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3 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120,

Denmark
* jonathan.lindgren@su.se

August 28, 2019

Abstract

We explore a new variational principle for studying one-dimensional quantum
systems in a trapping potential. We focus on the Fermi polaron problem, where
a single distinguishable impurity interacts through a contact potential with a
background of identical fermions. We can accurately describe this system,
for various particle numbers, different trapping potentials and arbitrary finite
repulsion, by constructing a truncated basis containing states at both zero and
infinite repulsion. The results agree well with matrix product states methods
and with the analytical result for two particles in a harmonic well.
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1 Introduction

The investigation of one-dimensional quantum systems of interacting particles has, in the
last decades, attracted renewed interest due to striking advances in experiments with
cold atoms in optical traps [1]. Paradigmatic models extensively explored in the fields
of condensed matter [2–4] and mathematical physics [5–7] are now within reach of ex-
periments, and their exotic properties can be measure with great precision. Moreover,
the degree of control over several experimental parameters, including interactions between
the atoms [8–11] and trapping geometries opens up the possibility of using such experi-
ments as quantum simulators for a multitude of interesting models [12], even beyond usual
condensed matter models [13–15].

One particular problem which has attracted interest in this context is that of a single
distinct atom (or impurity) embedded in a background of identical particles. In the context
of condensed matter, such systems can present interesting phenomena such as the Kondo
effect [16] and the orthogonality catastrophe [17]. Theoretical and experimental stud-
ies with ultracold atomic setups have extensively explored both the bosonic [18–28] and
fermionic [29–33] manifestations of these models - the so-called Bose and Fermi polarons,
respectively. The one-dimensional fermionic case, in particular, dates back to McGuire’s
impurity model in a homogeneous geometry [34, 35], which is exactly solvable through
the Bethe ansatz approach [36]. Other approaches have later generalized the study of
static properties to mixed fermionic systems in harmonic potentials [37–43]. On the dy-
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namical side, impurity models have been shown to present exotic effects such as Bloch
oscillations [44] and quantum flutter [45,46].

In this work we present an original way to obtain the static properties of a Fermi
polaron system, where the number of background fermions can be arbitrarily modified.
We employ a variational principle where our ansatz for the wavefunction is a combination of
states at zero and infinite interaction, relying on the fact that the analytical expressions for
these limits are known. In practice, we construct a truncated basis by choosing a certain
number of states at each limit and then employ the Gram-Schmidth ortonormalization
process to construct an orthonormal basis. By diagonalizing the Hamiltonian in this
basis, we obtain an approximation for the wavefunctions and eigenvalues. While it may
be difficult to reach a regime of strong interactions with usual methods, our approach is
exact in the zero and infinite interaction limits. This method is an extension of Ref. [47],
where only two basis states were used. It can be applied to systems in different trapping
geometries, and the repulsive interactions can be tuned from weak to strong. To validate
our method, we compare our results for spatial densities and momentum distributions to
simulations of the continuum obtained with Matrix Product States (MPS).

2 Hamiltonian

We focus on a one-dimensional system of N identical fermions (majority) which interacts
with a single distinct particle (minority) with the same mass in the presence of a trapping
potential. The Hamiltonian can be written as

H =

N∑
i=0

(
p2
i

2
+ V (xi)

)
+ g

N∑
i=1

V0,i(x0 − xi), (1)

where the potential V is the background potential (which in this paper is either a harmonic
potential or a double well) and V0,i is the interaction between the minority and majority,
namely we have 〈x0, x1, . . . , xN |V0,i|x′0, x′1, . . . , x′N 〉 = v(x0 − xi)δ(x0 − x′0) · · · δ(xN − x′N ).
In our case of a contact interaction, we have v(x) = δ(x). Since all particles have the
same mass, we can interpret the single impurity as a fermionic atom in a different internal
state than the remaining majority atoms. Such systems can be realized in the lab with
ultracold Li atoms in different hyperfine states [4].

3 Variational method

Our variational method consists of constructing a suitable truncated basis of states. The
basis states are constructed by using both the analytically known eigenstates at zero
interactions as well as the analytically known solutions at infinite interaction.

3.1 States at zero interaction

The states at zero interaction are denoted by |φi〉, for 0 ≤ i ≤ n. Each state |φi〉 is defined
by a collective index ~ki of N + 1 single particle states, namely

~ki = [k
(i)
0 ; k

(i)
1 , . . . , k

(i)
N ]. (2)

Note that for the k
(i)
1 , . . . , k

(i)
N , different orders correspond to the same state up to a sign

since they correspond to the majority particles, while the single k
(i)
0 corresponds to the
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quantum number of the minority particle. We assume that k
(i)
1 < . . . < k

(i)
N . We define

the totally antisymmetric state of a number of M (ordered) quantum states ~v by

|Φ~v〉 =
1√
M !

∑
σ

sign(σ)|fvσ(1)
〉 · · · |fvσ(M)

〉. (3)

Let us further denote ~v[i, j, . . .] as the (ordered) set ~v with vi, vj , . . ., removed. This
notation will be used throughout this article. The zero interaction state is then given by

|φi〉 = |f
k

(i)
0

〉|Φ~ki[0]
〉. (4)

3.2 States at infinite interaction

At infinite interaction, the states are denoted as |ψµ〉, for 0 ≤ µ ≤ m. Note that the
number of states at zero interaction, n, is not necessarily the same as the number of states
at infinite interaction. Each state |ψµ〉 corresponds to a collective index ~qµ of N + 1
single particle states corresponding to a completely antisymmetric state Φ~qµ built from
the quantum states

~qµ = [q
(µ)
0 , . . . , q

(µ)
N ], (5)

as well as a set of N + 1 coefficients ~aµ,

~aµ = [a
(µ)
0 , . . . , a

(µ)
N ]. (6)

Note that different orders of the q
(µ)
i correspond to the same state up to a sign, and we

will assume that q
(i)
0 < . . . < q

(i)
N , and we will assume that the ~aµ satisfy∑

i

(a
(µ)
i )2 = N + 1,

∑
i

a
(µ)
i a

(ν)
i = 0, µ 6= ν. (7)

The state at infinite interaction is then defined in the coordinate representation as

ψµ(x0, . . . , xN ) = a
(µ)
l Φ~qµ(x0, . . . , xN ), when (x0, . . . , xN ) ∈Ml, (8)

where we denoteMl as the set of points where x0, the coordinate for the minority particle,
is smaller than exactly l of the x1, . . . , xN .

These exact solutions of the Hamiltonian (1) at g = +∞ [39, 40], are orthogonal and
properly normalized to unity provided that (7) holds. However, they are not orthogonal
to the zero interaction eigenstates, and in Section 3.4 we will apply the Gram-Schmidt
process to construct an orthonormal basis.

3.3 Overlaps between the zero and infinite interaction states

In this section we will compute the overlaps between the infinite interaction states ψµ and
the zero interaction states φi, which is a necessary input for the construction in Section 3.4
and for computing the matrix elements and overlaps that include the states χµ. We will
denote the overlaps between the states at zero interaction and at infinite interaction by
Ciµ, where by convention i ∈ (0, . . . , n−1) corresponds to the index for the zero interaction
states and µ ∈ (0, . . . ,m−1) corresponds to the index for the states at infinite interaction.
The zero interaction state is on the form

φi(x0, . . . , xN ) = fk0(x0)Φ~ki[0]
(x1, . . . , xN ) (9)
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where Φ~ki[0]
is again the totally antisymmetric wave function

Φ~ki[0]
=

1√
N !

