 in the form of an imbricated chain [9,10]. By quotienting V by the singular state at level 1, we
obtain the irreducible module I. Likewise, by quotienting V by the singular state at level 3, we obtain
the so-called Kac module K.

We now investigate the descendants of the logarithmic state |ω〉 in M. Clearly, if λ = 0, M splits as
the direct sum of two copies of V. For λ 6= 0, we observe that the state L−1|ω〉 is not singular because
L1L−1|ω〉 = 2λ|ϕ〉. It is however sub-singular: if one quotients M by the submodule generated by |ϕ〉,
then the state L−1|ω〉 becomes singular. One can check that the state

(L3
−1 − 2L−2L−1 + L−3L0)|ω〉 = (L2

−1 − 2L−2)L−1|ω〉+ λL−3|ϕ〉 (6.6)

is also subsingular: by acting on it with any element of the Virasoro algebra that has a positive multi-
index, one obtains a linear combination of states belonging to the tower of states generated by L−1|ϕ〉.
In Rohsiepe’s original paper [18], these free modules (like M) were referred to as Jordan-Verma modules.
Their structure is known [18, 22], and for the case we are considering, it is as depicted in the fourth
panel of Figure 4.

The staggered module S is obtained by quotienting M by the submodule generated by the singular
state at level 3 given in (6.6). The three composition factors of S are irreducible modules of weights
∆ = 0, 0, 1, and L0 has rank-two Jordan cells tying the states from the two irreducible factors with
∆ = 0. We also note that for λ = 0, the module S decomposes as the direct sum I⊕K. This is used in
our calculations below, where we obtain a differential equation for a correlation function involving the
field |ω〉 in S, and obtain the corresponding result for K by setting λ = 0.
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Figure 4: The Loewy diagrams for the modules V, I, K, M and S.

6.3 Differential equation for the four-point function

The correlators on the right sides of (6.1) involve one non-chiral field, which we rewrite as the product
of two chiral fields using the method of images. We proceed to compute the correlator

G = 〈ω1(z1)ω2(z2)ψα(z3, z4)〉H = 〈ω1(z1)ω2(z2)ψα(z3)ψα(z4)〉C. (6.7)

We work under the hypothesis that ω1(z) and ω2(z) are potentially different fields, and in particular that
the corresponding constants λ1 and λ2 dictating their behaviour under conformal transformations, as
in (6.2), may not be equal. The correlator G satisfies the logarithmic version [45] of the Ward identities,
namely

( 4∑

i=1

∂

∂zi

)
G = 0,

( 4∑

i=1

zi
∂

∂zi
+∆i + δ̂i

)
G = 0,

( 4∑

i=1

z2i
∂

∂zi
+ 2∆izi + 2ziδ̂i

)
G = 0, (6.8)

with ∆1 = ∆2 = 0 and ∆3 = ∆4 = ∆ given in (5.36). In its action on G, the operator δ̂i replaces ωi by
its primary partner ϕi and gives zero otherwise. These identities imply that G has the following form:

G =
1

z2∆43

[
F (η)− λ1κ

ωψψ
2 log

(z41z31
z43

)
− λ2κ

ωψψ
1 log

(z42z32
z43

)
+ λ1λ2κ

ψψ log
(z41z31

z43

)
log

(z42z32
z43

)]
,

(6.9)

where η is the cross-ratio, defined in (5.10), and κωψψ1 and κωψψ2 are the constants appearing in the
three-point function (6.4) for ω1(z) and ω2(z). Mapping this result to the cylinder, we find

〈ω1(x1)ω2(x2)ψα(x3, x4)〉V =
(n
π
s43

)−2∆
[
F (η) − λ1κ

ωψψ
2 log

(n
π

s41s31
s43

)
− λ2κ

ωψψ
1 log

(n
π

s42s32
s43

)

+ λ1λ2κ
ψψ log

(n
π

s41s31
s43

)
log

(n
π

s42s32
s43

)]
, (6.10)

where we use the compact notation
sij = sin(

πxij
n ). (6.11)

For x4 = x∗3 and x3 → i∞, the ratios s41s31/s43 and s42s32/s43 tend to i
2 , and as a result we have

lim
x3→i∞

〈ω1(x1)ω2(x2)ψα(x3, x
∗
3)〉V

〈ψα(x3, x∗3)〉V
=

1

κψψ

[
F (η)− (λ1κ

ωψψ
2 + λ2κ

ωψψ
1 ) log

( in

2π

)
+ λ1λ2κ

ψψ log2
( in

2π

)]
.