∑
π

sign(π)f
k

(i)
π(1)

· · · f
k

(i)
π(N)

. (10)

Again, we use the notation where ~k[j] is the set (k0, . . . , kN ) with kj removed. Recall that
at g = +∞, an eigenstate can be specified by a sequence of N + 1 numbers αj , 0 ≤ j ≤ N ,
as well as a set ~qµ = (q0, . . . , qN ) of single particle quantum numbers, and is constructed
by

ψµ = αlΦ~qµ(x0, x1, . . . , xN ), x1, . . . , xN ∈Ml(x0), (11)

where Ml(x0) is the set where x0 is larger than exactly l of the xj with j ≥ 1. The
overlaps is thus given by

Ciµ =

N∑
l=0

αlIl, (12)

where

Il ≡
∫ ∞
−∞

dx0

∫
Ml(x0)

φi(x0, . . . , xN )ψµ(x0, . . . , xN )dx1 · · · dxN

=
1√
N + 1

N∑
j=0

(−1)j
∫ ∞
−∞

dx0fk(i)
0

(x0)f
q
(µ)
j

(x0)

∫
Ml(x0)

Φ~ki[0]
Φ~qµ[j]

=
1

l!
√
N + 1

N∑
j=0

(−1)j
∫ ∞
−∞

dx0fk(i)
0

(x0)f
q
(µ)
j

(x0)∂lε det(Aj + εBj)ε=0, (13)

where in the last step we have used the formula in Appendix A.1. The matrix Aj is defined
by Ajkl =

∫ x0

−∞ fk(i)
k+1

f
q
(µ)
l

for l < j and Ajkl =
∫ x0

−∞ fk(i)
k+1

f
q
(µ)
l+1

for l ≥ j while Bj is defined

by Bj
kl =

∫∞
x0
f
k

(i)
k+1

f
q
(µ)
l

for l < j and Bj
kl =

∫∞
x0
f
k

(i)
k+1

f
q
(µ)
l+1

for l ≥ j. To compute the

derivatives efficiently we evaluate the determinant for several values of ε, linearly spaced
in (−1, 1), and fit a polynomial. We will encounter similar, but more involved, calculations
when we compute the densities.

3.4 Constructing the basis

We will construct our basis by starting with the n states at zero interaction. We then add
the infinite interaction states one by one, and orthonormalize after each added state. In
other words, each state at infinite interaction |ψµ〉 corresponds to a state |χµ〉, which is a
linear combination of all the |φi〉 and the |χν〉 with ν < µ such that it is orthogonal to all
of these states. This procedure will be explained below.

We define Ciµ = 〈φi|ψµ〉 and Wµν = 〈χµ|ψν〉. Note that neither of these matrices are
symmetric. The states |χµ〉 are then given by

|χµ〉 = Nµ

|ψµ〉 − n∑
i=0

Ciµ|φi〉 −
µ−1∑
ρ=0

Wρµ|χρ〉

 , (14)

where the normalization constant is given by

Nµ =

1−
n∑
i=0

C2
iµ −

µ−1∑
ρ=0

W 2
ρµ

−1/2

. (15)
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The Wµν can be computed inductively. We first have that

W0ν = N0

(
δ0ν −

n∑
i=0

Ci0Ciν

)
(16)

Then, for any µ, assuming knowledge of Wρσ where ρ ≤ µ − 1, we can compute Wµν

as

Wµν = Nµ

δµν − n∑
i=0

CiµCiν −
µ−1∑
ρ=0

WρµWρν

 (17)

where Nµ is also given in terms of known Wρσ. Given the Wµν , Ciµ and Nµ we now know
our truncated basis (|φ0〉, . . . , |φn−1〉, |χ0〉, . . . , |χm−1〉) ≡ (α0, . . . , αm+n−1). We will then
express our Hamiltonian in this basis and numerically diagonalize it to find approximations
to the eigenstates and energies.

3.5 The Hamiltonian expressed in the basis

We will now express the Hamiltonian in the |αi〉 basis by computing 〈αi|H|αj〉. We will
write the Hamiltonian as

H = H0 + gV, (18)

where V is the contact interaction between the majority and minority particles and H0 is
the Hamiltonian at zero interaction. We will treat these two terms individually.

For the zero interaction states, we have 〈φi|H0|φj〉 = δijEi, 〈φi|H0|χµ〉 = 0 due to
the orthogonality propery of the basis and also 〈ψµ|H0|ψν〉 = δµνEµ. Let us define the
quantity

Lµν = 〈ψµ|H|χν〉 = Nν

Eµδµν − n∑
i=0

CiµCiνEi −
ν−1∑
ρ=0

WρνLµρ

 (19)

These can be computed recursively, starting with the known Lµ0. The matrix elements
〈χµ|H0|χν〉 are then given by

〈χµ|H0|χν〉 = Nµ

Lµν − µ−1∑
ρ=0

Wρµ〈χρ|H0|χν〉

 (20)

Which can also be calculated recursively starting with the known 〈χ0|H0|χν〉.

Now let us look at the interaction operator V . Note that 〈αi|V |ψµ〉 = 0 since V is
a contact interaction and 〈x|ψµ〉 vanishes when x0 = xj for 1 ≤ j ≤ N . Let us define
Vij = 〈φi|V |φj〉. We then have

Viµ = Nµ

− n∑
j=0

VijCjµ −
µ−1∑
σ=0

WσµViσ

 (21)

which can be computed recursively starting with Vi,µ=0. Given these quantities, the re-
maining matrix elements can be calculated as

Vµν = Nµ

− n∑
j=0

CjµVjν −
µ−1∑
σ=0

WσµVσν

 . (22)
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To compute the matrix elements Vij , note that the interaction operator between two
particles is defined as

〈x1, x2|V2|y1, y2〉 = δ(x1 − y1)δ(y1 − y2)δ(x2 − y2) (23)

Thus the matrix elements between some discrete set of eigenstates given by 〈x|n〉 = fn(x)
are

〈n1, n2|V2|m1,m2〉 =

∫ ∞
−∞

fn1(x)fn2(x)fm1(x)fm2(x) (24)

Now we would like to know the matrix elements of the total interaction operator
between two many-body states n = (n0;n1, . . . , nN ) and m = (m0;m1, . . . ,mN ) (and we
again denote n(0) = (n1, . . . , nN ), and we assume n1 > . . . > nN ). The total interaction
operator is given as V =

∑N
j=1 V0j , where V0j is the interaction operator between particle

0 (the impurity) and particle with index j. For two sets A and B with equal size, let us
define |A − B| be the number of elements that only appear in A (or equivalently in only
B). Since V0j is diagonal in all other particles with index i 6= 0, j, we obtain that

〈n|V |m〉 = 0, (25)

if |n(0)−m(0)| > 1. If |n(0)−m(0)| = 1, we obtain

〈n|V |m〉 = 〈n0, ni|V2|m0,mj〉(−1)i−j , (26)

where i and j are the unique indices such that ni 6= nj and n(0)(i) = n(0)(j). If n(0) =
m(0), we obtain

〈n|V |m〉 =

N∑
i=1

〈n0, ni|V2|m0,mi〉. (27)

This concludes our construction of the Hamiltonian H = H0 +gV , and all that remains
is diagonalizing the matrix 〈αi|H|αj〉 to find the energies and wavefunctions.

4 Observables

In this section we explain how to compute several important observables. They will all be
computed starting with a specific eigenstate, which we denote by |Ψ〉, or Ψ(x0, . . . , xN ) =
〈x0, . . . , xN |Ψ〉 in the coordinate basis. This state is expressed as a linear combination of
the zero interaction states and infinite interaction states

|Ψ〉 =
n∑
i=0

Ci|φi〉+
m∑
µ=0

Dµ|ψµ〉, (28)

which can be obtained easily given the expansion of Ψ in the basis {φi, χµ}. Note that
the {φi, ψµ} is not an orthonormal basis.

We will start by computing the single particle density, which is the easiest observable
presented in this section. The equations for the other observables are similar in nature
but with varying extra degrees of complexity and subtleties, and thus it is recommended
to understand the single particle density computation in detail first.
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4.1 Single particle minority density matrix

The single particle density matrix is defined by integrating out the coordinates of the
majority particles as

ρ(x0, y0) =

∫
Ψ∗(x0, x1, . . . , xN )Ψ(y0, x1, . . . , xN )

=

∫ n∑
i=0,j=0

C∗i Cjφ
∗
i (x0, x1, . . . , xN )φj(y0, x1, . . . , xN )+

+

∫ n∑
i=0

m∑
µ=0

(
C∗iDµφ

∗
i (x0, x1, . . . , xN )ψµ(y0, x1, . . . , xN )+

+CiD
∗
µφi(y0, x1, . . . , xN )ψ∗µ(x0, x1, . . . , xN )

)
+

+

∫ m∑
µ=0,ν=0

D∗µDνψ
∗
µ(x)ψν(x)

≡
∑
i,j

C∗i Cjαi,j(x0, y0) +
∑
i,µ

C∗iDµβi,µ(x0, y0)+

+ CiD
∗
µβ
∗
i,µ(y0, x0) +

∑
µ,ν

D∗µDνγµ,ν(x0, y0), (29)

where the integral is short for
∫

=
∫∞
−∞ dx1 · · ·

∫∞
−∞ dxN . The density matrix is useful

since it is related to the momentum distribution by a simple Fourier transform. For just
the particle density in coordinate space, we set x0 = y0. We will comment on how the
computations simplify for this special case.