(6.12)
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In the staggered module, the state |ω〉 has the null descendant (6.6) at level 3, which results in
the following differential equation for G:

(L3
−1 − 2L−2L−1 + L−3L0)G = 0 , (6.13)

where

L−n =

4∑

i=2

(n− 1)(∆i + δ̂i)

(zi − z1)n
− 1

(zi − z1)n−1

∂

∂zi
. (6.14)

The partial differential equation (6.13) simplifies to an ordinary differential equation satisfied by F (η):

η3(1− η)2F ′′′(η) + 2(1− 2η)(1 − η)η2F ′′(η)− 2η2(1− (1−∆)η)F ′(η) = (2− η)λ1λ2κ
ψψ . (6.15)

6.4 Correlation function for the Kac module

We solve the differential equation (6.15) for the case λ1λ2 = 0. This means that either λ1 or λ2
vanishes. The analysis below is independent of which one is set to zero. We choose λ1 = 0, for which
ω1 becomes a highest state µ of a Kac module K, and we write κωψψ1 = κµψψ1 . Comparing (4.23) and
(6.12), we see that the terms proportional to log n are equal for

λ2
κµψψ1

κψψ
= − 2

π
, (6.16)

implying that λ2 6= 0. We note that, for τ → 0, the term proportional to log τ in (4.26a) has the
overall constant 2/π, which is identical to the universal value predicted in [42, equation (76)]. The
result obtained here is however more general, as the correlation function C (x21) involves the field
ψα(z, z

∗) as well.
We use the notation F0(η) = F (η)

∣∣
λ1λ2=0

for the solution to (6.15) in the homogeneous case. The

differential equation is in fact a second-order homogeneous differential equation for F ′
0(η). Setting ∆

to its value given in (5.36), the general solution is

F ′
0(η) = A1

(1− η)−
1
2
(1−φ

π
)

η
+A2

(1− η)−
1
2
(1+φ

π
)

η
, (6.17)

where A1 and A2 are constants to be determined. According to (6.1a) and (6.12), we have

C (x21) =
1

κψψ
F0(η), η = 1− e2πiτ , (6.18)

and therefore
∂C (x21)

∂τ
=

1

κψψ
∂F0

∂η

∂η

∂τ
=

π

κψψ

(
A1e

iφτ +A2e
−iφτ

sinπτ

)
. (6.19)

Comparing this with the lattice result, we see that the derivative of the expression (4.23) with
respect to τ is easily evaluated because τ only appears in the upper integration limit:

∂C (x21)

∂τ
=

2cos(φτ)

sin(πτ)
. (6.20)

We find that (6.19) and (6.20) coincide for

A1 = A2 =
κψψ

π
. (6.21)

This consistency between the lattice and conformal results supports our claim that the fields µ and
µ form a pair of heighest-weight states of dimension ∆ = 0, one of which belongs to a Kac module K
and the other to a staggered module S.
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6.5 Correlation function for the staggered module

For the correlator (6.1b), the four-point correlator contains two copies of the same logarithmic field:

ω1 = ω2 = ω . We therefore write λ1 = λ2 = λ and κωψψ1 = κωψψ2 = κωψψ . For λ1λ2 = λ2 6= 0, the
differential equation (6.15) has an extra inhomogeneous term. The complete solution is equal to the
two-parameter solution of the homogeneous equation plus a second function that takes into account
the inhomogeneous term:1

F ′(η) = F ′
0(η) +

2λ2κψψ

φ
π (1− η)η2

[
2

(
2F1(

1
2 +

φ
2π , 1,

5
2 +

φ
2π

∣∣ 1
1−η )

3 + φ
π

− 2F1(
1
2 − φ

2π , 1,
5
2 − φ

2π

∣∣ 1
1−η )

3− φ
π

)

− η

(
2F1(

1
2 + φ

2π , 1,
3
2 + φ

2π

∣∣ 1
1−η )

1 + φ
π

− 2F1(
1
2 − φ

2π , 1,
3
2 −

φ
2π

∣∣ 1
1−η )

1− φ
π

)]
, (6.22)

where the constants A1 and A2 of F ′
0(η) in (6.17) remain to be fixed.

We fix the remaining unknowns using the lattice expression. Comparing (4.28) with (6.12), we
see that the log2(n) and log(n) terms are identical for

λ =
(2 cos φ2 )

1/2

π
,

κωψψ

κψψ
=

1

π(2 cos φ2 )
1/2

(
2 cos(φ2 )

(
iπ
2 − log 2 + ψ(12 + φ

2π )
)
− π sin(φ2 )

)
. (6.23)

It may seem odd that λ depends on φ, as this parameter dictates the behaviour of the boundary field
ω (z), which a priori one expects not to depend on α. This will be discussed further in Section 7.

We also note that the structure constant κωψψ originates from the correlator, given in (6.4), of a bulk
field and two boundary fields. So it is perhaps not surprising that the ratio κωψψ/κψψ is complex.
The remaining constant factors in (4.28), which are independent of n and τ , are accounted for in the
conformal solution by the integration constant that appears when one integrates (6.22) to obtain F (η).

To fix the constants A1 and A2, we compare the asymptotic behaviour of the lattice and conformal
expressions for F ′(η) in the neighbourhood of η = 1, corresponding to τ → 0+. For the lattice
expression, (4.29) yields

∂C

∂τ

n≫1,τ→0+−−−−−−−→ 2

π2τ

[
π sin(φ2 )− 2 cos(φ2 )

(
γ + log 2 + log π + ψ(12 + φ

2π ) + log τ
)]
. (6.24)

For the conformal expression, we extract the behaviour of the hypergeometric functions in (6.22) at
z = 1 by using the relations

2F1(a, b, a+ b|z) = − Γ(a+ b)

Γ(a)Γ(b)
H(a, b|1 − z), (6.25a)

2F1(a, b, a + b+ 1|z) = − Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)
(1− z)

∂H(a, b|1 − z)

∂z
, (6.25b)

and the series expansion (5.16) of H(a, b|z). This yields
∂C

∂τ
=

1

κψψ
∂η

∂τ

∂F

∂η
=− 1

τ

(
A1 +A2 + 2λ2

(
γ + log π + log 2 + ψ(12 + φ

2π ) + log τ + iπ
2 + π

2 tan(
φ
2π )

))

− 2iφ
(
A1 −A2 + πλ2 tan(φ2 )

)
. (6.26)

With λ evaluated to its value in (6.23), we find that (6.24) and (6.26) are equal for

A1

κψψ
=

e−iφ/2

iπ
,

A2

κψψ
=

eiφ/2

iπ
. (6.27)

1This solution to the differential equation (6.15) was obtained using Mathematica.
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The final conformal expression for
∂C

∂τ is

∂C

∂τ
=

8cos(φ2 )

iφ(1 − e2πiτ )2

[
2

(
2F1(

1
2 + φ

2π , 1,
5
2 + φ

2π

∣∣e−2πiτ )

3 + φ
π

− 2F1(
1
2 − φ

2π , 1,
5
2 − φ

2π

∣∣e−2πiτ )

3− φ
π

)

− (1− e2πiτ )

(
2F1(

1
2 + φ

2π , 1,
3
2 + φ

2π

∣∣e−2πiτ )

1 + φ
π

− 2F1(
1
2 − φ

2π , 1,
3
2 − φ

2π

∣∣e−2πiτ )

1− φ
π

)]

+
2i cos

(
φ(τ − 1

2 )
)

sin(πτ)
. (6.28)

It is in fact not obvious that this function is real for τ ∈ (0, 1), but indeed it is. Plotting this

function alongside the lattice expression for
∂C

∂τ , we find that the two functions precisely coincide, on
the full interval. To prove the equality, we show that the lattice expression also satisfies the differential
equation (6.15). In terms of τ , this equation reads

( ∂2

∂τ2
+ 2π cot(πτ)

∂

∂τ
+ 8π2∆

)∂C
∂τ

= 2π3λ2
cos(πτ)

sin3(πτ)
. (6.29)

To check this, we take the derivative of (4.28) and simplify it to

∂C

∂τ
=− 8 cos(φ2 )

∫ τ

0
dt

sin( tφ2 ) sin
(
(τ − t

2)φ
)

sin(πτ) sin(πt)
+ 2 sin(φ2 )

cos(φτ)

sin(πτ)

− 4 cos(φ2 )

π

cos(φτ)

sin(πτ)

(
γ + 2 log 2 + log tan(πτ2 ) + ψ(12 + φ

2π )
)
. (6.30)

Applying the operator that appears on the left-hand side of (6.29) to the terms proportional to cos(φτ)
sin(πτ)

gives zero, as this is a solution of the homogeneous differential equation discussed in Section 6.4. For
the remaining terms, after simplifications we find

( ∂2

∂τ2
+ 2π cot(πτ)

∂

∂τ
+ 8π2∆

)[4 cos(φ2 )
π

cos(φτ)

sin(πτ)
log tan(πτ2 )

]

= 8π cos(φ2 )

(
cos(πτ) sin(φτ2 )2

sin3(πτ)
− φ

π

sin(φτ)

sin2(πτ)