The simplest term, namely between the zero interaction states is given by

αi,j(x0, y0) = f∗
k

(i)
0

(x0)f
k

(j)
0

(y0)δ~ki[0],~kj [0]
. (30)

Here we are again using the notation that ~k[0] is equal to ~k with k0 removed, namely
the set {k1, . . . , kN}, and the Kronecker delta is thus equal to one if and only if the sets

{k(i)
1 , . . . , k

(i)
N } and {k(j)

1 , . . . , k
(j)
N } are the same.

For the cross terms βi,µ, it will be useful to split up the integral into several regions,
and we write ∫

=

N∑
l=0

∫
Ml

, (31)

where Ml as the set of points where y0 is smaller than exactly l of the x1, . . . , xN . We
then split up the term βi,µ(x0, y0) as

βi,µ(x0, y0) =
∑
l

βli,µ(x0, y0). (32)

The cross term is then given by

βli,µ(x0, y0) =
al√
N + 1

N∑
J=0

(−1)Jf
k

(i)
0

(x0)f
q
(µ)
J

(y0)

∫
Ml

Φ~ki[0]
(x1, . . . , xN )Φ~qµ[J ](x1, . . . , xN )

=
al

l!
√
N + 1

N∑
J=0

(−1)Jf
k

(i)
0

(x0)f
q
(µ)
J

(y0)∂lε det(AJ + εBJ)ε=0(x0), (33)
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where Φ represents a totally antisymmetric state. The matrix AJ is defined by AJab =∫ x0

−∞ fk(i)
a+1

f
q
(µ)
b

for b < J and AJab =
∫ x0

−∞ fk(i)
a+1

f
q
(µ)
b+1

for b ≥ J while BJ is defined by

BJ
ab =

∫∞
x0
f
k

(i)
a+1

f
q
(µ)
b

for b < J and BJ
ab =

∫∞
x0
f
k

(i)
a+1

f
q
(µ)
b+1

for b ≥ J . Here a and b take the

values 0, . . . , N − 1. For a derivation of this equation see A.1.

For the density where x0 = y0, this works also for the infinite interaction terms, namely
we can write

γlµ,ν(x0) =
a2
l

N + 1

N∑
J,J ′=0

(−1)J+J ′
f
q
(µ)
J

(x0)f
q
(ν)

J′
(x0)

∫
Ml

Φ~qµ[J ]Φ~qν [J ′]

=
a2
l

l!(N + 1)

N∑
J,J ′=0

(−1)J+J ′
f
q
(µ)
J

(x0)f
q
(ν)

J′
(x0)∂lε det(AJ,J

′
+ εBJ,J ′

)ε=0(x0), (34)

where now the matrices AJ,J
′

and BJ,J ′
are defined by AJ,J

′

ab =
∫ x0

−∞ fq(µ)
a+σ

f
q
(ν)
b+δ

and BJ,J ′

ab =∫∞
x0
f
q
(µ)
a+σ

f
q
(ν)
b+δ

where σ = 0 for a < J , σ = 1 for a ≥ J , δ = 0 for b < J ′ and δ = 1 for

b ≥ J ′. Here a and b take the values 0, . . . , N−1 and we refer again to A.1 for a derivation
of the determinant formulas.

However, when x0 6= y0, it is necessary to split the integral in more regions. We then
write ∫

=
N∑

l=0,s=0

∫
Ml,s

, (35)

where Ml,s is the region where x0 and y0 are smaller than exactly l respectively s of the
x1, . . . , xN . We then split up the terms γµ,ν(x0, y0) as

γµ,ν(x0, y0) =
∑
l,s

γl,sµ,ν(x0, y0). (36)

The term only involving infinite interaction states is then given by

γl,sµ,ν(x0, y0) =
alas
N + 1

N∑
J,J ′=0

(−1)J+J ′
f
q
(µ)
J

(x0)f
q
(ν)

J′
(y0)

∫
Ml,s

Φ~qµ[J ]Φ~qν [J ′]

=
alas

|l − s|!(min(l, s))!
√
N + 1

N∑
J,J ′=0

(−1)J+J ′
f
q
(µ)
J

(x0)f
q
(ν)

J′
(y0)×

∂|l−s|ε ∂min(l,s)
τ det(AJ,J

′
+ εBJ,J ′

+ τCJ,J
′
)(x0, y0)|ε=0,τ=0, (37)

Now the matrices are defined as Aab =
∫ min(x,x′)
−∞ f

q
(µ)
a+σ

(x′′)f
q
(ν)
b+δ

(x′′)dx′′,

Bab =
∫ max(x,x′)

min(x,x′) fq(µ)
a+σ

(x′′)f
q
(ν)
b+δ

(x′′)dx′′ and Cab =
∫∞

max(x,x′) fq(µ)
a+σ

(x′′)f
q
(ν)
b+δ

(x′′)dx′′ where

σ = 0 for a < J , σ = 1 for a ≥ J , δ = 0 for b < J ′ and δ = 1 for b ≥ J ′. The indices a and
b take the values 0, . . . , N − 1. See A.2 for a derivation of this formula.

4.2 Majority particle density matrix

The single particle majority density matrix is defined by integrating out the coordinate
of the single minority particle and the coordinates of N − 1 of the majority particles. We

9
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thus write

ρmaj(x0, y0) =

∫
Ψ∗(x0, x1, . . . , xN )Ψ(x0, y1, . . . , xN )

=

∫ n∑
i=0,j=0

C∗i Cjφ
∗
i (x0, x1, . . . , xN )φj(x0, y1, . . . , xN )+

+

∫ n∑
i=0

m∑
µ=0

(
C∗iDµφ

∗
i (x0, x1, . . . , xN )ψµ(x0, y1, . . . , xN )+

+CiD
∗
µφi(x0, y1, . . . , xN )ψ∗µ(x0, x1, . . . , xN )

)
+

+

∫ m∑
µ=0,ν=0

D∗µDνψ
∗
µ(x0, x1, . . . , xN )ψν(x0, y1, . . . , xN )

≡
∑
i,j

C∗i Cjα
maj
i,j (x1, y1) +

∑
i,µ

C∗iDµ

∫
dx0β

maj
i,µ (x0, x1, y1)+

+ CiD
∗
µ

∫
dx0β

maj∗
i,µ (x0, x1, y1) +

∑
µ,ν

D∗µDν

∫
dx0γ

maj
µ,ν (x0, x1, y1), (38)

where in all but the last line the integral is short for
∫

=
∫∞
−∞ dx2 · · ·

∫∞
−∞ dxN and in the

last line we have separated out the dx0 integral in all but the first term. In this case there
are not many simplifications when x1 = y1. The zero interaction term is given by

αmaj
i,j (x1, y1) =

δ
k

(i)
0 ,k

(j)
0

N

N+1∑
I=1,J=1

(−1)I+Jf∗
k

(i)
I

(x1)f
k

(j)
J

(y1)δ~k(i)[0,I],~k(j)[0,J ]
. (39)

The latter delta function means that this expression is zero unless the set ~k(i) with k
(i)
0

and k
(i)
I removed and the set ~k(j) with k

(j)
0 and k

(j)
J removed, are equal, in which case

it is equal to one. For the cross term βmaj
i,µ (x1, y1), we split it up into N terms βmaj,l,

corresponding to x0 being smaller than exactly l of the x2, . . . , xN . We have

βmaj,l
i,µ (x0, x1, y1) =

a(µ)(l, x0, y1)√
N(N + 1)