)
− 2π3λ2

cos(πτ)

sin3(πτ)
(6.31)

and

∫ 1

0
dt
( ∂2

∂τ2
+ 2π cot(πτ)

∂

∂τ
+ 8π2∆

)[τ sin(φτt2 ) sin
(
φτ(1− t

2)
)

sin(πτt) sin(πτ)

]

=

∫ 1

0
dt

d

dt

[
t

sin(πτ) sin(πτt)

(
φ sin(φτ)− (1− t

2)φ sin
(
φτ(1 − t)

)

− πt cot(πτt) sin(φτt2 ) sin
(
φτ(1− t

2)
))]

= φ
sin(φτ)

sin2(πτ)
− π

cos(πτ) sin2(φτ2 )

sin3(πτ)
. (6.32)

Combining these results, we confirm that the lattice expression (6.30) indeed satisfies (6.29). The lattice
and conformal solutions therefore satisfy the same differential equation. Recalling that the constants
A1 and A2 were fixed so that the lattice and conformal expressions have the same asymptotics, we
conclude that the two expressions coincide.
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7 Operator product expansion and structure constants

7.1 Analysis for the fields φ(z)

In this section, we use the lattice expressions for the correlators C (x) and C (x) to obtain conformal
structure constants and ratios thereof. We claim that the fields φ (z) and φ (z) satisfy the following
operator product expansions (OPEs):

φ (z1)φ (z2) = z
1/4
21 κ

φφϕ(z2) + . . . , (7.1a)

φ (z1)φ (z2) = z
1/4
21

(
κφφω

(
ω (z2) + λϕ(z2) log z21

)
+ κφφ ϕ(z2)

)
+ . . . . (7.1b)

From (6.3), this yields the following two-point functions:

〈φ (z1)φ (z2)〉C = 0, 〈φ (z1)φ (z2)〉C = z
1/4
21 κ

φφωκω. (7.2)

We therefore see that the constant κ̃φφ appearing in (5.3) vanishes for the first correlator, but equals
κφφωκω for the second correlator.

With these OPEs, we can easily obtain the behaviour of the four-point functions studied in Sec-
tion 5.2 in the regime where z1 approaches z2. Indeed, in this regime, the four-point functions reduce
to two- and three-point functions of the form (6.4), and we find

〈φ (z1)φ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−−→ z
1/4
21

z2∆43
κφφκψψ, (7.3a)

〈φ (z1)φ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−−→ z
1/4
21

z2∆43

[
κφφωκωψψ + κφφωκψψλ log

(z21z43
z32z42

)
+ κφφκψψ

]
. (7.3b)

The corresponding correlators on the cylinder are obtained by applying the transformation laws (5.2).
The regime z1 → z2 then corresponds to x2 − x1 ≪ n, or equivalently to τ → 0+. In this regime, we
also have s21 ≃ πτ and x1

n ≃ x2
n , where ≃ indicates an equality up to corrections of order τ . We obtain

expressions for the correlators C (x21) and C (x21) by dividing by 〈ψα(x3)ψα(x4)〉V, setting x4 = x∗3
and sending x3 to ±i∞. This yields

C (x21)
τ→0+−−−−→ (nτ)1/4κφφ, C (x21)

τ→0+−−−−→ (nτ)1/4
[
κφφω

κωψψ

κψψ
+κφφωλ log(−2πiτ)+κφφ

]
. (7.4)

We compare these expressions with (3.29) and (3.33), assuming that the structure constants are inde-
pendent of n and τ . We find

κφφ =
πG2(12 )

21/4
, κφφω = −

(
2 cos(φ2 )

)1/2
π G2(12 )

21/4
, κφφ =

2cos(φ2 )G
2(12 )

21/4
(−γ + log 2), (7.5)

where we used (6.23) for the ratio κωψψ

κψψ
.

We have therefore computed the structure constants for the fields φ (z) and φ (z) in their OPEs
(7.1). We see that the fusion of these fields is non-abelian. We expect that this is a general feature
of logarithmic CFT. If the fusion product of two fields involves a logarithmic field, then interchanging
the order of the two fields induces a non-trivial change of the value of the correlator. The (weak)
non-locality of the two fields endows them with a non-trivial monodromy, which can for instance be
compared with that of disorder operators in the Ising model or in more general parafermionic field
theories [64]. The unusual distinction made here between defect insertions that mark the start and end
of boundary arcs goes beyond the introduction of a mere phase. We note that the same behaviour was
observed for the abelian sandpile model in [33], wherein two fields µD,N(z) and µN,D(z) that mark the
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transition between dissipative and non-dissipative sites on the boundary satisfy different fusion rules
according to the order in which they are fused.