N+1∑
I=1,J=0,J ′=0,J ′ 6=J

sgn(J, J ′)(−1)I+1f
k

(i)
I

(x1)f
q
(µ)

J′
(y1)

f
k

(i)
0

(x0)f
q
(µ)
J

(x0)

∫
Ml

Φ~ki[0,I](x2, . . . , xN )Φ~qµ[J,J ′](x2, . . . , xN )

=
a(l, x0, y1)

l!
√
N(N + 1)

N+1∑
I=1,J=0,J ′=0,J ′ 6=J

sgn(J, J ′)(−1)I+1f
k

(i)
I

(x1)f
q
(µ)

J′
(y1)

f
k

(i)
0

(x0)f
q
(µ)
J

(x0)∂lε det(A0,I;J,J ′
+ εB0,I;J,J ′

)ε=0(x0), (40)

where the integral is again short for
∫

=
∫∞
−∞ dx0dx2 · · ·

∫∞
−∞ dxN . The sign sgn(J, J ′) is

defined as (−1)J+J ′
if J ′ < J and −(−1)J+J ′

otherwise. We have defined a(µ)(l, x0, y1)

as being equal to a
(µ)
l if x0 < y1 and equal to a

(µ)
l+1 otherwise. This formula does not

simplify much for the density where x1 = y1. We have defined the matrices A0,I;J,J ′

ab =∫ x0

−∞ f[~k(i)(0)(I)]a
(x′)f[~q(µ)(J)(J ′)]b

(x′)dx′ andB0,I;J,J ′

ab =
∫∞
x0
f

[~k(i)(0)(I)]a
(x′)f[~q(µ)(J)(J ′)]b

(x′)dx′,

and simplified the notation by assuming that ~S(I) is the (ordered) set S with the element
with index I removed.

10
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Now let’s consider the term γ. We now have the expression

γmaj,l
µ,ν (x0, x1, y1) =

a(µ)(l, x0, x1)a(ν)(l, x0, y1)

N(N + 1)

N+1∑
I 6=I′,J 6=J ′

sgn(I, I ′)sgn(J, J ′)f
q
(µ)

I′
(x1)f

q
(ν)

J′
(y1)

f
q
(µ)
I

(x0)f
q
(ν)
J

(x0)

∫
Ml

Φ~qµ[I,I′](x2, . . . , xN )Φ~qν [J,J ′](x2, . . . , xN )

=
a(µ)(l, x0, x1)a(ν)(l, x0, y1)

l!N(N + 1)

N+1∑
I 6=I′,J 6=J ′

sgn(I, I ′)sgn(J, J ′)f
q
(µ)

I′
(x1)f

q
(ν)

J′
(y1)

f
q
(µ)
I

(x0)f
q
(ν)
J

(x0)∂lε det(AI,I
′;J,J ′

+ εBI,I′;J,J ′
)ε=0(x0). (41)

The matrices are now analogously defined, namely

AI,I
′;J,J ′

ab =
∫ x0

−∞ f[~q(µ)(I)(I′)]a(x′)f[~q(ν)(J)(J ′)]b
(x′)dx′ and

BI,I′;J,J ′

ab =
∫∞
x0
f[~q(µ)(I)(I′)]a(x′)f[~q(ν)(J)(J ′)]b

(x′)dx′.

4.3 Momentum distributions

The momentum distributions are obtained as a Fourier transform of the single particle
density matrices. Let us denote the single particle density matrices by ρmin(x, y) and
ρmaj(x, y) for the minority respectively majority species. The momentum distributions
are then defined as

ρmin(p) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dxdyeip(x−y)ρmin(x, y), ρmaj(p) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dxdyeip(x−y)ρmaj(x, y).

(42)
and have the same normalization as the coordinate space densities.

4.4 Minority-Majority correlation function

The last observable we will consider is the coordinate space minority-majority correlation
function, which is defined as

ρ(x0, x1) =

∫
Ψ∗(x0, x1, . . . , xN )Ψ(x0, x1, . . . , xN ) (43)

where the integral is short for
∫

=
∫∞
−∞ dx2 · · ·

∫∞
−∞ dxN . The computation of the minority-

majority correlation functions is very similar to the computation of the majority density;
take the formulas for the majority density matrix and set x1 = y1, and drop the integrals
over x0. Dropping the x0 integral in the β and γ terms is trivial, and the α term is given
by

αcorr
i,j (x0, x1) =

1

N
f∗
k

(i)
0

(x0)f
k

(j)
0

(x0)

N+1∑
I=1,J=1

(−1)I+Jf∗
k

(i)
I

(x1)f
k

(j)
J

(x1)δ~k(i)[0,I],~k(j)[0,J ]
. (44)

5 Examples

5.1 Two particles in a harmonic potential

In this section we will make detailed comparisons between the methods in this paper
and the analytically known formula for two particles. A full derivation of the two particle

11
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Figure 1: The two potentials used in this paper, the harmonic well and the double well
described in Appendix C with parameter x2 = 2 = −x0, ω0 = ω1 = 1, ∆0 = 0, ∆1 = 1.5
and ∆2 = 0.8.
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system can be found in Appendix B. As explained in Section 3, when describing the basis we
will write [k0; k1, . . . , kN ] to denote a zero interaction state with the single particle in state
k0 and the majority particles in the antisymmetric state with quantum numbers k1 > . . . >
kN . The states at infinite interaction will be denoted by two sets of numbers, [q0, . . . , qN ]∞
and [a0, . . . , aN ], such that the wavefunction is a totally antisymmetric wavefunction built
from q0 > . . . > qN and which is multiplied with the coefficient ai if x0 is greater than
exactly i of x1, . . . , xN .

5.1.1 Basis

The basis is built from states at zero interaction and from states at infinite interaction. The
states at zero interaction are specified by two quantum numbers, denoted [k0; k1]. There
are no constraints on these two quantum numbers as we are dealing with two distinguish-
able particles. At infinite interaction, the states are built by taking a totally antisymmetric
state, denoted by ~q = [q0, q1]∞ with q0 > q1, but by multiplying with different coefficients
a0 and a1 depending on the position space coordinates. In other words, the wave function is
given by a0Φ~q(x0, x1) when x0 > x1 and a1Φ~q(x0, x1) when x0 < x1 where Φ is the totally
antisymmetric state. A basis for such states is given by all antisymmetric states and the
coefficients ~a(1) = [1, 1] and ~a(2) = [1,−1]. However, note that ~a = [1, 1] just corresponds
to the totally antisymmetric state and is thus included among (a linear combination of)
the zero interaction states. It is important to exclude such linearly dependent states to
avoid singular behaviour in the Gram-Schmidt orthogonalization process when construct-
ing the basis. We will thus exclude the states with coefficients ~a(1) = [1, 1] and thus for
two particles it is enough to specify a state at infinite interaction only by the quantum
numbers ~q = [q0, q1] and we leave the coefficients [1,−1] implicit. When building our basis,
we will typically increase the size by increasing the maximum energy of our states (above
the lowest state). For example, if we say that we include all zero interaction states with an
energy not greater than 2 (above the lowest energy state), we have the basis [0, 0], [0, 1],
[1, 0], [2, 0], [0, 2] and [1, 1], and if we include all states at infinite interaction with energy
not greater than 2 (above the lowest energy state), we have the infinite interaction states
[1, 0]∞, [2, 0]∞, [3, 0]∞ and [2, 1]∞ (with the implicit coefficients [1,−1]). For simplicity we
will restrict to having the same energy cutoff on both the infinite interaction states and
the zero interaction states, but it is possible that an optimal scheme with different energy
cutoffs for zero and infinite interaction exists.

5.1.2 Energies

In Figure 2 we show the energy of the lowest six states computed using our variational
approach and the analytic formula, for various values of the coupling g. The ground state
interpolates between the state [0, 0] at g = 0 to the state [1, 0]∞ at g = +∞ (with the
implicit coefficients [1,−1]).The first and third excited states are totally antisymmetric
states (unaffected by the interaction) with the quantum numbers [1, 0] and [2, 0].

As we can see from this plot, there is an agreement between the results, but it is dif-
ficult to appreciate exactly how well they agree. In Figure 3 we therefore plot the energy
difference of the analytic result and the variational result for g = 1/2, 1, 2 for the ground
state and one of the excited states for various basis sizes. As we can see, they agree to an
extraordinary accuracy (note the logarithmic scale). Each data point corresponds to all
basis states at zero and infinite interaction with a total energy (above the lowest energy
state) not greater than some E, where E is increased in steps of two. Thus the data points
are for E = 0, 2, 4, . . .. The x-axis then shows the total size of the basis.
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Figure 2: Energies for the lowest six states for the 1+1 system in a harmonic trap,
computed both using the exact analytical method and the variational method.

The reason why we look at the fourth excited state is that this is the first “nontrivial”
excited state when computed using the analytical formula. As explained in Appendix B,
the non-trivial part of the analytical derivation is computing the eigenstates of the relative
motion Hamiltonian, and to get the full spectrum we also need to add the energy for the
center of mass Hamiltonian which is just a free harmonic oscillator. In the variational
method, where we work directly in absolute coordinates, we automatically get all states.
It turns out that the first excited state is just a totally antisymmetric state, the second
excited state is just the first state plus a center of mass excitation, and the third excited
state is then also just a totally antisymmetric state (actually the first excited state plus
center of mass motion). The fourth excited state is then the first excited state which
corresponds to a non-trivial eigenstate to the relative motion Hamiltonian and where the
center of mass energy is zero.

5.1.3 Position space densities

In Figure 4 we show the position space density for the ground state at g = 1 compared
to the analytical result. We see that when we only use two states in the basis there is
a small discrepancy between the two methods, but when we use larger basis sizes the
methods agree very well. A more detailed comparison can be seen in Figure 5, where we
plot the density at three arbitrary values of x as a function of the basis size. We see that
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Figure 3: Convergence of the energies in the 1+1 system in a harmonic trap, comparing
the variational method to the analytical result.
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Figure 4: Position space density for the ground state for one of the particles for different
basis sizes compared to the analytical result for the 1+1 system in a harmonic well at
g = 1.

they agree well with the analytical result. To compute the density from the analytical
result, we need to perform an integral transforming from Jacobi coordiantes to absolute
coordinates (see Appendix B), and it turned out that the most accurate approach was to
perform this integral numerically for various grid sizes N and then fit a function of the
form f(N) = a + b/N + c/N2 to extrapolate to a final value of the density. For basis
sizes larger than 40 we don’t see much improvement, but we do not claim to have that
high numerical precision in neither our method nor in the numerical integral used for the
analytical formula.

5.1.4 Momentum space densities

Finally we will compare the momentum densities, which is computed from the density ma-
trix by equation 42. The comparison between the analytical and the variational methods
is shown in Figure 6. Again, there is a discrepancy with the analytical result when only
using 2 basis states, but when using 10 basis states the results agree very well.
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Figure 5: Detailed comparison between position space density in the 1+1 system at g = 1
at particular values of x compared to the analytical result.
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Figure 6: Momentum distribution of one of the particles in the ground state at g = 1 for
the 1+1 system in the harmonic trap, compared with the analytical solution.

18



SciPost Physics Submission

5 4 3 2 1 0
1/g

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E

1.01 1.00 0.99
2.975
3.000
3.025
3.050

Figure 7: Energies for the lowest seven states for the 2+1 system computed using the
variational method. The result using the matrix product states method for increasing ac-
curacy is shown in red dots, with the black star being the extrapolated value. The energies
are computed using basis states with energy cutoff 8. The ground state is computed also
using energy cutoffs 0, 2, 4 and 6 to show the convergence, which are shown with dashed
lines.

5.2 2+1

5.2.1 Energies

Figure 7 shows the lowest seven energies for the 2+1 system with harmonic potential.
We compare with the matrix product states (MPS) result at g = 1.0 for the ground
state. Note that to obtain good agreement, we need to compute the energy for several
numerical accuracies and then extrapolate the result. The MPS computations for the
different accuracies are given by the red dots, and the extrapolated value is the black
cross. The dashed lines are the ground state computed with the variational method using
basis states with an energy of 0, 2, 4 and 6 above the ground states, and the solid lines
are computed using an energy cutoff of 8. These correspond to basis sizes of 1+2,7+8,
22+22, 50+46 and 95+82 respectively, where the first (second) number is the number of
zero (infinite) interaction states the basis is constructed from. Our vatiational method
easily gives us the energies of several states at many different values of g, which is one of
the main advantages of the method compared to for example the MPS method where each
computation only yields the energy and wavefunction at one particular interaction.
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Figure 8: Position space density for the ground state at g = 1 for the 2+1 system in
the harmonic potential, for different basis sizes compared to the matrix product states
method. The density profile localized in the center is the minority density and the other
one is the majority density.

5.2.2 Position space densities

Figure 8 and 9 shows the position space minority and majority density at g = 1 for the
2+1 system for different basis sizes compared with MPS method. In Figure 8 we assume
a harmonic potential, while in Figure 9 we consider the double-well geometry shown in
Figure 1. In both cases we have good agreement with the MPS result. The computations
are for energy cutoffs of 0, 2 and 4.

In Figure 10 we plot the integral of the squared difference of the densities for different
basis sizes to better compare the convergence.

5.2.3 Momentum space densities

In Figure 11 we compare the momentum space densities at g = 1 in the harmonic well
with the MPS result. We see that they agree quite well already for the lowest possible
number of basis states, and we again see that the discrepeancy goes to zero as we increase
the basis size.
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Figure 9: Position space density for the ground state at g = 1 for the 2+1 system in
the double well potential in Figure 1, for different basis sizes compared with the matrix
product states method. The profile localized in the left well is the minority density and
the other one is the majority density.
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Figure 10: Integrated difference square of the position space density for the ground state
at g = 1 for the 2+1 system compared with the matrix product states method.
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Figure 11: Momentum space density of the ground state at g = 1 for the 2+1 system in
the harmonic trap, compared with the matrix product states method
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Figure 12: Position space density for the ground state at g = 1 in the double well potential
in Figure 1 for the 6+1 system. The density profile localized in the left well is the minority
density and the other one is the majority density.

5.3 6+1

In this section we study the 6+1 system. Figure 12 and Figure 13 shows the position space
density profiles for the ground state in the double well potential for g = 1 and g = 10.
We see that for large number of majority particles the system starts to look like a single
impurity in a homogeneous bath. Moreover, when the interaction increases the minority
particle density clearly gets deformed, which is reproduced with both methods, and we see
that our method does work well both for intermediate and strong interactions. However,
the discrepancy with the MPS result is clearly larger compared to the 2+1 system.

6 Conclusions

In this paper we explored a new method for studying strongly coupled one-dimensional
polaron systems, a method that generalizes that of [47]. Our results compare well both
with analytical methods for two particles and with numerical methods based on matrix
product states. The method converges well (exceptionally well for two particles), but does
get worse when the number of particles increase.