Finally, we note that, similarly to the value of λ in (6.23), the structure constants κφφω and κφφ

depend on α. This is somewhat unexpected, as one might expect the boundary fields φ (z), φ (z)
and ω (z) not to depend on α. We believe that the resolution to this conundrum lies in the non-local
nature of the field ψα(z). Its action on the lattice is indeed non-local, as it modifies the weight of all
loops that encircle its insertion point, independently of how distant these are. We believe that, in the
conformal interpretation, the non-locality of this field means that it modifies some conformal properties
of the other fields of the theory, namely their structure constants and transformation laws, even if these
are inserted a large distance away.

7.2 Analysis for the fields µ(z)

The results of Section 6.4 are derived with the assumption that µ (z) is a field that belongs to a Kac

module, whereas µ (z) belongs to a staggered module. (We recall that these identifications could

equivalently have been made the other way around). Here, we claim that the OPEs for these fields are
of the form

µ (z1)µ (z2) = κµµ ϕ(z2) + . . . , (7.6a)

µ (z1)µ (z2) = κµµω̃
(
ω̃ (z2) + λ2 ϕ(z2) log z21

)
+ κµµ ϕ(z2) + . . . . (7.6b)

We believe that the field ω̃ (z) is a logarithmic field with weight ∆ = 0 in a rank-two Jordan cell.
It is potentially different from the field ω (z), although the evidence below cannot rule out that they
are in fact identical. Similarly to µ (z), ω̃ (z) transforms conformally according to (6.2), with the

constant λ replaced by λ2. Its three-point correlator with two copies of the field ψα(z) is

〈ω̃ (z1)ψα(z2)ψα(z3)〉C =
κω̃ψψ − λ2κ

ψψ log(z21z31z32
)

z2∆32
(7.7)

where κω̃ψψ is a constant.
In the regime z1 → z2, we have the following four-point functions:

〈µ (z1)µ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−−→ 1

z2∆43
κµµ κψψ , (7.8a)

〈µ (z1)µ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−−→ 1

z2∆43

[
κµµω̃ κω̃ψψ + λ2 κ

µµω̃ κψψ log
(z21z43
z32z42

)
+ κµµ κψψ

]
.

(7.8b)

We map these correlators on the cylinder, divide by 〈ψα(x3)ψα(x4)〉V, take the limit x3 → i∞ with
x4 = x∗3, and obtain

C (x21)
τ→0+−−−−→ κµµ − λ2

κµψψ1

κψψ
log(nτ), (7.9a)

C (x21)
τ→0+−−−−→ κµµω̃

κω̃ψψ

κψψ
+ λ2 κ

µµω̃ log(−2πiτ) + κµµ − λ2
κµψψ1

κψψ
log(nτ). (7.9b)

In each of these expressions, the last term originates from the logarithmic transformation law for
the field µ (z), and κµψψ1 is the constant that appears in the correlator 〈µ (z1)ψα(z2)ψα(z3)〉C.
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Comparing these expressions with (4.31a) and (4.31b), we equate the different terms, assuming that
the structure constants are independent of n and τ . We find

κµµ =
2

π
(log 2 + γ), λ2 κ

µµω̃ = −
(
2 cos(φ2 )

)2

π
, (7.10a)

κµµω̃
κω̃ψψ

κψψ
+ κµµ =

2

π

(
γ + log 2 + 2 cos2(φ2 )(log π − iπ

2 )
)
+ K̂, (7.10b)

where we used (6.16).
The lattice derivations of Section 4 are therefore insufficient to fix individually all the structure

constants appearing in (7.6). In comparison, all the constants for the OPEs of the fields φ (z) and
φ (z) were obtained in (7.5). This was possible because the four-point correlator involving the field
ω (z) was computed from the lattice in Section 4. Presumably, by computing

lim
x3→i∞

〈ω̃ (x1)ω̃ (x2)ψα(x3, x
∗
3)〉V

〈ψα(x3, x∗3)〉V
(7.11)

from the lattice, one would be able to compute λ2 and κω̃ψψ/κψψ directly and then solve for the

remaining unknowns, namely κµµω̃ , κµµ and κµψψ1 /κψψ .

Thus, in the present state of affairs, these results do not allow us to determine whether ω (z) and
ω̃ (z) are the same field. If they turn out not to be, one may have to consider the possibility that
the LCFT for the model of critical dense polymers involves an infinite number of boundary logarithmic
fields of conformal dimension ∆ = 0, one for each link state of the form , , , etc.