Our method has the fundamental advantage of allowing calculations for arbitrary val-
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Figure 13: Position space density for the ground state at g = 10 in the double well
potential in Figure 1 for the 6+1 system. The density profile localized in the left well is
the minority density and the other one is the majority density.
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ues of the interaction strength by only constructing the basis once. Generally, numerical
approaches would require a full calculation for every value of the interaction strength. To
compute the eigenstates and energies, we just need to change the interaction parameter g
in the Hamiltonian before diagonalizing. Moreover, most numerical methods would per-
form worse the stronger the interaction strength is, but our method is exact at infinite
interaction and thus works well both for small and strong interactions, with a peak of
slower convergence at some intermediate interaction strength. Since our states are chosen
such as to well approximate a state at finite interaction, the basis size is also relatively
small and the computational power needed for the diagonalization is negligible. In partic-
ular, the method does not require sophisticated diagonalization algorithms or high perfor-
mance computing tools, which is often the case for exact diagonalization methods. Note,
moreover, that the matrix we diagonalize is not a particularly sparse matrix. Computing
densities (and in particular density matrices or momentum distributions) is however a
significantly time consuming step, but again this part must only be carried out once for
each chosen basis and we can then easily obtain the densities for any interaction strength
g.
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A Integral identities

A.1 First integral identity

In this section we will derive an expression for

Ik~q,~p(x) ≡
∫
Mk(x)

Φ~q(x1, . . . , xn)Φ~p(x1, . . . , xn), (45)

whereMk(x) is the set where x is smaller than exactly k of the coordinates x1, . . . , xn and
Φ~v is the (normalized) totally antisymmetric wave function of the states corresponding to
the quantum numbers in ~v = (v1, . . . , vn). We will use induction to show that

Ik~q,~p(x) =
1

k!
∂kε det(A+ εB)ε=0, (46)

where A is the matrix defined by Aab(x) =
∫ x
−∞ fqa(x′)fpb(x

′)dx′ and

Bab =
∫∞
x fqa(x′)fpb(x

′)dx′ = δab −Aab. For k = 0 we easily obtain

I0
~q,~p(x) =

∫ x

−∞
dx1 · · ·

∫ x

−∞
dxnΦ~qΦ~p = detA(x), (47)
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which proves the base case. Now assume that Ij~q,~p(x) = 1
j!∂

j
ε det(A+ εB)ε=0 for j < k. We

then have

Ik~q,~p(x) =
1

k

∑
i,j

(−1)i+j
∫ ∞
x

fqi(x
′)fpj (x

′)dx′Ik−1
~q(i),~p(j)(x)

=
1

k

∑
i,j

(−1)i+j
∫ ∞
x

fqi(x
′)fpj (x

′)dx′
1

(k − 1)!
∂k−1
ε det(A(i)(j) + εB(i)(j))ε=0

=
1

k
∂k−1
ε

[
1

(k − 1)!
∂β det(A+ εB + βB)β=0

]
ε=0

=
1

k!
∂kε det(A+ εB)ε=0. (48)

where we have use the notation that N(i)(j) is the matrix N with row i and column j
removed and similarly ~q(i) is the ordered set with the element indexed i removed. We
also used the formula tr[MadjN ] =

∑
(−1)i+jMij detN(i)(j) = ∂ε det(M+εN)ε=0 and he

factor 1/k =
(
N
k

)
/
(
N
(
N−1
k−1

))
can be inferred from combinatorics and the normalization

of the wavefunctions. Thus our formula is proven by induction.

A.2 Second integral identity

Let us now consider the integral

Ik,l~q,~p(x, x
′) ≡

∫
Mk,l(x,x′)

Φ~q(x1, . . . , xn)Φ~p(x1, . . . , xn), (49)

whereMk,l(x, x
′) is the set where x is smaller than exactly k of the coordinates x1, . . . , xn

and x′ is smaller than exactly l of the coordinates x1, . . . , xn. Φ~v is the (normalized)
totally antisymmetric wave function of the states corresponding to the quantum numbers
in ~v = (v1, . . . , vn). The result is

Ik,ln,m(x, x′) =
1

|k − l|!(min(k, l))!
∂|k−l|ε ∂min(k,l)

ν det(A+ νB + εC)ε=0,ν=0, (50)

where Aij =
∫min(x,x′)
−∞ fni(x

′′)fmj (x
′′)dx′′, Cij =

∫max(x,x′)
min(x,x′) fni(x

′′)fmj (x
′′)dx′′ and Bij =∫∞

max(x,x′) fni(x
′′)fmj (x

′′)dx′′. We can also prove this by induction. Note that if we assume

x > x′ and k = 0, the formula is the same as (46) if the upper integral limit is changed
from∞ to x and the same proof goes through. We will thus use this as a base case for our
induction proof and thus assuming without loss of generality that x > x′, we can prove
the formula for l, k with k < l by assuming that it holds for k − 1, l − 1. Following the
exact same reasoning as in the proof in A.1, we have

Ik,l~q,~p(x, x
′) =

1

k

∑
i,j

(−1)i+j
∫ ∞
x

fqi(x
′′)fpj (x

′′)dx′′Ik−1,l−1
~q(i),~p(j) (x, x′)

=
1

k

∑
i,j

(−1)i+j
∫ ∞
x

fqi(x
′′)fpj (x

′′)dx′′

1

|k − l|!k!
∂|k−l|ε ∂k−1

ν det(A(i)(j) + νB(i)(j) + εC(i)(j))ε=0,ν=0

=
1

k
∂|k−l|ε ∂k−1

ν

[
1

|k − l|!(k − 1)!
∂β det(A+ νB + εC + βB)β=0

]
ε=0,ν=0

=
1

|l − k|!k!
∂|k−l|ε ∂kν det(A+ νB + εC)ε=0,ν=0. (51)
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Since we assumed that k < l and x > x′, and the exact same proof can be done for k > l
and x < x′, formula (50) follows.

B Two particle system

In this section we review the analytical solution of two particles in a harmonic trap, with
a delta function interaction [48]. The full Hamiltonian is

H =
1

2
x2

1 +
1

2
x2

2 +
1

2
p2

1 +
p2

2

2
+ V (52)

where
〈x1, x2|V |x′1, x′2〉 = gδ(x1 − x2)δ(x1 − x′1)δ(x2 − x′2). (53)

By introducing Jacobi coordinates x = (x1−x2)/
√

2, p = (p1−p2)/
√

2, X = (x1 +x2)/
√

2
and P = (p1 + p2)/

√
2 we can split this Hamiltonian into two parts, namely

H = Hrel +HCM (54)

where HCM = X2/2 + P 2/2 is just a harmonic oscillator corresponding to the center-of-
mass motion, and

Hrel =
x2

2
+
p2

2
+

g√
2
δ(x)δ(x− x′). (55)

The hard part, which will occupy most of this appendix, is solving for the eigenstates of
Hrel. The full set of eigenstates and eigenenergies are then obtained by tensor product
with the eigenstates of HCM.

We will solve for the wavefuctions by first expanding in a harmonic oscillator basis.
The Harmonic oscillator eigenfunctions are given by

fn(x) =
1√

2nn!
π−1/4e−

x2

2 Hn(x), (56)

where Hn are the Hermite polynomials. The energy is given by En = n+ 1/2. Let |Φ〉 be
an eigenstate for Hrel. We have

Hrel|Φ〉 = EΦ|Φ〉 ⇒ En〈n|Φ〉+
∞∑
m=0

〈n|V |m〉〈m|Φ〉 = EΦ|Φ〉 (57)

Solving for cn ≡ 〈n|Φ〉 and defining the quantity A =
∑
fn(0)cn we obtain

cn =
g√
2
fn(0)

A

EΦ − En
(58)

Now multiplying both sides by fn(0) and summing over n, we can cancel A from both
sides to obtain

1 =
g√
2

∑
n

fn(0)2

EΦ − 1/2− n
=

g√
2

∑
n

f2n(0)2

EΦ − 1/2− 2n
. (59)

For the case where A = 0, for which we can not cancel it from both sides to obtain equation
(59), see Appendix B.1. For the Hermite polynomials, we have Hn(0) = 0 if n is odd, and
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H2n(0) = (−1)n(2n!)/n!, which is the reason why we have omitted the odd terms. The
wavefunction is given by a similar formula, namely

Φ(x) =
g√
2
A
∑
n

f2n(0)f2n(x)

EΦ − 2n− 1/2
, (60)

It thus makes sense to treat these simultaneously, so let us define

F(x) =
√
π
∑
n

f2n(0)f2n(x)

n− ν
. (61)

To compute this function, we use the following relation between Hermite polynomials and
Laguerre polynomials

H2n(x) = (−1)n22nn!L−1/2
n (x2). (62)

We thus obtain

F(x) =
∑
n

e−
x2

2 L
−1/2
n (x2)

n− ν
(63)

Now we use the integral representation

1

n− ν
=

∫ ∞
0

dy
1

(1 + y)2

(
y

1 + y

)n−ν−1

, (64)

to obtain

F(x) =

∫ ∞
0

dy

(1 + y)2

(
y

1 + y

)−ν−1

e−x
2/2
∑
n

L−1/2
n (x2)

(
y

1 + y

)n
(65)

Now we can recognize the generating function e−tx/(1−t)(1 − t)−α−1 =
∑
tnLαn(x) to

obtain

F(x) = e−x
2/2

∫ ∞
0

dy(1 + y)ν−1/2y−ν−1e−yx
2

= Γ(−ν)e−x
2/2U(−ν, 1/2, x2) (66)

where we have used a standard representation for the confluent hypergeometric function
U . At x = 0, we can use the relation U(−ν, 1/2, 0) = Γ(1/2)/Γ(1/2−ν) =

√
π/Γ(1/2−ν),

to obtain

F(0) =
√
π

Γ(−ν)

Γ(1
2 − ν)

(67)

Thus for the energy, we must solve the equation

1 = −g
Fν=EΦ/2−1/4(0)

2
√

2π
= − g

2
√

2

Γ(−EΦ/2 + 1/4)

Γ(−EΦ/2 + 3/4)
. (68)

For the wavefunction, we instead have

Φ(x) = − gA

2
√

2π
Fν=EΦ/2−1/4(x) = − gA

2
√

2π
Γ(−EΦ/2+1/4)e−x

2/2U(−EΦ/2+1/4, 1/2, x2).

(69)
To find the normalization constant A we can consider the normalization constraint

1 =
∑
n

c2
n =

g2

2
A2
∑
n

f2
n(0)

(EΦ − n− 1/2)2

=
g2

4
A2∂EΦ

Γ(−EΦ/2 + 1/4)

Γ(−EΦ/2 + 3/4)
. (70)

Defining ψ(x) = Γ′(x)/Γ(x) and using the energy formula (68), we can simplify this to

A2 =
2
√

2

g(ψ(−EΦ/2 + 1/4)− ψ(−EΦ/2 + 3/4))
(71)
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B.1 Odd states

What we have obtained so far are all even parity states where the wavefunction in position
space is an even function. The odd parity states are just odd harmonic oscillator states
and they are unaffected by the interaction since they vanish at x = 0. These states would
have A = 0 and thus the step to obtain equation (59) would be illegitimate.

B.2 Absolute coordinates

The full eigenstates are then obtained by also multiplying by the center of mass states.
The complete wave function for H = Hrel +HCM is given by

Φk,n(x,X) = Φk(x)fn(X) (72)

where we have labeled all eigenstates of Hrel (both even and odd) by Φk for k = 0, 1, . . .
and fn are just the standard harmonic oscillator wavefunctions. The energy is likewise
Ek,n = EΦk + En where En = n+ 1/2 is the nth harmonic oscillator energy.

To compare with the variational method in this paper, we would also like to compute
the coordinate and momentum densities. Recall that x = (x1 − x2)/

√
2 and X = (x1 +

x2)/
√

2. The single particle density matrix is just the square of the wavefunction in
absolute coordinates, namely

ρ(x1, x2) = Φ2
k,n(

x1 − x2√
2

,
x1 + x2√

2
), (73)

and the density is thus given by

ρ(x1) =

∫ ∞
−∞

Φ2
k,n(

x1 − x2√
2

,
x1 + x2√

2
)dx2. (74)

The momentum density can then be obtained by

ρ(p) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dx1dx2e
ip(x1−x2)ρ(x1, x2). (75)

C Wavefunctions and energies for a smooth double well po-
tential

In this appendix we give details on energies and wavefunctions of the double well potential.
The double well potential is defined as

V (x) =
{ 1

2ω
2
0(x− x0)2 + ∆0 x < xL < 0

−1
2ω

2
1(x− x1)2 + ∆1 x1 < x < x2

1
2ω

2
2(x− x2)2 + ∆2 x > x2 > 0

(76)

where we require x0 < x1 < x2 and xL < xR. Continuity of the potential as well as its
derivatives at two points xL and xR implies the equations

1

2
(xL − x0)2ω2

0 + ∆0 = −1

2
(xL − x1)2ω2

1 + ∆1, (77)

−1

2
(xR − x1)2ω2

1 + ∆1 =
1

2
(xR − x2)2ω2

2 + ∆2, (78)
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ω2
0(xL − x0) = −ω2

1(xL − x1), (79)

−ω2
1(xR − x1) = ω2

2(xR − x2). (80)

This system is uniquely solved for ω1, x1, xL and xR given the physically relevant quantities
ω0, ω2, x0, x2, ∆0, ∆1 and ∆2. The solution is given by

ω−2
1 =

1

2(∆2 −∆0)2ω4
0ω

4
2[

− 2
√

(x2 − x0)2(∆1 −∆0)(∆1 −∆2)ω6
0ω

6
2((x2 − x0)2ω2

0ω
2
2 + 2(∆2 −∆0)(ω2

0 − ω2
2))

− 2(∆1 −∆0)(∆2 −∆0)ω2
0ω

4
2 − ω4

0ω
2
2(2(∆2 −∆0)(∆2 −∆1)

+ (x2 − x0)2(−2(∆1 −∆0) + (∆2 −∆0))ω2
2)
]
, (81)

x1 =
1

(∆2 −∆0)

[
(x2 − x0)(∆1 −∆0)−

1

(x2 − x0)ω4
0ω

4
2

√
(x2 − x0)2(∆1 −∆0)(∆1 −∆2)ω6

0ω
6
2((x2 − x0)2ω2

0ω
2
2 + 2(∆2 −∆0)(ω2

0 − ω2
2))
]

(82)

and then xL and xR are given by

xL =
x0ω

2
0 + x1ω

2
1

ω2
0 + ω2

1

(83)

xR =
x2ω

2
2 + x1ω

2
1

ω2
2 + ω2

1

(84)

Extra care for these formulas must be taken when evaluating these expressions for
∆0 = ∆2. In this case we have

ω2
1 =

8(∆0 −∆1)(x0 − x2)ω2
0ω

2
2

4(∆0 −∆1)2ω4
0 +

(4(∆0 −∆1)ω2
0(−2∆0 + 2∆1+

(x0 − x2)2ω2
0)ω2

2 + (2∆0 − 2∆1 + (x0 − x2)2ω2
0)ω4

2

)
(85)

x1 =
2(∆1 −∆0)ω2

0 + (2∆0 − 2∆1 + (x2
0 − x2

2)ω2
0)ω2

2

2(z0 − z2)ω2
0ω

2
2

(86)

For the symmetric case (symmetric around x1 = (x0 + x2)/2) where we also have
ω0 = ω2, we have

ω2
1 =

8(∆1 −∆0)ω2
0

8(∆0 −∆1) + (x0 − x2)2ω2
0

(87)

We can compute an upper limit on the parameter ∆1. The highest value is the value
such that ω1 =∞, namely we have the more well known double well potential which has
a discontinuous derivative between the wells. For such a potential the discontinuity is at
the intersection of the left and right wells, namely we solve

1

2
(xM − x0)2ω2

0 + ∆0 =
1

2
(xM − x1)2ω2

2 + ∆2, (88)
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which results in the solution

xM =
x0ω

2
0 − x2ω

2
2 +

√
2(∆2 −∆0)ω2

0 + (2∆0 − 2∆2 + (x0 − x2)2ω2
0)ω2

2

ω2
0 − ω2

2

. (89)

Then the upper limit of ∆1 is given by ∆1,max = 1
2(xM − x0)2ω2

0 + ∆0.
We will now work out the wavefunctions and energies. We will work in units where

h̄ = 1 for simplicity and we will define ν0 and ν2 by E = ω0(ν0 + 1
2)+∆0 = ω2(ν2 + 1

2)+∆2.
The eigenfunctions are now uniquely given by

ψ(x) = C0Dν0

(
−
√

2ω0(x− z0)
)

(90)

for x < xL and
ψ(x) = C2Dν2

(√
2ω2(x− z2)

)
(91)

for x > xR and for some constants C0, C2 (this follows since these are the only solutions
with the correct falloffs at x → ±∞). The function D is the parabolic cylinder function
given by

Dν(z) = 2ν/2e−z
2/4

[
Γ(1

2)

Γ(1−ν
2 )

1F1

(
−ν

2
;
1

2
;
z2

2

)
+

z√
2

Γ(−1
2)