7.3 Analysis for the fields ω(z)

Following the notation of [33], we write the OPE of the field ω (z) with itself as

ω (z1)ω (z2) = (a− 2λ log z21)ω (z2) + (b+ aλ log z21 − λ2 log2 z21)ϕ(z2) + . . . (7.12)

where a and b are constants. The two-point function is then given by (6.3) with κωω = aκω. We use
this OPE to obtain the four-point function involving two copies of ω (z) and two copies of ψα(z), in
the regime z1 → z2:

〈ω (z1)ω (z2)ψα(z3)ψα(z4)〉C z1→z2−−−−→ 1

z2∆43

[
(a− 2λ log z21)

(
κωψψ − λκψψ log

(
z32z42
z43

))

+ (b+ aλ log z21 − λ2 log2 z21)κ
ψψ

]
. (7.13)

We obtain the same correlation function on V using the conformal mapping. We divide by
〈ψα(x3)ψα(x4)〉V, set x4 = x∗3, send x3 → i∞ and find

C (x21)
τ→0+−−−−→

(
a− 2λ log(nτ)

)(κωψψ
κψψ

+ λ log(−2πiτ)
)
+ b+ λ2 log2(nτ). (7.14)

We compare this result with (4.29) and equate separately the terms in log2 n, log2 τ , log n, log τ and
the constant term. This confirms the values obtained in (6.23) and yields

a = − 2

π

(
2 cos(φ2 )

)1/2
(γ + log 2), b = −2 cos(φ2 )

π2
(γ + log 2)2 = −a

2

4
. (7.15)

Interestingly, comparing with the results of [33], we see that the values of a and b are different, but that

the relation b = −a2

4 is the same, leading us to wonder whether this is a universal feature of logarithmic
CFTs at c = −2.
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8 Discussion and conclusion

In this paper, we computed correlation functions for the model of critical dense polymers on a semi-
infinite cylinder. These were obtained from an exact lattice derivation using the XX spin-chain repre-
sentation of the enlarged periodic Temperley-Lieb algebra. The asymptotic behaviour as the system
size n grows to infinity was obtained in terms of integral formulae involving the scaling parameter
τ = x−1

n ∈ (0, 1). For small τ , the leading behaviour of these correlators are proportional to τ1/4,

τ1/4 log τ , log τ and log2 τ . This logarithmic dependence of the correlation functions upon the position
of the fields is the defining feature of logarithmic conformal field theories. This behaviour involving
the square of the logarithm of the distance is rather uncommon, but has previously been observed in
the Potts model for certain Fortuin-Kasteleyn probabilities [42].

In the conformal interpretation, these lattice observables were understood to be ratios of conformal
correlation functions: a four-point function divided by a two-point function. Using conformal invari-
ance, we derived differential equations for the four-point functions and solved these equations. We
found a perfect agreement with the lattice results, with the logarithmic behaviour arising in two ways:
(i) from degenerate solutions to the hypergeometric differential equation, and (ii) from the logarithmic
generalisation of the differential equations for highest-weight fields in rank-two Jordan cells that have
null descendants.

Admittedly, our conformal derivation is really a hybrid approach, as the constants that arose in
the solutions of the differential equations were fixed using the asymptotics of the lattice results. It
should in fact be possible to fix these constants directly using the conformal bootstrap [3,65], and thus
to avoid any input coming from the lattice. It would certainly be interesting to understand how this
method applies to the case at hand.

We also used the lattice results to compute the structure constants that appear in the operator
product expansions of the boundary fields of the model. An intriguing feature that we found pertains
to the role played by the field ψα(z). Indeed, the fields φ (z), φ (z), µ (z), µ (z) and ω (z) are
boundary fields that are expected not to depend on α, but the calculations of Section 7 show that
the structure constants appearing in their OPEs do in fact depend on α. These are of the form αι

times constants, with ι ∈ 1
2Z. We interpret this unexpected dependence on α as a consequence of

the non-locality of the field ψα(z), which appears to modify the conformal behaviour of the other
fields that are present in the theory. It is currently uncertain whether this feature extends to other
values of β, and in particular if it occurs only for values of β where the boundary CFT has non-trivial
indecomposable modules and Jordan cells. There was also another logarithmic field that appeared
in the OPEs: ω (z). Our calculation of the structure constants did not allow us to determine
whether it coincides with ω (z), and left open the possibility that the boundary CFT for critical dense
polymers has an infinite number of such logarithmic fields with dimension ∆ = 0. (It certainly does
have an infinity of rank-two Jordan cells, and some of the corresponding logarithmic couplings have
been computed in [16].)

We believe there is more to be learned about the field ψα(z). Notably, our lattice results have only
allowed us to put constraints on ratios of structure constants involving the field ψα(z), see (6.23) and
(7.10b). This can be traced back to the fact that, in the ratios of conformal correlation functions that
we considered, the field ψα(z) appears in both the numerator and denominator. For β = 0, we believe
that the fusion of this field with itself is of the form ψα × ψα = ϕ + ω̄ + . . . where ω̄ is a logarithmic
bulk field with dimension ∆ = 0. Indeed, the two-point function 〈ψα(z1)ψα(z2)〉C is non-vanishing, and
because 〈ϕ(z)〉C = 0, the fusion of ψα with itself must include a second field with a vanishing conformal
dimension. There is, in fact, a simple geometrical interpretation for the fields ψα(z) and ω̄(z). When
two fields ψα(z1) and ψα(z2) are inserted, the loops that encircle only z1 or only z2 have a fugacity α,
whereas the loops that encircle neither or both have a fugacity β. On the lattice, one can bring z1 close
to z2 until these points are one lattice spacing apart. In this case, there is a unique loop that passes
between the two insertion points, and for β = 0, this is the only loop in the configuration. This loop is
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space-filling and its fugacity α appears as an overall prefactor. This is consistent with a field ω̄ whose
conformal dimension is independent of α.

There also remains some light to be shed upon the fields µ (z) and µ (z). Although the consis-
tency of the lattice and conformal results is quite convincing, we struggle to find a proper justification
for treating these two fields in an asymmetric way, with one of them belonging to a Kac module and
the other one to a staggered module. Moreover, the structure constant κµψψ1 that appears in (7.9)
belongs to a three-point function 〈µ (z1)ψα(z2)ψα(z3)〉C for which we have no lattice interpretation.

One possibility is that our identification of µ (z) and µ (z) as primary fields is incorrect, and that
the correct identification should be made in terms of specific linear combinations of link states inserted
in the four marked nodes, instead of only . One attempt at resolving this issue would be to com-
pute the five-point correlator 〈µ (z1)φ (z2)φ (z3)ψα(z4)ψα(z5)〉C from the lattice and investigate its
conformal behaviour.

It is by now well-known that the six-vertex model at q = i and the model of critical dense
polymers are intimately related. The model of critical dense polymers has the central charge c = −2,
whereas the six-vertex model has the central charge c = 1. On the torus, the two models share the
same modular invariant partition function [60, 66], and many questions that arise in one model have
a natural interpretation in the other. For instance, assigning a fugacity α to non-contractible loops in
the loop model corresponds to inserting the field ψα(z, z

∗) at i∞. In the vertex model, this corresponds
to inserting two electric operators of opposite charges, one at i∞ and another one on the boundary
of the cylinder, with a twist line connecting the two. In the related Coulomb gas formalism [62, 66],
these electric operators correspond to vertex operators. Their scaling dimensions are to be measured
relative to the corresponding groundstate in which non-contractible and contractible loops get the same
weight, namely α = β = 0, and this results in the value (5.36) for ∆. Thus, the insertion of the vertex
operators in the six-vertex model changes the central charge from c = 1 to c = −2 and shifts all the
scaling dimensions. The indecomposable structures of the representations, which eventually lead to the
logarithmic behaviour of the correlation functions of critical dense polymers, are key features of the
conformal description with c = −2.

The boundary fields that we studied also have an elegant geometric interpretation in terms of
the Q-state Potts model and its Fortuin-Kasteleyn high-temperature expansion. The loop fugacity is
related to the number of states in the Potts model via the relation β =

√
Q. The Potts spins occupy

one half of the lattice (for instance the odd sublattice) and the closed loops draw the contours of
the Fortuin-Kasteleyn clusters [67]. On the boundary, free boundary conditions for the Potts spins
correspond to having a segment of the boundary decorated with simple half-arcs, ... , where
the red circles mark the positions of the Potts spins. One can also choose a boundary where the Potts
spins are fixed to one of the Q values. The Potts model has SQ symmetry, so in computing the partition
function on a domain with this boundary, one can equivalently impose that the boundary spins take
the same value, which can be any of the Q spin values, and then divide by Q. In the loop model, the
corresponding boundary condition also consists of simple arcs, but with the spins shifted with respect
to the half-arcs: ... . This is usually referred to as wired boundary conditions. As a result, the

fields φ (z) and φ (z) mark transitions between free and wired (or free and fixed, up to a factor of Q)
boundary conditions for the Potts spins. Such boundary operators that change the boundary condition
from free to wired were previously studied in [68, 69], and found to have the conformal weight ∆1,2.
Likewise, ω (z) marks a transition between two adjacent large connected clusters of boundary Potts
spins. Finally, the fields µ (z) and µ (z) correspond to having two spins on the boundary that are
in the same cluster, but where all the other adjacent spins are free. Their conformal weight is ∆1,3.
These five boundary operators thus appear to be refined versions of the similar operators that insert d
adjacent straight defects in the boundary (for d = 1, 2), and whose conformal weights are known [70]
to equal ∆1,d+1. The logarithmic nature of the fields µ and ω is special to the value β =