Γ(−ν
2 )

1F1

(
1− ν

2
;
3

2
;
z2

2

)]
(92)

where 1F1 is the confluent hypergeometric function. Note that this function is a linear
combination of the two linearly independent solution of the Schrödinger equation in a
harmonic well, and the relative coefficient has been fixed by requiring falloff at infinity. In
the intermediate region we need to solve the Schrödinger equation for an inverted harmonic
well. It can be showed that the solution then is

ψ(x) = C
(1)
1 K(1)

ν1
(
√

2ω1(x− x1)) + C
(2)
1 K(2)

ν1
(
√

2ω1(x− x1)), (93)

where

K(1)
ν (z) = e−iz

2/4
1F1(

iν

2
+
i

4
+

1

4
;
1

2
;
iz2

2
) (94)

and

K(2)
ν (z) = e−iz

2/4z1F1(
iν

2
+
i

4
+

3

4
;
3

2
;
iz2

2
). (95)

and where we have parametrized the energy as E = ω1(ν1 + 1
2) + ∆1 (which we recall

is also equal to ω0(ν0 + 1
2) + ∆0 = ω2(ν2 + 1

2) + ∆2). Despite the complex arguments,
these are real functions. These solutions should now be glued smoothly across the points
xL and xR such that ψ and ψ′ are continuous. To simplify the equations, we will define
r = ω2/ω1, R = ω/ω1, ∆ = h̄ω1δ, C = h̄ω1c and we work in units where µω1/h̄ = 1. This
gives the equations

C0Dν0

(
−
√

2ω0(xL − x0)
)

= C
(1)
1 K(1)

ν1
(
√

2ω1(xL − x1)) + C
(2)
1 K(2)

ν1
(
√

2ω1(xL − x1)), (96)

C2Dν2

(√
2ω2(xR − x2)

)
= C

(1)
1 K(1)

ν1
(
√

2ω1(xR − x1)) + C
(2)
1 K(2)

ν1
(
√

2ω1(xR − x1)), (97)

−
√
ω0C0D

′
ν0

(
−
√

2(xL − x0)
)

=
√
ω1C

(1)
1 K(1)′

ν1
(
√

2ω1(xL−x1))+
√
ω1C

(2)
1 K(2)′

ν1
(
√

2ω1(xL−x1)),

(98)
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√
ω2C2D

′
ν2

(
−
√

2(xR − x2)
)

=
√
ω1C

(1)
1 K(1)′

ν1
(
√

2ω1(xR−x1))+
√
ω1C

(2)
1 K(2)′

ν1
(
√

2ω1(xR−x1)),

(99)
If we are given ν0, ν1, ν2 (which are all determined by the energy E), this is a linear

system of equations for C0, C2, C
(1)
1 , C

(2)
1 . For this system to have a non-trivial solu-

tion, the determinant of the corresponding matrix must vanish and this condition is what
determines the energy (or equivalently the parameters ν0, ν1, ν2). This system of equa-
tions, supplemented with normalization of the wave function, then fixes all the constants

C0, C2, C
(1)
1 , C

(2)
1 . In general, if we piece together N different quadratic (or other analyt-

ically solvable) potentials, the energy will be obtained by solving the equation resulting
from enforcing zero determinant of a 2(N − 1)× 2(N − 1) matrix.

D Matrix Product States

Throughout this work we compare our analytical method with simulations performed with
Matrix Product States (MPS), using the Open Source MPS (OSMPS) libraries [49]. In
these calculations, we employ the Hubbard model as an approximation to the continuum
in order to obtain static properties of a fermionic polaron system. Thus the spinful lattice
Hamiltonian is written as

H = −t
∑
j,σ

(c†j+1,σcj,σ + H.c.) + U
∑
j

nj,↑nj,↓ +
∑
j,σ

εjnj,σ, (100)

where c† and c are the creation and annihilation operators, respectively, t is the hopping
parameter and U denotes the strength of the on-site interactions between fermions with
different spin projections. We denote the internal states as |↑〉 for the background fermions
and |↓〉 for the impurity. Since we consider only a single |↓〉 fermion, we have naturally∑

j nj,↓ = 1, with
∑

j nj,↑ also being normalized to the number of background fermions.
We include additionally the trapping potential as the position-dependent εj parameter.

We simulate the continuum by taking a total of L = 256 sites. We thus obtain a
lattice spacing a = l/L where l is the total length assumed for the trapping potential. The
hopping parameter is related to the kinetic term in the continuum as t = 1/(2ma2), where
m is the atomic mass, which we take to be 1. The continuum and discrete interaction
parameters are related as U = g/a. To obtain matching energies, we must include an
additional term in the Hamiltonian given by

∑
j 1/a2. In some cases, to improve the

accuracy we compute the results for several increasing values of L and then extrapolate
to a final value using a function of the form f(L) = A+B/L+ C/L2.

E Polynomial interpolation for computing determinants

At several stages in the technique used in this paper we have to compute derivatives of de-
terminants of the form ∂iεD(ε)|ε=0 = ∂iε

1
i! det(M(ε))|ε=0, where M(ε) is some n× n matrix

and i = 0, . . . , n. We evaluate these derivatives by computing the function D(ε) on n+ 1
values with εi = −1 + 2i/n, i = 0, . . . , n, and then fitting a polynomial to these values and
extracting the coefficients. These coefficients can be obtained by multiplying the vector
D(εi) with the inverse of the matrix Kij ≡ εji .
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For the single-particle density matrix, we also need to compute terms of the form
∂iε∂

j
δD(ε, δ)|ε=0,δ=0. This is done similarly be fitting a polynomial of two variables to the

values D(εi, εj) with εi = −1 + 2i/n, i = 0, . . . , n. We carry out the polynomial fit by

applying the (n+ 1)2× (n+ 1)2 matrix KIJ ≡ εbJ/(n+1)c
bI/(n+1)cε

J mod (n+1)
I mod (n+1) on the (n+ 1)2 vector

DI = D(εbI/(n+1)c, εI mod (n+1)).

References

[1] I. Bloch, J. Dalibard and S. Nascimbène, Quantum simulations with ultracold quantum
gases, Nature Physics 8, 267 EP (2012), doi:10.1038/nphys2259, Review Article.

[2] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase
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[38] T. Sowiński, T. Grass, O. Dutta and M. Lewenstein, Few interacting fermions
in a one-dimensional harmonic trap, Phys. Rev. A 88, 033607 (2013),
doi:10.1103/PhysRevA.88.033607.

[39] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann and L. Santos, Quantum
magnetism without lattices in strongly interacting one-dimensional spinor gases, Phys.
Rev. A 90, 013611 (2014), doi:10.1103/PhysRevA.90.013611.

36

http://dx.doi.org/10.1103/PhysRevLett.121.013401
http://dx.doi.org/10.1103/PhysRevLett.121.080405
1904.02685
http://dx.doi.org/10.1126/science.aaf5134
https://science.sciencemag.org/content/354/6308/96.full.pdf
https://science.sciencemag.org/content/354/6308/96.full.pdf
http://dx.doi.org/10.1038/nphys3949
http://dx.doi.org/10.1103/PhysRevLett.118.083602
http://dx.doi.org/10.1103/PhysRevA.96.063603
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1063/1.1704291
https://doi.org/10.1063/1.1704291
https://doi.org/10.1063/1.1704291
http://dx.doi.org/10.1063/1.1704798
https://doi.org/10.1063/1.1704798
https://doi.org/10.1063/1.1704798
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRevA.86.043619
http://dx.doi.org/10.1103/PhysRevA.88.033607
http://dx.doi.org/10.1103/PhysRevA.90.013611


SciPost Physics Submission

[40] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, M. Valiente and N. T. Zinner, Strongly
interacting confined quantum systems in one dimension, Nature Communications 5,
5300 EP (2014), doi:10.1038/ncomms6300, Article.

[41] T. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musia l, P. Massignan, M. Lewen-
stein and R. Moszynski, Many interacting fermions in a one-dimensional harmonic
trap: a quantum-chemical treatment, New Journal of Physics 17(11), 115001 (2015),
doi:10.1088/1367-2630/17/11/115001.
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