√
Q = 0, as

in this case there is a collision [13] of the values of the conformal weights: ∆1,3 = ∆1,1.
To conclude, we expect that it will be possible to generalise our results to other values of β
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using the algebraic Bethe ansatz, and similarly to cases where the boundary condition at the edge
of the cylinder has blobbed half-arcs [71, 72]. We believe that both cases are accessible using the

methods of logarithmic conformal field theory. For other values of β of the form 2 cos
(π(p′−p)

p′

)
with

p, p′ coprime integers, the nature of the logarithmic fields will differ compared to what occurs for β = 0,
as the coincidences of the conformal weights are different. The blobbed case is in particular interesting
because it gives access to weights ∆r,r±s for r ∈ R [69], thus offering more possibilities for the formation
of indecomposable structures.
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[4] P. Di Francesco, P. Mathieu, and D. Sénéchal. Conformal Field Theory. Springer, 1997.

[5] L.D. Faddeev, E.K. Sklyanin, and L.A. Takhtajan. The quantum inverse problem method.
Teor. Mat. Fiz., 40:194–220, 1979.

[6] R.J. Baxter. Exactly solved models in statistical mechanics. Academic Press, 1982.

[7] V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin. Quantum inverse scattering method and cor-
relation functions. Cambridge University Press, 1993.

[8] D. Friedan, Z. Qiu, and S. Shenker. Conformal invariance, unitarity, and critical exponents in two
dimensions. Phys. Rev. Lett., 52:1575–1578, 1984.

[9] V. Kac, A. Raina, and N. Rozhkovskaya. Bombay lectures on highest weight representations of
infinite dimensional Lie algebras, volume 29 of Advanced Series in Mathematical Physics. World
Scientific, Singapore, 1988.

[10] K. Iohara and Y. Koga. Representation theory of the Virasoro algebra. Springer Monographs in
Mathematics. Springer-Verlag, London, 2011.

[11] L. Rozansky and H. Saleur. Quantum field theory for the multi-variable Alexander-Conway poly-
nomial. Nucl. Phys. B, 376:461–509, 1992.

[12] V. Gurarie. Logarithmic operators in conformal field theory. Nucl. Phys. B, 410:535–549, 1993.
arXiv:hep-th/9303160.

35

http://arxiv.org/abs/hep-th/9303160


[13] J.L. Cardy. Logarithmic correlations in quenched random magnets and polymers, 1999.
arXiv:cond-mat/9911024.

[14] V. Gurarie and A.W.W. Ludwig. Conformal algebras of two-dimensional disordered systems.
J. Phys. A: Math. Gen., 35:L377, 2002. arXiv:cond-mat/9911392.

[15] J. Dubail, J.L. Jacobsen, and H. Saleur. Conformal field theory at central charge c = 0:
A measure of the indecomposability (b) parameters. Nucl. Phys. B, 834:399–422, 2010.
arXiv:1001.1151 [math-ph].

[16] R. Vasseur, J.L. Jacobsen, and H. Saleur. Indecomposability parameters in chiral logarithmic
conformal field theory. Nucl. Phys. B, 851:314–345, 2011. arXiv:1103.3134 [math-ph].

[17] D. Ridout and Y. Saint-Aubin. Standard modules, induction and the structure of the Temperley-
Lieb algebra. Adv. Theor. Math. Phys., 18:957–1041, 2014. arXiv:1204.4505 [math-ph].

[18] F. Rohsiepe. On reducible but indecomposable representations of the Virasoro algebra, 1996.
arXiv:hep-th/9611160.

[19] H. Kausch and M. Gaberdiel. Indecomposable fusion products. Nucl. Phys. B, 477:293–318, 1996.
arXiv:hep-th/9604026.

[20] P. Mathieu and D. Ridout. From percolation to logarithmic conformal field theory. Phys. Lett. B,
657:120–129, 2007. arXiv:0708.0802 [hep-th].

[21] P. Mathieu and D. Ridout. Logarithmic M(2, p) minimal models, their logarithmic couplings, and
duality. Nucl. Phys. B, 801:268–295, 2008. arXiv:0711.3541 [hep-th].
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